Vertical Z

Technical Report No.132

Martin Loomes and Carol Britton

May 1991




Vertical 7

Martin Loomes and Carol Britton
School of Information Science,
Hatfield Polytechnic,

College Lane, Hatfield, Herts, AL10 9AB, UK2
tel: 0707 279350

Richard Mitchell
Faculty of Information Technology,
Brighton Polytechnic
Lewes Road, Brighton BN2 4GJ, UK.
tel: 0273 600900

Keywords: Formal, Specification, Decomposition

May 22, 1991




Introduction - Horizontal and Vertical Decomposition.

Many descriptions or definitions of systems and their sub-systems are sufficiently long that they need
to be organised, to be given some internal structure. This internal structure is achieved by some form
of decomposition of the whole into parts (together, of course, with the means to compose the parts).
The specification language Z (Spivey 1989) provides the schema calculus as the means to decompose Z
specifications. The nature of the schema calculus encourages specifiers to use what we are going to term
horizontal decomposition. Briefly, this involves taking a description of some behaviour that involves a
number of different cases, and presenting each case in a different schema. In contrast, other languages,
notably programming languages such as Pascal, encourage what we are going to term vertical decompos-
tion. In programming terms, this involves presenting an algorithm not as one monolithic piece of code but
as a higher-level procedure defined in terms of lower-level procedures. (For a full description of vertical
and horizontal decomposition see Mitchell, Loomes and Howse 1990)

Decomposition, whether vertical or horizontal, is a mechanism for structuring specifications. To use it,
the specifier must have a strategy for choosing what goes into different components. The specification
presented in this paper uses the strategy of separating two aspects of the system: one aspect is the
essential functionality of the system; the other aspect is how this essential functionality is presented to
the system’s users. We agree with Meyer (1988) that “... healthy design methods will attempt, as much
as possible, to separate the interface from the rest of the system, and use deeper properties as a guide to
system structuring.”

In this paper, lessons learned about decomposition in programming are used as the basis for the organisa-
tion of a Z specification. The example used is drawn from an information system which manages security
for a large company. The part of the specification shown here illustrates the use of cards to permit access
to secure rooms in the company building. We will refer to this part of the specification as the Door Control
System.

The Door Control System

To produce a clear, well-structured specification we need to separate the essential functionality of the
system (the checking of cards in and out of secure rooms) from its interface (the way in which it reacts with
its users). This separation of concerns brings us two advantages: first,we will have a better understanding
of the different components of the system; second, we have the ability to modify the interface at a later
date without affecting the basic functionality of the system.

We start by defining the data types that we are going to use to capture the values used in the system,
then we define the user interface and the effect of the externally visible operations in terms of changes
to stored variables of the defined types. Finally we define a number of functions for manipulating these
values.

The Data Model

To specify the Door Control system we need to use the types Card and Room We leave both the types
free, as we are not bothered about the exact format of these values at present.

At any given moment the system will have to know certain facts;

e which cards are registered as part of the door control system
e which cards (and therefore employees) are allowed in which rooms

e which cards (employees) are at present in a secure room
To keep track of which cards are in which rooms we will use a partial function.

In == Card - Room




To record who is allowed into which project rooms we will use another partial function, one that maps a
card to a set of rooms that the cardholder is entitled to enter.

Permissions == Card +~ P Room

We will eventually require a variable to hold all this information, so we define a type corresponding to
values which capture both the record of which card is in which room, and also what permissions all
cardholders employees have. This is simply a tuple of the two functions described above.

State == In x Permissions

Some of our system operations will only change one part of this state, so it is convenient to have functions
that allow us to extract just the first or second component of the state tuple. We will call these two
functions inComponent and permissionComponent respectively., These are defined as follows:

__STATE _TYPE_SELECTORS
inComponent : State — In
permissionComponent : State — Permissions

inComponent(i,p) =i
permissionComponent(i,p) = p

The State Variable

We are now going to pave the way for describing our externally visible operations. To do this we need
to describe how the state actually changes as we perform the operations, and any responses the system
makes. In this schema we also introduce an invariant on the state. We will insist that cardholders are not
allowed to be in rooms that they do not have permissions to be in.

__ASTATE VARIABLE
STATE TYPE_SELECTORS
st, st' : State

Vc: Card o (inComponent st c) € (permissionComponent st c)
A (inComponent st' ¢) € (permissionComponent st ¢)

The Outer Layer - The System Interface

We can now define our user interface. This involves specifying the behaviour of the system, in terms of
outputs and changes of state, corresponding to the invocation of operations with particular inputs. In this
paper we will use the operation to allow or deny entry as an example. We will first provide a case analysis
that describes the behaviour of the operation under all possible situations. We will also provide a response
to the user, so that acknowledgements for actions, or messages saying why the operation won’t behave the
way the user expected, can be provided. Finally we will formalize the case analysis in a Z schema.

Entering a Room

When an employee attempts to enter a room, several things may go wrong. First, the card being used may
not be recognised by the system. Second, the card may not have permission for the room being entered.
Finally, the employee may already be in a room (as far as the system knows). This situation might arise if
an employee passes a card out through a window to an accomplice, or if an employee sneaks out through
a door without using a card (eg. with someone else).

We assume that the output of a response “Door unlocked” here is accompanied by the physical unlocking
of the door, and other messages may be accompanied by alarm bells, messages to the security controller,
or whatever is deemed appropriate.




CASE 1 Card not known to the system
Output the mesage “Card not known” and do nothing.

CASE 2 Card is known to the system

CASE 2.1 The card does not have permission for the room being entered.
Output “Permission denied”, and do nothing

CASE 2.2 Permission is held for the room being entered.
CASE 2.2.1 The card is already logged as being in a room
Output “Card is already in secure room” and do nothing

CASE 2.2.2 The card is not logged as already in a room
Output “Door unlocked” and admit the employee.

This can be formalised in the following schema:

__ENTRY REQUEST
ASTATE VARIABLE
ENTER_ROOM_FUNCTION
r? . Room
c?: Card
resp!: Response

(¢? ¢ dom(permissionComponent st)

A

resp! = “Card not known”

A

st! = st)

\

(c? € dom(permissionComponent st)

A
(r? & (permissionComponent st c7)
A
resp! = “Permission denied”
A
st' = st)

r? & ermz’ssionComponent st ¢?
p
A
(C? € dom(inComponent St)

A

resp! = “Card is already in secure room”
A

st' = st)

(¢? ¢ dom(inComponent st)
A

resp! = “Door unlocked”

A

st' = enterRoom(st, ¢?,77))

At this stage we have not yet defined the function enterRoom. This is because we are concentrating here
on the outer layer of the system - its interface with its users and the way it reacts under various conditions.
For the moment all we need be concerned about is that a successful attempt to enter a room brings about




a new system state. This new state is the result of applying a function which we have called enterRoom
to the old system state,a card and a room. We can leave consideration of how enterRoom actually works
until later in the specification.

The Inner Layer - Functions to Manipulate the State Variable

Now that we have specified the ways in which the system will react to various situations, we need to define
a number of functions to manipulate values of type State. These functions should not be confused with
the operations that we have already defined to provide our user interface. Qur definition of this interface
prescribes under what conditions the functions can be invoked. Because we have already specified this,
we do not need to worry about imposing preconditions on our functions at this stage. All of the functions
make sense without preconditions, it is only that their use may be inappropriate in certain situations.
This technique of separating the functions from the different ways in which they may be used will allow
maximal re-use of the functions at a later stage.

We will define the function enterRoom which is called in the Entry Request Operation specified above.
This function calculates new values of type State that result from entry to a room.

__ENTER_ROOM_FUNCTION
STATE _TYPE SELECTORS
enterRoom : State x Card x Room — State

enterRoom(st, ¢, 1) =
(inComponent st @ {c — r}, permissionComponent st)

What have we achieved so far?

The door control specification was developed in two distinct parts - the outer layer or interface of the
system, and the inner layer or system functionality. This separation has several advanatges. It breaks down
the problem area into smaller, more manageable sections, thus giving us a more thorough understanding
of the system during the development of the specification. Any problem has to be decomposed into
’brain-sized chunks’ before we can start to tackle it. Disconnecting the interface from the functionality
of the system is a useful and effective way of achieving this problem decomposition. The separation of
the specification into distinct components simplifies modification of it at later stages, since we can alter
the way in which we have defined either the functions or the operations on the system without affecting
the other component. As development of a system progresses modification is always necessary. Good
decomposition of the problem means that we can avoid massive rewrites to accommodate small changes
and reuse the parts of our specification which are still relevant.

References

Meyer, Bertrand, “Object-oriented Software Construction”, Prentice-Hall, 1988, p46
Mitchell, R, Loomes, M and Howse, J, ”Organising Specifications: a Case Study”, 1990

Spivey, J M, ” An Introduction to Z and Formal Specifications”, IEE Software Engineering Journal, January
1989




