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Abstract— Over the past ten years, methods from statisti-
cal physics have provided a deeper inside into the average
complexity of hard combinatorial problems, culminating in
a rigorous proof for the asymptotic behaviour of the k-SAT
phase transition threshold by Achlioptas and Peres in 2004.
On the other hand, when dealing with individual instances of
hard problems, gathering information about specific properties
of instances in a pre-processing phase might be helpful for
an appropriate adjustment of local search-based procedures.
In the present paper, we address both issues in the context
of landscapes induced by k-SAT instances: Firstly, we utilize
a sampling method devised by Garnier and Kallel in 2002
for approximations of the number of local maxima in land-
scapes generated by individual k-SAT instances and a simple
neighbourhood relation. The objective function is given by the
number of satisfied clauses. Secondly, we outline a method
for obtaining upper bounds for the average number of local
maxima in k-SAT instances which indicates some kind of phase
transition for the neighbourhood-specific ratio m/n = Θ(2k/k).

I. INTRODUCTION

MUCH attention has been paid in recent years to local
search algorithms as one of the basic methods to

solve k-SAT problems. A first summary was presented in [8]
along with an empirical analysis of run-time distributions for
various local search-based methods such as WalkSAT [22].
Improvements on run-time estimations for k-SAT problems
as well as for CNFs with unconstrained clause lengths are re-
ported in [3], [4], [6], [14], [17], [18], which are partly based
on randomised local search methods. Significant progress
has been achieved in the analysis of phase transitions since
this effect was reported in [11], [23]. Sophisticated methods
from statistical mechanics [12], [10], [13] provided quite
accurate estimates for the crucial phase transition parameter,
which eventually led to a rigorous proof of a tight bound of
2k·log 2−O(k) for the phase transition threshold as presented
in [1] (for an overview on statistical mechanics applied to
combinatorial optimization we refer the reader to [9]).

In the present paper, we attempt to analyse the number of
local maxima in a combinatorial landscape induced by a k-
CNF and a simple neighbourhood function, with the objective
function being the number of satisfied clauses for a given
assignment of binary values. In recent years, combinatorial
landscape analysis has become a major tool in the design
of search-based algorithms, see [16]. For example, instance-
specific landscape parameters such as the maximum value
of the minimum escape height from local minima can be
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utilized to obtain relatively tight bounds for the termination
of local search when coupled with a confidence parameter,
see [2]. The application of this type of run-time bounds to
protein folding simulation exhibits a close correspondence
between the simulation time (in number of transitions) and
estimates of real folding times (in nanoseconds) of protein
sequences [24], [25], which is due to the common source
of thermodynamics (simulated annealing, minimizing free
energy in protein foldings).

Reeves and Eremeev [15] have demonstrated how to in-
corporate the number of local optima into run-time estimates
of local search algorithms. For landscapes that can be parti-
tioned into attraction basins, they proved that with probability
α all local optima have been covered by local search with
random restart after a waiting time of ν · ln (ν+γ)+ zα ·√

(ν ·π)2/6+1−ν ·ln(ν+γ), where ν is the number of local
optima, γ is the Euler-Mascheroni constant, and zα is an
appropriate confidence coefficient. Thus, estimates for ν
provide information, e.g., for the selection of the population
size in parallelized versions of local search algorithms, such
as genetic algorithms or evolutionary algorithms in general.

In a slightly different context (Max-SAT and local min-
ima), Zhang [27] proposes a landscape-based method that
performs especially well on overconstrained random Max-
SAT instances. Moreover, Zhang’s algorithm finds satisfiable
solutions on large k-SAT instances more often than Walk-
SAT. The paper highlights the importance of how to deal with
individual instances rather than with collections of (randomly
selected) problem instances.

In our paper, we utilize the approach devised in [5] to
estimate the number of local maxima for a given problem
instance, where sample data are used to approximate a
probability distribution associated with the landscape induced
by the problem instance. The results are discussed against the
information gathered by a complete analysis of the landscape
for a limited number of k-SAT problem instances. Given
the nature of the problem, we were able to analyse only
small-scale instances and overall only a limited number
of different, randomly generated k-SAT instances. Apart
from the experimental analysis based on the Garnier/Kallel-
approach, we derive a rough estimate of the average number
of local maxima per k-CNF in terms of parameters of individ-
ual problem instances for the given, simple neighbourhood
relation. The calculations indicate that for the ratio m/n =
Θ(2k/k), where m is the number of clauses and n the
number of variables, the magnitude of the average number of
local maxima per k-CNF changes significantly. We note that
the calculations depend on the type of the neighbourhood,
i.e. other neighbourhood relations may produce different
values, which will be subject of future research.
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II. BASIC NOTATIONS

We follow mainly the notations from [1]: for a set V of
n Boolean variables let Ck(V ) denote the set of all

(
n
k

)·2k

different disjunctive k-clauses on V , i.e. repeated literals and
tautologies are excluded. A k-CNF is formed by selecting m
different clauses C from Ck(V ) and taking their conjunction.
We note that the selection does not imply - as in [1] - that the
k-CNF strictly depends upon all n variables. The set of all
such k-CNF consisting of m clauses is denoted by Fk(n, m).
The set of m clauses forming F ∈Fk(n, m) is denoted by
C(F ), and ZF (σ̃) is the number of satisfied clauses C ∈
C(F ) on the truth assignment σ̃ = (σ1, ..., σn), i.e. 0 ≤
ZF (σ̃) ≤ m and F is satisfiable, if there exists η̃ such that
ZF (η̃) = m.

In [19], various neighbourhood functions are analysed that
employ information about ZF (σ̃) and elements of C(F ) that
maximise changes of the objective function in one way or
another. For example, flipping values of truth assignments is
determined by unsatisfied clauses only, see also [21], [20].
We consider a simple, unconstrained (i.e., features of clauses
w.r.t. ZF (σ̃) are not taken into account) neighbourhood
function where the value of a single variable is flipped, which
makes it possible to consider the elements of the unit cube
{0, 1}n as elements of the configuration space. Thus, the
landscape L(F ) for F is induced by ZF (σ̃), σ̃ ∈ {0, 1}n,
and the neighbourhood relation

N (σ̃) =
{
σ̃′|d(σ̃, σ̃′) = 1

}
, (1)

where d(σ̃, σ̃′) is the Hamming distance.
If ∀σ̃′

(
σ̃′∈N (σ̃) → (ZF (σ̃′) ≤ ZF (σ̃)

)
, then σ̃ is called

a local maximum (which also covers global maxima).

III. THE GARNIER/KALLEL-APPROACH

In the present paper, we are solely concerned with the
landscape analysis called inverse problem in [5], i.e. M
elements of the landscape are selected at random as initial
points of a pre-defined local search procedure. Then, for j
initial points, where 1 ≤ j ≤ M , the local search procedure
is started and executed until a (local) maximum has been
detected. The number of different (local) maxima is denoted
by βj . The local search procedure is quasi-deterministic
and follows the steepest ascent rule: for the intermediate
landscape element σ̃, all elements of N (σ̃) are examined and
one of the neighbours σ̃ ′ with the highest value of ZF (σ̃′)
among all neighbours is chosen as the successor of σ̃ in the
search procedure. The search terminates, if no improvement
of the objective function can be achieved. In [5], and the same
applies to [15], a single element σ̃ ′ ∈ N (σ̃) is assumed at
each step that maximises ZF (σ̃′), which implies a partition
of L into attraction basins Ai, where 1 ≤ i ≤ N for a total
number of N local and global maxima. The set A i consists of
all elements of L that lead to the ith local or global maximum
by the steepest ascent local search. The assumption affects
the normalised size αi = |Ai|/|L| of attraction basins and∑N

i=1
|Ai|/|L| = 1. Since we employ the Garnier/Kallel-

approach in an experimental context, we assume in the

following that the impact of random selections among σ̃ ′ that
maximise ZF (σ̃′) within a given neighbourhood is negligible.

Garnier and Kallel (2002) assume that the normalised sizes
αi of attraction basins can be described by a distribution
parametrized by some positive number γ as follows: let
(Zi)i=1,..,N be a sequence of independent random variables
whose common distribution has density pγ defined by

pγ =
γγ

Γ(z)
· zγ−1 · e−γ·z, (2)

where Γ(z) =
∫ ∞

0
e−t ·tz−1dt, i.e. (2) represents the Gamma

distribution with the parameter setting [γ, γ], see [5]. Let
Hγ denote the assumption that the (αi)i=1,...,N can be
approximated by (Zi/TN)i=1,...,N , where TN =

∑N

i=1
Zi

with each Zi having the density function pγ . Furthermore, let
βj,γ = Eγ [βj ] denote the expected value of βj , j = 1, ..., M .
Garnier and Kallel (2002) prove that

βj,γ = N ·
(

M

j

)
· Γ(γ + j)

Γ(γ)
· Γ(N · γ)

Γ((N − 1) · γ)
×

×Γ((N − 1) · γ + M − j)

Γ(N · γ + M)
. (3)

We note that for N = M/r, a fixed value of M , and
appropriate approximations of the Γ-function, the β j,γ can
be approximated according to (3) as functions of (j, γ, r).
For fixed r, Garnier and Kallel (2002) propose the χ 2 test
to approximate γ for H γ , which consists of calculating

Tγ =
M∑

j=1

(βj − βj,γ)2

βj,γ

, (4)

where the βj are given from observation and the βj,γ are
approximated according to (3). The goal is then to determine

γ0(r) = argmin{Tγ , γ > 0} (5)

by appropriate numerical methods. In our computational
experiments, we incorporate the approximation of γ 0(r) as
a sub-routine in calculations where the parameter r varies
(is decremented) until γ0(r) changes only marginally for
r = rappr, see Section IV. Thus, for a fixed (but sufficiently
large) value of M the number of local maxima is finally
estimated by

N =
M

rappr
. (6)

IV. COMPUTATIONAL EXPERIMENTS

A. Evaluation of random 3-SAT instances

We fixed k = 3 and for n = 14, 20, 21 we randomly
generated three to five instances from F3(n, m) for varying
ratios m/n around the phase transion threshold m/n ≈
4.267.

For each of the k-CNF we executed a complete search for
local/global maxima in {0, 1}14, {0, 1}20 and {0, 1}21. The
corresponding values of the number N of maxima are shown
in the second column of Table 1 and Table 2, respectively.

We then selected three values for M , the number of
random points chosen in {0, 1}14, {0, 1}20 and {0, 1}21
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as initial elements for a deteministic steepest ascent search
for local maxima. For each of the values M i, i = 1, 2, 3,
and the natural order of the Mi points we counted by β i

j ,
j = 1, ..., Mi the number of different maxima detected by the
first j starting points for steepest ascent search. The values
of βi

M are recorded in the fourth column of Table 1 and
Table 2.

An example of one of the five 3-CNF for n = 21 is given
below:
¬x0∨¬x1∨¬x8 ∧ ¬x0∨x2∨x15 ∧ ¬x0∨x2∨¬x18 ∧ ¬x0∨x2∨
¬x19 ∧ ¬x0∨¬x3∨¬x8 ∧ x0∨¬x4∨¬x10 ∧ ¬x0∨¬x6∨¬x14 ∧
¬x0∨¬x9∨x16 ∧ ¬x0∨¬x12∨x14 ∧ ¬x0∨¬x12∨x17 ∧ x0∨
¬x13∨¬x18 ∧ x1∨¬x2∨¬x9 ∧ ¬x1∨¬x2∨¬x10 ∧ x1∨¬x3∨
x4 ∧ ¬x1 ∨¬x3 ∨¬x14 ∧ x1∨¬x3 ∨x20 ∧ ¬x1∨x4 ∨¬x16 ∧
x1∨¬x5∨¬x15 ∧ x1∨x5∨¬x16 ∧ x1∨¬x6∨¬x11 ∧ x1∨¬x6∨
¬x17 ∧ x1 ∨x9 ∨x13 ∧ x1 ∨¬x9 ∨¬x15 ∧ ¬x1 ∨¬x9 ∨x18 ∧
¬x1 ∨x12 ∨¬x13 ∧ ¬x1 ∨¬x14 ∨x17 ∧ ¬x1 ∨¬x14 ∨¬x18 ∧
x1∨x17∨x18 ∧ ¬x2∨x3∨¬x10 ∧ ¬x2∨x6∨x12 ∧ ¬x2∨x8∨
x16 ∧ ¬x2∨x11∨¬x19 ∧ ¬x2∨x12∨¬x15 ∧ ¬x2∨x14∨x15 ∧
x2∨x14∨x16 ∧ x3∨¬x4∨x7 ∧ ¬x3∨x6∨¬x7 ∧ ¬x3∨¬x8∨
x11 ∧ ¬x3∨x9∨x17 ∧ x3∨x10∨¬x11 ∧ x3∨x11∨¬x18 ∧ x3∨
x16∨x20 ∧ x4∨¬x5∨¬x13 ∧ x4∨x7∨¬x11 ∧ x4∨x8∨¬x12 ∧
x4∨x13∨¬x19 ∧ ¬x4∨x14∨¬x19 ∧ x4∨x16∨x17 ∧ x5∨x6∨
¬x19 ∧ ¬x5∨x7∨¬x12 ∧ ¬x5∨¬x7∨x16 ∧ ¬x5∨¬x7∨x19 ∧
x5∨x8∨x10 ∧ x5∨x8 ∨¬x20 ∧ x5∨¬x10 ∨x16 ∧ ¬x6∨x7 ∨
x8 ∧ ¬x6∨x7∨¬x9 ∧ ¬x6∨x11∨x14 ∧ ¬x6∨¬x12∨x14 ∧ x6∨
¬x12∨x18 ∧ ¬x6∨¬x12 ∨x20 ∧ ¬x6∨x17∨x19 ∧ x7∨¬x8 ∨
x18 ∧ x7∨x10∨¬x11 ∧ ¬x7∨x17∨¬x19 ∧ ¬x7∨x17∨¬x19 ∧
¬x8∨x9∨x11 ∧ ¬x8∨x12∨¬x20 ∧ x8∨¬x13∨x14 ∧ x8∨¬x13∨
¬x15 ∧ x8∨x14∨¬x15 ∧ x8∨x16 ∨¬x17 ∧ x9∨¬x12∨x14 ∧
¬x9 ∨¬x12 ∨x16 ∧ ¬x9 ∨¬x12 ∨¬x19 ∧ ¬x9 ∨x15 ∨¬x20 ∧
x10∨¬x11∨x17 ∧ ¬x10∨¬x11∨¬x18 ∧ ¬x10∨¬x12∨¬x18 ∧
x10∨¬x13∨x18 ∧ x10∨x13∨¬x20 ∧ ¬x10∨x17∨x18 ∧ ¬x10∨
x18∨¬x19 ∧ x11∨¬x13∨x19 ∧ x11∨x14∨¬x18 ∧ x12∨x13∨
¬x18 ∧ x13∨x18∨¬x20 ∧ x14∨¬x19∨¬x20 ∧ ¬x17∨x18∨x20.

B. Approximation of H γ

For the calculation of βj,γ according to (3) we implemented the
following procedure, which actually approximates βj,γ since we
employ an approximation of the Γ-function. We recall that in (3)
the (unknown) N is substituted by M/r, where M is selected as
described in Section IV-A and r is a variable in our calculations.

At first, we represent Eqn. 3 by

βj,γ =
M

r
·

(
M

j

)
·
A1

A2
·
B1

B2
·
C1

C2
, where (7)

A1 = Γ(a1) for a1 = γ + j; (8)

A2 = Γ(a2) for a2 = γ; (9)

B1 = Γ(b1) for b1 = γ ·
M

r
; (10)

B2 = Γ(b2) for b2 = γ ·
(M

r
− 1

)
; (11)

C1 = Γ(c1) for c1 = M − j + γ ·
(M

r
− 1

)
; (12)

C2 = Γ(c2) for c2 = M + γ ·
M

r
. (13)

Since in our case some of the values are very large, we use
intermediately a representation by the natural logarithm, i.e. in the

second step we calculate

Z = ln
((

M

j

)
·
A1

A2
·
B1

B2
·
C1

C2

)
(14)

= ln

(
M

j

)
+ lnA1 + ln B1 + lnC1 − (15)

− lnA2 − ln B2 − ln C2. (16)

For each of the ln Γ(x) we employ the following approximation
(due to Robert H. Windschitl, 2002):

ln Γ(x) ≈
1

2
·
(
ln (2 · π) − lnx

)
+ (17)

+x ·
(
−1+ln

(
x+

1

12 · x− 1
10·x

))
, (18)

i.e. x = a1, ..., c2. For the binomial coefficient we use the formula

ln

(
M

j

)
=

M∑
s=1

ln s −

j∑
t=1

ln t −

M−j∑
u=1

ln u. (19)

Finally, we set

βj,γ =
M

r
· eZ . (20)

Eqn. 20 was then used as a sub-routine in the search for optimum
settings of (r, γ):

1) For a fixed r ≥ r0 we searched for γ such that Tγ from (4) is
minimised, i.e. Eqn. 4 and Eqn. 20 were repeatedly calculated
for γ ≥ γ0 = 0.1 and γ = γ + δ, until Tγ changed only
marginally or increased above the minimum value obtained
so far.

2) For r0 and r = r + Δ ≤ rmax, the triplets (r, γ, Tγ) were
recorded and finally rappr with the minimum value of Tγ was
selected.

3) The output was then determined by Nappr = M/rappr.

C. Numeric results
The results are summarised in Table I until Table III. Since

both the instances as well as the number of instances are small,
the values of N do not provide any statistical information. Our
main goal here is to demonstrate that the implementation of the
Garnier/Kallel-approach as described in the present section provides
approximations Nappr in the region of the exact values N .

Since deterministic search is easy to implement and fast, if
neighbours can be identified in an easy way, the procedure can
be executed for large numbers of M , which has been done in the
present study, i.e. the Mi are relatively large compared to 214, 220

and 221, respectively. As a result, we obtained values βM that are
close or even equal to the corresponding N for n = 14. We note
that for n = 14 and M = 512 the value of Nappr is in three out of
the five examples equal or close to N/2.

For n=20 we see in all five sample functions a clear improve-
ment of the approximation with increasing M . The value of Nappr
is in four out of the five examples close to N/2 for the largest
number M = 214.

Due to the computational effort caused by the complete search
over {0, 1}21, we executed the calculations for three functions only,
see Table III. For two out of the three functions we obtain an
approximation Nappr in the region of N/2. As for n = 14 and
n = 20, on the remaining function the approximation procedure
returns a value close to N/3.

Since we considered only five (three) functions for each number
of variables and even less for different ratios m/n, it is not
possible to draw any conclusions about the statistics for the number
of local maxima. Here, our primary focus is on the quality of
approximations Nappr for the exact number of local maxima N .
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Future research will focus on a wider range of parameter settings,
a larger size of k-CNF instances and significantly larger sets of
randomly selected k-CNF instances.

m N M βM γ(rappr) rappr Tγ(rappr) Nappr

51 6 128 5 2.2 0.1 1.37 2
51 6 256 5 2.2 0.1 1.37 2
51 6 512 6 2.0 0.1 1.54 3
55 13 128 8 2.6 0.4 81.2 3
55 13 256 8 2.5 0.4 90.7 3
55 13 512 10 2.3 0.2 308.6 4
59 11 128 6 2.8 0.1 1.35 2
59 11 256 8 2.4 0.3 156.0 3
59 11 512 8 2.1 0.2 12.8 4
63 32 128 20 2.4 0.1 4859 8
63 32 256 24 2.3 0.1 9185 10
63 32 512 27 2.2 0.1 17574 12
68 10 128 6 2.7 0.4 14.3 2
68 10 256 10 2 0.1 2.1 5
68 10 512 9 1.7 0.2 23.6 5

TABLE I

RESULTS FOR n = 14, k = 3

m N M βM γ(rappr) rappr Tγ(rappr) Nappr

78 213 210 66 0.1 4.23 1×106 16
78 213 212 112 0.1 2.90 2×109 39
78 213 214 157 0.1 2.36 1×1014 67
82 35 210 19 0.1 2.64 321.39 7
82 35 212 32 0.1 2.09 5.06 15
82 35 214 33 0.1 2.06 2139.39 16
86 142 210 72 0.1 2.97 6×106 24
86 142 212 117 0.1 2.21 2×1011 53
86 142 214 136 0.1 2.04 6×1013 67
90 33 210 21 0.1 2.57 1012.02 8
90 33 212 31 0.1 2.06 134.94 15
90 33 214 33 0.1 2.00 2723 17
94 15 210 5 5.1 3.10 5.52 2
94 15 212 13 0.1 2.16 27.2 6
94 15 214 15 0.1 2.00 109.57 8

TABLE II

RESULTS FOR n = 20, k = 3

m N M βM γ(rappr) rappr Tγ(rappr) Nappr

79 109 213 62 0.1 2.8 588792 23
79 109 214 72 0.1 2.5 4927846 29
79 109 215 75 0.1 2.5 7841494 31
89 39 213 25 0.1 2.6 804 10
89 39 214 26 0.1 2.5 2811 10
89 39 215 37 0.1 2.1 35696 18
99 47 213 44 0.1 2.1 251220 21
99 47 214 43 0.1 2.1 213092 21
99 47 215 45 0.1 2.0 698186 22

TABLE III

RESULTS FOR n = 21, k = 3

V. LOCAL MAXIMA AND k-CNF

For an arbitrary σ̃ ∈ {0, 1}n and F ∈ Fk(n, m), we set
C0(F, σ̃) = {C|C ∈ C(F ) ∧ C(σ̃) = 0} and C1(F, σ̃) = {C|C ∈
C(F ) ∧ C(σ̃) = 1}. Thus, clauses from C1(F, σ̃) have at least
one literal among the k literals that returns 1 on σ̃. Since in (1)
we have d(σ̃, σ̃′) = 1, clauses with at least two literals returning
1 on σ̃ do not affect the re-calculation of ZF in neighbourhood
transitions out of σ̃. We therefore partition C1(F, σ̃) into C(1)

1
(F, σ̃)

and C(≥2)
1

(F, σ̃), i.e. C(1)
1

(F, σ̃) contains all C∈C(F ) with exactly

one literal that returns 1 on σ̃. We note the following simple
observation:

Lemma 1: The truth assignment σ̃ is a local maximum in L(F )
iff for all σ̃′∈N (σ̃):

|{C|C(σ̃′)=1 ∧ C∈C0(F, σ̃)}| (21)

≤ |{C|C(σ̃′)=0 ∧ C∈C(1)
1

(F, σ̃)}|. (22)

Here, we do not exclude ZF (σ̃) = m.
For a literal xη we use xη ∈C to express that xη is part of the

disjunctive term C. Let X0(σ̃) = {x|∃C ∈ C0(F, σ̃) ∧ xσ ∈ C}|
and p = |X0(σ̃)| be the number of variables that occur in clauses
of C0(F, σ̃), where we employ σσ ≡ 0. Furthermore, we set q =

|C0(F, σ̃)|, r = |C(1)
1

(F, σ̃)|, and s = |C(≥2)
1

(F, σ̃)|. Thus, we have
for F ∈Fk(n, m)

m = q + r + s. (23)

For X1 = {x|∃C ∈ C(1)
1

(F, σ̃) ∧ xσ ∈ C}, t = |X1|, and hu =

|{C|C∈C
(1)
1

(F, σ̃) ∧ x
σiu
iu

∈C}| we have

t∑
u=1

hu = r, (24)

since the corresponding subsets of clauses have to be disjoint (oth-
erwise, a clause from the intersection would belong to C(≥2)

1
(F, σ̃)).

Lemma 2: If xiu ∈ X1\X0 
= ∅, then the neighbourhood
transition that involves xiu diminishes ZF (σ̃) by hu.

This follows from the definitions of C0(F, σ̃) and C(1)
1

(F, σ̃). For
fu = |{C|C ∈ C0(F, σ̃) ∧ x

σiu
iu

∈ C}|, Lemma 1 can now be
rewritten as

Lemma 3: The truth assignment σ̃ is a local maximum in L(F )
iff X0 ⊆ X1 and for xiu ∈X0:

fu ≤ hu. (25)

We note that by definition

p∑
u=1

fu = q · k, (26)

and (24) and (25) imply for a local maximum

q · k ≤ r. (27)

Let Mσ̃
k(n, m) ⊆ Fk(n, m) denote the set of k-CNF that have σ̃

as a local maximum for the neighbourhood defined by N (σ̃) and the
objective function defined by ZF , where we require ZF (σ̃) < m,
i.e. q ≥ 1 and σ̃ is not a satisfying assignment.

We are now going to derive a (rough) upper bound for Mσ̃ =
|Mσ̃

k (n, m)|. As will be seen later, the ratio 2n ·Mσ̃/|Fk(n, m)|,
when approximated by using an upper bound of Mσ̃ , then provides
some information about typical values for the number of local
maxima for k-CNF in terms of parameters (k, n, m).

For fixed (p, q, r, s), we consider the number of potential sets
C0(F, σ̃), C(1)

1
(F, σ̃), and C(2)

1
(F, σ̃) under the assumption that the

fixed truth assignment σ̃ is a local maximum. Here, it is useful
to consider bipartite graphs where one set of nodes represents the
clauses of C with fixed degree k, and the other set of nodes is
formed by the elements of {σi; i = 1, 2, ..., n}.

For C0(F, σ̃) we have to ensure that each of the p elements of
X0(σ̃) is present in at least one of the clauses from C0 and we
therefore need

q · k ≥ p ≥ k and

(
p

k

)
≥ q. (28)
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Let A(p, q, k) denote the number of sets H of size q consisting
of k-selections S = {xi1 , ..., xik

} out of p variables of X0(σ̃)
such that ∀x

(
x ∈ X0 → ∃S(S ∈ H∧ x ∈ S)

)
. Since in the given

context the elements of X0(σ̃) are independent of each other, we
have

A(p, q, k) =

((
p

k

)
q

)
−p · A(p−1, q, k) −

−

(
p

2

)
· A(p−2, q, k) − ... −

−

(
p

sfin

)
· A(p−sfin, q, k), (29)

where sfin is defined by
(p−(sfin+1)

k

)
< q. By substituting the A(p−

i, q, k) recurrently, we obtain the inclusion/exclusion-type equation

A(p, q, k) =

sfin∑
i=0

(
−1

)i
·

(
p

i

)
·

((
p−i

k

)
q

)
, (30)

which represents the number of sets C0(F, σ̃). Taking
(

p

2·s−1

)
·((p−2·s−1

k )
q

)
−

(
p

2·s

)
·

((p−2·s
k )
q

)
together and applying Stirling’s

formula, one can see that the impact of
∑sfin

i=1

(
−1

)i
·
(

p

i

)
·
((p−i

k )
q

)
is only marginal and we therefore employ

((p
k)
q

)
to upper bound the

number of sets C0(F, σ̃).
For C(1)

1
(F, σ̃) we consider the set X1: for fu clauses from

C0(F, σ̃) with x
σiu
iu

we have hu≥fu clauses from C(1)
1

(F, σ̃) with
x

σiu
iu

, if σ̃ is a local maximum. In each of the hu clauses, the

literals different from xσi
iu

are of the type x
σj

j due to the definition

of C(1)
1

(F, σ̃). Thus, the number of different sets C(1)
1

(F, σ̃) can be
upper bounded by

n∑
t=p

(
n−p

t−p

)
·

∑
(h1, ..., ht)

h1≥f1, ..., hp≥fp

t∏
u=1

((
n−1
k−1

)
hu

)
. (31)

We recall that t ≥ p is required by Lemma 1.
For C(≥2)

1
(F, σ̃) we consider the set of all

(
n

k

)
·2k clauses: since

σ̃ is fixed, among the set of all clauses there are
(

n

k

)
clauses that

return 0 on σ̃ (the clauses of C0(F, σ̃) are drawn from this subset);
there are

(
n

k

)
· k clauses with excatly one literal of type xσi

iu
(the

clauses of C(1)
1

(F, σ̃) are drawn from this subset). Thus, the number
of different sets C(≥2)

1
(F, σ̃) can be upper bounded by((

n

k

)
· (2k−k−1)

s

)
. (32)

We assume at first t = n (implicitly also q ≥ n/k) and set
r = q · k + Δ for Δ ≥ 0, cf. (27). Based on

(
K

a

)
·
(

K

b

)
≥

(
K

a+b

)
(and the remark after (30)), we summarize (30), (31) and (32) to

Mσ̃ <
n∑

p=k

(
n

p

)
·
{ ∑
q + r + s = m

r ≥ k · q, q ≥ 1

((
p

k

)
q

)
·
( n∑

t=p

(
n−p

t−p

)
×

×

((
n−1
k−1

)
r
n

)n)
·

((
n

k

)
· (2k−k−1)

s

)}
. (33)

(Note: we use
(

A

B

)n
for {

(
A

B

)
}n.

We are now going to identify (q, r, s) such that the product on
the RHS of (33) is maximised for fixed (p, k, n, m). At first, we

consider for variable r and s the product

Pq(r; s) =

((
n−1
k−1

)
r
n

)n

·

((
n

k

)
· (2k−k−1)

s

)
, (34)

where r+s = m−q. We analyse Pq(r; s) ≤ Pq(r−1; s+1), which
for r = a · n + b, 1 ≤ b < n, turns to((

n−1
k−1

)
a

)n−b

·

((
n−1
k−1

)
a+1

)b

·

((
n

k

)
·(2k−k−1)

s

)

≤

((
n−1
k−1

)
a

)n−b+1

·

((
n−1
k−1

)
a+1

)b−1

·

((
n

k

)
·(2k−k−1)

s+1

)
. (35)

For b = 0 we take a−1 and b′ = n. By straightforward calculations
one obtains that (35) is valid if r ≥ r̂ for

r̂ =
(m−q) · (k + ε1)−(n−b) · (2k−k−1)+k+ε2

2k − 1 + ε3
, (36)

where ε1 = n/
(

n

k

)
, ε2 = b/

(
n

k

)
, and ε3 = (n + 1)/

(
n

k

)
. Here, we

assume that m is sufficiently large in relation to n and 2k, which
will be discussed further below in more detail.

Thus, if we assume r̂ > k · q (cf. (27)), then (34) increases for
increasing s from 0 ≤ s ≤ ŝ and (34) decreases for increasing s
from ŝ < s ≤ smax, where ŝ = m−q− r̂ and smax = m−q−k ·q.

The condition r̂ ≥ k · q results in an upper bound for q:

k·q ≤
(m−q) · (k + ε1)−(n−b) · (2k−k−1)+k+ε2

2k − 1 + ε3

q ≤ q1 =
m·(k+ε1)−(n−b)·(2k−k−1)+k+ε2

k · (2k + ε4)
, (37)

where ε4 = (n + n/k + 1)/
(

n

k

)
. Furthermore, we need k · q/n ≤

r/n <
(

n−1
k−1

)
and k · q ≤ r = m− q − s ≤ m− q, which leads to

q < q2 =

(
n

k

)
, (38)

q ≤ q3 =
m

k + 1
. (39)

Summarizing these observations, we obtain that Pq(r; s) from
(34) is maximized (ignoring integer representations) at Pq(r̃; s̃) for
s̃ = m − q − r̃ with r̃ = max{k · q, r̂}, where q is fixed but
must obey the minimum upper bound defined by (37) until (39),
depending upon the value of r̃.

So far, we kept the parameter q fixed. Now we take into account((p
k)
q

)
from (33) for p = n and try to maximize (and to compare)((

n

k

)
q

)
· Pq(k · q; m − q − k · q); (40)((

n

k

)
q

)
· Pq(r̂; m − q − r̂). (41)

By using a representation similar to the one of (35) and setting
A =

(
n

k

)
· (2k−k−1), B =

(
n

k

)
, the assumption about an increasing

value of (40) for increasing q leads to(A−m+(k+1) · q+1

m−(k+1)·q−k

)k+1

<
( B−q+b/k

q+(n−b)/k

)k

·
B−q

q+ 1
. (42)

Depending on the value of b, one has to consider two cases of the
type

A−m+(k+1) · q+1

m−(k+1)·q−k
<

B−q

q+ 1
. (43)
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The resulting upper bound

q <
m−2k+1 + (m−1)/

(
n

k

)
2k + 2/

(
n

k

) (44)

is similar to the upper bound (37). Based on these observations we
conjecture that (40) and (41) are maximized for q∗ ∼ m/2k and
r̂

<
∼ k · q∗. A detailed analysis of all sub-cases will be subject of

further research.
We note that q∗∼m/2k and r̂

<
∼k·q∗ actually ignore the relation

of m to n and k. A more detailed analysis of (37) shows that
q1 ∼ m/2k−(n−b)/k, where 1 ≤ b < n. If m

<
∼ (n−b) · 2k

k
and

1<<b<n, i.e. m is in the region of the phase transition threshold
[1], then q1 < 0 and, moreover, for q from (44) the condition
q > �n/k� might no longer be valid, which is required by (26)
for p = n. If this is the case, the maximum value of (40) changes
significantly. Therefore, we conjecture that for the neighbourhood
under consideration and m/n in the region of

m

n
≤ O(

2k

k
) (45)

(which differs roughly by k from the phase transition threshold)
the value of Mσ̃ is (for a large fraction of σ̃) significantly smaller
than for m/n >> O(2k/k). A detailed analysis requires a careful
consideration of sub-cases for p < n and (33).

In Lemma 3, (30), (31), and (32) we exploit only information
about xσi

i vs. xσi
i , i.e. information about the actual values of σi has

no impact on Mσ̃ at all. Thus, Mσ̃ depends on structural parameters
(n, k, m) only:

Lemma 4: If σ̃, η̃ ∈ {0, 1}n , then Mσ̃ = Mη̃ for a given class
Fk(n, m).

Given (n, k, m), we denote by R(n, k, m, q∗) the maximum value
of

((n
k)
q

)
· Pq(r; m−q−r) as presented in (40) and (41). In (33),

the value of
∑n

p=k

(
n

p

) ∑n

t=p

(
n−p

t−p

)
can be upper bounded by 3n.

We now have for m ≤
(

n

k

)
· (2k−k −1) the upper bound

Mσ̃ < (n−k)2 ·
m2

2·(k+1)
·3n ·R(n, k, m, q∗), (46)

where R(n, k, m, q∗) depends on the relation of m to n and k. For
an upper bound of the average number of local maxima per k-CNF,
one has to multiply the RHS of (46) by 2n (cf. Lemma 4) and to
divide the expression by the number of k-CNF of length m. A rough
estimate for R(n, k, m, m/2k), i.e. by using Stirling’s formula as
well as q∗ ∼ m/2k and r ∼ k · q∗, indicates that simply taking
q∗∼m/2k is insufficient to obtain a proper upper bound. In order
to compensate the first three factors on the RHS of (46), the tighter
upper bound for q∗ from (44) has to be employed rather than an
asymptotic approximation. Thus, to obtain asymptotic expressions
for the average number of local maxima per k-CNF requires a
detailed analysis of R(n, k, m, q∗) for tight upper bounds of q∗,
which will be subject of further research.

VI. CONCLUDING REMARKS

The Garnier/Kallel-approach requires a partition of the search
space into attraction basins, i.e. within each neighbourhood a single
element with the maximum value of the objective function is
assumed. This assumption does not apply to the neighbourhood
in our study. Nevertheless, our computational experiments provide
evidence that the sampling-based method for the approximation
of the number of local maxima seems to work in the context
of k-SAT instances. In seven out of the ten instances analysed
the approximation Nappr comes close or is equal to N/2; for the
remaining three instances the approximations are in the region
of N/3. The approximations steadily improve with the increase
of the size of sampling information. Furthermore, the outline of

our method for obtaining upper bounds for the average number
of local maxima per k-SAT instance suggests that the magnitude
of the fraction of local maxima relative to the total number of
truth assignments changes around Θ(2k/k), which is close to the
phase transition threshold 2k· log 2−O(k). The expression Θ(2k/k)
is, of course, dependent on the specific neighbourhood underlying
our calculations. We intend to analyse a variety of neighbourhood
relations proposed in the literature [8], [20], [21], where it would
be interesting to find out if the average number of local maxima
(or how close the “breaking point” comes to the phase transition
threshold) can be related to the quality of the associated local search
procedure. Future research will also include a more comprehensive
analysis of the Garnier/Kallel-approach for larger k-SAT instances
and larger sets of parameter settings. Furthermore, we intend to
apply the Garnier/Kallel-method in a completely different context,
namely the simulation of protein folding in various lattice models
and for different types of the objective function. Protein folding
simulation in the HP-model is NP-complete and population-based
heuristics are an obvious choice to tackle the folding problem
[7]. The standard method for identifying local minima in folding
landscapes are barrier trees [26]. As pointed out by Garnier and
Kallel [5], “... from a practical point of view, the tree describing
the repartition of local optima is unknown and too expensive in
terms of computational cost to determine for a given landscape.”
Thus, approximations as described in the present paper might be
helpful for the analysis of energy landscapes induced by protein
sequences. However, a major obstacle seems to be the selection of
a suitable neighbourhood relation that complies with the underlying
energy function and allows reversible neighbourhood transitions.
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