DIVISION OF COMPUTER SCIENCE

File Server Architecture for an Open Distributed Document
System

Bruce Christianson
Ping Hu

Technical Report No.204

August 1994




File Server Architecture
For an Open Distributed Document System

Bruce Christianson Ping Hu
School of Information Sciences, Hatfield Campus
University of Hertfordshire, U.K.
{B.Christianson, P.Hu}@herts.ac.uk

Bean Snook
School of Computing Sciences, Milton Keynes Division
DeMontford University, U.K.
jsnook@dmu.ac.uk

Abstract

In this paper we will investigate design and implementation strategies for a file
server in an open distributed document system. The aim of the open distributed
document system is to provide an environment where a group of geographically dis-
tributed users can collaborate to develop documents efficiently and be assured that
their integrity requirements will be enforced. We view the integrity policy as part
of social contract between users. The services provided by a file seiver can be di-
vided into two categories according to whether a service is globally or locally trusted.
In this paper we call the entity that provides the globally trusted services wvisibility
server, the remaining services are provided by wvalidation servers. The functions of
the visibility server will be kept to a minimum, and can be running in an off-line
manner. The responsibility of each validation server is to check whether the docu-
ment integrity will still be maintained if an update transaction is committed. The
validation servers are independent of each other and “stateless”, i.e. each server can
always reboot itself before it validates a transaction. An optimistic transaction con-
currency control approach is employed for document processing, so that the open
distributed document system can achieve very high document availability.

Keywords: data integrity, distributed system, file server, security, transaction
concurrency control, trust.




1 Introduction

The collaborative development of documents by a group of geographically distributed users
could be accomplished in an open distributed system. Transparent access across the dis-
tributed system greatly simplifies the resource sharing. Replication makes services highly
available to users. But in a truly open distributed system, resource sharing among a group
of users raises another challenge that mechanisms are required to ensure such sharing in a
secure, reliable, efficient and usable manner that are independent of the size and complexity
of the distributed system.

An object-based document architecture for open distributed systems, which is called
DODA, is developed in [3, 11]. In this paper, we will investigate design and implementation
strategies for a file server in an open distributed document system based on (but not strictly
conforming to) the DODA. In such a system, we assume that users are more concerned
with the integrity and authenticity of documents than with other security aspects, such as
confidentiality. Moreover, we will see that instead of imposing a universal notion of integrity
over the distributed system, we would rather view the document integrity as part of a social
contract between users, and probably with the consent of the system. We shall argue
that a group of users across the distributed system who intend to collaboratively develop
documents must be able to specify and agree their own notions of integrity independent of
any policy provided by shared infra-structure or services and other user groups.

2 Distributed document system

We assume that the open distributed document system (i.e. DODA) adopts immutable
object schemes [10], i.e. documents are represented by a history of immutable versions.
When a change to a document is committed, a new document version is created against
the existing document state (old version) which is left unchanged. The open distributed
document system does not care much about where and how documents are stored/archived
in the distributed system. The document processing system merely assumes that a facility
exists which ensures a reliable and permanent medium storage. That means a series of ver-
sions associated with a document are maintained somewhere in the distributed system, and
users have means to easily access a particular document version (probably transparently)
if they know enough information of the version®.

The scenario is that in an open distributed system, a group of users mutually agree an
integrity policy and want to make sure that the policy is imposed on documents that they
are collaboratively developing. The users might be situated in different security domains,
and it must be very hard, if not impossible, to set up some infrastructure or services
which are globally trusted by every remote participant in the distributed system. Each
individual user in the group only trusts the infrastructure and services that are chosen for
use by himself and that are local to his domain.

'We will discuss the version information in Section 3.1




Users make changes to their documents through transactions, i.e. two adjacent versions
of a document are linked by a transaction. Transactions usually last very long term, com-
pared with document transfer, hash value calculation, or similar activities. Transactions
are relatively conflict free, but resolution of the conflicts in failed transactions frequently
requires off-line interaction between related users. These imply that an optimistic approach
to processing transaction is better than an pessimistic one, and a user usually does not
mind that the formal announcement to other users that his transaction is committed has
some delay as long as such a delay is short compared with the transaction execution time.

As we have stated, the main goal of designing an open distributed document system is to
provide an environment where a group of geographically distributed users can collaborate
to develop documents efficiently and be assured that the integrity requirements will be
enforced. Here we list some strategies that are used.

o The global trust is kept to a minimum, which means both the number and complexity
of trusted entities. We would prefer that such globally trusted entities are running
off-line. On-line service makes it more vulnerable to malicious attacks.

o The establishment of document integrity policy is mutually agreed between the user
group and the system. The system does ndt prevent any other users from reading
documents, but it only allows the authorised users to make changes to the documents
through a proper procedure.

e A user or a user group requires a trusted local environment in which complicated
methods, such as document integrity check, can be executed. By saying “local”, we
mean the user trusts the entities, such as infrastructure and services, that he chooses
to use.

e To make documents highly available to users, an optimistic approach for concurrent
transaction control would be a better choice. Because of long transactions, correct-
ness criterion other than one-copy serialisability might serve users best.

We should malke it clear that the term file or document server which we will use throughout
the following discussions slightly differs from what we usually mean for distributed file
systems. For example, the document archive will not be discussed in this paper.

3 File server partitioning

From the previous discussions, we would argue that to meet the designing requirements, it
desirable to partition the traditional distributed file server into two parts, i.e. a visibility
server and a validation server. The two servers provide services to manage the distributed
documents and also achieve high security and efficiency.




3.1 Visibility server

The role of a visibility server in the open distributed document system is like that of a
moderator. It officially announces to other users that a transaction is committed. That
is a new document version will be accepted by the distributed document system only if
it is confirmed by its visibility server. On receiving a request, the server will return a
certificate which identifies the “current” document version to the originator. A certificate
(as suggested in [3]) contains at least

e the document name,
e the protection number of the current document version and
e a timestamp,

all signed under the private key of the visibility server. A document version is current if it
is the latest accepted version to that document. From the information in this certificate, a
user could then access the version in the distributed system, and more importantly verify
the authenticity and integrity of the document version.

The visibility server and its services are trusted globally. But the visibility server
itself could be either centralised or distributed T the distributed system. In the case of
distribution, a protocol is required to coordinate those distributed visibility servers?. All
users in the distributed system believe that the visibility server is capable of providing
following services

1. To respond to requests to commit update transactions to the current document ver-
sion. If a transaction satisfies the requirements of document integrity policy, the new
document version will be accepted and announced publicly.

2. To safely maintain the critical information about document versions.

3. To issue document version certificates. Users-have to believe what the visibility server
says.

Since it is bearable for the visibility server to delay the announcement of committed trans-
action, the visibility server could periodically publish newly created document versions and
each domain in the distributed system could cache those information for local use. It can
be seen that functionality of the visibility server is minimised. It is essentially an off-line
name server. Because of its minimal functions and off-line services, the visibility server
should be easily managed, monitored and protected, although it is not stateless.

2 An individual visibility server could then not be globally trusted. However, the distributed document
processing system requires that all distributed visibility servers collectively provide services that are glob-
ally trusted. For the simplicity of discussion, we consider the situation that only one visibility server is
devised in the system.




3.2 Validation server

A validation server, if asked, provides a service with a proof that an update transaction to
a document version is valid and leads to a new version. Very generally, a user gets a copy
of a current document version with the help of the visibility server. The user could update
the document to a new version as long as he could get a validation server’s proof that the
update transaction is valid according to the integrity policy. If the visibility server finally
accepts the update transaction and the corresponding proof, the new document version is
created and will be seen by all others shortly.

A validation server is virtually stateless, and can be replicated in the distributed system.
These distributed validation servers are independent of each other, and the distributed
document system does not necessarily require them to coordinate. The responsibility
of a validation server is to make sure that a submitted update transaction to a current
document version will not cause any integrity breach if the transaction is committed. As
we discussed before, a document integrity polity is part of social contract between users
in a group. The policies might be different from user group to user group. Although
the distributed document system could develop some system-wide validation methods for
valid user transaction, it is likely that an individual user group would prefer to specify
its own validation methods that, together with other system-wide validation methods,
assure any update transactions will conform to its own integrity policy®. Clearly, the
operations carried out by validation servers to validate update transactions could be diverse
and very complicated, and even in one validation server, the validation methods executed
this time usually are different from the methods to validate last transaction. However,
because of the characteristics of independency and statelessness of the validation servers,
a user could always ask a validation server to reboot itself before its update transaction
is validated. A rebooted validation server will provide a secure environment [7, 8] for
transaction validation. Furthermore, because of the independency and locality of the
validation servers, one spoilt validation server (either accidently damaged or maliciously
broken) will never affect any services provided by other validation servers.

As the result of partitioning the file server into visibility server and validation server and
distribution/replication of the validation server, those validation servers are not globally
trusted any more. Actually, as the document integrity policy for a user group could be
defined by the group at their own will (probably with the consent of system), why could
the group not define (choose) their own validation server(s)? This diversity has the result
that the services provided by a validation server are trusted only by its potential users.
Of course, to make it function, each validation server must be trusted by the visibility
server that it is competent to validate update transactions. But we should bear in mind
that the visibility server believing the competence of a validation server only means that

its users have chosen and trusted its services. The responsibility is still on the side of the

validation server users. So the trust relationship between user and the visibility server is
slightly different from that between the validation server and the visibility server. However,

3These self-defined validation methods could be included in the document itself under the guidance of
the integrity policy.

[e92§




we should bear in mind that the distributed document system still could have its own
fundamental criteria of what is requested to become a validation server. This is what we
mean the choice of integrity policy with the consent of the system. After all, the system
must take its responsibility for the system-wide validation methods it defines.

Further to the above discussion, we could see that there is nothing that can stop some
users in a group from trusting a validation server which is different from other user’s
in the same group, although efficiency could be affected. For example, user A and user
B are in the same group, and there exist two validation server V, and Vg for them to
collaboratively develop a document. Even if A does not trust Vg’s service to validate B’s
update transaction to document, he could always, in the last resort, re-check B’s update
transaction on validation server V4. In an extreme case, user A could trust none of the
update transactions to the document but only those checked/re-checked by the validation
server V. That also implies that some entity in the open distributed document system
becomes a validation server mainly because some potential users trust its services.

3.3 Document processing

In this section, we will examine the relations between the visibility server and the validation
server and between the servers and users.

Figure 1 shows, in a much simplified way, the operations with which a number of users
collaboratively develop a document over the open distributed document system. Users turn
to the visibility server to ask for a certificate whenever they intend to access a document
(step 1 and 2). Users trust the services provided by the visibility server in a way that the
certificate includes information that indicates the current document version and verifies
the integrity of the document version obtained from document version archive (step 3). So
a certificate should at least include the document name, the current version’s protection
number (e.g. a collision-free hash value of the version) and a timestamp which assures the
freshness of the certificate.

We have not so far mentioned the document—version archive. This entity is not neces-
sarily a part of the open distributed document system although in Section 2 we require the
open distributed document system to adopt immutable object schemes. We would rather
say it is an independent service provided by the distributed system on which the document
system is built, i.e. we assume in the distributed system there exists a reliable function unit
for information storage. However, if there is no such a reliable document version archive in
the distributed system or the service is not trusted by the entire user community, the user
group is free to devise their own document version archive. The basic point is that the
document version archive is independent of both the visibility server and the validation
server that we have presented. In fact the archive could be placed anywhere in the dis-
tributed system, and it could even be cached or replicated for efficiency and performance.
But as we have discussed, this service takes no responsibility of maintaining the document
integrity, partly because it is not a part of the designed distributed document system. The
dotted line in Figure 1 represents the boundary of the open distributed system.

To commit an update transaction to a document, i.e. to create a new document version




Validation server

Visibility server

Figure 1: Illustration of document processing

against the current one, the user has to submit his transaction to a validation server for
approval (step 4). Among all validation servers in the distributed system, each user must
trust at least one of them to faithfully validate tlte transaction according to the integrity
specification, to create a new document version in the archive and to pass relevant approval
information to the visibility server (step 5 and 6). On the other hand, the visibility server
must believe that the validation server is capable of doing transaction validation check and
creating corresponding document version. ‘

4 Integrity policy

In ISO 7498-2, the (data) integrity is defined as “the property that data has not been
altered or destroyed in an unauthorised manner” [1]. As we assumed, the information
storage unit in the open distributed system is reliable, therefore to keep the data integrity
we need only to devise mechanisms that could prevent data from unauthorised modification
in the open distributed document system.

As it is mentioned before, we view the integrity as part of social contract between
users to judge whether a modification is authorised or not. A group of users who wish to
develop document collaboratively should specify and agree their own notions of integrity
in explicit form. Clearly, each user group could have their own integrity policy, and even
one group could have several mutually independent integrity policies for each document
they are developing. Also there is no reason “wliy a user group could not change their
integrity policy during the process of document development as long as such a change
does not violate the social contract. These show the integrity policy has the properties of
individuality, independency, and judgement at owner/user’s discretion.




On the other hand, an integrity policy, at least part of it, has to be implemented
through the services provided by the distributed system. This dependency means that an
integrity policy probably includes those fundamental integrity criteria that are enforced
system-widely by system infrastructure. It also means that any services for maintaining
integrity that are beyond the system capability have to be constructed by the user group
themselves.

For system feasibility and efficiency, it is desirable for the designed distributed document
system to devise some integrity check methods. These services could be either enforced to
all document development groups or provided for individual group’s selection to fit their
integrity requirements.

5 Global trust orrlocal trust

Let us look at a conventional distributed file system. A file server coordinates all trans-
actions to the files it manages in the distributed system. The server itself could be either
centralised or distributed, but it is trusted by allTusers. If it distributed, the system should
employ a protocol for the distributed components to work harmoniously. Then some degree
of trust relations should be established among those components.

The globally trusted file server makes it more vulnerable to attackers since the whole
system relies upon services provided by the file server. However, it can be easily seen
that some of those services are not necessarily trusted globally. Furthermore, certain user
groups might ask for some special services as part of their document integrity check. It is
likely that such services are only required to be available to a particular user community, or
even specially designed. It is almost impossible to ask the file server to provide all possible
services to satisfy various integrity requirements as integrity policy could be “arbitrarily”
specified by individual user group. It would certainly complicate the management of the
file server and make the server harder to protect from intruders if integrity policy could be
revised during the processing from document development in such cases.

In the proposed open distributed document system, services provided by the file server
are divided into two groups according to whether they need be globally trusted or not. We
expect that there should exist only a few services that are globally trusted and have to be
left in the file server, which is now called visibility server. Although it requires global trust
and is not stateless, the visibility server should be easy to manage and protect because of
its minimal functions and off-line service provision as we discussed in Section 3.1. Those
services that are moved out of the visibility server form a new server, called wvalidation
server, which is only trusted locally by its prospective user community. Because of the
local trust and the property of its stateless, the validation server can be replicated over
the distributed system and more importantly each replica can operate independently of
the others. As we discussed in Section 3.2, the validation server is responsible for the
document integrity, so its services largely reflect the integrity policy of the user community.
Furthermore, any entity in the distributed system could become a validation server if
some users would trust its services to enforce their integrity policy and could convince the




visibility server the entity was competent to do the job.

From this analysis, we can see that in the open distributed document system the vis-
ibility server is globally trusted whereas the validation server is only trusted locally by its
prospective user groups. The visibility server, together with the document version archive,
provides a reliable service for document storage. The validation server checks or validates
document integrity. There could exist many validation servers in the distributed system.
A particular validation server is trusted by those users who use it, and a validation server
could even be created by a user community provided that the visibility server is convinced
of its competence. We view the protocol of how to create a validation server as part of the
integrity policy for a user group*. The provision of globally trusted visibility server and
locally trusted validation server should give user groups over the distributed system great
flexibility for collaborative document development.

6 Concurrent transaction control

One of another major problems for distributed document processing is concurrent transac-
tion control because document versions could be replicated or cached in the open distrib-
uted system at user’s please. Problems arise when two or more transactions attempt to
update the same (current) document version simultaneously, i.e. conflict. Even if there is
no document replication the problems still exist as long as the validation server is distrib-
uted and some services in the distributed system are suspicious, e.g. locking mechanisms.
Many protocols have been proposed for maintaining consistency of distributed file sys-
tems [4, 6]. Generally speaking, the protocols fall into one of two categories, i.e. optimistic
and pessimistic. Pessimistic protocols make worst-case assumptions about transaction
conflict, and operate under the pessimistic assumption that if a transaction can conflict
with others, it will. Whereas optimistic protocols operate under the optimistic assumption
that transaction conflicts, even if possible, rarely occur. Mechanisms must employed in
these protocols to first detect conflicts and then resolve them. Pessimistic and optimistic
approaches are in the two extremes of conflict assumption. Each of them has its own ad-
vantages and disadvantages. It is up to individual application to choose one most suitable
for the environment.

The proposed open distributed document system adopts a thoroughly optimistic ap-
proach for document processing. Documents in the system are freely replicated, migrated
or cached at user’s will, and users are free to operate upon documents as they please. By
using such an optimistic approach, users enjoy very high availability of documents, but
they have no guarantee that their update transactions will not conflict with other transac-
tions issued by others concurrently, which leads waste of resources. An optimistic approach
is a better choice mainly because of rare conflict transactions, conflict transaction rescue
and locking mechanism implementation.

We view a document as structured text with a defined operational semantics [3]. In an
open distributed document environment, documents are manipulated by transactions which

“A user group should also take responsibility for those validation services defined by themselves.




are initiated by users. Distributed document processing, e.g. cooperative development of
a suite of software by a group of users to meet some defined requirements, is typically
evolved by very long term transactions. The probability that one transaction conflicts
with another one is very low. In the case of document processing, if the work done by one
transaction is incompatible with what others have done, part of the work could usually be
rescued. For example, two conflict transactions could be merged without integrity violation
by simply text cutting and pasting, but resolution sometimes requires off-line interaction
between related users. From user’s point of view, an optimistic approach for document
processing is a better choice than a pessimistic one, because the user will hardly encounter
the situation that his transaction will conflict with other’s. If a pessimistic approach was
used, time and resources could be wasted to prevent the rare situations, i.e. conflicts, from
occurring. Even if a user later hears a transaction conflict, he would not be disappointed
as part of his work could be rescued?®.

Now let us discuss what is the criterion to determine transaction conflicts and who is
capable of detecting conflicts. A generally accepted notion of correctness for a distributed
file system is that the system has the same input/output behaviour as a centralised, one-
copy file system that executes transactions one at a time (one-copy serialisability) [2, 12].
The criterion has two characteristics, i.e. the multiple copies of file behaves like a single copy
(insofar as users can tell) and the effect of a concurrent transaction execution is equivalent
to a serial one. The former is guaranteed by the visibility server, as only the visibility
server has the authority to “officially” announce the current document version. The latter
(serialisability or atomic transaction commitment®) needs more detailed discussion.

The serialisability is a very strong correctness requirement. It is popular because it
is simple and intuitive, and can be enforced by very general mechanisms that are inde-
pendent of both semantics of the file being stored and the transactions manipulating it.
However, as the proposed system is aimed at document processing and employs an op-
timistic approach, we would prefer to ease the serialisability requirement for correctness
to reduce the probability that transactions conflict or conflicting transactions have to be
re-done. For example, some correctness criteria n the form of integrity constraints could
be used for concurrency control so that two or more concurrent transactions are compatible
even though the execution is not serialisable. Clearly, the criteria are related to semantic
constraints and yet need further investigation.

It is obvious that the visibility server could be used for concurrency control as it will
be notified of all changes to document versions. Actually the visibility server is responsible
for the final integrity check before a new document version is visible to users. Broadly to
say, the correctness criteria for concurrency control could be viewed as part of integrity
policy as the conflicts lead integrity violation. But the check should be rather primitive
because of the simplicity of the visibility server. What we are more interested in is to

5This is acceptable provided that the cost of rescue part and re-doing the other part of the transaction
is likely less than that of re-doing whole transaction.

6Atomic commitment means the execution of each transaction is “all or nothing”, i.e. either all of
the transaction’s operations are performed or none are performed [5], which is, in fact, equivalent to the
serialisability.

10




exert concurrency conftrol at the validation server level in order to enforce complicated
integrity policies. The dilemma is that there is no reliable and trusted relations between
the distributed validation servers for concurrency control. However, nothing could prohibit
the open distributed document system from se%ting up informal connections between the
validation servers for such a purpose. While a validation server validates a transaction, it
can make an informal contact with other distributed validation servers to detect possible
conflict transactions. Whenever a possible conflict is detected, the two involved validation
servers should try to resolve it themselves, otherwise the users who initiate the transactions
have to be warned. A warned user could either instruct his validation server go ahead
unanimously or make an off-line contact with the user at the other end to cooperatively
resolve the problem. We would expect that a large portion of conflicts could be resolved
or avoided at this stage. Again, how the strategy works will largely depend on the details
of enforced integrity policy.

Yet another reason why a pessimistic approach is not used for document processing is
that to realise the approach a locking mechanism or similar protocol is a basic requirement.
For a specific system like the open distributed document processing, we could argue that
there are some difficulties to properly implement a locking mechanism. Firstly, another
service, i.e. locking mechanism, has to be trusted globally besides the visibility server. The
situation that a group of users over several domains collaboratively develop documents will
further complicate the problem of locking mechanism implementation because in any truly
open system, autonomous management domains will never unconditionally relinquish con-
trol over their resources and domain administrators will always retain a last-ditch means
of reclaiming control over “their” resources [3]. Secondly, the efficiency of document pro-
cessing could be affected by the size of objects that the locking mechanism applies if a
pessimistic approach is used in the document processing system. -Some properties of ob-
ject protection are discussed in [9]. Surely, a very fine grained object locking mechanism
for the pessimistic approach could certainly avoid most of the pseudo-conflict cases, i.e. two
or more transactions that appear to conflict but actually their operations are compatible.
However, such a locking mechanism must be very complicated and difficult to manage. But
for the system efficiency, some kind of “soft”, simple and untrusted locking mechanisms
could be devised to give warning to relevant validation servers and users of possible trans-
action conflict. Precautions can be taken by the warned users, e.g. off-line contact. We
would expect by using an untrusted locking mechanism some conflict transactions could
be warned and thus avoided at their early stage, while the trust relationship in the system
and the optimistic approach for concurrency control could still remain unchanged.

7 Conclusion and future work

Architecture of file server for distributed document processing is investigated in this paper,
which enables a group of geographically distributed users to collaboratively develop docu-
ments in a secure, reliable and efficient environment and to be assured that the integrity
policy is enforced based on an open distributed system. The proposed architecture splits

11




a file server into two parts. One is called visibility server, which includes all globally trus-
ted services, but for security reasons it should keep its functional entities to a minimum.
Preferably, the visibility server could run in an off-line manner. Another one is called val-
idation server, which is only trusted by its “local” users and is responsible for transaction
validation. Also because of its stateless, it could be easily replicated in the distributed sys-
tem and each replica could operate independently to others. Instead of a universal notion
of integrity, the document integrity is viewed as part of social contract between users and
probably the system as well. So each user group who collaboratively develop a document
can specify their integrity policy for the document. An integrity policy in the distrib-
uted document processing system has the properties of individuality, independency, and
judgement at owner/user’s discretion. An optimistic approach for document processing is
employed to control concurrent transactions. The open distributed document system that
adopts the file server architecture should be able to achieve very high document availability
and provide each user group great flexibility for collaborative document development.

There are still several topics that need further investigation for this distributed docu-
ment processing system. Integrity policy specification is one of the major research areas we
would like to carry on. Integrity policy also influence the trust relations between users and
validation servers and between validation servers and visibility server, and has its impact
on the way that a validation server is constructed. Concurrency control is another re-
search area, which includes correctness criteria of integrity constraints, and implementation
strategies for transaction conflict detection and-resolution. Probably a formal specification
is desirable.

References

[1] ISO 7498-2. Information Processing Systems — Open Systems Interconnection — Basic
Reference Model, Part 2 Security Architecture. International Standards Organization,

1988.

—

[2] P. A. Bernstein and N. Goodman. An algorithm for concurrency control and re-
covery in replicated distributed databases. ACM Transactions on Database Systems,

9(4):596-615, December 1984.

[3] B. Christianson and B. Snook. Shrink-wrapped optimism: The DODA approach to
distributed document processing. Technical Report TR-187, School of Information
Science, University of Hertfordshire, March 1994.

[4] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned networks.
ACM Computing Surveys, 17(3):341-370, September 1985.

[5] J. N. Gray. Notes on data base operating systems. In R. Bayer, R. M. Graham,
and G. Seegmuller, editors, Operating Systems: An Advanced Course, pages 393-481.
Springer-Verlag, Berlin and New York, 1978.

12




[6]

[7]

[10]

[11]

[12]

P. Hu. Dynamic Supporting: An Efficient Method For Replicated File Systems. PhD
thesis, University College London, London, U.K., April 1993.

P. Hu and B. Christianson. Problems while remotely booting a workstation. Technical
report, School of Information Science, University of Hertfordshire, 1994. In prepara-
tion.

M. Lomas and B. Christianson. To whom am I speaking? Remote booting in a
hostile world. Technical Report TR-178, School of Information Sciences, University
of Hertfordshire, January 1994.

M. R. Low. Fine grained object protection in UNIX. Technical Report 130, University
of Hertfordshire, March 1992.

S. J. Mullender. Principles of Distributed Operating System Design. PhD thesis, Vrije
Universiteit, Amsterdam, October 1985.

J. F. Snook. Towards Secure, Optimistic, Distributed Open Systems. PhD thesis, Uni-
versity of Hertfordshire, Hatfield, U.I{., September 1992. Computer Science Technical
Report 151.

L. L. Traiger, C. A. Galthier, and B. G. Lindsay. Transactions and consistency in
distributed database systems. ACM Transactions on Database Systems, 7(3):323-342,
September 1982,

13







