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Abstract: This report describes preliminary work carried
out as part of a PhD research project into the
design of user interfaces for computer music
systems (incorporating software synthesis systems).
It describes some of the features of computer music
systems, problems with current user interfaces and a
possible approach to developing solutions.

Introduction:

This PhD research project has been largely motivated by personal experience of computer music systems
and user interface programming. The project seeks to help reduce the divisions that currently exist
between composers according to the technology that they use and to encourage a wider use of Computer
Music Systems (to a level comparable with other uses of computers in music). These aims are to be
achieved by the application of various techniques from the area of Human Computer Interaction,
producing criteria for both evaluating existing systems and designing new prototype interfaces. Such
prototypes need high levels of usability and learnability for composers who are not necessarily expert in
computer technology or sound synthesis. Major research areas the project will involve include
compositional strategies, music representations and notations, and user interface design methodologies
and techniques.

Computer Music Systems (CMSs) have been in existence for nearly 40 years but have been widely
ignored by professional composers/musicians outside the 'avant garde' and outside academic/research
establishments. There are perhaps two main problems associated with computer music systems in the
past. One has been the processing power required to synthesise musical sound. This has meant
extended processing times - preventing CMSs from competing with the immediacy of electronic synthesis
- or prohibitively expensive computers for rapid processing. However, with the advent of RISC based
PC's, the possibility of real time synthesis on affordable computers is not far away (in fact a new "native"
version of the Csound program on Power Macintosh is capable of real time synthesis).

The second problem has been the user interface. CMSs originated on mainframes and in
academic/research establishments. When porting theseto PC's, little use has been made of the WIMP
(Windows, Icons, Menus, Pointers) environment. Even new CMSs designed to work in the WIMP
environment have generally retained either a partial command line language or close links to a
particular programming language (which has helped restrict the use of such systems to composer-
programmers). The setting of control parameters within these systems is not obvious and so use has also
been limited to those with detailed knowledge of synthesis methods and models.

The user interface is the problem area under investigation by this research project in its attempts to
provide criteria for, and prototypes of, highly learnable and usable systems and to assess the application
of existing user interface design methods specifically to computer music systems.
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1. Computer Music Systems:
1.1 Definition:

For this project a computer music system is defined as follows:

"A Computer Music System is a computer hardware/software package for the synthesis and control of
musical sound."”

The important feature of this definition is the synthesis element. There are various music applications
of computer technology that are widely used by a great number of musicians/composers including
sequencing - the control of external hardware synthesisers/ samplers/ effects by computer software
(usually via the MIDI protocol) - and digital audio recording and editing. This definition is comparable
with the common term in computer music of Software Synthesis Systems except we are explicitly
including the hardware in a complete Computer Music System - including any additional hardware such
as processor boards that are often necessary to improve synthesis times. Software synthesis has been
left behind in terms of wide usage in comparison with other music applications of computers (despite its
longer history) and has been slow to catch up. One of the limitations has been that computer synthesis
is very processor intensive and so on small computers prohibitively slow (minutes to hours to synthesise
1 second of sound). However PCs are getting ever faster and now can synthesise at a reasonable speed
(especially when utilising additional hardware components such as 'sound cards') and at real time on
new RISC based machines.

Another limitation of CMSs are the user interfaces that they generally possess, which are often
command language based or have close links with computer languages (that must therefore be learnt in
order to make use of the system) or are just far too complex for non computer/synthesis specialists to use
effectively. One of the reasons for this complexity may be that most computer synthesis programs have
originated on large computers in academic/research establishments with little commercial pressure to
provide user friendly packages. The commercial world has been slow to take up computer synthesis -
due to the processing power required and the complexity of the synthesis models makmg it difficult to
produce user friendly CMSs that synthesise sound speedily.

The advantage of using CMSs is that they are more flexible than hardware systems, and in fact can
potentially emulate any electronic synthesiser or acoustic instrument ever made while extending beyond
their limitations. CMSs can also be readily updated or otherwise modified (e.g. customisable systems)
and easily linked into multi-media set-ups.

1.2 Structure:

The software structure of a computer music system can conceptually be broken down into three main
elements - the User Interface, a Control Mechanism and a Synthesis Engine (see Fig.1.2.1). The
composer interacts with the user interface in order to configure the synthesis engine (which contains the
mathematical algorithms used to generate or synthesise the sound data) and schedule the control
mechanism (which applies time varying performance parameters to the synthesis engine in order to
produce musical sound). This result can be stored in a soundfile which can be output through a Digital-
to-Analogue Converter (DAC) at a later time (or in real time sent directly to the DAC) and on to a sound
output system.

If we compare a computer music system with a more common music situation (a music score, musician
and musical instrument) the Synthesis Engine may correspond to the musical instrument and the
Control Mechanism to the music score. The 'musician’ is then shared between the two in a flexible
manner - sometimes a complex synthesis process has control data built into the SE part with a simple
control parameter schedule, whilst at other times the SE set up is simple with complex control data.
Often the same end result can be achieved either way. This flexible division between the SE and the CM
permits many different approaches to creative composition with computer music systems.




In practice the composer may use several software packages to produce a single composition or
composition segment. For example, a composer may use a MIDI sequencer (or MIDI tool such as
Patchwork or Common Music) to generate MIDI information which is stored in a file. This file is then
read by Csound during a synthesis to create a soundfile. The soundfile can then be edited using a sound

editing tool such as Sound Designer II (Digidesign) and then perhaps processed by a Csound reverb
program or similar,

Fig. 1.2.1. Computer Music System.
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CM = Control Mechanism
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SF = Soundfile
DAC = Digital to Analogue Converter

Note: the synthesis engine can often use soundfiles, or input from
an ADC in real time, as audio sources for processing - not shown
here (for simplicity).

1.3 Synthesis Models:

In order to synthesise 'CD quality' sound on a computer we must specify 44100 16-Bit numbers for each
second of sound produced. In complex timbres it is not clear what numbers we need to specify in order to
achieve the sound we wish to generate. To get round this data production problem we use a synthesis
model to allow us to produce the sounds we require and with less parameter setting. The variety of
synthesis models used in computer music systems can be placed into two main classes, Digital Signal
Processing (DSP) Models and Physical Models.

The DSP model uses mathematical algorithms to simulate electronic devices such as oscillators, filters,
envelopes, spectral analysers, reverberators, delay lines etc. These can be 'connected' together in order to
'build' a synthesis process - a virtual electronic synthesiser. Soundfiles can also be used as source
sounds that are modified by DSP components. When triggered by the control mechanism, the synthesis




engine calculates the resulting signal which is then passed to a soundfile or DAC. Various synthesis
techniques can be simulated including Additive Synthesis, Subtractive Synthesis, Amplitude
Modulation, Frequency Modulation, Wave Shaping, Linear Predictive Coding, Phase Vocoding, Granular
Synthesis etc. Most hardware synthesisers utilise a subset of DSP techniques in a predefined
configuration and it is the most widely used synthesis model in CMSs. A problem with this model is the
user has to be familiar with DSP techniques to create a meaningful synthesis set up and even then it is
not always clear what control values are needed to give the required output.

Physical Models use mathematical techniques to simulate the vibrations produced when exciting
physical objects (instruments) and hence the sound. Some models are developed specific to a particular
musical instrument, while others can simulate component objects and the result when connected
together. For example modal modelling (simulating each mode of vibration with a simple harmonic
oscillator, the relative amplitudes of the different modes controlled by the level of excitation and
connections) to simulate vibrating tubes, bells, strings, membranes etc. These can be assembled together
to produce an instrument using a variety of 'connections', and excited in different ways - 'striking’,
‘plucking’, blowing reed' 'bowing' etc. Thus a virtual acoustic instrument is constructed and 'played’. A
possible advantage of physical models is that most musicians/composers are familiar with the timbres
produced by physical objects and so conceptually it is easier to create synthesis set ups than perhaps
with DSP models (depending on implementation). A problem with physical models is that they are
potentially as difficult to play as 'real’ instruments and so setting of control parameters is again difficult.

A related consideration of physical models is that of the stability of solutions. There is often more than
one solution to the modelling equations for a particular parameter set for some types of physical model.
This can be considered as a positive effect in terms of capturing the richness of a real instrument but on
the other hand can make control of the model for musical purposes difficult. In the "real" situation it is
often the skill of the musician that enables stable or periodic timbres to be produced (and controlled use
of instability). This skill implies a complex knowledge base and inference mechanism, incorporating
aural and tactile feedback from the instrument, that is built up through years of practice. Use of
feedback loops and filters have been proposed as methods for limiting the output of physical models to
single stable solutions'- both periodic and persistent (Rodet,1994).

Systems can be a hybrid of the two model classes allowing physical models to be modified by
reverberators/filters etc. or less obviously using DSP generated sound to excite physical objects.

For both Physical and DSP models, the setting of control values is problematic because their controls are
not music parameters.

In digital signal processing models we are required to set signal parameters such as frequencies (Hz),
amplitudes (dB), filter cutoff frequencies(Hz),attack times(s), multiplication factors etc. which do not
always correlate well with music parameters such as pitch (note values), loudness (ppp-fff), brightness
etc. Most music parameters tend to be more descriptive (qualitative) than absolute (quantitative).

In a physical model we specify values describing the physical parameters of the instrument - string
tensions(N) and densities(kg/m3), tube lengths(m) and diameters(m), membrane tensions etc. and also
the physical properties of excitations such as lip pressures(N/m2), wind speeds(m/s), strike
velocities(m/s) and positions(x,y,z), bow pressures(N/m2) and velocities(m/s) etc.

Mapping from music parameters to physical or signal parameters is not easy and requires expert
knowledge. An interface system that can carry out this mapping (via a knowledge data base, neural net
or other mechanism) can ease the work/knowledge load considerably for the composer/musician.
However, if the system allows the creation of arbitrary instruments, automated mapping of parameters
is difficult. In an idealised system a program could learn' how to play any instrument created (i.e. how
to map music parameters to model parameters - requiring quantification of music parameters), but this
may not be a practical reality. An alternative is to encourage the re-use of predefined mappings for
predefined instruments by non-expert users, while providing experts with facilities to create their own
mappings, or to set synthesis parameters directly, that will give these users access to the details they
require.




1.4 Control Protocols:

MIDI (Musical Instrument Digital Interface) originated in the early nineteen eighties to allow electronic
musical devices to communicate with one another, across manufacturers, in a standardised format. The
development of personal computers lead to MIDI software controllers to manipulate these electronic
devices. The popularity of MIDI has led to its incorporation into CMSs to control synthesis processes.
Problems with MIDI include its limited speed (and bandwidth) and the lack of information about
synthesis that it carries - MIDI effectively only controls performance keys/buttons/sliders remotely.
MIDI controls (noteon, noteoff, volume, pitchbend, controller etc.) can be mapped onto control
parameters of a synthesis engine (e.g. carrier to modulator ratio in FM synthesis) via the Control
Mechanism, but are really not adequate for this purpose (bandwidth is poor and it is difficult to allocate
controls to a single event since many are channel specific). MIDI was not designed to control synthesis
in this way.

ZIPI (Zeta Instrumental Processor Interface) is a potential replacement for MIDI (developed in
collaboration with CNMAT, Berkeley) incorporating far greater control, at greater speed - including
sending real time digital audio signals. Each note has slots for pitch, brightness, loudness, (3D) timbral
space location, (3D) physical space location, noise/pitched ratio, even/odd harmonic balance etc.
compared with a MIDI note that has pitch and velocity (and channel) only.

Currently using MIDI can help make a system widely usable but places severe limitations on the control
available (and is only really suitable for keyboard control of sound) - ZIPI is well suited for use in CMSs
and its Music Parameter Description Language is only one layer - there will be other layers for Virtual
Reality, data dumping, MIDI (preserving some backwards compatibility), mixer automation etc. ZIPI is
not yet fully implemented but is a promising future control system.

Looking at ZIPI note parameters we see that they are close to perceptual parameters (since they are to
be applied to arbitrary synthesis set-ups) and so once again the problem of mapping these to synthesis
parameters is apparent. The designers of the system imply that manufacturers should provide default
mappings while allowing access to user definable maps. This is perhaps what a computer music system
should provide - libraries of suitable maps with user definable mappings available to those who require
them.

1.5. Current Systems: : ,

The current state of computer music systems can be summarised in a brief description of some relevant
existing computer music software for Macintosh computer systems, which are becoming perhaps the
standard PC for computer synthesis of sound (several of these programs are available on other
platforms also). These descriptions highlight some the key problems in CMS user interfaces and some of
the solutions attempted - with various degrees of success.

Csound (etc.)

Csound belongs to a family of software synthesis systems developed from the MusicN series of programs
initiated by Max Matthews at the Bell Labs in America. They are all closely related, versions for the
Macintosh including Barry Vercoe's latest MIT Csound and an experimental version of MusicV with
graphical orchestra interface by Simone Bettini. Csound et al. are the classic DSP model
implementation for CMSs. The user must provide the program with two text files - an Orchestra and a
Score . This corresponds to the SE/CM division in our CMS structure. The user must learn the Csound
orchestra language to set up a synthesis process and then also learn the score language - essentially a
list of events with parameters. The Csound program then compiles these files (reporting errors that the
user must debug) and produces a sound file or real time performance. On a standard Macintosh real
time synthesis is not possible, although a RISC based Macintosh (Power Macintosh) is able to do some
with a version in native code (i.e. optimised for the new processor). Csound incorporates a wide range
DSP elements useful for music purposes.

The Csound interface itself contains various file selectors that allow the user to specify the input text
files, folder or directory selectors to tell Csound where to look for input soundfiles and where to write
output soundfiles and a command line input for Csound instructions such as running a spectral analysis
of a soundfile. User feedback on compiler progress is in the form of reported syntax errors in the source
files, graphic displays of generated waveforms and score events listed as each one is processed.




Fig. 1.5.1 Csound Example -
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(c) Csound Score Code
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(b) Csound Orc code

sr = 44100 ; sample rate
kr = 4410 ; control rate
ksmps = 10 ; sr/kr
nchnls =1 ; audio channels
instr 1
;p4 = amplitude
;p5 = fundamental
k1l = envelope
;al = oscillator

k1l linen p4, 0.5, p3, 0.5
al oscil k1,p5,1
out al

endin

(d) Summary

The graphic representation shows an
envelope generator controlling the
amplitude of an oscillator which is
output as an audio signal. p3 ,p4 and p5
are parameters to be read

from the score.

In the Orc code sample rate etc. are first
initialised. Linen creates the envelope,
amplitude p4, duration p3, attack and
decay both 0.5 seconds and its output k1.
Oscil creates the oscillator, frequency p5,
amplitude k1, signal from f1 and output
al. Out sends al to a soundfile on
compiling. Instrl and endin enclose the
instrument,

In the Score code fl is a function table
created by genl0 at time 0, size 8192.
genlO creates a fundamental and series
of harmonics - here 10 harmonics all the
same amplitude as the fundamental.
This is the waveform to be output by the
oscillator. There then follows an event
list of notes to be performed with various
start times, durations, amplitudes and
frequencies. e ends the score.




The Csound language is not difficult to learn for programmers, but for non-programmers the mere fact
that it uses a text based programming language is problematic (users are forced into a programming
‘way of thinking' which may not correlate with a musical one). Another problem is that it is a low level
language with few high level music structures and no methods for abstraction e.g. there is no 'chord’
structure, only 'events' (notes) in the score. A variety of people are working/ have worked on Graphical
User Interfaces (GUISs) for Csound but none seem to be fully implemented on PCs as yet. There are score
translators for Csound for music scores to be used for control and MIDI implementation has been
incorporated allowing a standard MIDIfile to be used to control elements of synthesis. However these
are only partial solutions and may not be sufficient for specifying detailed Csound synthesis. The source
code is available for Csound allowing modifications (new DSP implementations) and perhaps a new user
interface to be constructed. A simple Csound example is shown in fig. 1.5.1. above.

Simone Bettini's MusicV implementation has a graphical orchestra compiler based on the block diagram
representation used in literature etc. It allows the user to build an orchestra by direct manipulation of
DSP components, graphically connecting them together, and compiling an orchestra file from it. This
orchestra is then fed to the MusicV compiler together with a score (text based) and used to synthesise a
soundfile. Again this is only a partial solution - the score language must still be learnt. Also detailed
knowledge of signal processing is required in order to create a meaningful synthesis. The interface does
not allow illegal connections and warns if connections are missing - thus assisting some of the debugging
problems that can occur - but is not specific about where in the synthesis the fault lies.

New Csound GUTIs are likely to be developed for some time to come and so there may be interesting
developments in this area - especially with the new real time capabilities.

Patchwork™ (Ircam)

Patchwork is essentially tool for creating Lisp programs graphically on the Macintosh, which is provided
with libraries of functions for music applications. The composer can graphically construct patches that
produce musical output, either control output (MIDI, Csound Score) or sound output (Chant fof
synthesis) - usually via algorithmic compositional techniques. Problems with the interface include the
fact that graphical objects are not always obvious in what they do, on line documentation is incomplete,
only Csound scores are produced not orchestras, the composer is forced into an algorithmic style of
composition (i.e. it is not easy to write music scores directly - but that is not what the tool is intended
for).

A major drawback is that Patchwork is Lisp embedded and so the user needs to learn Lisp in order to
make full use of the system - especially debugging since errors are Lisp errors. In fact Patchwork can be
used purely to construct Lisp programs and in this sense contains much excess functionality for
musicians who are not computer programmers.

A key tool in Patchwork is that of abstraction - whereby the user can create a new patchwork object that
contains within it a group of connected patchwork objects. Thus complexity can be hidden and reuse of
others work can be straightforward. This idea is very powerful and can lead to multi-level systems
providing beginners with simple objects and experts with the ability to access details within them (see
fig. 1.5.2. below).

Common Music / Common Lisp Music / Common Music Notation

These are Common Lisp programs dedicated to manipulation of music data designed at CCRMA by
Heinrich Taube. Common Music is again a program for algorithmic composition producing control output
in the form of MIDI, CLM (Common Lisp Music) and Music Kit data. Common Lisp Music allows sound
synthesis (DSP model) to be carried out and Common Music Notation assists score production. All three
use the Lisp environment as their interface although the development of GUI's has been considered.
Being Common Lisp programs means that they can be used across a variety of platforms (Macintosh,
NeXT, Unix), but also require the user to be Lisp knowledgeable.




Fig, 1.5.2. Patchwork Example

Window 'PWex ' shows a single note input to the 'harm’' object which outputs
values producing a chord using the input note as the fundamental with
various added harmonics (rounded to the nearest semitone). The window
'harm' shows the contents of the abstracted object harm - this object can be
used without knowing its detailed contents i.e. complexity can be hidden
from the user.
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Mosaic / Modalys (Ircam) -

Mosaic is a modal modelling system (physical model) currently under development at IRCAM and uses a
Scheme (Lisp dialect) interpreter as its interface. The user can construct virtual instruments and set up
performances but the processing is slow and performance control is difficult - requiring a knowledge base
of performance data to make effective use of it. Instrument construction is at a low level requiring the
user to specify in detail the physical properties of the components (e.g. string tensions, radii and
densities). Mosaic is MIDI compatible and has interesting facilities such as that for 'morphing’
instruments i.e. the physical properties of the instrument (e.g. dimensions) can change during
performance. This system awaits a GUI or other improved interface.

A new Power Macintosh version is available with enhanced processing speed.

Kyma™ (Symbolic Sound Corp.)

Kyma is a graphical object oriented system for music composition that runs on Macintosh computers
using additional hardware in the form of the Capybara processor box (containing up to 9 Motorola
DSP56001 DSP chips) to handle synthesis/signal processing operations. Kyma is based on the
Smalltalk-80 object oriented environment and incorporates many compositional styles into sound objects
which have iconic representations for direct manipulation by the composer. A sound object produces a
stream of sound data when evaluated (played) - irrespective of the synthesis method used to create the
data, allowing for example FM synthesis, additive synthesis, processed sound samples etc. to represented
at the same level (i.e. can be manipulated in similar ways) with icon designs indicating the source for
each. Even scores are sound objects - Kyma is essentially a one level system with a hierarchical
structure within each sound object. Pre-defined sound objects are provided which the user can use in
their own sonic designs. Control of these sound objects can be very complex, both in terms of what is
achieved and how it is achieved.




The system is very powerful and also very complex. The additional hardware allows a significant
amount of real time synthesis to be carried out giving the composer immediate feedback on the work s/he
is doing but the complexity of the system is still a large problem for the inexpert user to overcome.
Abstraction of complex set-ups is available which can help hide some of this complexity, but detailed
knowledge of DSP techniques is a necessity for effective use of the system. Learning of the Smalltalk is
necessary for the more detailed work including music scoring.

Max™ (OPCODE/Ircam)

Max is a graphical programming language for handling data streams - in this case MIDI although with
additional hardware and software objects it can be used for controlling synthesis processes, QuickTime
movies, CD players, video disc players etc.. It is used most often for interactive performances where
complex streams of MIDI data are triggered by various controllers.

Max has been criticised for not being musical (other than handling MIDI data), little symbolic value to
most graphical objects, and "spaghetti like" patches resulting from sophisticated set-ups. Max can
incorporate C language modules for data manipulation, and also supports abstraction similar to that of
patchwork.

There are some experimental programs that allow synthesis objects to run with Max on the Macintosh -

implementing a DSP model (Unison).
A simple Max example is shown in fig. 1.5.3. below.

Fig, 1.5.3. Max Example

receive MIDI note messages The notein object receives
notein o MIDI note data in real time
from a MIDI interface
connected to the computer.
boo | Pa2s | Do | p1 | It splits the notes into their
pitch velocity | chaamel  pomponents - pitch, velocity
radse the pitch by 12 Y and channel which are then
semitones (1 octave) L2 | displayed. 12 is added to the
pitch or note value to
bp1 | D38 | transpose incoming notes by
) one octave. The transposed
inasgosel plok -J;,ﬁ pitch is displayed and used
; in reconstructing an output
traasmit MIDI note messages note with the noteout object.
This is output to the MIDI
interface also in real time.

TurboSynth™ (Digidesign)

TurboSynth is a purely commercial package (the others are mainly research/academic in origin) based on
the DSP model that allows the user to connect graphically a variety of DSP components to set up a
synthesis. This then compiles to a sound file on a SampleCell II card in the Mac and can be played via
MIDI. This is similar to a graphical Csound orchestra compiled with a single score event (one note) and
the sample note played by MIDI. This is less powerful than Csound since in Csound we can vary the
orchestras input parameters continuously - with Turbosynth we would have to repeatedly change the
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‘orc', synthesise and then join the soundfiles together. TurboSynth also has fewer DSP components and
less detailed control over them. The compromise in power does mean that sound generation by
TurboSynth is very fast, and its user interface is far more usable/learnable than Csound. A good point to
note about Turbosynth is the use of meaningful symbols for DSP components and tools. An example
patch is shown in fig. 1.5.4. below.

SeaWave

SeaWave is a computer music system that uses additive synthesis techniques in a manner that attempts
to solve the problems of complex parameter setting. The user interface contains two levels for editing
timbres. One is a high level mode where the user can define the sound using descriptive (perceptual)
parameters, the other low level mode allows more precise setting of partial amplitudes. The high level
mode allows the user to create a new timbre without learning the details of additive synthesis techniques
while the low level mode allows those with a knowledge of additive synthesis to apply that knowledge in
sound creation. This permits both 'experts’ and 'novices' to make use of the same system and should
therefore be of value to a wide range of users. The high level description parameters include terms such
as bowed, plucked, hammered, struck, strummed etc. for the attack part of the sound and terms such as
grating, harsh, hollow, windy, bright, bouncy, dark etc. in different classes of 'presence' to describe the
more general qualities of the sound. Currently this system either generate standard soundfile output
which can be played via various software packages or dumped to a sampler - similar to TurboSynth in
that it produces one sound event from a particular synthesis - or it can produce a Csound function table
that can be used in a Csound score for producing a complete piece (or part of a piece).

Fig. 1.5.4. Turbosynth Example.

Untitled-1 E==—=[01F The turbosynth window

4] shows two waveforms
enveloped and mixed
together before being
passed though a filter.
This signal is then mixed
with a soundfile to produce
a new sound sample. The
left of the window shows a
palette of DSP devices and
tools that can be used in
turbosynth. This synthesis
set up can be created in a
few minutes by a non
expert - a marked gain in
ease of use over Csound
and its relatives, and a
reduction in power of the
system also.

Opening the DSP objects
allows their parameters to
be set - e.g. the waveform to
be generated by an
oscillator object.
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SeaWave is interesting in that it is one of few systems that provide a (pre-defined) mapping of perceptual
or music parameters onto synthesis parameters and it also provides a two level system for sound
synthesis. Limitations are that it does not include a scoring system for producing complete instrument
parts (like TurboSynth) and only employs one synthesis technique (additive synthesis) which is not
necessarily the best technique for a generating a particular desired timbre. However, it represents a
considerable advance in usability over other implementations of software synthesis for both those with
limited knowledge of additive synthesis and those who are more expert, and is an exciting development.

Summary

We have described in brief some of the key CMSs available for PCs, some of which we have here
(Csound, Max, Patchwork, Common Music) others we hope to obtain or at least gain access to in order to
explore them more thoroughly. We have not described here the plethora of sequencing, notating and
audio editing systems available which do not directly support synthesis.

Csound is one of the more complete CMSs, using a DSP model without requiring any additional
hardware. Others such as Max, Patchwork are Common Music are really control mechanisms that can
be used to control synthesis either through additional software or by driving external synthesisers (using
MIDI), but do not fall into the category of simple sequencers due to their more flexible/powerful nature.

Kyma is a very powerful system that can carry out real time synthesis but, it requires additional
(expensive) hardware and has a complex user interface - even though it uses mainly graphics driven
control. Kyma is however far more usable than Csound for non-programmers - the graphics are easier to
deal with than the text language of Csound and much faster processing gives more immediate feedback
on users work (other than the Power Macintosh Csound).

Abstraction as available in Patchwork, Max and Kyma is a powerful tool for hiding low level complexity
and encouraging re-use of others work both of which can help the non-expert user.

TurboSynth is essentially a highly simplified equivalent of Kyma (or Csound with a graphic interface)
that provides facilities for timbre creation but not music scoring. Again knowledge of DSP techniques is
required to create and manipulate sound but the level of knowledge required is less than for the other
systems.

Mosaic is one of the few physical modelling systems currently available and is more of a research tool in
its present state. Its advantage over other physical modelling systems is its flexibility i.e. it is not
limited to modelling one type of acoustic instrument and allows the user to construct arbitrary acoustic
situations from the available components (and indeed new components can be created).: However this
leads to extended processing times on PCs. This will be improved with the native RISC processor
version. Although providing a conceptual framework within which most composers are perhaps more
familiar than with DSP models, the current instrument creation and control systems are at such low
level as to make the system equally difficult to use.

SeaWave demonstrates the feasibility of using maps from descriptive (music) control parameters to
synthesis parameters in order to create desired sounds. The system itself is a research project still
under development and does not provide a scoring system for creating complete pieces of music.
However it allows users with little or no knowledge of DSP techniques to use them in sound synthesis
while allowing users with that knowledge access to DSP parameters.

If we compare DSP model implementations such as Csound to electronic synthesisers over a number of
years, Csound may correspond to an era when electronic synthesisers consisted of individual components
patched together with a mass of cables requiring the user to be more of an electronic engineer than
composer. At the time of the early MusicN languages electronic sound synthesis was done in this way,
but while electronic synthesisers have advanced considerably since then (in terms of ease of use) ,
software synthesis systems have lagged behind.
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2. HCI - TA
2.1 Definition:

The problem domain of the discipline of Human Computer Interaction has been stated as: "the design of
humans and computers interacting to perform work effectively" (Long & Dowell, 1989), and includes
hardware design, training methods etc. as well as software design (including the user interface).

User interface design is the key area for this project, taking methods from HCI that have been applied to
ensure highly usable/learnable interfaces that allow the users to perform their tasks as easily, effectively
and efficiently as possible. The Macintosh computer has a very highly regarded user interface to its
operating system - key points being direct manipulation of graphical objects, use of metaphors and
consistent behaviours within and between applications. Together with its availability (and price range)
and support for other music applications by a variety of companies, the interface makes the Macintosh
one of the most suitable computers for usable computer music systems (although IBM PCs running
WIMP environments are perhaps catching up, and the choice between systems is becoming more to do
with personal preference than strict usability).

2.2 Users:

In order to provide an effective user interface, the designer must take into account the intended users,
their environments, their usage patterns and tasks that they wish to carry out. In computer music
most systems have been designed by academics/ researchers for academics/researchers. The intended
users for computer music systems for this project are composers generally and as preliminary breakdown
they are placed into three classes according to technology they employ in the composition process:
Computer Composer, Electronic Composer and Acoustic Composer. Thus Computer Composer generates
sound during composition on a computer, Electronic Composer on synthesisers/samplers and Acoustic
Composer on acoustic (or electro-acoustic) instruments or does not use sound at all during composition.
Many composers may (correctly) regard themselves as members of more than one group.

The classification does not restrict technology for performance - a composer may use a computer and
synthesisers when composing a piece for philharmonic orchestra and would be regarded here as an
electronic composer. A composer who uses a computer simply as a typewriter for CMN scores (with no
sound feedback) is here an Acoustic composer even if the instruments that are used in performance are
not necessarily acoustic.

There are other classification criteria that may be useful in defining users, such as musical styles, since
these may affect the composition tasks involved. However, stylistic differences are more subtle and need
to be addressed at a later stage of the project (during the task analysis process). Currently the computer
composer classification is closely linked to limited range of compositional styles, but this is changing.
This project hopes to contribute to a widening of the computer composer category to encompass
currently acoustic and electronic composers and also greater range of musical styles.

A projected user analysis, showing some of the relevant knowledge areas that the three composer types
may be expected to possess, is shown in Fig. 2.2.1. below. This is purely speculative at the moment and
will be verified according to information obtained from a range of composers via questionnaires,
interviews etc.

For the moment it is assumed that all intended users will have a working knowledge of the Macintosh
interface and style, since this is necessary to operate the computer itself. This also assumes that the
Mac interface is a good interface for non-computer programmers and for computer music. This
assumption will be maintained unless evidence to the contrary is found (the Macintosh interface has
been widely praised as a simple to use, user friendly system - key points being use of metaphors,
consistency of behaviour within and between applications and direct manipulation of interface objects).

13




Fig. 2.2.1. Composers and Knowledge Domains.

Domain \ Composer Computer Electronic Acoustic
Music Theory J ° o
Prog. Lang. o

Synth. Methods d °

Basic Maths o

Seq. Software/MIDI o o

DSP o

Com. Lang. °

Musical Knowledge ° ° o
Basic Computer Operation o ° °
(Assumed)

A more detailed description of the knowledge domains in the projected user analysis follows:

® Music Theory is the area of traditional music theory - scales, keys, chords etc. and will vary according
to which music traditions are being followed - and also more modern concepts such as atonal algorithmic
composition techniques. Composers are likely to have at least a working knowledge of music theory
relevant to their compositional style(s) independant of the composer types identified (as far as these are
independant of musical style).

* Programming Languages includes languages such as Basic, C++, Lisp, Pascal etc. and the
programming and design skills required to use them effectively. Generally computer composers have
experience of computer programming in one or more languages, and often have written their own
compositional software tools. Computer programming skills would not be expected of electronic or
acoustic composers generally.

* Synthesis Methods is knowledge of parameter setting appropriate to synthesis set ups in order to
create the desired sonic effect, e.g. filter cutoff values, envelope shapes, wave shapes, FM frequency
values etc. Such knowledge is often required of computer composers whose synthesis tools usually
require the user to set almost all the synthesis parameters involved. Electronic composers will generally
have some knowledge in this area since at least some parameters of this type are editable on most
electronic synthesisers. However, over the past 15 years or so there has been a move away from
programming synthesisers to using pre-programmed set ups, or making small changes to these preset
sounds. This has allowed composers with little knowledge of synthesis methods to make use of electronic
synthesisers.

* Basic Maths is relevant knowledge required for a mathematical understanding of synthesis methods,
DSP, algorithmic techniques etc. Generally we would expect a computer composer to have some
mathematical foundation, more so than the other composer categories.

° Sequencing Software/MIDI is the knowledge at the heart of electronic composer's world and is practical

knowledge of MIDI set ups and use of MIDI sequencing packages for control of sound modules, effects
units, mixers etc. Computer composer has usually made some use of software sequencers and MIDI
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since most CMSs support some MIDI control of parameters. Acoustic composer may never have utilised
these tools.

° Digital Signal Processing is a deeper knowledge than that implied by synthesis methods including an
understanding of the underlying models and how a synthesis process can be constructed. This
knowledge is necessary for computer composers since the majority of CMSs are programmable at this
level. Electronic composer need not have this level of understanding due to modern digital synthesisers
providing preset configurations and settings. (In the early days of electronic synthesis users had to
manually patch together DSP components and so would have needed knowledge in this area). Acoustic
composer would not be expected to have knowledge in this domain.

* Command languages include computer music languages such as Csound, MusicN, Cmusic, Common
Music etc. and how to use them effectively. Again this is required of computer composer but not of the
others.

® Musical knowledge is knowledge gained from the experience of writing, listening to and performing
music. As such musical knowledge will vary greatly according to music culture, music style and
experience/ education. All composers will possess this kind of knowledge.

It should be said here that the predicted user analysis is really a snapshot of a dynamic situation -
technology is changing all the time and so is the knowledge required of the user of the technology. Also
music education of composers is changing with increased use of technology in music education providing
greater exposure to electronic and computer technologies.

The predicted user analysis suggests that computer composer has knowledge in all the areas required to
make expert use of current computer music systems (by definition) and so is to some extent well served
by such systems. Such users should be a useful source of information regarding evaluation of current
systems, further requirements of such systems, task analysis of expert use of CMSs and expert
knowledge to be incorporated in Knowledge Based Systems.

Acoustic composer has the least knowledge required to operate computer music systems. We are
interested in acoustic composer as a potential user who is unable to make use of current systems. Task
analysis of acoustic composers during composition should provide a model of task knowledge to be
supported effectively by any software aimed at this user category. '

Electronic composer is the mid range category with some knowledge applicable to current systems, but
not enough to make effective use of them. Task analysis of these composers should again provide a
model to be supported by software aimed at this category of users.

Computer composer may require a user interface that allows access to the details of complex synthesis
processes, while automating some tasks regarded as tedious.

Acoustic composer requires the most immediately usable user interface and probably needs to be
shielded from the complexity of computer based synthesis tasks. A good system will encourage acoustic
composer to delve further into such complexities as sthe becomes more familiar with the environment.
This should allow exploratory behaviour in the use of the system. ' Technophobia' amongst such
composers may be a problem, or lack of interest in / knowledge about what computer music systems can
(potentially) offer.

Electronic composer should be able to apply his/her existing knowledge of synthesis to the system and
like acoustic composer be encouraged (but not forced) to explore further into synthesis process.

At a high level the compositional task knowledge across the three composer types may not be that
different (although all musical task knowledge is likely to be idiosyncratic). It is likely to be more
dependant upon the composers music training or cultural background. Comparison of task models
resulting from composers in different areas might reveal much about where the musical task knowledge
is changed by the task environment, and where support for acoustic/electronic composer is lacking in
current computer music systems. In this project it is hoped to involve composers from all three areas
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(although some will be experts in two or even all three areas) as task performers in a Task Analysis
process, in order to build composition task models across technologies and systems.

How do these ideas about users help us in user interface design? Firstly they make us aware that there
are potential users with considerably different levels of relevant knowledge. If we try to design a system
that serves all of these users well we must involve composers from each group in the design process
(following a user-centred design strategy). We might consider interface designs with a multilevel
approach whereby a top level provides Acoustic Composers with preset values for ready made
instruments using music or perceptual control parameters. The next level would provide access to
reprogram the preset values still utilising ready made instruments and perhaps using MIDI as the
control protocol. This level would be familiar to Electronic Composers. The next level would provide
access to instrument construction for Computer Composers to use their detailed knowledge in creating
the required synthesis configurations and use synthesis control parameters directly. Each level would be
transparent until entered and have its own range of specific tools and editors. In this way novices can
start at a simple level and work downwards as they please to more complex situations. Also reuse of
others work via distribution of patches or instruments can be encouraged. At all levels the system
should be designed to support user tasks effectively and efficiently.

2.3 Task Analysis

Task Analysis (TA) covers a variety of techniques and models aimed at telling us something about how
work is carried out. Early TA methods try to capture the perceptual/motor nature of tasks - the later
methods tend to capture the cognitive nature also. Task Analysis is a process that was originally
developed for improving the training or retraining of employees, but more recently has been applied to
the design and evaluation of interactive computer systems. TA has an important part to play in
requirements capture (ensuring that users' tasks are fully supported), design evaluation (examining
demands made by the system on users), user evaluation (ensuring a variety of representative tasks are
tested), documentation, training and user support (Carey, Stammers,& Astley, 1989). It can also be an
initial step in Knowledge Acquisition for the construction of Knowledge Based Systems.

To our knowledge a formal generalised task analysis of music composition at a high level has not been
done before (see section on Cognitive Musicology for notes on task analysis of music composition that has
been carried out) in spite of its importance in the various stages of software construction. In this work
we will attempt to apply TA methods to music composition to see if a useful task model can be
constructed in this way and utilised in user interface design and evaluation.

Foreseeable difficulties are that of the idiosyncratic nature of music composition that may cause
problems when trying to construct a generalised task model, and also the fact that composition is an ill
structured problem in the sense that a well defined ordering and structuring of the whole task within a
hierarchical structure is unlikely to be possible, although there may be tasks with reasonably well
defined substructures and collections of tasks that have certain relations between them. The task
analysis method used must allow for this kind of 'loose' arrangement of tasks and not try to restrict the
ordering and relations between tasks into a fixed pattern. (We might consider a reasonably well defined
task structure but with the proviso that the task performer can 'jump' from one point to another within
the structure without necessarily completing the current task before the jump). This kind of flexibility
is required for modelling creative design tasks in general, not just music composition.

Various TA methods exist including Hierarchical Task Analysis (Annett et al. 1971), Command
Language Grammar (Moran, 1981), Task Action Grammar (Payne & Green, 1986), Goals,
Operators, Methods and Selection rules (Card et al. 1983), Cognitive Complexity Theory (Kieras
& Polson, 1985), Task Analysis for Knowledge Description (Johnson et al. 1984) and Knowledge
Analysis of Tasks (Johnson & Johnson, 1989). The techniques vary in what stages of software design
they can be applied to (early - late), what they tell us about the tasks and indeed what exactly
constitutes a 'task’.

In order to decide on an appropriate TA method it is important to be clear as to the purpose of the
analysis. This is also important once a TA method has been selected as it can influence the data
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collection methods, grain of analysis required, and the results presentation format. The aims of this
project have been initially defined as:

(a) To determine the user interface requirements for Computer Music Systems in order to
provide criteria for this aspect of software design and to evaluate critically existing computer
music software according to these criteria.

(b) To assess the applicability of task analysis techniques to music composition and to explore
alternative presentations of the tasks and methods associated with computer music to the user.

(c) To develop user interface design solutions improving on current usability/learnability levels,
providing abstraction levels close to the conceptual framework of the musician/composer.

Thus the main purpose of the TA is that of accurate (cognitive) user requirements capture for computer
music system user interfaces which is then to be used to evaluate current software and assist design of
new user interfaces. The project also attempts to measure the success of applying TA to music
composition tasks - to examine whether music composition can successfully be decomposed into a task
structure (containing goals, subgoals, plans, objects etc.) via application of TA techniques.

The TA method chosen should therefore be system independent (as we will be looking at composition
processes carried out across technologies and systems), appropriate to early analysis (i.e. before any
new interface system has been designed), capturing cognitive elements of tasks (music composition
can be a highly internal process with few external/physical signs of how the process is being carried out),
as well as being able to provide criteria for design and evaluation of software systems.

Having examined a variety of TA techniques it is proposed as a starting point to base this work on the
KAT methodology for collecting task knowledge data, analysing the data in terms of TKS elements and
producing a generalised TKS (Johnson, 1992). There are a number of reasons for doing so. Firstly KAT
fulfils the criteria given above. Secondly the complete process of TA is outlined and well documented,
including combining task elements from multiple descriptions of different users to produce generic
descriptions - unlike HTA (Carey, Stammers & Astley, 1989) and methods of mapping a generalised TKS
onto software design, Waddington & Johnson, 1989 (although not yet methods of evaluating existing
designs, although Johnson is working on this). Also there are perhaps some parallels with Laske's model
of musical activity describe later in this report. Further the relations between the elements that make
up a complete task are various and include unordered relations allowing for some of the ill structured
nature of composition mentioned earlier i.e. the task analysis does not necessarily produce a system with
one path to achieving a particular goal and requirements that a task be done at a particular position
within the overall task structure (although this can be fixed if required).

2.4 TKS/KAT:

What follows is a summary of TKS and KAT taken mainly from Johnson, 1992.
Johnson describes a task as:

.... an activity that is undertaken by one or more agents to bring about a change of state in a given
domain.’

He groups tasks in terms of 'roles' and 'jobs' - a job defined by a set of roles a person is expected to adopt,
each role having a set of associated tasks.

' Task knowledge structures represent the knowledge people possess about tasks they have previously

learned and performed in a given domain. Task knowledge is assumed to include knowledge of goals,
procedures, actions, and objects'. As such a TKS is a description of task knowledge assumed to be held
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by users in long term memory which is activated when carrying out the associated task. Johnson's
summary definitions of TKS elements follow:

Goal: a state to be achieved, the purpose for which a task is undertaken.
Subgoal: an intermediate state in the path of achieving a goal.

Plan: the result of problem solving activity which identifies the path to achieving a goal in terms of goals
and subgoals.

Procedure: an executable behaviour consisting of actions and objects achieving a goal or subgoal (i.e.
carrying out a task),

Action: an operation that is performed as part of a procedure.

Object: an entity within the domain (informational, conceptual or physical) possessing a set of defining
properties and associated with actions within procedures.

TKS also identifies representativeness and centrality of TKS elements. Central elements are those
upon which the success or failure of a task critically depends. Representativeness describes the
typicality of an instance of a class - a typical string instrument object might be a violin which is therefore
representative of its class. Representativeness is a matter of degree, not all or nothing. These properties
are important when combining TKS data across task performers.

A complete TKS model has three main components; a goal oriented structure, a procedural
substructure, and a taxonomic substructure. The separate structures represent different aspects of
task knowledge and so contain different classes of TKS elements.

The goal structure contains goals, subgoals and their relations (it therefore implies plans). Relations
between goals/subgoals include hierarchical relations (goal decomposed into subgoals) and control
relations - states for goals to be achieved including sequential, parallel, unordered and optional
relations). The goal structure can be represented graphically via tree structures and transition networks
or textually via a functional language, pseudocode or frames. Goals are described in terms of activities
and objects and their relations. '

The procedural substructure contains procedures in terms of the TKS actions and objects and relations
between them - sequential, parallel, iterative, conditional etc. Each procedure has pre- and post-
conditions determining the context that must exist prior to execution and that which will result from
execution. The procedural substructure can be represented in the form of pseudocode, production system
or frames.

The taxonomic substructure contains detailed information about objects - the class structure, attributes,
etc. Task attributes include centrality, representativeness, and the actions and procedures associated
with the object. Objects can be

represented by frames or through an object oriented language.

Knowledge Analysis of Tasks is a method of task analysis developed from TKS theory and consists of
three parts: data collection, data analysis, task domain modelling. Three criteria for sampling are
emphasised: People & Roles, Organisations, and Technology; the constraints of each should be thought
out before the TA begins in earnest. Our people are composers who may regard composition as having
separate roles within composition - instrument constructor (on computer) or configurator, score
arranger, etc. Organisations are perhaps not relevant here, but technology is - we are trying to involve
various technologies in the work.

Four KAT guidelines are suggested: Identify the purpose of the analysis, check the analysis with

task performers, analyse more than one task and performer, use more than one knowledge
gathering technique.
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Johnson lists several knowledge gathering techniques he deems suitable for identifying the various TKS
elements; the most common ones are summarised below (knowledge gathering is reviewed later as a
separate issue):

Objects and Actions: textbooks, manuals and other documentation.
structured interviews
questionnaires
direct observation
concurrent or retrospective protocols

Procedures: direct observation
concurrent protocols

Goals and Subgoals: structured interview
retrospective protocols
direct observation
questionnaires
constructing tree diagrams

As data is gathered and analysed, the TKS elements are built up and validated by returning to task
performers and obtaining further information from them in an iterative manner. A second stage of
analysis is to combine information across task performers to produce a list of generalised TKS elements.
This involves determining the centrality and representativeness of the TKS elements. Methods for doing
so are suggested including; frequency counting (using thresholds for generic elements), rating scales,
card sorting, recall of task components, grouping of 'alike’ elements and labelling the groups. Validation
of generic elements with task performers is again necessary.

Finally the results of the KAT process are combined to produce a generalised TKS model (Generalised
Task Model, GTM) containing the goal, procedural and taxonomic substructures described above. This
model can then be transformed in different ways to produce a model of the user interface (still device
independent) Specific Task Model and further to a device Specific Interface Model, details in Johnson,
1992,

2.5 Knowledge Elicitation:

Having selected the TA methodology perhaps most suited to this work, the problem remains of how to
elicit the musical task knowledge required in order to construct the task model. Johnson suggests some
knowledge elicitation techniques to be employed in the TA process and Cordingley (Cordingley, 1989)
describes several of these techniques in more detail (as well as others). Each method has its own merits
and problems when attempting to elicit what is usually tacit knowledge from task performers - "...the

~ kind of musical knowledge that, if implemented, would improve computer music tools is often not public
- or even shared among experts, but personal, idiosyncratic knowledge .... the elicitation of personal
knowledge, and of action knowledge, still awaits a methodology, and easy to use, interactive support
tools." (Laske, 1992).

Cordingley, 1989, gives a working definition of Knowledge Elicitation (KEL) as follows:

Knowledge elicitation is those activities undertaken by a person , the knowledge elicitor, to

- obtain material from any relevant source

- analyse and interpret that material

- put in a pre-encoded form which while useful to those who will encode the knowledge in the KBS
(knowledge based system) language, also allows it to be scrutinised by all parties interested in
KBS development.

For 'KBS language' we can perhaps substitute "Task Model' and for 'KBS development' , 'task analysis

process', since, "It is surely clear that the problems confronting those using task analysis in HCI are
identical to those confronting the knowledge engineer in knowledge elicitation..." (Diaper, 1989).
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Since the knowledge we seek is 'personal’ and 'idiosyncratic' it is clear that the knowledge sources
needed will to a large extent be human task performers.

Cordingley (Cordingley, 1989) provides a review of common knowledge elicitation techniques and advice
on selecting the techniques for particular elicitation tasks. Some relevant methods are described briefly
below together with problems we might expect to come across with each technique.

An initial approach to KEL is often the use of questionnaires. These allow a large group of human
knowledge sources to be approached - larger than if the elicitor were to interview them individually - and
can provide a first contact with knowledge elicitors. Looking at questionnaire results the elicitor can
then select appropriate sources to go to for further elicitation. Problems with questionnaires are that the
elicitor and provider cannot clarify each others questions and answers respectively, the amount of
information on a questionnaire has to be limited in order that the time taken to complete it is not
excessive, the size of spaces left for answers will affect the detail supplied and so on (i.e. care must be
taken). Also the inflexibility of the questionnaire format is again limiting - in an interview the elicitor
can take up points made, investigate new avenues, adjust to the elicitors personality etc. which is not
possible with a questionnaire. As such the questionnaire is suited to broad surveys of information
lacking in real depth but a useful starting point.

Questionnaires can then be followed up with interviews, perhaps picking up directly on points arising
from information given in questionnaires. Interviews can be recorded in a variety of ways (note taking,
video, audio etc.) and can be structured/unstructured and focused/unfocused (Cordingley, 1989).
Structure refers the fixed/planned nature of questions asked, focus refers to scope of the subject matter
covered. Interviews can require a large amount of preparation including decisions about where to hold
it, what question types to ask (La France's six question types, Cordingley, 1989), the amount of structure
and focus, suitable recording method etc. There is also the problem of how to (and time taken to) analyse
the recorded information in what ever form it has been recorded in. For task analysis it is usually
desirable (although not always possible) to interview knowledge providers in their usual task
environment which can help recall of task processes, providers can perhaps give examples of tools or
techniques they use, and the elicitor can note details of the arrangement of the physical task
environment. A key problem with interviewing techniques is that the knowledge elicited is only
knowledge that the source is able to verbalise - often difficult for experts who tend to forget verbalised
approaches and 'just do it', i.e. have highly compiled task knowledge.

Another common elicitation technique is that of protocols - either concurrent, requiring the knowledge
provider to give a verbal explanation of what they are doing during task performance, or retrospective,
where immediately after task completion the performer perhaps provides a commentary to a video
recording of their task performance. Other variations on this theme are possible such as interrupted
protocols where the user is interrupted every time period and asked what they are doing. A key problem
with concurrent protocols is that of interference - the fact that having to give a concurrent verbal report

* interferes with task performance quite drastically. Erricson and Simon, 1986 looked at this problem of

interference and found that creative/artistic tasks (e.g. music composition) are possibly the most affected
by interference. Retrospective protocols need to be carried out as soon as possible after task completion
and need some record of the task performance to reduce post hoc rationalisation and hiding of errors
made etc. and also to assist accurate recall of the task performance.

Task observation is a another technique where the knowledge elicitor simply observes task performance
(or perhaps videos performance and studies the video) and notes exactly what the task performer is
doing - perhaps in terms of the order of operations, where mistakes are made and how frequently,
recurring operations etc. While this may get at information on low level goals/procedures it may not
reveal much of the high level strategies or plans involved since we do not know how the individual
operations fit into any particular pattern. However used in conjunction with retrospective protocols it
can fill out the low level detail and help verify orders of events and where mistakes occurred etc.

Other techniques include Kelly's Personal Constructs, sorting, teachback, laddering, role play,
simulations etc. suited to differing stages of analysis (see section on KAT above).
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2.6 Task Observation/Recording:

Task observation is important in TA/KEL and is used in a variety of ways - for generating protocols, to
be analysed as a KEL technique in its own right or simply as a record of what happened during task
performance. Protocols made during task performance tend to interfere greatly with performance and
retrospective protocols without a record of performance are difficult as the performer cannot remember
all the detail of what occurred (and may not admit to mistakes). Computer capture of task performance
is possible with computer based tasks. For other types of task video recordings can be used and played
back to performers to assist recall. We have been examining ways of recording users interactions with
computers on the Macintosh - without building purpose built music software with in built capture tools.
The main reason for this is that computer based tasks can help project the internal workings of music
composition (strategies/techniques) onto an external system assisting observation and analysis, without
limiting us to one type of composer, since the three composer classes identified can all use computers in
composition although in different ways - simple score writing, MIDI sequencing or computer synthesis or
some combination.

AppleScript (AS) is a high level language for the Macintosh for programming macros that can be run or
stored as mini applications. Using this language a small application can be created that runs in the
background and automatically saves documents that are open in a given application every definable time
period. This is similar to the autobackup facility provided by some applications, except that this
application saves each time to a new file. This means that we have a record of the state of the 'artefact'
(music score, sound files being edited etc.) at different stages throughout the task. This can then be
presented sequentially to the user in a retrospective protocol. The problem with AS is that only certain
applications respond to the necessary AS commands (AS uses AppleEvents, only a certain small set of
which all Macintosh applications have to respond to). Also each application to be used must be
incorporated into the applescript program before running - i.e. the program must know which software
packages to backup from. Unfortunately we have not found any music software packages that are fully
'scriptable’ and so work with this application. A Csound task could perhaps be recorded in this way since
there is a scriptable text editor provided with AS.

QuicKeys is another macro provider in the form of a control panel and inits. One possible use of
QuicKeys is its real time recording facility that allows the elicitor to record the user inputs (keyboard
and mouse) to the machine and play them back later. At face value this is ideal as the session is
recorded as it happens on the machine and requires no intrusive equipment (video camera etc.) but there
are problems. One is that the playback will only work on the same machine it was recorded on and in
the same state as it was before recording began i.e. if extra files are present files can be in different
places in selections and so different files are selected leading to different results. If windows re-open in
their last open position and were moved during task performance then mouse button presses are made in
the wrong places. Another problem is that QuicKeys does not record MIDI input via Apple Midi Driver
and so composers using a MIDI controller to input data will not record this into the QuicKeys protocol.

~ Also the variability in saving/loading/deleting times on the Macintosh sometimes leads to replay errors
* for fast users. Also there is no editing facility to remove dead time for example, or variable speed

playback. These problems make QuicKeys in this mode unsuitable for this work at the moment although
other task observation work may find this useful.

A second use of QuicKeys is to create a macro that triggers the Apple screen 'snapshot’' function which
captures the screen to a picture file which can be viewed later using a variety of applications. This can
be set to fire every definable time period say 5 minutes and a record built up of what the user had on the
screen at various times. This is more hit and miss than the real time recording but has fewer practical
problems of carrying it out. These snapshots can be printed out or shown on a second computer and used
in aiding memory in retrospective protocols etc. This can be done on any Mac with QuicKeys installed
and shown on almost any Mac. For showing a Mac with a larger screen may be necessary to see the
complete screen clearly. The question still to be answered is, does the capture of the screen assist a
retrospective protocol effectively?

Another possibility is to record screen output directly onto video tape. This can be done with some
Macintosh computers directly AV machines, or via a third party video card or external hardware such as
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a Video Logic's Mediator. This requires taking a video recorder into the composing environment which
may or may not be possible/desirable, and the quality of video obtained is variable depending on the
hardware involved (and at best is usually poor).

All these methods will only capture use of the computer and not use of external hardware (e.g. MIDI
synthesisers) and some will not capture aural feedback used in composition. Therefore it will be
necessary to set up a video camera to capture the behaviour of the task performer and use computer
capture to get at the details of what is happening (it is very difficult to set up a camera that can see what
is happening on the computer and capture use of other equipment at the same time). It would be
problematic to use videos of both the screen output and the task performer at the same time in a
retrospective protocol, however the video of screen output may be studied at a later date to help add
detail to the retrospective protocol analysis and verify what actually happened during the task
performance.

A further remark to make with regard to the computer capture of task performances is the problem of
keyboard shortcuts. These are key presses that invoke commands from menus. With a purely visual
capture method it is not always possible to know which command has been keyed since the only indicator
may be the menu title flashing. These shortcuts are important to expert users of a system since they
considerably reduce the time it takes to invoke a command. Therefore when using a visual capture
method (such as video output of the screen information) it may be necessary to request that the task
performer refrains from using shortcuts and uses the mouse to select menu commands as much as
possible.

3. Cognitive Musicology:
3.1 Definition:

'Cognitive Musicology has as its goal the modelling of musical knowledge in its many forms.' (Laske
1992) - i.e. Listening, Composing and Performance. The relevant area of CMgy for this project is
therefore its compositional aspect. CMgy has been driven chiefly by those in the field of Artificial
Intelligence (AI) and Music attempting to create a computer system that is either a composer, listener
and performer (or combination). At first glance CMgy appears to be exactly the area this project is
currently concerned with (i.e. modelling of compositional tasks) but work in the field has had a different

“approach to analysis of compositional task knowledge than the type of task analysis generally used for

user interface design.

3.2 Laske Model:

Otto Laske (perhaps the key person involved in defining CMgy) describes musical activity in terms of
five levels (Fig. 3.2.1. , Laske, 1992) : the highest, an Action Level, that designs a Planning Level,
that controls a Task Level, that applies the contents of a Domain Level, to a Task Environment
Level. The TEL contains physical tools, historical conventions, cultural influence etc. and as such
includes the computer music system (and its user interface). The DL contains domain specific
knowledge (competence, declarative knowledge) that is supported by the TEL and used by strategies in
the TL to select the TEL. The use of task structure knowledge contained in the TL (performance,
procedural knowledge) is controlled by the PL containing knowledge of goal synthesis, task sequencing
(performance, procedural). The AL describes the whole musical activity and is a meta-level for the
subordinate levels.

In keeping with Laske's model, this project is attempting to improve one aspect of the TEL (the

computer-composer interface), perhaps via reducing the burden of DL and TL knowledge introduced
when using a computer music system, by eliciting and analysing knowledge from the PL and TL (both
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forms of task knowledge) of composers from a variety of music backgrounds. By looking at task
knowledge composers already possess, and task knowledge required for using current systems it is
hoped to reduce any inconsistencies that may be forthcoming via designing a more appropriate user
interface.

We can make a comparison between Laske's levels and Johnson's TKS substructures (see Fig.3.2.2) :
Planning Level with Goal Substructure, Task Level with Procedural Substructure, Domain and Task
Environment levels with Taxonomic Substructure (although Actions are perhaps part of the Task Level,
Objects part of the Domain and Task Environment Levels). There is not a direct correspondence
between the models (e.g. Laske's Task Environment level implies a much larger domain than Johnson's

Taxonomic substructure, Johnson does not explicitly separate declarative and procedural knowledge) but
there are relevant similarities.

Fig.3.2.1. Musical Activity Fig.3.2.2. TKS Hierarchy
(from Laske, 1992)

ACTION LEVEL TKS.
designs ¢ ¢
PLANNING LEVEL
GOAL STRUCTURE
controls ¢
TASK LEVEL ¢
applies * PROCEDURAL
DOMAIN LEVEL STRUCTURE
supports ? * selects ¢
TASK
ENVIRONMENT TAXONOMY
LEVEL

3.3 Cognitive Musicology and Composition:

Recent CMgy work related to composition has involved attempting to build models of music composition
into Knowledge Based Systems in order to measure the effectiveness of the model i.e. by building a
system and seeing whether it can produce the desired musical results. The concern of this project is to
develop a model of the strategic paths taken by the composer in creating a composition and the tools
required to achieve the composition goal - what s/he does. Cognitive musicology generally examines why
or how particular music composition task decisions are taken and reducing composition to a set of rules
and inferences (a knowledge base and inference mechanism). Some work in this area may have
relevance in its attempts to capture musical task knowledge, even if the type of knowledge elicited is
slightly different and the use to which the information is put is also different.

Laske ( Laske, 1977) is one of the few researchers in the field to have looked at task analysis of musical
processes - listening, composing and performance. In defining the area of cognitive musicology or
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- find composers willing to partake in elicitation experiments etc.
- We are carrying out some pilots studies with short composition tasks and different capturing methods

psychomusicology he has often been concerned with the complex memory systems involved and
producing sufficiency analyses of tasks i.e. writing a conceptual hypothesis of the task in the form of a
computer program which, if capable of solving the music composition problem, is said to be a sufficiency
analysis. This analysis is not necessarily psychologically valid and would need to be tested - the program
may achieve the task goal in a wholly different manner to the human task performer.

This project is more concerned with what Laske refers to as empirical task analysis rather than
conceptual task analysis with which much of his work deals. A detailed account of the contents of any
'knowledge base' utilised in various composition tasks and how this interacts with other 'memory
systems' is not the information required at this stage of the user interface design process, and it would be
beyond the brief of this project to attempt the elicitation of all such information. Laske has limited
himself to examining specific (given) tasks working within specific task environments and attempted to
look at the cognitive processes involved in great detail. Rather for the purposes of this project, at this
stage, it is more useful to look (initially) at a wide range of composition tasks and environments (time
permitting) and identify any generic groups of tasks and task (TKS) elements that can be usefully
brought to bear on user interface design and evaluation. Focus of the analysis may later be concentrated
in some specific problem areas but this will need to be directed via the initial results of a more wide
ranging preliminary investigation.

Laske's work has concentrated on eliciting non-verbal musical knowledge via two main computer
systems - OBSERVER and PRECOMP (Laske, 1992) - setting specific music tasks such as creating a
short melody line or CMN score production, and generating protocols recording the (musical) actions of
the composer. These protocols are then analysed by the computer to elicit the required information.
This information is then intended to be used to attempt to produce an automated composition system -
this was not completed for Observer - and to build a knowledge model of music composition. This is very
fine grained work on small tasks with specific systems. Laske has used purpose built command line
driven software that incorporates the sound synthesis tools, protocol generator, protocol analysis and
automated composition processes. Some kind of model is already built into the system in that the
composer can only carry out the task in a way defined by the music task environment. For our work we
would like to examine a variety of task environments and compositional styles and look at the more high
level planning and operational aspects of music composition. '

4. Current Situation:
4.1 Position now:

A questionnaire has been designed and will be sent out to as many composers across the board as is
feasible, to gain a broad picture of compositional environments, methods, and problem areas and also

etc.
We are also exploring some of the latest CMSs and computer music techniques/models and interfaces.

4.2 Future work:

Future work to be carried out includes:

Analysis of questionnaires to provide more detailed information on prospective users and their task
environments,

Longer elicitation studies using methods found to be successful in the pilot studies and adapting to other
situations etc.
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Designing other knowledge elicitation experiments (such as giving a new system to user with minimal
information and monitoring their queries of how to do various processes - and providing answers) and
elicitations not using computer systems.

Evaluations of some current systems according the task models constructed.

The area of music representations and notations is still to be explored (it is difficult to notate some
computer music processes with CMN) - how musical objects are presented to the user and how they can
be manipulated, what use can be made of graphical scoring techniques etc.

Looking at knowledge based systems - for perhaps building 'intelligent' instruments that incorporate a
partial 'performer’ into the device such that the composer can set music parameters rather than
mathematical/physical ones, or whether pre-defined mappings are sufficient (which can be edited to suit
the users needs).

Prototyping designs based on the Task models developed and experimenting with
representations/notations etc.

User evaluations of results.
Ete.

4.3 Summary:

The problems of user interface design are complicated in this case by the idiosyncratic and ill-structured
problem nature of music composition, together with the wide range of sound synthesis methods and
music styles possible with computer music systems. It is hoped that the application of task analysis
methods can produce, if not a single generic task model then a group of tasks models, that can be used to
specify the probable user demands on a computer music system. These results can then be used to
construct a user interface structure optimised for music composition of various styles and methods
without requiring expert knowledge of computer languages or synthesis models. These results can also
be used in evaluating the current state of computer music systems - highlighting both good and bad
features of these systems. Investigations into music representations and notations should then be
carried out in order to flesh out the interface design into an effective working program that is then
evaluated by users and modified accordingly.

It is not possible to design a system interface that will satisfy all users all of the time, but attempting to
produce one that caters for the majority of user tasks in a manner that fits common working practices it
is hoped that high levels of both learnability and usability can be achieved resulting in a wider use of

. computer music systems.
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Acronyms:

Artificial Intelligence

Amplitude Modulation

AppleScript

Centre for Computer Research in Music and Acoustics
Common Lisp Music

Common Music

Cognitive Musicology

Common Music Notation

Computer Music System

Center for New Music and Ausio Technologies
Digital-to-Analogue Converter

Digital Signal Processing

Frequency Modulation

Fonctions d'ondes Formantiques
Generalised Task Model

Human Computer Interaction
Hierarchical Task analysis

Institut de Recherche et Coordination Acoustique/Musique
Knowledge Analysis of Tasks
Knowledge Based System

Knowledge Elicitation

Musical Instrument Digital Interface
Massachusetts Institute of Technology
Personal Computer

Planning Level

Reduced Instruction Set Computer
Task Analysis

Task Environment Level

Task Knowledge Structure

Task Level

Zeta Instrumental Processor Interface
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