

Abstract Evolutionary Algorithms have been used to

optimise the performance of neural network models before.

This paper uses a hybrid approach by permanently attaching

a Genetic Algorithm (GA) to a hierarchical clusterer to

investigate appropriate parameter values for producing

specific tree shaped representations for some gene sequence

data. It addresses a particular problem where the size of the

data set makes the direct use of a GA too time consuming. We

show by using a data set nearly two orders of magnitude

smaller in the GA investigation that the results can be usefully

translated across to the real, much larger data sets. The data

sets in question are gene sequences and the aim of the analysis

was to cluster short sub-sequences that could represent

binding sites that regulate the expression of genes.

Index Terms clustering, competitive learning, genetic

algorithms, neural tree networks.

I. INTRODUCTION

Evolutionary Algorithms have been used to optimise the

performance of neural network models before [1], [2]. This

paper uses a hybrid approach by permanently attaching a

Genetic Algorithm (GA) to a variant of the standard neural

network model of the competitive learning algorithm. The

neural model considered here is a dynamic node creating

algorithm that attempts to produce a hierarchical

classification for the given data set. The GA is used to

investigate appropriate parameter values for producing

specific tree shaped representations for some gene

sequence data. It addresses a particular problem where the

size of the data set makes the direct use of a GA

problematic due to the time needed to evaluate multiple

configurations of the network on the data. We show by

using a data set nearly two orders of magnitude smaller in

the GA investigation that the results found can be usefully

translated across to the real, much larger data sets.

The standard Neural Network Competitive Learning

algorithm [3] may be modified by the addition of dynamic

node creation and the imposition of a tree structure on the

classificatory ordering of the nodes. Two of the earliest

and most influential attempts are [4] and [5]. Both papers

introduced the concept of dynamic tree growth in response

to exposure to the data set. The final tree represented the

"natural groupings" of the data, with the top level of the

tree grouping data into large clusters and at successive

Rod Adams, Neil Davey and Paul Kaye are in the Science and

Technology Research Centre, University of Hertfordshire, Hatfield, Herts,

AL10 9AB, UK. Emails: r.g.adams, n.davey, p.h.kaye@herts.ac.uk,

Wanida Pensuwon is at the Dept. of Electrical & Electronics

Engineering, Ubonratchathani University, Ubonratchathani, 34190,

Thailand. Email: wanida.pe@ubu.ac.th

levels down the tree the data being clustered more finely.

A comparison and critique of these papers is given in [6]

and [7]. The dynamic tree growth modifications to the

standard competitive learning algorithm bring two main

advantages: the number of clusters that the neural network

will identify does not need to be predefined, and the

hierarchical tree structure improves the interpretability of

the results. In addition, the use of a tree structure allows a

more efficient search for the classifying node so increasing

the speed of the model. An improved dynamic neural

network hierarchical clusterer has been introduced by us in

[7], and a more robust, stochastic version, the Stochastic

Competitive Evolutionary Neural Tree (SCENT), in [8] and

[9].

The stochastic version of the model is able to produce a

suitable classification over a large variety of data sets.

Changing the parameters associated with the model makes

it possible to adjust the type of tree structure produced (for

example flatter or deeper) [9]. However the parameters

interact with each other in complicated ways so that it is

very difficult to select appropriate parameters by hand. By

incorporating a Genetic Algorithm with the basic SCENT

code to produce a hybrid model, containing the dynamic

neural tree and an optimiser, it is possible to search the

parameter space in order to meet the requirements for a

specific task [1], [2].

In this paper we investigate producing parameters for

SCENT that will construct two quite different hierarchical

tree clustering for some extremely large data sets. The data

in question are a complete collection of small sequence

windows taken from some genetic sequence data of up to

120000 base pairs. The direct use of the GA on the data

sets was ruled out due to the time needed to construct and

evaluate the tree on the data for the large number of

iterations required by a GA. The approach considered here

was to investigate the parameter settings by running the

hybrid model on a similarly constructed collection of small

sequence windows taken from a completely different, and

much shorter, genetic sequence and then apply these values

to the large data sets. It has not previously been established

that parameters that work for small data sets would also

work for large data sets since the model makes use of

frequency based information. However from these

experiments we conclude that once the general values of

the parameters were found for the small genetic sequence

they were sufficiently robust that they could successfully

produce the appropriate hierarchical clusterings on the

large data sets.

The basic stochastic competitive evolutionary neural tree

model is described in Section 2. The experiments

Optimising a Hierarchical Neural Clusterer

applied to large Gene Sequence Data Sets

Rod Adams Member, IEEE, Neil Davey, Paul Kaye and Wanida Pensuwon

performed and the Genetic Algorithm used are described in

Section 3, and the results are reported in Section 4. Finally,

some discussion and conclusions are given.

II. THE SCENT ALGORITHM

In SCENT, the tree structure is created dynamically in

response to structure in the data set. The neural tree starts

with a root node with its tolerance (the radius of its

classificatory hypersphere) set to the standard deviation of

input vectors and its position set to the mean of input

vectors. It has 2 randomly positioned children. Each node

has two counters, called inner and outer, which count the

number of occasions that a classified input vector is within

or outside tolerance, respectively. These counters are used

to determine whether the tree should grow children or

siblings once it has been determined that growth is to be

allowed.

A. Top-Level Algorithm

At each input presentation, a recursive search through

the tree is made for a winning branch of the tree. Each node

on this branch is moved towards the input using the

standard competitive neural network update rule [3].

Any winning node is allowed to grow if it satisfies 2

conditions. It should be mature (have existed for an epoch),

and the number of times it has won compared to the

number of times its parent has won needs to exceed a

threshold. Since any new growth may get pruned a finite

limit is put on the number of times a node attempts growth..

When a node is allowed to grow, if it represents a dense

cluster, then its inner counter will be greater than its outer

counter and it creates two children. Otherwise, it produces

a sibling node. The process of growth is illustrated in

Figure 1.

Child nodes are created Sibling node is created

Input data

Winner

Figure 1. Process of growing a tree. Child node creation is shown on the

left whereas sibling node creation is shown on the right.

To improve the tree two pruning algorithms, short and

long term, are applied to delete the insufficiently useful

nodes. The short-term pruning procedure deletes nodes

early in their life, if their existence does not improve the

classificatory error. The long-term pruning procedure

removes a leaf when its activity (the rate of classifying

input) is not greater than a threshold. See Figure 2 for the

pruning process. More details may be found in [9].

(a) Node to be pruned.

(b) Singleton is removed, the tree is reconstructed.

(c) Final tree after pruning process.

Figure 2. Pruning process of an inactive node from the tree. The final tree

is restructured so that a singleton is removed.

B.Stochasticity

There are two different ways in which stochasticity has

been added to the model [9]. Firstly the deterministic

decisions relating to growth and pruning have been made

probabilistic (we call this Decision Based Stochasticity),

and secondly the attributes inherited by nodes when they

are created have been calculated with a stochastic element

(we call this Generative Stochasticity). To both of these

approaches a simulated annealing process can be added to

mediate the amount of non-determinism in a controlled

way, so that a decreasing temperature allows for less

randomness later in the life of the network.

1) Decision Based Stochasticity

There are three crucial decision making points in the

model: the selection for growth, the type of growth and

selection for pruning. These decisions are made

deterministically in the basic model, a relevant scalar value

is calculated and compared to the appropriate threshold.

Decision Based Stochasticity is generalised in the normal

way to a stochastic decision, where the sharp change of

decision, depending on some input, is made softer by the

addition of some randomness.

Figure 3 illustrates the heaviside threshold function

softened to a sigmoid. In the deterministic version (on the

left) the decision is made at a precise value of the decision

variable plotted on the horizontal axis. However, in the

stochastic version (on the right) the value obtained by the

sigmoid function is compared to a random number between

0 and 1, and if larger, the decision is accepted. In this way

values of the decision variable less than the original

threshold can lead to positive decisions and values greater

than the precise one can lead to negative decisions.

Deterministic Decision Stochastic Decision

Decision 0

1

0

1

Selection for

Growth

Type of

Growth Selection for

Pruning

Figure 3. Decision Based Stochasticity. The probability of accepting a

decision produced in the left ellipse is crisp whereas the probability of

accepting a decision in the right ellipse is fuzzy.

The reason for adding stochasticity is that it may be

useful for the network to create more tentative new growth

and therefore for the pruning process to be more common.

The stochasticity softens the strong decision making and

allows the possibility of more chances at growth and of

keeping that growth, in the hope that more correct

decisions will be made for the different data sets.

2) Generative Stochasticity

This type of stochasticity adds noise to a generated value

in the model. The major occurrence of a generated value in

SCENT is during sibling creation and child creation.

The key property of a newly created node, calculated

from its parent, is its to lerance size. Here, some

randomness is added to this calculation. To achieve this, a

Gaussian centred on the deterministic value gives the

probability distribution of the new value. So that in child

creation, for instance, the two new nodes can have different

tolerances based around the original deterministic value.

Since the network is sensitive to the value of tolerance a

stochastic element added here could be beneficial.

3) Control of Stochasticity

The degree of randomness in the stochasticity can be

controlled in two different ways. The first method has a

fixed temperature (degree of randomness) during the whole

run whereas for the second method the temperature is

reduced every epoch by a temperature decrease factor. The

second method is known as Simulated Annealing, as in the

standard simulated a n n e a l i n g approach. A high

temperature corresponds to a large amount of randomness,

and this is reduced over time. When the temperature is

reduced to zero, the decision will become deterministic.

An example of SCENT used on a 27 cluster data set is

shown in Figure 4.

III. EXPERIMENTS

A. Genetic Algorithm & Parameter Setting

The behaviour of SCENT is determined by a set of

parameters, that specify, for example, the growth and

pruning thresholds and amount of stochasticity to use. For

a large selection of data sets these parameters have been

adjusted to produce an acceptable hierarchical clustering

without the need to change the parameters. However if a

specific type of hierarchy is required (maximising breadth

or depth of the tree for instance) or if a difficult data set is

encountered, such as an extremely large data set or a high

dimensional data set, then a search of the parameter space

is required. While most parameters specify the

mechanisms that directly affect the growth and pruning of

the tree, other parameters specify whether certain parts of

the algorithm should execute or not and, if so, by how

much. Such parameters control things such as whether to

use simulated annealing or not and whether to use

stochasticity and, if so, what places in the code to use it.

Looked at from a genetic developmental viewpoint with the

parameters represented by genes this mimics gene-gene

interaction and gene regulation during growth. The

parameters therefore interact with each other considerably

so that finding suitable parameter values is a non trivial

task. Consequently to facilitate the search for appropriate

parameter values the permanent addition of a Genetic

Algorithm (GA) to the SCENT model was made. Any

Evolutionary algorithm would have been suitable and we

picked a GA due to our familiarity with it.

27Clusters

SCENT

-20

-15

-10

-5

0

5

10

15

20

-25 -20 -15 -10 -5 0 5 10 15 20 25

R

Figure 4. An example of the tree structure produced by SCENT. The

original data set and the final leaf nodes are shown in the top half of the

figure, the full tree structure is shown in the bottom half of the figure. The

leaf nodes are shaded in the tree. The data in each of the 4 quadrants of

the top picture is clustered at the second level of the tree, with the left

hand sub-tree representing the 3rd quadrant, the next representing the 2nd

quadrant, the next representing the 1st quadrant and the right hand sub-

tree representing the 4th quadrant.

The GA used is an adapted version of the GENESIS

code from John J Grefenstette [10]. The original GA, as is

most common, represents parameters in a binary coding. In

some circumstances a binary coding is a sufficiently

accurate representational method, such as when the

parameter being encoded can only take a fixed number of

different values. However some of the parameters in our

model have a continuous domain and would benefit from a

real (floating point) encoding so that we do not arbitrarily

restrict their accuracy by imposing a small fixed number of

values, as is often done. Both continuous and discrete

parameter can be given the most appropriate natural

representation using real and binary encoding respectively.

Our GA has been adjusted so that it can cope with a

selection of both binary coded genes and real valued genes

at the same time. Both types of parameter are restricted to

remain within a fixed range of values, but the real coded

ones can take all floating point values within that range.

The genes in our GA are on two chromosomes, one binary

coded the other real coded. Crossover and mutation on the

binary string are 2 point crossover and standard mutation as

given in the original GENESIS.

Various methods have been proposed for dealing with

crossover and mutation for real valued genes [11]. The

methods we use are selected from the ones found in [11].

For the real part of the genome we use 2 point crossover

which takes place at two random points. The real

chromosome consists of a vector of real numbers. The

format for crossover of two parent vectors is:

Parent1 = x
1
...x

i
.......x

j
....... x

n

Parent2 = y
1
...y

i
.......y

j
.......y

n

Child1 = x
1
...x

i 1
u
i
y
i +1
.....y

j 1
u
j
x
j+ 1
.......x

n

Child2 = y
1
...y

i 1
v
i
x
i+ 1
.....x

j 1
v
j
y
j+1
.......y

n

where

u
i , j
=

i , j
x
i, j
+ (1

i ,j
)y

i , j
 and

v
i, j
= (1

i ,j
)x

i , j
+

i , j
y
i, j

 with

0
i , j

1

That is, the positions of two real numbers are randomly

chosen as crossover points. The real numbers are swapped

between the crossover points. At the crossover points the

two real numbers are mixed using a randomly chosen factor

, in line with binary representation crossover which

allows swapping to occur within the boundary of a

parameter. Note that this effectively introduces a degree of

mutation.

The mutation operator takes one of the real genes and

changes it by creating a new value that is calculated by

selecting a value from a Gaussian distribution centred on

the current value and with variance equal to one quarter of

the possible range of values for that gene. If this value is

outside the range then it is wrapped round to the other end.

Figure 5 illustrates the process of using a Genetic

Algorithm to find appropriate parameter values. Each gene

in the two chromosomes is converted into a parameter

value and these are used in the SCENT model which

generates a tree structure to represent the data set. This is

repeated for each member of the population. Fitness is

assigned to the resulting tree structures using appropriate

methods depending on factors such as its depth or the size

of its leaf nodes (see section IIIC). These fitness values are

used to create a new population of parameter values using

standard GA selection, crossover and mutation operators.

This is repeated each time round the loop.

B.Data Sets

The data used were genetic sequences of up to 120000

base pairs thought to contain several genes. The aim of the

exercise was to locate binding sites that regulate the

expression of the genes [12], [13]. Such binding sites are

not guaranteed to be identical sequences. So initially it was

necessary to cluster short sequences of the base pairs in

order to find closely related patterns that were repeated.

Identical patterns would automatically be in the same

cluster, but depending on the size of cluster obtained then

the nearness of the similarly clustered patterns would be

varied. Subsequently these clusters were to be analysed for

such things as groups of clustered sequences that were

close together in the original full sequence.

Genome

Population

Produce

Neural

Network

Genetic

Operators

Evaluation

using

Criterion

New Population Parameter Settings

Final TreeFitness Value

Figure 5. Process of finding appropriate parameter values for the neural

clusterer when producing specific tree structures using a Genetic

Algorithm.

The nucleotides a , c , g and t s were coded as

independent vectors using (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1,

0) and (0, 0, 0, 1) respectively to maintain their mutual

equidistance. Any unknown bases (n s) were coded as (1,

1, 1, 1). The sequences of a , c , g , t and n s that were to

be clustered were defined by a variable window size,

usually between 5 and 15. For a window size of 10, as

used in this paper, each vector sequence was therefore of

dimension 40. This window was then allowed to slide

down the genetic sequence, one nucleotide at a time

producing a large set of 40 dimensional vectors. With

120000 base pairs there are 119991 vectors each of arity

40. So the data set consisted of ~4800000 integers. This

was nearly a couple of orders of magnitude larger than

anything we had tried before. There were two such large

data sets, both being Bacterial Artificial Chromosomes

(BACs) from different chromosomes of Drosophila

melanogaster. The second data set was then halved in size

to provide a different sized test data set.

We wanted to produce two types of tree structure. One

with leaf nodes as small as possible, so that each leaf node

should contain closely related short genetic sequences. The

second was a tree with a high degree of hierarchical

structure, but still with moderately small clusters. Here

selections at different depths in the tree could be used to

analyse which sequences were put together at each level.

The largest data set, constructed from the 120000 base

pairs sequence, takes more than two days to be clustered by

a single run of SCENT. Although the algorithm just scales

linearly with the data set size the extremely large size of

these data sets means that they are therefore too large to use

with a GA, which would require multiple runs, when

investigating suitable parameter values. Consequently a

shorter sequence was used instead. To attempt to ensure

that the parameters could be suitable for any large gene

sequence a totally different short sequence was taken (a

gene plus promoter region from the human genome). The

sequence used was of length 1519 base pairs, which with a

window size of 10 gave 1510 vectors (still of dimension

40). The tree clustering for this small data set could be

produced in about one minute.

So the data used was a set of vectors formed by using a

10 nucleotide window from:

a 120000 base pairs gene sequence from Drosophila

melanogaster - designated Sequence1

a 60000 base pairs gene sequence from Drosophila

melanogaster - designated Sequence2

a small, 1519 base pairs sequence from the human

genome - designated Small

The GA was run with a population of 50, a crossover

rate of 0.6, a mutation rate of 0.001 (plus that introduced by

the crossover operation), a roulette wheel rank based

selection mechanism and an elitist replacement strategy. It

was thought that the precise values for the parameters

would not be significant, since they have appeared robust

previously, however having each parameter value in the

correct region was significant so we decided that running

for 10 generations would be sufficient. When set to run for

10 generations the results were produced in approximately

6 hours.

C. Measurement of Clustering Performances

There were two separate goals in these experiments. In

the first experiment small leaf nodes were required so the

fitness criteria was that the size of the leaf nodes should be

minimised.

In the second experiment a maximum depth was required

along with reasonably small clusters. A fitness criteria that

took the tree depth and the inverse of leaf size was

maximised. The addition of the two factors was weighted

by a weighting_factor (the value 1/5 being used here) so

that they were of more similar importance, with depth

remaining as the more significant factor.

fitness = depth +
weighting _ factor

size _ of _ leaf

In each case 3 tree structures were built using the

parameter values by using 3 different sets of random

initialisation values. The final fitness was averaged from

these 3 in order to eliminate random special cases.

IV. RESULTS

A .Experiment 1

In this section, we present the results when trying to

produce small leaf sizes, that is small clusters. Interestingly

the fitness function used automatically produced a flat

clustering with very few nodes below the second level of

the tree. Table I shows the results.

As can be seen the parameter values produced leaves of

size 3.9 for 1510 sequences with 100% of them at level 1

and 2. In fact 97% of the leaves were at level 1 so the tree

was virtually flat. For the large (and real data sets) this

translated into trees with leaf nodes of average size of 5.4

and 4.4 for the 120000 sequence and 60000 sequence data

sets respectively. The leaf size for the largest data set is

surprisingly small and is much smaller than expected prior

to running the experiment. Again the hierarchy is mainly

flat with over 99% of the nodes at level 1 and 2.

TABLE I: RESULTS FOR THE FIRST EXPERIMENT. HERE THE CRITERION

WAS THAT THE LEAF SIZE SHOULD BE MINIMISED. AS CAN BE SEEN THE

DEPTH IS ALSO REDUCED, WITH MOST OF THE NODES AT LEVEL 1 AND 2.

THE RESULTS HAVE TRANSLATED FROM THE SMALL DATA SET TO THE

LARGE ONES VERY SUCCESSFULLY.

Data Set Small Sequence1 Sequence2

Size 1510 119991 59991

Nodes 394 30386 16984

Leaves 388 22197 13583

Leaf Size 3.9 5.4 4.4

Top Level 383 13051 9900

Depth 2 4 3

%

Level1&2

100% 99.3% 99.9%

B. Experiment 2

In this section, we present the results of using a small

data set when trying to produce a deep tree with reasonably

small leaves, though not as small as in the first experiment.

Table II shows the results.

A maximum depth of 5 was found for the small test data

set with only 14% of the nodes at level 1 and 2. The leaf

size was 5.2. This translated well into the larger data sets

with a depth of 7 being produced with only about 2% of the

nodes at level 1 or 2. A reasonable leaf size in the 30s was

achieved for the largest data set.

TABLE II: RESULTS FOR THE SECOND EXPERIMENT. HERE THE

CRITERION WAS THAT THE DEPTH SHOULD BE MAXIMISED, TOGETHER

WITH REDUCING THE LEAF SIZE. AS CAN BE SEEN THE NUMBER OF

LEVELS IS QUITE HIGH WITH MOST OF THE NODES AT A GREATER DEPTH

THAN 2. THE LEAF SIZE IS REASONABLY SMALL. THE RESULTS HAVE

TRANSLATED FROM THE SMALL DATA SET TO THE LARGE ONES VERY

SUCCESSFULLY.

Data Set Small Sequence1 Sequence2

Size 1510 119991 59991

Nodes 428 4550 3694

Leaves 291 3392 2728

Leave Size 5.2 35 22

Top Level 8 8 8

Depth 5 7 7

%

Level1&2

14% 1.4% 1.6%

V. DISCUSSION AND CONCLUSION

The addition of the Genetic Algorithm to our previously

described hierarchical clusterer has enabled two specific

tree structured representations, of some specialised large

data sets, to be obtained efficiently. The GA only took on

average 6 hours to do 10 generations with a population of

50 each evaluated three times to find its average fitness. A

GA run was used to successfully evolve a suitable set of

parameters for each of the types of final tree structure

required, which were then used on the larger data sets.

Having found the parameter values the large data sets then

required a considerable time to find their final clustering

(the 120000 base pair data sets took about 2 days to be

clustered). These time differences illustrate clearly the

difficulty of using the GA on the large data set directly and

the advantage of being able to use the parameters

determined via the small data set.

The two parameter sets for the two sets of requirements

were obviously different. The first set of parameters

produced trees with small clusters which also gave a flat

clustering with very little child growth and lots of sibling

growth, the second set produced deep trees with reasonably

small clusters and lots of child growth with little sibling

growth. The major differences between the two sets of

parameters were those parameters that determined the

tolerance size for child growth and those that determined if

long term pruning should occur. Long term pruning occurs

if the new node does not classify enough input vectors.

As far as growth is concerned the second set of

parameters produced much larger tolerances for children

nodes which would then encouraged further child

production and deeper trees, as required. Surprisingly there

was no major differences in the parameters that determined

new tolerances formed after sibling growth (the increased

tolerance was meant to inhibit too much sibling growth).

However, the trees produced by the first set of parameters

had lots of sibling growth while the other trees did not. It

therefore appears that, for these data sets, the main

contribution to encouraging sibling growth is just to inhibit

too much child growth.

On the pruning side the parameters that determine

whether to do short term pruning were similar for both sets

(short term pruning occurs if the error is not improved soon

after growth). The second set did make it slightly harder to

do short term pruning but it was moderated by a stochastic

element. However the main difference between the

parameters was that for the second set it was very much

harder to do long term pruning; the first set of parameters

would prune more easily. This was surprising since the

first set of parameters were specifically aimed at producing

small clusters and therefore did produce quite a lot more

nodes that obviously did not get pruned. The second set of

parameters did not produce such small clusters despite the

difficulty of pruning new nodes based on classification

size.

In the two experiments described here the performance

of the parameters, found approximately with only 10

generations of a GA and using a small data set from a

different genome, were evaluated on much larger data sets.

The key result of the paper is that the large data sets

performed in a similar manner to the small, test data set.

Hence the parameters found by the use of a GA were robust

in terms of an increase of scale by 80 times. The two

different tree structures were quite different - one was

essentially flat and the other was of a considerable depth.

This shows that the hybrid SCENT model and GA is

capable of producing different sorts of hierarchy to order.

The co-occurrence of short gene sequences, which may

represent binding sites for the regulation of genes, is of

interest and clustering, as described in this paper, may help

to identify such sequences.

REFERENCES

[1] A. G. Rust, R. Adams, S. George & H. Bolouri, "Designing

Development Rules for Artificial Evolution", Proceedings of the

International Conference on Artificial Neural Networks and

Genetic Algorithms, Norwich, April 97, pp509-513, Springer

Verlag.

[2] X. Yao, “Evolving Artificial Neural Networks”, Proceedings of the

IEEE, vol. 87 (9), pp. 1423-1447, Sept. 1999.

[3] J. Hertz, A. Krogh. and R. G. Palmer, An Introduction to the Theory

of Neural Computation, Addision Wesley, USA, 1991.

[4] Li T, Tan Y, Suen S and Fang L, 1992. “A Structurally Adaptive

Neural Tree for Recognition of a Large Character Set”,

Proceedings of the 11th IAPR International Joint Conference on

Pattern Recognition, pp. 187-190.

[5] Racz J and Klotz T, 1991. “Knowledge Representation by Dynamic

Competitive Learning Techniques”, SPIE Applications of Artificial

Neural Networks II, 1469, pp. 778-783.

[6] Butchart K, Davey N and Adams R, 1995. “A Comparative Study

of two Self Organising Structurally Adaptive Neural Tree

Networks”. In: Neural Networks and their Applications, Taylor J G

(Ed.), John Wiley.

[7] R. Adams. K. Butchart. and N. Davey, “Classification with a

Competitive Evolutionary Neural Tree,” Neural Networks, vol. 12,

pp. 541-551, 1999.

[8] N. Davey, R. Adams and S. George, “The Architecture and

Performance of a Stochastic Competitive Evolutionary Neural

Tree,” Applied Intelligence, vol. 12, No. 1/2, pp. 75-93, 2000.

[9] W. Pensuwon, Stochastic Hierarchical Dynamic Neural Networks,

Ph.D. Thesis. University of Hertfordshire, 2001.

[10] J. J. Grefenstette, (1995) Genesis 5.0,

ftp://www.aic.nrl.navy.mil/pub/galist/source-code/ga-source

[11] T. Baeck, D. B. Fogel and T. Michalewicz, Evolutionary

Computation 1, Inst. of Physics, 2000.

[12] B. Alberts et al, Molecular Biology of the Cell, Garland Publishing,

New York.

[13] J. W. Fickett and W.W. Wasserman, “Discovery and Modelling of

Transcriptional Regulatory Regions”, Current Opinion in

Biotechnology, vol. 11, pp. 19-24, 2000

