Integer Division by Small Constants

Technical Report No 113
Gordon B Steven
Submitted to 10th IEEE Symposium on Computer Arithmetic

November 1990

Integer Division by Small Constants

Abstract

Integer division is considered within the context of the development of iHARP, an integrated circuit
version of HARP, the HAtfield RISC Processor architecture. The paper demonstrates that
execution times for division by small constants can be significantly reduced. Two cases are
considered, division by powers of two and division by other small constants. In each case
specialised instruction primitives are introduced to reduce the execution time.

If an arithmetic shift right instruction is used to implement division by a power of two, an incorrect
result is produced for negative dividends. The first iHARP primitive corrects the shift result and
allows division by powers of two to be performed in a single machine cycle. The second iHARP
primitive allows division by other small constants to be implemented efficiently as a finite series of
multiplication steps. Execution time is reduced both by decreasing the number of operations
involved and by exploiting the parallel nature of the iHARP architecture.

Key words :
Integer division RISC VLIW

Gordon Steven ' November 1990

L. Introduction

This paper considers the division of integers by constants as a separate design problem. The aim is
to reduce the execution time of division in the many cases where the divisor is known at compile
time. Unlike the general problem of integer division, this topic has been neglected in the literature
with the notable exception of a recent paper from the HP Precision Architecture group [Magen87].

The work described was undertaken during the course of the development of iHARP, a VLIW
(Very Long Instruction Word) processor currently being developed at Hatfield Polytechnic
[Steven89][Adams90a]. In each processor cycle iHARP fetches four integer instructions from the
instruction cache and executes them in parallel in four distinct pipelines. An iHARP processor is
therefore capable of performing four ALU operations in parallel. The ALU configuration for each
pipeline is shown in Figl. The shift unit in front of the ALU is capable of shifting one of the ALU
operands a small number of bit positions left or right. Other distinctive features of iHARP include
the conditional execution of all instructions [Adams90b] and ORed indexing [Steven88].

The paper first outlines the implementation of general-purpose division on iHARP. The use of
arithmetic shift right instructions to implement division by powers of two is then reviewed, and the
additional hardware provided by iHARP to allow divisions by powers of two to be executed in a
single cycle is described.

An algorithm for division by three is then devéloped and its hardware implementation on iHARP
described. A subsequent section describes how this algorithm can be generalised to other
constants. Finally comparative execution times for division by various small constants are
provided. The paper demonstrates that execution times for division by small constants can be
significantly reduced. The improvement comes from two sources. Firstly, the number of
operations is reduced by converting the division into a multiplication. Secondly, the algorithm
employed is able to exploit the multiple parallel pipelines provided by iHARP.

2. General-Purpose Division on iHARP
General-purpose division on iHARP uses a non-restoring division algorithm [Gosling80]. The

quotient is produced one bit at a time using a single length add or subtract in conjunction with a
double length shift. -

The algorithm is implemented using a DSTEP instruction primitive which provides the required
double length shift and add/subtract step. The shift operation uses the shift unit placed immediately
before the ALU in each pipeline (Figl). An unsigned, 32-bit division operation is executed in 33
cycles. In the case of signed division the execution time increases to 36 machine cycles. '

Each DSTEP instruction is executed by two adjacent pipelines acting in concert. The first pipeline

2
Gordon Steven ‘ November 1990

|

performs the upper half of the double length shift and the add/subtract step while the second
pipeline performs the lower half of the shift. A divide routine therefore requires the use of two
pipelines but leaves the two remaining pipelines free to perform other operations including a second
division. Four additional 32-bit shift registers would have been required to implement a DSTEP
instruction in each of the four iHARP pipelines. These registers would have increased the machine
state and would have required saving on context switches. This overhead is avoided in the solution
adopted.

In addition iHARP provides special-purpose instructions to reduce the execution time of divisions
where the divisor is known at compile time. These primitives provide the main subject of this paper.

3. Division by Powers of Two

It is well known that an arithmetic shift right only corresponds to division by a power of two if the
operand is positive [Steele79]. Consider for example "-1 DIV 2". An arithmetic shift right of one
will produce the answer minus one, whereas most programming languages expect the answer zero.
The problem is that an arithmetic shift right rounds towards minus infinity while most languages
follow FORTRAN and require integer division to round towards zero. The following algorithm
must therefore be used to divide a signed integer, Ri, by N where N = 2 ** k:

IF Ri < 0 THEN Ri :=Ri + (N-1);
Ri := Ri (ASR#k)

On iHARRP this algorithm can be implemented using the followin g three sequential instructions:

1) LTS BL,Ri#0 /*Bl:=Ri <#0 */
2) TB1 ADD Ri,Ri,#N-1 /* IF B1=TRUE THEN Ri := Ri+N-1 */
3) MOV Rj,Ri(ASR#k) /* Rj := Ri shifted right k bits arithmetically */

Alternatively by executing instructions in two parallel pipelines, the execution time can be reduced
to two cycles:

1) LTS B1,Ri,#0; ADD Rj,Ri#N-1 /* speculatively adjust dividend */
2) FB1MOV RjRi(ASR#k); TB1 MOV Rj,Rj(ASR#k) /* use B1 to select correct result */

Neither method is ideal, the first not only takes three instructions but destroys the original operand,
while the second requires four short instructions. An alternative algorithm performs the required

correction after the shift operation.

1) MOV Rj,Ri(ASR#k) /* carry flag set if Ri <0 and a one shifted out during shift */
2) ADDCRj,Rj#0 /* correct rounding */

Gordon Steven ' November 1990

In the first instruction the carry flag is set if the shift operand is negative and if any bit discarded
during the shift operation is one. An add with carry instruction then uses the carry flag to correct
the rounding in the case of negative dividends. On iHARP these two operations are combined in a
single primitive. The shift unit in front of the ALU performs the arithmetic shift, while the ALU
performs the correction required for negative operands.

1) ADDC Rj,Ri(ASR#k),#0 /* Carry In = 1 if Ri < 0 and at least one "1" is discarded during
the shift operation */

As a result divisions by powers of two are executed in a single processor cycle.

4. Division by Three

This section introduces the iHARP approach to division by constants which are not powers of two.
Consider a 32-bit positive number being divided by three. This division is equivalent to
multiplication by 0.0101etc where the "01" is repeated indefinitely. The start of the series of
additions required is graphically represented below. Each letter represents a single digit in the
32-bit dividend. All unrepresented bit positions are zero.

dddddddddddddddddddddddddddddd.dd
dddddddddddddddddddddddddddd.dddd
dddddddddddddddddddddddddd.dddddd
dddddddddddddddddddddddd.dddddddd
dddddddddddddddddddddd.dddddddddd
dddddddddddddddddddd.dddddddddddd
dddddddddddddddddd.dddddddddddddd
dddddddddddddddd.dddddddddddddddd
dddddddddddddd.dddddddddddddddddd
dddddddddddd.dddddddddddddddddddd
dddddddddd.dddddddddddddddddddddd
dddddddd.dddddddddddddddddddddddd
dddddd.dddddddddddddddddddddddddd
dddd.dddddddddddddddddddddddddddd
dd.dddddddddddddddddddddddddddddd
.dddddddddddddddddddddddddddddddd
.00dddddddddddddddddddddddddddddddd
.0000dddddddddddddddddddddddddddddddd
.000000dddddddddddddddddddddddddddddddd

The summation represented can be divided into two parts:

» The addition of the 15 integer parts.
* The addition of an infinite series of fractional parts.

The integer portion of the calculation can be implemented in a straightforward manner as a series of
shifts and adds. The fractional portion is more problematic. Clearly an infinite series of additions

is out of the question. On the other hand an exact result is required which can be correctly rounded
towards zero.

Gordon Steven ‘ November 1990

Consider the first two bit positions after the binary point. Sixteen pairs of binary digits are
summed. Now consider the next two bit positions. The same 16 pairs of digits are summed.
Furthermore this same summation is repeated indefinitely. More formally, consider the 32-bit
dividend as 16, base four digits, q;. The fractional portion of the quotient, R, can be computed

using the following series:

i=15 i=15 i=15
R=1/4Y q; +1/16% qj +1/64% qj +
i=0 i=0 i=0

Since the above is a standard geometric progression, R is given by:

i=15
R= 2 qj/3
=0

At first sight we have simply returned to our original problem. However, since each bit represents
only a single base four digit, the above calculation can be performed by modifying a two-bit adder

- to act as a single digit modulo 3 adder. Furthermore, the modulo 3 additions can be combined with

the additions which compute the integer portion of the division.

Division by three can be implemented using the hardware shown in Figl. A standard 32-bit ALU is
used to compute Rdividend/3. The quotient is accumulated in the right-hand ALU input register,
while appropriately shifted portions of the dividend are added from the left-hand input register. The
following 17 steps are required: ' ‘

1) ADDC Rquot,Rdividend,#1; MOV Rdividend,Rdividend(LLSR#2);
(CarryIn<--Cl1)

2-15) ADDC Rquot,Rdividend,Rquot; MOV Rdividend,Rdividend(LSR#2);
(CarryIn<--C1)

16) ADDC Rquot,Rdividend,Rquot;
(CarryIn<--Cl1)

17) MOV Rquot,Rquot(LSR#2); /* remove fractional part */

The integer portion of the addition is carried out in the top 30 bits of the ALU in a straightforward
manner. During the first step the partial quotient is set to the 30 most significant bits of the
dividend. Since each step also performs a 2-bit logical shift right on the dividend, each subsequent
addition instruction adds in a new right shifted dividend as required.

The fractional part of the computation is performed in parallel using the two least significant bits of
the ALU. Thus a binary point notionally exists between bit two and one (zero being the least
significant bit). The two least significant bits of the ALU are used to perform division by three.
Modulo 3 division is achieved by maintaining a bias of one on these two bits throughout the
computation. As a result of this bias whenever a total of three or more is accumulated, a carry will
be passed from bit one into the integer portion of the calculation. These carries represent the integer

5
Gordon Steven ' November 1990

portion of the required division by three and must be accumulated in the final total. In the code
sequence an initial bias is added to the partial quotient in the first instruction. This bias is then
reasserted whenever an ALU addition generates a carry from bit one. Reassertion is achieved by
feeding C1, the carry from bit one, directly into the least significant bit of the ALU as Carry In.
This middle-around carry mechanism ensures that the total in the two least significant ALU bits is
always biased and results in modulo 3 addition being performed.

After 16 instructions, the correct truncated quotient is held in the 30 most significant bits of the
quotient register. A further step is then required to right justify the answer. As long as the dividend
is positive, a logical, not an arithmetic shift, is required.

Thirty-two distinct operations are involved. Alternatively, if the shift and add operations are
combined in a single instruction, a total of 17 instructions is required. Since 33 shift and add
instructions are required to implement the general-purpose non-restoring division algorithm, the
number of cycles and operations required has been effectively halved.

In iHARP the required middle-around carry mechanism is incorporated in a DMSTEP
(Division/Multiply Step) instruction primitive with the following syntax:

DMSTEP(i) Rdst,Rsrc1(ASR#n),Rsrc2

As well as adding the right-shifted register operand to the second register operand, DMSTEP
ensures that the ith ALU carry bit is fed into the least significant ALU bit position as Carry In.

The execution time is further reduced by distributing the computation over all four pipelines. In the
following code the partial quotient is accumulated in three pipelines while the fourth pipeline is used
to compute a new right-shifted dividend for later use. ’

1) DMSTEP(1) Rquotl,Rdividend,#1;

DMSTEP(1) Rquot2,Rdividend(ASR#2),#0;

DMSTEP(1) Rquot3,Rdividend(ASR#4),#0; MOV Rdividend,Rdividend(ASR#6)
2-5) DMSTEP(1) Rquot1,Rdividend,Rquotl;

DMSTEP(1) RciuotZ,Rdividend(ASR#2),unot2;

DMSTEP(1) Rquot3,Rdividend(ASR#4),Rquot3; MOV Rdividend,Rdividend(ASR#6)

6) DMSTEP(1) Rquotl,Rdividend,Rquotl; /* final multiply cycle */
DMSTEP(1) Rquot2,Rquot2,Rquot3; /* combine sub-totals */

7) DMSTEP(1) Rquot1,Rquot1,Rquot2;

8) MOV Rquot,Rquot1(ASR#2); /* extract integer result */

As a result the execution time is reduced to only eight cycles, four times faster than the

, 6
Gordon Steven November 1990

general-purpose algorithm.

5. Generalisation to Other Constants

The algorithm developed for division by three can be generalised to cater for division by other
constants. Division by five, for example, is equivalent to multiplication by the recurring fraction
0.0011. The fractional portion of the calculation now requires a succession of modulo 15 additions
to be performed. The four least significant bits of the ALU can be used to perform these additions
providing the middle-around carry mechanism is extended to obtain Carry In from the carry
generated from bit position three.

In general, for all K, where K is an odd integer, it can be shown that 1/K is a recurring fraction of
the form 0.RRRetc, where R is of bit length less than K. In principle the division mechanism
outlined can therefore be extended to any constant by extending the DMSTEP instruction so that it
selects the required Carry In from a suitable range of middle-around carries. Execution times for
various small constants are given in Table 1.

This paper assumes that single length ALUs are used throughout. For many constants single length
working makes it necessary to separate the fractional and integer portions of the calculation for at
least part of the division process. This restriction accounts for the increased number of operations
required for some divisors in Table 1. Since on iHARP these additional steps map into parallel
operations, their impact on the final execution time is minimal. However, in a single ALU machine
it would be possible to reduce the number of shift/reduce steps by extending the length of the ALU.

The above ideas can be extended to cater for Signed dividends by conditionally ncgatiﬁg the
dividend at the beginning and the result at the end. The execution time would then be extended by
three cycles. iHARP uses the more elegant alternative of extendin g the algorithm to cater for signed
dividends. This extension requires the use of arithmetic shifts throughout (as already assumed
above) and a rounding correction for negative results. This method requires only one or two
additional cycles to cope with negative dividends.

The DMSTEP instruction requires a carry from the middle of the ALU carry path to be fed back into
the ALU as Carry In, the carry into the least significant bit. Clearly this mechanism must not be
allowed to extend the CPU cycle time. Implementation is simplified if it is noted that a
middle-around carry can never propagate beyond the point at which it was generated. Therefore, in
an ALU using a simple ripple carry mechanism, the carry path is unlikely to be extended. If the
ALU uses a carry propagate adder with full carry lookahead, the middle-around carries must be
handled with more care. In this case our studies indicate that middle-around carries generated
within the first 12 bits of a 32-bit ALU can be successfully fed back into the ALU without
increasing the addition time. However, middle-around carries from higher bit positions must be
saved in the carry flag and re-used in a subsequent DMSTEP cycle. Saving the carry for later

Gordon Steven V November 1990

re-use avoids any timing restraints but typically increases division execution times by one cycle.

6. Conclusions

The neglected topic of division by small constants has been examined in the context of the iHARP
processor development. It has been shown that an arithmetic shift can be used to implement
division by powers of two in a single cycle by providing a small amount of additional logic to adjust
the incorrect result normally generated for negative numbers. A Divide/Multiply Step primitive has
also been introduced to implement division by constants which are not powers of two. Using this
primitive, division execution times on iHARP have been reduced to about a third of the time taken
by a general-purpose division routine.

Acknowledgements

The author would like to thank Rod Adams, Paul Findlay and Fleur Williams for their helpful
comments on this paper. He also gratefully acknowledges the support of the rest of the HARP
team, in particular Sue Gray, Gordon Green and Liang Wang from Computer Science and Brian
Johnson and Simon Trainis from Electrical Engineering. He would also like to thank Dr. S. L.
Stott, Professor L.C.W. Dixon and J. A. Davis for their support.

The HARP project is supported by SERC Research Grant GR/F88018.

Gordon Steven A November 1990

References

[Magen87] Magenheimer,J.M., Peters,L., Pettis,K. and Zuras,D. "Integer Multiplication and
Division on the HP Precision Architecture", ASPLOS II, Palo Alto, October 1987.

[Steven89] Steven,G.B., Gray,S.M. and Adams,R.G. "HARP: A Parallel Pipelined RISC

Processor”, Microprocessors and Microsystems, Vol.13, No.9 (November 1989),
ppS579-587.

[Adams90a] Adams,R.G., Gray,S.M. and Steven,G.B. "Utilising Low Level Parallelism in
General Purpose Code: The HARP Project", accepted for publication by
Microprocessing and Microprogramming.

[Adams90b] Adams,R.G. and Steven,G.B. "A Parallel Pipelined Processor with Conditional
Instruction Execution", Submitted for publication to Computer Architecture News.

[Steven89] Steven,G.B. "A Novel Effective Address Calculation Mechanism for RISC
Microprocessors", SIGARCH, September 1988, pp150-6.

[Gosling80] Gosling,J.B. "Design of Arithmetic Units for Digital Computers", Macmillan, 1980.

[Steele77] Steele,G.L., "Arithmetic Shifting Considered Harmful", ACM SIGPLAN Notices,
November 1977, pp61-68.

Gordon Steven ' November 1990

Figl Hardware to Implement Division by Constants

From GP From GP
registers registers
+ A 4 v
Dividend Quotient
Shift Unit ¥
4 ALU bypass
v ath
Carry In P
32-bit ALU
< Carries Out 1
A ¢ select carry
Table1 Division by Small Constants
Divisor Middle Around Shift/Add iHARP
Carry Operations Cycles
variable n/a 33 33
3 1 17 8
5 3 19 9 |
6 1 17 8
7 2 12 7
9 5 24 9
10 3 19 9
11 10 28 10
12 1 17 8
14 2 12 7
15 3 9 6

HATFIELD POLYTECHNIC
College Lane

Hatfield Herts

AL10 9AB

10
Gordon Steven

November 1990

Integer Division by Small Constants

Technical Report No 113
Gordon B Steven

Submitted to 10th IEEE Symposium on Computer Arithmetic

November 1990

Integer Division by Small Constants

Abstract

Integer division is considered within the context of the development of iHARP, an integrated circuit
version of HARP, the HAtfield RISC Processor architecture. The paper demonstrates that
execution times for division by small constants can be significantly reduced. Two cases are
considered, division by powers of two and division by other small constants. In each case
specialised instruction primitives are introduced to reduce the execution time.

If an arithmetic shift right instruction is used to implement division by a power of two, an incorrect
result is produced for negative dividends. The first iHARP primitive corrects the shift result and
allows division by powers of two to be performed in a single machine cycle. The second iHARP
primitive allows division by other small constants to be implemented efficiently as a finite series of
multiplication steps. Execution time is reduced both by decreasing the number of operations
involved and by exploiting the parallel nature of the iHARP architecture.

Key words
Integer division RISC VLIW

Gordon Steven ' November 1990

1. Introduction

This paper considers the division of integers by constants as a separate design problem. The aim is
to reduce the execution time of division in the many cases where the divisor is known at compile
time. Unlike the general problem of integer division, this topic has been neglected in the literature
with the notable exception of a recent paper from the HP Precision Architecture group [Magen87].

The work described was undertaken during the course of the development of iHARP, a VLIW
(Very Long Instruction Word) processor currently being developed at Hatfield Polytechnic
[Steven89][Adams90a]. In each processor cycle iHARP fetches four integer instructions from the
instruction cache and executes them in parallel in four distinct pipelines. An iHARP processor is
therefore capable of performing four ALU operations in parallel. The ALU configuration for each
pipeline is shown in Figl. The shift unit in front of the ALU is capable of shifting one of the ALU
operands a small number of bit positions left or right. Other distinctive features of iHARP include
the conditional execution of all instructions [Adams90b] and ORed indexing [Steven88].

The paper first outlines the implementation of general-purpose division on iHARP. The use of
arithmetic shift right instructions to implement division by powers of two is then reviewed, and the
additional hardware provided by iHARP to allow divisions by powers of two to be executed in a
single cycle is described.

An algorithm for division by three is then developed and its hardware implementation on iHARP
described. A subsequent section describes how this algorithm can be generalised to other
constants. Finally comparative execution times for division by various small constants are
provided. The paper demonstrates that execution times for division by small constants can be
significantly reduced. The improvement comes from two sources. Firstly, the number of
operations is reduced by converting the division into a multiplication. Secondly, the algorithm
employed is able to exploit the multiple parallel pipelines provided by iHARP.

2. General-Purpose Division on iHARP
General-purpose division on iHARP uses a non-restoring division algorithm [Gosling80]. The

quotient is produced one bit at a time using a single length add or subtract in conjunction with a
double length shift.

The algorithm is implemented using a DSTEP instruction primitive which provides the required
double length shift and add/subtract step. The shift operation uses the shift unit placed immediately
before the ALU in each pipeline (Figl). An unsigned, 32-bit division operation is executed in 33
cycles. In the case of signed division the execution time increases to 36 machine cycles.

Each DSTEP instruction is executed by two adjacent pipelines acting in concert. The first pipeline

4 2
Gordon Steven November 1990

performs the upper half of the double length shift and the add/subtract step while the second
pipeline performs the lower half of the shift. A divide routine therefore requires the use of two
pipelines but leaves the two remaining pipelines free to perform other operations including a second
division. Four additional 32-bit shift registers would have been required to implement a DSTEP
instruction in each of the four iHARP pipelines. These registers would have increased the machine

state and would have required saving on context switches. This overhead is avoided in the solution
adopted.

In addition iHARP provides special-purpose instructions to reduce the execution time of divisions
where the divisor is known at compile time. These primitives provide the main subject of this paper.

3. Division by Powers of Two

It is well known that an arithmetic shift right only corresponds to division by a power of two if the
operand is positive [Steele79]. Consider for example "-1 DIV 2". An arithmetic shift right of one
will produce the answer minus one, whereas most programming languages expect the answer zero.
The problem is that an arithmetic shift right rounds towards minus infinity while most languages
follow FORTRAN and require integer division to round towards zero. The following algorithm
must therefore be used to divide a signed integer, Ri, by N where N = 2 ** k:

IF Ri < 0 THEN Ri := Ri + (N-1);
Ri :=Ri (ASR#K)

On iHARP this algorithm can be implemented using the followiﬂg three sequential instructions:

1) LTS B1,Ri#0 /* Bl:=Ri < #0 */
2) TB1 ADD Ri,Ri,#N-1 /* IF B1=TRUE THEN R1 := Ri+N-1 */
3) MOV Rj,Ri(ASR#k) /* Rj = Ri shifted right k bits arithmetically */

Alternatively by executing instructions in two parallel pipelines, the execution time can be reduced
to two cycles:

1) LTS B1,Ri,#0; ADD Rj,Ri,#N-1 /* speculatively adjust dividend */
2) FB1MOV Rj,Ri(ASR#k); TB1 MOV Rj,Rj(ASR#k) /* use B1 to select correct result */

Neither method is ideal, the first not only takes three instructions but destroys the original operand,
while the second requires four short instructions. An alternative algorithm performs the required

correction after the shift operation.

1) MOV Rj,Ri(ASR#k) /* carry flag set if Ri < 0 and a one shifted out during shift */
2) ADDCR;j,Rj,#0 /* correct rounding */

Gordon Steven A November 1990

In the first instruction the carry flag is set if the shift operand is negative and if any bit discarded
during the shift operation is one. An add with carry instruction then uses the carry flag to correct
the rounding in the case of negative dividends. On iHARP these two operations are combined in a
single primitive. The shift unit in front of the ALU performs the arithmetic shift, while the ALU
performs the correction required for negative operands.

1) ADDC Rj,Ri(ASR#k),#0 /* Carry In = 1 if Ri < 0 and at least one "1" is discarded during
the shift operation */

As a result divisions by powers of two are executed in a single processor cycle.

4. Division by Three

This section introduces the iHARP approach to division by constants which are not powers of two.
Consider a 32-bit positive number being divided by three. This division is equivalent to
multiplication by 0.0101etc where the "01" is repeated indefinitely. The start of the series of

additions required is graphically represented below. Each letter represents a single digit in the
32-bit dividend. All unrepresented bit positions are zero.

dddddddddddddddddddddddddddddd.dd
dddddddddddddddddddddddddddd.dddd
dddddddddddddddddddddddddd.dddddd
dddddddddddddddddddddddd.dddddddd
dddddddddddddddddddddd.dddddddddd
dddddddddddddddddddd.dddddddddddd
dddddddddddddddddd.dddddddddddddd
dddddddddddddddd.dddddddddddddddd =~
dddddddddddddd.dddddddddddddddddd
dddddddddddd.dddddddddddddddddddd
dddddddddd.dddddddddddddddddddddd
dddddddd.dddddddddddddddddddddddd
dddddd.dddddddddddddddddddddddddd
dddd.dddddddddddddddddddddddddddd
dd.dddddddddddddddddddddddddddddd

.dddddddddddddddddddddddddddddddd
.00dddddddddddddddddddddddddddddddd
.0000dddddddddddddddddddddddddddddddd
.000000dddddddddddddddddddddddddddddddd

The summation represented can be divided into two parts:

* The addition of the 15 integer parts.
* The addition of an infinite series of fractional parts.

The integer portion of the calculation can be implemented in a straightforward manner as a series of
shifts and adds. The fractional portion is more problematic. Clearly an infinite series of additions

is out of the question. On the other hand an exact result is required which can be correctly rounded
towards zero.

Gordon Steven ' November 1990

Consider the first two bit positions after the binary point. Sixteen pairs of binary digits are
summed. Now consider the next two bit positions. The same 16 pairs of digits are summed.
Furthermore this same summation is repeated indefinitely. More formally, consider the 32-bit
dividend as 16, base four digits, q;. The fractional portion of the quotient, R, can be computed

using the following series:

i=15 i=15 i=15
R=1/4Y q; +1/16 % qj +1/64% g +
i=0 i=0 i=0

Since the above is a standard geometric progression, R is given by:

i=15
R=2 q;/3
=0

At first sight we have simply returned to our original problem. However, since each bit represents
only a single base four digit, the above calculation can be performed by modifying a two-bit adder
to act as a single digit modulo 3 adder. Furthermore, the modulo 3 additions can be combined with
the additions which compute the integer portion of the division.

Division by three can be implemented using the hardware shown in Figl. A standard 32-bit ALU is
used to compute Rdividend/3. The quotient is accumulated in the right-hand ALU input register,

while appropriately shifted portions of the dividend are added from the left-hand input register. The
following 17 steps are required:

1) ADDC Rquot,Rdividend,#1; MOV Rdividend,Rdividend(LSR#Z);

(Carry In<-- C1)
2-15) ADDC Rquot,Rdividend,Rquot; MOV Rdividend,Rdividend(LLSR#2);

(Carry In<-- C1)
16) ADDC Rquot,Rdividend,Rquot;
(Carry In<-- Cl1)
17) MOV Rquot,Rquot(LSR#2); /* remove fractional part */

The integer portion of the addition is carried out in the top 30 bits of the ALU in a straightforward
manner. During the first step the partial quotient is set to the 30 most significant bits of the
dividend. Since each step also performs a 2-bit logical shift right on the dividend, each subsequent
addition instruction adds in a new right shifted dividend as required.

The fractional part of the computation is performed in parallel using the two least significant bits of
the ALU. Thus a binary point notionally exists between bit two and one (zero being the least
significant bit). The two least significant bits of the ALU are used to perform division by three.
Modulo 3 division is achieved by maintaining a bias of one on these two bits throughout the
computation. As a result of this bias whenever a total of three or more is accumulated, a carry will
be passed from bit one into the integer portion of the calculation. These carries represent the integer

. 5
Gordon Steven November 1990

portion of the required division by three and must be accumulated in the final total. In the code
sequence an initial bias is added to the partial quotient in the first instruction. This bias is then
reasserted whenever an ALU addition generates a carry from bit one. Reassertion is achieved by
feeding C1, the carry from bit one, directly into the least significant bit of the ALU as Carry In.
This middle-around carry mechanism ensures that the total in the two least significant ALU bits is
always biased and results in modulo 3 addition being performed.

After 16 instructions, the correct truncated quotient is held in the 30 most significant bits of the
quotient register. A further step is then required to right justify the answer. As long as the dividend
is positive, a logical, not an arithmetic shift, is required.

Thirty-two distinct operations are involved. Alternatively, if the shift and add operations are
combined in a single instruction, a total of 17 instructions is required. Since 33 shift and add
instructions are required to implement the general-purpose non-restoring division algorithm, the
number of cycles and operations required has been effectively halved.

In iHARP the required middle-around carry mechanism is incorporated in a DMSTEP
(Division/Multiply Step) instruction primitive with the following syntax:

DMSTEP() Rdst,Rsrc1(ASR#n),Rsrc2

As well as adding the right-shifted register operand to the second register operand, DMSTEP
ensures that the ith ALU carry bit is fed into the least significant ALU bit position as Carry In.

The execution time is further reduced by distributing the computation over all four pipelines. In the
following code the partial quotient is accumulated in three pipelines while the fourth pipeline is used
to compute a new right-shifted dividend for later use. '

1) DMSTEP(1) Rquotl,Rdividend, #1;

DMSTEP(1) Rquot2,Rdividend(ASR#2),#0;

DMSTEP(1) Rquot3,Rdividend(ASR#4),#0; MOYV Rdividend,Rdividend(ASR#6)
2-5) DMSTEP(1) Rquotl,Rdividend,Rquot1;

DMSTEP(1) unotZ,Rdividcnd(ASR#2),unot2;

DMSTEP(1) Rquot3,Rdividend(ASR#4),Rquot3; MOV Rdividend,Rdividend(ASR#6)

6) DMSTEP(1) Rquotl,Rdividend,Rquotl1; /* final multiply cycle */
DMSTEP(1) Rquot2,Rquot2,Rquot3; /* combine sub-totals */

7) DMSTEP(1) Rquotl,Rquot1,Rquot2;

8) MOV Rquot,Rquotl (ASR#2); /* extract integer result */

As a result the execution time is reduced to only eight cycles, four times faster than the

A 6
Gordon Steven November 1990

general-purpose algorithm,

5. Generalisation to Other Constants

The algorithm developed for division by three can be generalised to cater for division by other
constants. Division by five, for example, is equivalent to multiplication by the recurring fraction
0.0011. The fractional portion of the calculation now requires a succession of modulo 15 additions
to be performed. The four least significant bits of the ALU can be used to perform these additions
providing the middle-around carry mechanism is extended to obtain Carry In from the carry
generated from bit position three.

In general, for all K, where K is an odd integer, it can be shown that 1/K is a recurring fraction of
the form 0.RRRetc, where R is of bit length less than K. In principle the division mechanism
outlined can therefore be extended to any constant by extending the DMSTEP instruction so that it
selects the required Carry In from a suitable range of middle-around carries. Execution times for
various small constants are given in Table 1.

This paper assumes that single length ALUs are used throughout. For many constants single length
working makes it necessary to separate the fractional and integer portions of the calculation for at
least part of the division process. This restriction accounts for the increased number of operations
required for some divisors in Table 1. Since on iHARP these additional steps map into parallel
operations, their impact on the final execution time is minimal. However, in a single ALU machine
it would be possible to reduce the number of shift/reduce steps by extending the length of the ALU.

The above ideas can be extended to cater for'signed dividends by conditionally negatihg the
dividend at the beginning and the result at the end. The execution time would then be extended by
three cycles. iHARP uses the more elegant alternative of extending the algorithm to cater for signed
dividends. This extension requires the use of arithmetic shifts throughout (as already assumed
above) and a rounding correction for negative results. This method requires only one or two
additional cycles to cope with negative dividends.

The DMSTEP instruction requires a carry from the middle of the ALU carry path to be fed back into
the ALU as Carry In, the carry into the least significant bit. Clearly this mechanism must not be
allowed to extend the CPU cycle time. Implementation is simplified if it is noted that a
middle-around carry can never propagate beyond the point at which it was generated. Therefore, in
an ALU using a simple ripple carry mechanism, the carry path is unlikely to be extended. If the
ALU uses a carry propagate adder with full carry lookahead, the middle-around carries must be
handled with more care. In this case our studies indicate that middle-around carries generated
within the first 12 bits of a 32-bit ALU can be successfully fed back into the ALU without
increasing the addition time. However, middle-around carries from higher bit positions must be
saved in the carry flag and re-used in a subsequent DMSTEP cycle. Saving the carry for later

, 7
Gordon Steven November 1990

re-use avoids any timing restraints but typically increases division execution times by one cycle.

6. Conclusions

The neglected topic of division by small constants has been examined in the context of the iHARP
processor development. It has been shown that an arithmetic shift can be used to implement
division by powers of two in a single cycle by providing a small amount of additional logic to adjust
the incorrect result normally generated for negative numbers. A Divide/Multiply Step primitive has
also been introduced to implement division by constants which are not powers of two. Using this
primitive, division execution times on iHARP have been reduced to about a third of the time taken
by a general-purpose division routine.

Acknowledgements

The author would like to thank Rod Adams, Paul Findlay and Fleur Williams for their helpful
comments on this paper. He also gratefully acknowledges the support of the rest of the HARP
team, in particular Sue Gray, Gordon Green and Liang Wang from Computer Science and Brian
Johnson and Simon Trainis from Electrical Engineering. He would also like to thank Dr. S. L.
Stott, Professor L.C.W. Dixon and J. A. Davis for their support.

The HARP project is suppbrted by SERC Research Grant GR/F88018.

Gordon Steven | November 1990

|
|
|
]

References

[Magen87] Magenheimer,J.M., Peters,L., Pettis,K. and Zuras,D. "Integer Multiplication and
Division on the HP Precision Architecture”, ASPLOS 1I, Palo Alto, October 1987.

[Steven89] Steven,G.B., Gray,S.M. and Adams,R.G. "HARP: A Parallel Pipelined RISC
Processor", Microprocessors and Microsystems, Vol.13, No.9 (November 1989),
ppS579-587.

[Adams90a] Adams,R.G., Gray,S.M. and Steven,G.B. "Utilising Low Level Parallelism in
General Purpose Code: The HARP Project", accepted for publication by
Microprocessing and Microprogramming.

[Adams90b] Adams,R.G. and Steven,G.B. "A Parallel Pipelined Processor with Conditional
Instruction Execution", Submitted for publication to Computer Architecture News.

[Steven89] Steven,G.B. "A Novel Effective Address Calculation Mechanism for RISC
Microprocessors”, SIGARCH, September 1988, pp150-6.

[Gosling80] Gosling,J.B. "Design of Arithmetic Units for Digital Computers", Macmillan, 1980.

[Steele77] Steele,G.L., "Arithmetic Shifting Considered Harmful", ACM SIGPLAN Notices,
November 1977, pp61-68.

Gordon Steven A November 1990

Figl Hardware to Implement Division by Constants

From GP From GP
l registers registers
Dividend Quotient
Shift Unit v
4 ALU bypass
Canxyln path
32-bit ALU
+ Carxies Out I
v select caxry
Table 1 Division by Small Constants
Divisor Middle Around Shift/Add iHARP
Carry Operations Cycles

variable n/a 33 33

3 1 17 8
5 3 19 9.

6 1 17 8

7 2 12 7

9 5 24 9

10 3 19 9.

11 10 28 10

12 1 17 8

14 2 12 7

15 3 9 6

HATFIELD POLYTECHNIC
College Lane

Hatfield Herts

AL10 9AB

10
Gordon Steven

November 1990

