DIVISION OF COMPUTER SCIENCE

Smoothing the transition from Formal Specification to Object-
Oriented Implementation

(Introducing ImpSpec - A framework for modifying standard specifications to
incorporate object-oriented design techniques)

"U
Z

. N. Taylor
. Smith

=
=

Technical Report No 213

January 1995

5« Smoothing the transition from Formal Specification to

|
|

Object-Oriented Implementation

(Introducing ImpSpec - A framework for modifying standard
specifications to incorporate object-oriented design techniques)

P.N. Taylor and D.E. Smith
Division of Computer Science, University of Hertfordshire,
College Lane, Hatfield, Herts. AL10 9AB. U.K
email: comrpnt@hertfordshire.ac.uk

January 1995

Abstract

The advances in object-oriented design and programming languages
have left many formal specification languages behind in terms of the
facilities offered to the specifier. The very languages that were developed to
formalise the design of systems, prior to implementation, no longer support
the design techniques or programming languages that are now being used
for that implementation.

In this paper we introduce ImpSpec, a series of refinements for the
modification of existing specifications to produce comparable object-
oriented specifications. Qur discussions concentrate on the formal

description technique LOTOS [5] and use object-oriented extensions to the

language put forward by [3] and [9]. From a standard specification written
in LOTOS we perform a series of design steps to transform the original
specification into an object-oriented equivalent specification. We seek to
justify the behaviour of the object-oriented specification against the original
specification. We also consider the issues surrounding inheritance and the
encapsulation of both data and communications. Using the ImpSpec
framework we are able to produce an abstract model that is closer to the
structure of an object-oriented programming language implementation,-such
as C++ [10] or Modula-3 [4].

We argue that it is possible to enhance non-object-oriented

specifications to incorporate object-oriented design techniques, thus making

the specifications more flexible and open to change.

1 Introduction

In the early 1980’s the International Organisation for Standardization (ISO) decided to
develop a formal description technique to help with the mathematical modelling of computer
networks and open distributed systems [1,2,5,7]. The ideas behind object-oriented design and
the programming languages to support such techniques post-date the initial development of
LOTOS and many other concurrent formal description languages.

The way in which we design and specify systems has progressed, therefore the
languages designed to support such design activities must also progress. In this paper we
introduce a framework for modifying existing non-object-oriented LOTOS specifications to
incorporate the ideas associated with object-oriented design. Our goal is to produce a formal
specification that, using ideas put forward by [3] and [9], will be in a form that closely
resembles implementations in current object-oriented programming languages, such as C++
[10] and Modula-3 [4].

We feel that, at present, specifications written without object-oriented features require
many assumptions to be made so that they can form the basis of an object-oriented design and
implementation. These assumptions can lead to problems concerning the verification of the
subsequent implementation against its specification. Consequently, if we write a specification
that models techniques available in implementation languages then our resulting implementation
will more accurately model the specifications.

In this paper we modify a LOTOS specification of a simple case study system using a
series of steps, known as the ImpSpec framework. The resulting specification will contain many
of the features that are common to object-oriented design. We do not consider, in detail, the
actual implementation of the final object-oriented specification as this is beyond the scope of
this paper.

Primarily, we concentrate on the abstract model of the system, leaving aside
implementation specific details. Although we do make certain assumptions concerning the use
of data and class-method encapsulation we do not explicitly state that some implementation
language specific constructs should be used. Our objectives are to introduce the reader to a
series of explicitly defined steps whereby the final product is proved to be a valid

implementation of the object-oriented LOTOS specification.

2 The I'mpSpec framework (Implementation of the Specification)

We introduce the ImpSpec framework as a way of ensuring that an implementation
conforms to its specification. The standardised formal language used throughout this paper is

S92

that of LOTOS (DIS8807) which does not have an object-oriented extension, although
modifications to the language have been proposed [3,9]. We do not want to concern ourselves
with whether we could change the standard syntax but whether we should change it! A
discussion of the necessary modification to LOTOS to support object-oriented design can be
found in [9].

We have already identified that current formal languages are slow to react to the features
offered by object-oriented techniques and are not providing the facilities to model formally the
systems that we wish to implement using these new techniques. We hope that the ImpSpec
framework will help to redress the imbalance between both object-oriented formal specification,

design and implementation.

Formal
Specification

Design Implementation

Figure 2.1

In figure 2.1 the imbalance between formal specification, design and implementation is
shown as the shaded area surrounding the specification, which represents the requirements of
the design and implementation that are not supplied by the specification.

We seek to reduce the number of assumptions made between specification, design and
implementation by providing a refinement framework for modifying the original specification

which contains no object-oriented features, as shown in the following diagram:

ImpSpec-0 ImpSpec-1 lmpSpec-2 ImpSpec-3 ImpSpec-4
...................... o JUSEY | “w“dﬁ
L \ design {
Or ‘8‘.”‘”1) m—" Inherilance Iimplementation
\ Speq/zfalton/ iysues N N J

¥4
@ Reuse and N

/CT/ax.\- Models A A
and Class Links f design

design

Modularisation
JUSLfy IN_issues / \

K

Communications
issues

Justify

Justify

Figure 2.2

The paper concentrates on stages 1, 2 and 3, encapsulated by the bold line in figure 2.2.

Each stage of ImpSpec is detailed below:

ImpSpec-0: The original formal specilication ol a system, prior Lo modifications.

ImpSpec-1: A first step to identify arcas of possible reuse and modularisation within
the original specification

ImpSpec-2: The introduction of object-oriented constructs into the post-ImpSpec-1
specification. Issues concerning the inheritance of data and methods,
together with information hiding and data/method access restriction are dealt
with during this stage,

ImpSpec-3: The combination of the data and communications design defined in
ImpSpec-2, into sub-systems to form the complele system. Access
restrictions {or cach sub-system are defined at this stage,

ImpSpec-4: The actual implementation of the object-oriented specification from

ImpSpec-3. Considered to be outside the scope of this paper. The ImpSpec
framework is primarily concerned with stages 1-3.

We refer to the original specification as falling within the bounds of ImpSpec-0 (prior to
entering our refinement framework in steps 1 to 3).

The first step towards a full object-oriented specification is to identify areas of the
original specification that offer behavioural reuse. The identification of reuse enhances the
flexibility of the specification.

We incorporate the work carried out in [3] and [9] to map the specification onto a more
recognised object-oriented structure; this mapping is done as part of ImpSpec-2. Two sections
exist as part of ImpSpec-2; inheritance issues concerning commonly accessed data and
functions and communications issues concerned with supplying controlled access to those data
and functions.

The final refinement stage, /mpSpec-3, brings together the inherited child-processes and

the hidden communications. At the end of this stage we consider the specification to be in its
final object-oriented form. Each child-process can be linked together to form a larger sub-
system which can eventually become the complete system. Our aim is to provide a specification
that is layered so that sub-systems are completely contained within the system, therefore hiding
internal communications from the rest of the system and the environment.
Using notions of equivalence we construct formal proofs to show that the object-oriented
version of the specification is a valid implementation of its immediate predecessor.
Consequently, the final specification can be shown to be transitively linked to the original
specification in ImpSpec-0. Refer to the “logical justification link” in figure 2.2.

For the purposes of this paper we assume that the standard LOTOS specification for the
GHCS case study system already exists (appendix A). The result of applying ImpSpec-1 to
appendix A can be seen in appendix B and the final object-oriented specification of the GHCS

(by applying ImpSpec-2) can be seen in appendix C.

3 Informal Specification of the Case Study System

Our case study system contains six processes (some of which exhibit common
behaviour) all executing in parallel. Each process can be informally specified as follows:

Sprayer (Sp): It can accepl on or off communications from either the environment or
the Hy process. The process Sp will timeout and reset to off alter some
nondeterministic period of time if it remains on for oo fong.

Hygrometer (Hy): The Hy process accepts communications from the environment. It
then cvaluates the value of those communications to determine what actions it
should take in terms of telling the Sp and WC processes 1o perform some action,
Process Iy controls the behaviour of Sp and WC, internal ta the system. A minimum
and maximum range are associated with //y and these valucs are used to determine

the behaviour of Hy.,

Window Controller (WC): The WC process accepts communications [rom cither Hy
or He and also the environment, These communications tell WC whether or not 1o
perform an open action or a close action, A minimum and maximum range is also
associated with WC. If an attempt is made to set WC beyond these bounds then a

communication to A/ (the Alarm) is made, warning the environment of a problem.

Thermometer (T'hy. Process Th accepls communications [rom the environment (the
temperature reading). Similar in operation to [y, the reading is used o determine
what actions the WC and He processes should take, A minimum and maximum value

is used to determine the behaviour of the Th process.

Heater (He): Communications destined for fle originate from the Th process. Like
process WC it also has a preset range which it cannot be sct beyond. Atlempts (o
adjust He beyond its presel Hmits will result in a signal being sent to A/, warning the

environment of a problem,

Alarm (Al): The Al process accepts communications from the WC and //e processcs.
Upon receipt of a communication the alarm will be set to on. The environmenl can
resel Al Lo off or, like process Sp, it will eventually timeout and wrn off. However,
unlike Sp, the Al process cannot be activated from the environment, only via some

internal communication.

The communication between the six processes can be seen in the following diagram:

_é

Figure 3.1

Figure 3.1 omits the exact details of the communications in the GHCS as it only shows

how the components connect to each other and the environment. It does not show the nature of

those connections. Internal communications are shown inside the shaded area and cannot be

influenced by the external environment.

4 ImpSpec-1: Reuse and Modularity within the Specification

In the GHCS we can identify processes which contain duplicate behaviour,

Consequently, generic processes can be derived to substitute those duplicate processes by

performing the following steps:

and

i) identify the common behaviour between two processes. (oA M o.B), where o.X is the set of

actions of X).
i) extract the common behaviour, assigning it to a generic process. (0..C = o.A N o.B).

ii1) use process and action renaming (o construct the specific processes required to build the

system. (D %l Cfx/y|, where X/y is action renaming on the actions of C).

Now, using generic process substitution, we can supply all of the behaviour necessary

for the GHCS using just three processes. The following equivalences are described using the

language of CCS [&] using a similar convention introduced in [1].

Sp def SPAL[onlsetSprayOn.offisciSprayOff setOnlSetSprayOn,setOffiSetSprayOff]

Al def SPAL[onlsciAlOn. setOffiSetALO[f]\ {off.setOn}

Hydef HYTH[SetMintSetMintlumid SeiMaxiSeiMaxt Tumid Readl nput/Readl umidity,
- ontselSprayOn,offisetSprayOff,open,close]

Thdef INYTH[SetMin/SeiMinTemp SeiMaxiSeiMaxTemp,Readl nput/ReadTemp,onlinc,

offidec,open,close]
He def HEWI[SetLeveliSetlleatLevel openline,closeldec,on]
WC def HEWI[SeiLevellSetWindow.open.close,onf

-6 -

Although action renaming is not part of standard LOTOS we can use it as a meta-
language for talking about LOTOS. The syntax of renaming, as described in [1], can be
formally defined as follows:

B—g =B ¢={g1lg; ..8n'8 1 and glg” € ¢
implies
Bd—g — B’

B—pt =B and it & {g;...8,, "}
implies
Bo—u* —B¢

Figure 4.1

Process B performs the action g “and evolves to B . Action gn can therefore be renamed to gn”,
With the aid of action renaming we can amend the Sp process definition to read:

Sp def SPAL[onlsetSprayOn,offisciSprayOff.setOniSetSprayOn,setOffiSetSprayOff]
becomes

SplsetSprayOn setSprayOff.SeiSpravOn SetSprayOff}
after gate renaming,

Each of the original six GHCS processes uses gate renaming as a way of specialising
those actions offered by the three generic processes. Process Al requires further action because it
does not use all of the features offered by the generic SPAL process. We remove the actions in
Al that are no longer required using a CCS-style action restriction [8] (shown below as

underlined):
Al def SPAL[onlscitAlOn setOfftSetAIOfF] X {off setQn]}

So far we have identified three separate types of process behaviour, represented by
SPAL, HYTH and HEWI. These are our candidates for generic processes (albeit with some
amount of redundancy in the case of A/). The use of gate renaming allows us to specialise each
process. For example, Sp and Al are specialisations of the generic process SPAL.

The use of generic processes enables us to simplify the specification. However, we still
need to show that the behaviour of the generic three process specification conforms to the
specific six process specification. We conduct a series of formal proofs upon each generic
process to show that it offers the same behaviour as the two processes it replaces. The
mechanics of the proof itself is beyond the scope of this paper and is the subject of our current

work.

S5 ImpSpec-2:

TmpSpee-2.1 yperitance and Data Encapsulation

An object-oriented approach to design and implementation enable us to enforce the
encapsulation of class data and functions. Access to the class can be restricted by such
constructs as C++ private inheritance and explicitly defined friendship between classes. Ideally,
we consider private data to be the preferred form of data in a system. Access to this data needs
to be strictly controlled by means of specific methods provided for the task. We are also
concerned with hiding communications between processes so that we can restrict the influence
that processes and the environment have over parts of the system. ImpSpec-2 covers both of
these issues and defines refinement steps for dealing with them.

Process relabelling was used as an initial solution to provide process reuse but it has its
limitations. Primarily, because it does allow us to extend the behaviour of a process. Our aim is
to be able to model inheritance (in the object-oriented sense), where an inherited class (a child)
can extend the behaviour of the its base-class (parent-class). In [9] an inheritance extension to
LOTOS, as defined by ODP [6], is formally defined. We use this definition as the basis for
inheritance in LOTOS.

We consider the previous section’s three generic processes as base-classes (parents).
Each parent can then be used as a template for a child-class (giving the child its basic form of

behaviour before possible extension). Consider the following example:

From ImpSpec-1 (appendix B):
Sp def SPAL[onlse1SprayOn.offiseiSprayOff.setOniSeiSprayOn.setOffiSetSprayOff]

bcecomes:

From ImpSpec-3 (appendix C):

process Sp[SetSprayOn.SetSprayOff setSprayOn,setSprayO[f](s:State) : self(State) noexit :
SPAL[setSprayOnlsetOn,SetSpravO(fiSetOff](s)
/1
[notisOn(s)] - SetSprayOn.selffon)
[
[isOn(s)] — setSpraxyOffselfioff)
endproc(* Sp*)

Notice that the behaviour offered by SPAL is included inside Sp as a choice of possible

-8

actions. The extension to the basic behaviour of SPAL appears as the two remaining choices
inside Sp; namely SetSprayOn and setSprayOff.

We make use of the self primitive |9] which deals with the redirection of system control.
For example, process Sp may execute action serSprayQOn. This action is specified in Sp’s
parent-process, SPAL. Therefore, control is passed to SPAL to execute the setSprayOn action.
The self primitive is used so that the thread of control that was passed to SPAL is returned back
to Sp and does not remain with SPAL when its actions have been executed. If SPAL, Sp and Al
were not defined using seff then control of the system would remain with the last process called.
The system would not be able to return control back up the inheritance chain to the original

calling point. The following diagram helps to illustrate the need for self.

With self Without self
Sprayer Sprayer
{ call inherited call inherited
parent-process parenl-process
k! .
k hehaviour behaviour

SPAL = SPAL

noexit branch:

with self

noexit branch:
without self

Figure 5.1

The arrows in figure 5.1 represent the thread of control thread caused by choosing
actions supplied by SPAL. It is clear from the diagram that control is returned to the caller if a
process is defined in terms of self and not returned otherwise. ImpSpec-2 states that each parent
and child-process should be defined using self so that the thread of control is not trapped in the
parent-process. | '

All of the processes in our system are self-referencing, therefore they all resume
execution after they have performed their defined actions. By using self we can stop them from
recursively calling themselves directly if they were, in fact, called from another process. For
processes that do exit and therefore cease to be part of the system the self primitive rule still
holds, allowing the called process to evir from the system and cease execution. A process
defined in terms of nocxit surrenders control back to the process that called it.

Aside from the inherited behaviour we must consider inherited data. If processes share
common behaviour then we assume that they also share common data. We can determine the
nature of this data by identifying the shared actions of the child-processes. Our intention is not
to enforce any specific structure on the data within the system. We do not want to say how to
implement the system, only what to implement. For these reasons we only imply the nature of
the data by specifying what is (0 be done with that data.

The actions of process Hy tell us about its data requirements, such as the need for static

minimum and maximum humidity values (of a type of our choosing). Also a value associated

.0

with a humidity reading that changes each time the process receives a reading. Notice that no
information about the data types are given here, only the need for the data. Having decided upon
the need for the data we then decide where that data should reside; in the parent or the child
process.

o) .
ImpSpec-2.2 communications Control

Only class methods and friends of a class can access data in the class. The idea of
controlling communications between processes (and therefore classes) is integral to the design
of a well structured object-oriented system.

In LOTOS we can restrict access to the communications between two processes by
using the hide operator. For example, il processes Sp and Hy synchronise on the actions
setSprayOn and setSprayOff we can choose to hide these communications from their

environment, thus:

From ImpSpec-3 (appendix O):
process Spllyv[SpGatesullyGates](s:State, h:RecState) @ noexit =
hide setSprayOn setSprayOff in
SplSpGates)(s)
/[setSprayQOn,setSprayOffi/
¥yl yGates](h)

endproc

The asterisk (*) denotes the redirection operator, introduced in [9], which states that
once the system chooses one *p over *¢ then the behaviour of the system will remain with *n
and not revert back to the calling process; i.e: SpHy. The redirection operator (*) has the effect
of stopping self from returning control back (o a level prior to those processes defined in terms
of *.

In C++ we can implement hidden communications by defining functions as private or
protected in a class definition, Friends of that class will then have access to those functions.
Interpreting LOTOS in an object-oriented programming language is discussed in section 8.

The system is only accessible via external communications. These will resemble the
public methods (functions) deflined in each of the classes that make up the object-oriented
system.

The hiding of internal process communications plays a crucial part in the definition of
the classes implemented during /mpSpec-4. The formal proof at the end of this stage should
confirm that the specilication at the end of /mpSpec-2 conforms to the specification produced as
aresult of ImpSpec-1, hence the transitivity of the proofs back to the original specification of the

system in ImpSpec-0).

6 ImpSpec-3: Class Models and Links Between Classes

To build each object-oriented process (our class structures) we need to combine the
inheritance model of ImpSpec-2.1 and the communications model of ImpSpec-2.2 to form a
template for each class. The implementation of the design will refer to the results of this stage.
We shall use the formal inheritance model to build each class in the system and the
communications model to define which classes have access to restricted data and methods.

The GHCS generic process definitions will form the backbone of the complete object-
oriented specification. We combine each specific child-class together based upon the internal
communications defined as part of the original specification. The hidden communications that
take place between the sub-systems are our main interest. The communications hierarchy of the

GHCS is shown in figure 6.1, where each of the four sub-systems is shaded independently.

Figure 6.1

The modular structure of figure 6.1 is used as the basis of the implementation
(described in section 8). The six processes in the system will not be directly accessible from the
environment, only via special ports that are not hidden at each sub-system level. All unrestricted

ports on each process will propagate up to the externally visible part of the system.

7 Process Equivalence during ImpSpec refinement.

The transformation of the original LOTOS specification into an object-oriented
equivalent require us to formal proofs including observational equivalence, testing
equivalence and failure equivalence. At the initial refinement stage (ImpSpec-1), where we
initially identify reusable behaviour across processes, we can use observational equivalence (as

S -

defined in [&]) to prove that a new generic process conforms to the observable behaviour of the
original specific processes that it is derived from. The following diagram illustrates the

comparison between processes Sprayer and SPAL.

Sprayer(off) gz o SPAL(0ff)

SetSprayOn— sprayOn SetOn Yon

SPAL(on)

\o.//‘

Sprayer(on)

SetSprayOQff sprayOff

i
Figure 7.1

The identical transition diagrams reveal that both processes are indeed observational equivalent,
proving that SPAL is a valid implementation of Sp. At each branch of process Sprayer we test
to see if SPAL can also perform similar actions. Process equivalence allows us to substitute one
process for another without altering the behaviour of the overall system. A bisimulation

equivalence between Sprayer and SPAL would take the following form:

Possible Actions:

Sprayer SPAL
Sprayer(off) — Sprayer(on) SPAL(off) — SPAL(on)
Sprayer(on) — Sprayer{off) SPAL(on) — SPAL(off)

A bisimulation B is a set of pairs of £ which is closed under the following rules:

i) if p—t—p then g1 —q and (nq’) e B, and also
if p —a—p then g— o T#I~>(/ “and (p'q7) € B

and conversely:

ey . Ed . P
i) if g —T—q then p—1"=p and (p g) € B, and also
if ¢ —0t—q then p—t o0t —p and (p'.q’) € B
The two processes p and ¢ are said (0 be observational cquivalent if there exists a
bisimulation B8 such that (p.g) € B. So, for the test of bisimulation cquivalence we

begin with the basic st B, presently delined as incomplete and written as:

B = {(Sprayer(off) SPAL(off).....

(Step 1.1) Sprayer(off) —SetSprayOn_, Sprayer(on)

where an equivalent action by SPAL is sought (o allow SPAL (o progress to some
other state (SPAL").

(Step 1.2) SPAL(off) —5¢01 g,

where (Sprayer(on), §) € B is proposcd as true and state § = SPAL(on) ..
(Sprayer(on),SPAL(on)) g B, ..

B = {(Sprayer(off),.SPAL(off)).(Sprayer(on),SPAL(on)),
(Step 2) Sprayer(off) —SPLROL s Sprayer(on) and SPAL(off) —2E— S,

where (Sprayer(on),S) € B is proposed (o be truc and state S = SPAL(on) ..
(Sprayer(on),SPAL(on)) € B, ..

B does not change because the element (Sprayer(on),SPAL(on)) already exists in the
sel B,

B = {(Sprayer(off),SPAL(off)) (Sprayer(on) SPAL{on)), ...
(Step 3) Sprayer(on) MSLLSMEQ&,_) Sprayer(off) and SPAL(on) -—Mﬂ—aS.

where (Sprayer(off),S) € B is proposed 1o be truc and state S = SPAL(off) ..
(Sprayer(off), SPAL(off)) € B, ..

B does not change because the clement (Sprayer(off),SPAL(off)) already exists in the
set B. :

B = {(Sprayer(off),SPAL(off)),(Sprayer(on) SPAL(on)),
(Step 4) Sprayer(on) —sprayOn _, Sprayer(off) and SPAL(on) —S£— S,

where (Sprayer(off),S) € B is proposed to be true and state S = SPAL(off) .
(Sprayer(off),SPAL(off)) € B, ..

B does not change becausc the clement (Sprayer(off).SPAL(off)) alrcady exists in the
set B.

All actions have now been performed without contradiction or failure so we close
the set B and conclude that our [eclings were right and that SPAL is indced a valid
implementation of Sprayer. The two processes arc conscquently bisimulation
equivalent.

B = {(Sprayer(off) SPAL(off)).(Sprayer(on) SPAL(on))}

There is no need to choose (o perform the SPAL actions first in these tests as they are
symmetrical. Only actions not performed by Sprayer but performed by SPAL would
yield an expression where the SPAL transition was writlen [irst in the previous steps.

We carry out bisimulation tests on the remaining processes in ImpSpec-0 and their generic
equivalents in ImpSpec-1.

In systems which contain generic processes with radically different behaviour, over and
above that of the original processes, more equivalence testing is required. Conformance testing
[9], which deals with proving inheritance between processes will be used to prove equivalence
between ImpSpec-2 and ImpSpec-3 specification process definitions.

Observational Testing
Lquivalence Equivalence

Inheritance
issues

Rewse and
Modularisation

Original

Specification . o
Communicalions

issues

Figure 7.2

The boundaries that lie between the different LOTOS specifications is shown in figure 7.2 and

highlights where the different notions of equivalence can be applied.

8 ImpSpec-4: Implementation

ImpSpec-4.1 gage.Class Definitions and Private Inheritance

We can construct a working model of the system by literally taking elements from the
specification and interpreting them in our chosen object-oriented programming language
(appendix D.2). We chose C++ as our implementation language because of its widespread use
and general acceptance as a full-bodied object-oriented programming language [10]. Certainly,
C++ provides all of the features that we require to faithfully model the GHCS using the object-
oriented techniques incorporated thus far into the final version of the specification.

Object-oriented languages can be categorised using the work of Wegner [11] regarding
the concepts of object, class and inheritance. Wegner defines Object-based languages as those
supporting objects, Class-based languages as those supporting objects and classes and finally

Object-oriented languages as those that support ohjects, classes and inheritance.

14 -

Using C++ notation process SPAL will be defined as a base-class, whereas processes
Sp and Al will be defined as sub-classes, inheriting from SPAL. The following code segment

illustrates part of their implementation:

class SPAL
{
private:
char processName[20],;

State processState;

/1 use protected so that functions can be derived
protected.
SPAL(¢har #name, State initState);
void setOn(void);
void SetOff(void);
Boolean isOn(void),
void SetProcessState(State state):
void PrintSPAL(void),
bl end class

class Sp : private SPAL

{
Sfriend void 1y::setSprayQOn(void),
friend void Hy::setSprayOff(void);

private:
Il private class functions
void setSprayOn(void);
void setSprayOffivoid),
public:

Sp(char *name, State initStaie);
void SetSprayOn(void).
void SetSprayOffivoid),
void PrintSp(void);
}llend class

The data area of both Sp and Al is actually defined in the private area of their parent-class
(SPAL). Private inheritance protects this data, restricting access to it so that only direct
descendants of SPAL can access the private area. Note that friends of Sp cannot access the

private area of Sp (thanks to private inheritance).

- 15 -

ImpSpec-4.2 communications Control using C++ Function Friendship

In C++, normal class friendship will give the friend of a class access to the private and
protected areas of that class. This gives the friend class access to any methods declared in the
class offering that friendship.

Recall that we are concerned with implementing the idea of hidden (restricted)
communications between processes. In C++, this restriction takes the form of controlling the
access to the methods of a class by specifying either specific classes as friends of a class (class
friendship), or particular functions (function friendship).

For example class Sp declares class Hy to be its friend. Notice that friendship is given,
not requested. Any method in class Iy can reference any method or data in class Sp directly, as
if it were itself part of class Sp. This type of friendship is weak and open to abuse. It allows
access to an area of a class which we consider strictly private; the class’s own private area. To
strengthen the weakness between class friends we prefer function friendship, thus reducing the
availability of class functions to a subset of those functions present in the friend class.

The C++ language defines class function friendship as a more controlled way of
restricting access to class methods. Having such control over methods simplifies the tracing of
errors found during execution because we can track the access path to the methods, from local
class methods to friend methods. In LOTOS we can specify this tight bonding between classes

(LOTOS processes) using the following process composition:
SplSpGates|(s) || setSprayOn.setSprayOff] HylHyGaies|(h)

The synchronisation between processes Sp and Hy takes place between specified
communication ports [serSprayOn,setSprayOff]. The C++ implementation of this function
friendship takes the form:

class Sp : private SPAL
{

Sriend void Hy::seiSprayOn(void);
Jriend void Hy::setSprayOffivoid):

class Hy : private HYTH
{

privaie:

void setSprayOn(void),

16 -

void setSprayOffivoid);

We can show graphically the links between the different classes and the areas accessible to them
according to their defined friendship:

Sfunction friendship

Sp e Hy

X Y

3 selS Io) setSprayOn

2 ISprayOn = o

2| seSprayofy setSprayOff
_______ access rights =~ = = == 7

8 SetSprayOn

E SetSprayOff g

g,

Figure 8.1

The private area of processes Sp and Hy appears above the dashed line and represents the area
of each class that is accessible to its selected friends. An analogy of this friendship is akin to
letting a friend use your ATM bank card and telling them the PIN for the card as well. The
public area of a class is accessible to every other class by default.

To keep Sp and Hy’'s private area hidden from outsiders we need to privately inherit
from SPAL. Private inheritance stops external classes accessing the private area of the parent-
class even if the external classes are defined as friends of the inherited class. Only the methods
of the inherited class can access the parent-class’s private area.

ImpSpec-4.3 pyyther Communications Control using Static Class-Pointers

Each of the subsystems in the implementation of the GHCS are required to offer access
to specific functions located in similar child-classes. Pointers to other classes need to be stored
in child-classes to implement the hidden communications between classes. These pointers are
stored in the private data areas of each child-class. Consider the following code extract where
only the parent-class methods can change the private data values, hence control to the class data
is absolute.

class Hy : private [1YT1]
{
privaie:
Sp *splir:
W Fwelir;

Jollend class

- 17 -

void Hy::Setlinks(Sp *sp, WC *wc)
{

SpPLr = sp;

welPir = we;

void Hy::seiSprayOn(void)
{

spPir->setSprayOn();

Pointer variables are stored within each child-class to enable them to connect to other instances
of other classes. For example, an instance of Hy will call an instance of Sp, referred via the
pointer to Sp which is stored in Hy. The expression spPtr->setSprayOn(), in the class method
Hy::setSprayOn() illustrates this hidden communication. For each communication we require a
pointer for each class-type. In Hy we define two links, one to an instance of Sp and one to an
instance of WC.

Figure 8.2 shows an interpretation of the C++ code which includes the inheritance chain,
function friendship and pointers to specific classes. The full diagram can be seen in appendix
D.1.

Figure 8.2

Parent-classes appear at the top of the diagram. Child-classes are shown below their
parents. The arrow (pointing right (o left) defines both friendship between two child-classes and
the pointer variable linking an instance of Hy to an instance of Sp.

Upon execution of the GHCS instances of all of the child-classes are created. Links
between the various sub-systems are then established. The friendship is defined in the code
itself but the links can only be established after each object has been created and has a specific
memory address. Control of the hidden communications between the objects is maintained
using the two-tier system ol defining function friendship and class pointers within child-classes.
The function friendship mechanism defines whar type of class can have access to class

methods. The pointer variables define exactly who can access the class methods in a child-class.

- 18 -

We do not allow parent-classes to define their friends or point to other classes. This
restriction of parents increases their so that they are not tied to specific forms of friendship or

access by other classes.

9 Conclusions

In this paper we have introduced a framework for converting non-object-oriented
specifications into object-oriented specifications; the framework of ImpSpec. We have shown
how to refine the specification so that each evolution of the specification can be shown to be a
valid implementation of its predecessor. Notions of equivalence are used as the basis for this
justification. We assume that the implementation language will be capable of enforcing tight
control over the access to class methods and data; such as C++ [10] and Modula-3 [4].

The identification of reusable behaviour within the specification is the first step towards
an object-oriented design. If reuse can be established within the original system then we have a
basis for constructing base-classes for use later in the framework.

Decisions need to be made to house the data and communications in certain processes.
We interpret processes in LOTOS as classes in C++. The location of the data can be determined
by the access that we want to provide to that data. In LOTOS we can define the access to the
data using hidden communications and process composition. We localise the communications
that will access the data. These communications (in the form of process actions) will form the
basis of the class methods that are only accessible explicitly. ' '

We use the language of C++ (o capture the behaviour of the processes and the hidden
communications between them. Pointers to specific instances of classes are used to implement
hidden communications. The syntax of C++ provides us with a final implementation that is
closely related to the object-oriented LOTOS specification by means of clearly identifiable
classes and hidden communications.

We recognised the need for more structured specification techniques to aid the process
of modifying standard systems to incorporate object-oriented design. Much of the flexibility
supplied by highly modular object-oriented systems is missing from initial formal
specifications. The specification relinement steps presented here can be checked formally
against the existing system to prove that it offers (at the very least) the behaviour of the original
specification. The benefits of the new object-oriented specification include a more flexible and
maintainable specification that can be modified easily to incorporate new features without

disturbing the formalism already in place.

- 19 -

!

References

[1]

(3]

[6]

[7]

[8]

[9]

[10]

(11]

Bolognesi, T and Brinksma, E. (1987). Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems. 14(1):25—59.

Bustard, D.W, Norris, M.T,, Orr, R.A. and Winstanley, A.C. (December 1992). An
Exercise in Formalizing the Description of a Concurrent System. Software Practice
and Expericence. 22(12); 1069—1098.

Cusack, E., Rudkin, S. and Smith, C. (1989). An Object-Oriented Interpretation of
LOTOS. The 2nd International Conference on Formal Description Techniques
(FORTER9).December 1989, pp21 [—226.

Harbison, S. (1992). Modula-3. Englewood Cliffs: Prentice-Hall.

International Standardization Organisation, (1987). Information Processing
System—Open Systems Interconnection, LOTOS—A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour, DIS 8807, 1987.
ISO/TEC. Information Retrieval, Transfer and Management for. OSI - Working
Document - Architecture Semantics, Formalisms and Specification Techniques.

ISO/TEC JTC1/SC21 N6OK2, June 1991,

Logrippo, L., Faci, M and Haj-FHussein, M. (1992). An Introduction to LOTOS:
learning by examples. Computer Nenvorks and ISDN Systems. 23(1):325—342.

Milner, R., (1989), Communication and Concurrency. Prentice-Hall.
Rudkin, S. (1992). Inheritance in LOTOS. IFIP Proceedings 1992.

Stroustrup, B. (1991). The C++ Programming Language, 2nd. ed. Addison-Wesley,
Reading: MA.

Wegner, P. (September 1987). Dimensions of object-based language design. Object
Oriented Programming, Systems, Languages and Applications 87. Orlando, Florida.

- 20 -

Sl -

-28on8uvy §OLOT 241 Jo 14vd jou 25n0I3q ;o prruuauos [owruu 1x21 3y dazy dizy or uoyvayizeds ay1 moySnodyr asn dof suouyap 13§ 1)

(s 2d€12027) 2d{pus

‘6 11 4 Jt aspof = ((ujaaa 125)P POt
fandr = ((G)1207125) (207 PXOST
faspof = (((u)rons jjaasprasizaaparyst
‘anat = ((Q)Fazras fAa IS

1009 1a0sfo
i@ 31 u ft (u)prasqras = (((u)oonsjjaasjias jlapzp
‘fohpaaias = ((gjiazqi2sjjpazyo3p
16 28 u i (Gleapres = ({ujpanaras)anaous
16 11 u fi ({u)oonsjlaazpias = ((u)zazpras)zazjour
Hgproms)ppazpras = ((granz pasjazyrut

1242 posfo

(670 28uva 2yt uy o) 10Nz poaof

suba
Up300Y ¢~ (242 T]2AZXDANT
UDIOOY ¢~ [PAZT [[FAFTUINST
1IN ¢~ [PAFT [[2A3TIEP
(242 < [3AF [[2A [oul
[PART ¢~ DN J[2A2TI3S

sudo

DN > [2a37 SpA0S

un2j00 FuRquUmMNDMIDN 81 2df] 2027 257

(2dKpdwz]) 2d<ipua
107 > dwiz] s1405
azqum N[y 81 2d{jdua] adSy

(= 2dyprumgy jod<ipus
10N > prumyy sjos

wpquaNppairN 1 2d{ prumpy 2d$;

(2d&y 21018) 2dypus
‘ospyf = (fojupst
fana = (uojupst
suba
unz00g ¢~ 2AVIS : UDST
sudo
{ffo'uc} 2115 syos
uv3zjoog s1 2dL1 21015 2dA7

qupuz
uDI[O0G UIGUMNIDLNIDN
Lavaqry

nX20U : (IDIG:2IVISIV' (427 2101 §IM 242 2101S 7y dwiz] 231015y 1 prumpy:21015Ky 3101 $ 2101 §dS JasnoffuaaL0) uoyw1fisads

uonesynads SOLOT [BUISUQ :g-22dgdwy 1y xipuaddy

- -

(uo){ fJa2kvadS upynads [] (uojfg]izdoadg updpidsiag ¢ [(sjupst ou]

= pxaou : (2155 [g J42Kvadg s520010d

s01dpus

(2ro1comj[samnomfmopuigy (fesop usdolf ((jaasp:2imgaydws samrgyr) [sawnymssony ey [[(pramg oo syt smige21oi5ds) {s2ienfynsaroods [Kpdg

u1 asopy‘uzdo apry

=IXROU 1 ([PRFLIAISOM AR SRy dwia] s mr Sy prum p: 201Gy 2 i g2 o1 ds J [{ 32p urtavo (ot uzdo ffo A vads u {nads A 20023 S 200 2YNS 2 OYINS2 10 yrse1onds uig | § ssaroud

= pxaou :

(2101

201dpus

(zro15ay) s210052y [azroapy [oaproui]] (2mQyrif S0y Jaspuouzy |

w3 22p°ouy 2pIy

= pyaon [(pRa SRyt dws [gy jf {asoptusdo e ptut s s oy oy [apry 1 ssanoad

204dpua

corrn)ly oz swnaSAY L o pads e ks [} (210155) [s200)ds [434padg

w1 f{pfruds‘uplods apiy

=1 nxpou ¢ (pranpp AnISAy s s amsds j[fesopatuado [fndnads u pfn.ids b earonlynsamnds [{ppds ssasosd

EFETEN

(aim1Gqoifsat o fuavpy o]l (a2 imCan (2anr2nrg sy chas 12310 Sy prump [oy 2y €2 ds) [S 20)0 mey S0 2Umis 2 I Y82 10y s a1 nds futy 1S

(3IDIG DI (PR BIPICIM [RAZ YRS 2y

2Dy i 2 1o SRy 21 A ods jf {uot

U

nxaou

w1 uo apIy

wpotud’ [[A rLds uKDLds P52 D0 [NIS RIDOIMANS 210) FYNS IR YINS 210) yNs2 10 0ds [$ 1 10 ssaooad

EFEDEN

(2D A IPISIU 2R TR ITICO M RAD Y B0 SRy dua] 2w Igur P 2iIS Ky 211§ 2101 5dS JSOFE) ¢~ [(xow 2 utwa)]

1

(11x3) e [{xmit 18 unusj]

furop} f3p aroigw

{uzay} [ip aroigey

{dwiz [xou duspunu} xwm wISY!
Imopuim} [3p atvigom

{prump peout pramy fura} [3p 210156y
{4a2kvads} \WE 2o15ds

{Ufpuuopyiaguo} fop sawopw

{uoaspourvanas} fap sarvoyey
{asopr'uado’22pourdwaipoay duzxo 125 dwaputjg1ag} .\w..n sa100Y!
{uo‘asopr*usdo‘mopuipgias} \.muw $I1D0)IM
HXO1o§ prum 125} fop saronky
{lfofvads upfvads [fofvidsrag'u pkvadsizs} [7p sarvnds

fasopr'uado’{fofvids u gfvads prum fjpvay ' pr

An01apyag

-giv -

((xousruruj[§ | asruouzy | ¢ fua 1]
i
(runu){§lazizucwssy | «— [utu 3§ 1]}
ldwaz ¢ duzpxvpiag
1
((xmuqua]§ [43 1uouiizy [o [xoud 1§ 1]
1
(xoud [§ Ja2naviouisay ¢~ [xou 21 1])

Tdueary ¢ dwzuy

125
= pxaou : (dun [oxmddun [rutu) § Jaiuowssy | ssasoad

(e moptiyy) s0sdpus

2o - [{2j e s
il

(M)A 23l [wopuiag < [(w2j2aapuyyysi 1ou])
fasops
i

(2] [y mopusy‘uo « - {22)pan2 popgst]

i1

(o jpanepputjyfwopuiyg ¢ [(mdjaz xopst 1ouf)
fuado
i

(D PROPULYIARTIMD § MOpUIMIRS

= nXAOU D (AT aO)] ymopuigg ssa20d

{ o 4217U0d5K [) 200d puea

{(xpui uni}{ 7y azrznanaSy o - fxvui 3y g puw v 38 yf

il
(xvwutue) [() 4215028y pruzdo [[o)fvads ¢~ oo 18 yf
1
(xowruna }[73 [4arauio ey [o503 uAnads — funu 31 y])
‘P § pramppozy
1
((emus'sepus) 75 421201864 < [unu gy y|
i
(o upaa)| § | 4217102 8Ks) e [unu 28 y])
pramply ; pranpxopIag
1

((xousuni) 35 JasrawoiSKpy — [xou 18 y]
1
(xousy)[()] 4213ui0 48K ¢~ [xout 31 y))
PIUMEY PUMEUINISS
=: p1xa0u : (prumpyxow'prungyuna) [(3]a17uo8Kyy ssasoad

{5 42€0udy .} 204dpus

(ffo}| qj42koudsiffOkvads [] (ffo)[g [+2Kods fOkvsdsrzg [] (ffo)[d]42€dg’s) e~ [(sjups1]
1

- pry -

(s SOFD-moaryzg) sadspua

(e SDIID) < 204dpus

(e uumpy) poadpua
S (1 23 f1fueanyy) e~ [(spaosi]

1]
(w0)] iy fusdvpius e [(Juost o]

e mp iy

(e

= xaou : (proigis) pjuaeyy ssasoad

(4210211) s02dpus
(12)] g Jazimaglun i [(y2ijaazuyysi]
1
(2 jpanzpap)[[42102] ¢ [{42)[203] gs] 10U])

laep
1
((42)] [f42103 4 U0 &~ [(y7)2az popgst]
i
((y2)20z Jouzj] [J42103]f & [(42)j2a eopgst 104])
four
1

(Y2)a2 103! [2027T2YD [TORF12S
=: 1Xa0u : ([2827 Yy)[| J42103 4 $82201d

(& 4217w0UL2Y |) s04dpua

((xowrunu)[§J4z12uouusy | «— [xout 3 1 pup unu 28 1]
1
(xvurunu)[§az1swounszy [uadoa3p — [xoud18 1]
1]
(xvwt'unu)[§ |42 12wouday [135012/ 3ut ¢~ [unut 111])
ldwayir i dwispoay
{1

-1:g -

(« TVdS «) 204dpu2
(fo)fs2iwvpmds | Tvdsffo [] (fe)[s2roprwds|vdsffors [] (fo)fszoorods [Tvds‘y) « [(sjost]
11
(uo)[sampds [Tvgsiuo [] (ua)[s2ronpds [Tyds w0138 « [(sjuost 10u]

=: pnxaou : (21015:5) [samoods [Ty 4§ ssas0sd

o uoffpragupres} f7p sorvoqods

204dpua
(zrorgimay) [samnmayJIMFH [[29017'uzdo]] ([samDimeurss2mm]k I [s2ronylyrisstonmds [fds)
u1 asopr‘uado ap1y

= pxaou : .Qm%yﬁﬁs.f.,::mﬂESudm.<..SSm5@\38.@.5&,2%&&\?Q.uwmﬁuc\.mao\u.ﬁ%R\Qbﬂ&ﬂnth%»...339.2»5850S@Jnsuuv?&\m.;mlbiw.a.wues&

s20udpus
(eigmayj{samommeg [[NHH [72qou]] (2roisydy)fsamoydyH LAH
u1 02U ap1y
=IAXAOU D ([PAT LA CImMy vl g ani Sy y) [[asopruado \s3inn i mays2imnyiky [1me ppk ssazoad

(1za2:dj[2501292q "w2dOPUIIAGTH = IMNIH
(2ro1592): 2121 §541Ky) [{fo 22 q oI HLAH = HLAH
FARHI] U FsopuEdo so 2w swms 2yp se pasuSoI24 10U ST [AF] Y1 2RJIIU] AFYA NIIS JAM YOIl sumy D8 v aSimaeljo ‘5as52004d ¥50400 52108 vouniod Z&Sﬁ«
204dpus
(2migaay:210ssyily S 2008 |1 A [[Jfo*en ! (210183 2rmigods)[sa1001eds [TVdS
w1 ffolmeds upfoads ap1y

= Yaou © (FIUICOENIAmISYIKY i Spods i fuotavopsuado ffo{vads w okpads js2ronyi kynsaiooods [K7ds ssasoad

EFELEY
(sp1g2iGrrds){s2 worpds [vgs [[uo]f ((progisey 2w cnly o gpdsj[s:oDmaprs s mnykyns apwds [gima i pds)
w1 21015 0ds Sp1Y
=0 IXBOU D (2/DIGIAMIGID 2437 ADICIM [PAX I AIDIC Y dwd3] 22 o1 Sy prum 12101 5Ky 2 1157 2im1§ds) {uot 32 (7' supt svop uado [fn vadstu 0K vads {2100 OIS 210D 0MANS DO IYNSADOYINS A0 DAY S0 OdS [SH[1) Ssa204d

EFEVZ
RXA01 (2015 2 IDISIO 2437 AIDISI W [2AF S 20I§ Y Az] 2201y prun L 2101S Ky 101§ 21015ds) SO PO <— [(xvus 37 unu)]
1
(nxaje [(xou 18 unu)]

anolavyaq

{llouopyrzs'vo} fop ssmopo
{uo*2ap'our 13128} .\.MB sa10092Y
{250p2'uado*sap'ourduapoay ' duayxv g1 duzpnpizs} f2p samoy
{uo'asopruadomopuipias} f7p sar00om
{as0j3‘uado{[pfvads uLvids prum [{poas y prumxo iz § prun U 13§} .\Wn saronfly
{0 ads‘u Ofvads {fpkvadsras'uphvadsas} f7p sarvnds
“suonm.i2do puv s2df fo uondiuosap nf 4of uonvaifiads §HHN g-o2dsdiuf puiiio 235 =
2d{}
waysAS jo4yu0) ISNouaa i) uoyvifisads

uonedy13dS SOHO SOLOT Sul[lPqeRy pue asnay :[-2adsdwuy g xipuaddy

-z -

(= SOHD) 204dpuz
(12437:d)[uo[uo'2s0}3350 1" wado [u3do 247 12 §ImOPUIMIZS IMTH J7p 4211041402 mopuip
([28277:dj[uouo 5ol paqusdoaul 2a2 12§ 02 IS MTH S0 42103 (]
(+ IMHH +) 204dpua
(o) [SamOIna | MTF W0 ¢ [(Moj12aaTurjysi]

{1
((m)gaazp23p) 2Dy M < [{mo)jnzruipst 10k])

‘axop2
{1
()1 DmaY | IMT I e [(2 (202 Peopyst]
1
{((wajpzazqouz) (s iy] IMTH ¢ [(m2)2asTxopst 10u]]
fuzdo
1

(I [SADOIMIY| [T P[P0 3 ¢ [3023S
= XP0U D ([IFMI[SADIMY | [MTH SS3202d

fuo*asoprtuzdo’y2aziag}t .\Wﬂ SADHI2Y
(21o1C02 Y24)] 280 372v0 2 uzdow 2do* ffo 22T uo iru [pea) dus ez yrxp 12 S duws XU T2 S Ut jN12 S 1dws [Ut 12 S [11 L AT \.Mu APIFULOULLIY |

i} [P X1 3S It OIS UL NIRS PR 135)11 LU f3p 4212ut048K

(2ipa3)2 28 opes oy usdo rsdo oo rads us junivads

(s HLLAH) 204dpus
{tjfsae ity [1[33 & [(SYROWTTT puo (L)uyyosi]
1l
(4fs2mDyiky [LA usdoffo e [{4yjxop 1 0s1]
11
()52 [] (1350 u0 e [(£yJuyy []sH])
Suzppzyry ¢ mdupoay
i
()52 [LA < [(<'yJur i L758]
{1
(e opras j[saoonly [LAH « [(Cy)uivgos)
Buwpozyi ¢ xopI2S
I
(<) [s2100 1y L KH < [(<y)xop 1Ds1]
i
(s jyras) [s20 Dy [HLAH <= [(«y)xopTI51])
[Suippaysy ¢ uipIas
= J1x20U : (2101$92Yy:4)[s300 iKY [11] A} SS2204d

{asops‘uadofforuo mdupvay xopiag ul 135} \Wﬁ sayiIky
heruoras} \ fuomuofforasuforuuervis] Tvds fop vty

[ffouffofvds uompfoids {fo125 {0k v1dS12 52 0125 M KD 2ASIF S TVS. J& 42€padg

S (EAnTpm AR Ay CAMISITYI CPIRISIEYY IDICES {102 oz pina praurmopuiyg 25 o wopuiyuado [fo{oad 1 astu Apadcrz

U WD LN U [[D3P 103 [TU T OIPY

-1D-

(= TVdS =) 202dpus
(Uplfias:fforag [] olizs'y) e [(sju0s1]
17
(uojfiasiuges ¢ [{sjugst ou]

=2 (211§)fi2s (210155) [O12 S w0123 [Vg S ssavoad

204dpuz
(I8 $20DOMIPUIMS [UB[JOLTLO YMOPUIA o }[MIPLEN 20D mpusque2do [({34 *1){S3000) 031034 Y319 Urwid2Y | 311 [1 (1 ')[62 mm0)421210043Kys 2100 43Kn2ds [K11dS)
W1 MOPUL SO MopuIuRdo apTy

= pxPoU

PIDOMOPUIMNNS D)L DIYN S [V1) A SULC UYL 2 D1)2 3w T Kyye2rm iz koads [4 21y) ~Kppds ssao0ad

s01dpua
(34]S AP LRI 420 L s paapt e paut |7 {1 [SID0A12U0UL Y] [L3TBuOouy |

W1 M [IAP IO UL 2p1Y

=D RXDOU D (PAFPIEY CIIICRNI [I0a [na s fIu \S 3D DA DAYSI DO AR ZUOULY] [2 171 [820 02d
204dpus
()]s 2 rruns§yla ol HTofvdrssupinidras]] (s j[saipoiafoads [136vadS
w1 ffofvadgrasupvadsias apry

= pxaow : (apigaeycy 3wl o vid ey y vadgras \samn ae1zwo S ynsa w g aedoads [pdy ssasoad

EYEUEY
[0 [ST AP ULV HUOUALDTVTES [(23 P 4 S} ¥ 2000 MOPUIM S LD)L PIDIY VSO AFT PUTUI YIS 2D)z 3wsoa S yysaipnyaekoads [H a2y) Kpyds
UT UQUADINIAS 21y
=D PXAOU ! (DI [Iom [RAZYIAY CAIDISI2YIT ‘AIUISO2) Y AImISIS)

Co D mopULE Ao [A Dd G123 U)X DadST 25 N ADOULDIINNE 1D M OPUI MV S AT AE [T YIS 3D 5)43 | SULSUA R YIS BI04 2w 45 Ky 531 s kvads [§ 10 ss32 04d

EPELE

RXIOU (DI B DIS[Y [2AS B DISIM [BAZT: 2001 S Ay dwiz] 23 iy prun 12101 Ky 2101 $: 2101 §AS JSO) — [(xvws 2 uzud]
11

(nxaj e [(xvus 18 unuj]

Anaavyaq

fowaryizguof JAp samow

{uosapourvapnag} \WE s21093Y

{asopruzdotap vt dwapoay dus [xo 12 duafuig1zs} \W-N LER Y
{uo‘asopr*uadomopuipias} \.muv 521052M
{asopr'uado’[fnhvids‘u pfvads' prum [ypoay prum pxo 12§ prun puigias} fr sa1p0ly
o fpadsuofods {{ofoidsiasuphvadsias} fop saronds

uotppnfioads suoyviado puv ad{) 10f uoyvafizads §or10 ¢-22dsdwy jpunSise oy safs1+
a2d4y

(- ywaps{§ jo4u0) asN0 [[U3s47) UOYVIIfi2ads

SOLOT ut uonjedypads pajudlIQ-1qQ :g-2adgdwy 5 xipuaddy

-7

(s 4217w0uL2Y [) 201dpus
(4] [25012(mOpUIpg 35010 udo [mopuig uado’ [fO125 1102 20 U138 102 [out mdu [po2 y w3 | poa ' X v 12 § (duz [X0 13 S Ui 12 S fdwaa [W12 S TEL LA

= 1XR0U (ADISIAY)V f]AS 1 (2IDISIYA) [SDNL2ITUWOULY] |42 FPuouiLYy | ss2204d

FMOPUN 35012 MOpUL U 103 [(231 D2 P2 1 dud2 [oo duas Xy 12 S dwis [ui 13§] 3P sp1nn4ermuowss iyl

(4 42120048K¢]] 202dpus

PO 12 S UT KT SIP U VIR S [FL LA
=0 xRou (yny§aa)f1as 1 (Arv1sIRy) sAmouziawo 5Ky 41w S | ssasoad

(ajfavopaiopuyy asopraz dopmopargusdo [fons iffoivads s u0r2s julvad grasi medu o2 i ripramg ipoz yxo gy

Jeapurg 2y sopuguado [oad sz v u g Xnid g1y Sppm] s) DI [Xo ({12 S PRUREIUT VIR G J3p semnaunldiy

(= HLAH <) 204dpus
(Ciifjas s [(LypeopsrsT pun (25w o5y
1
taif1asiasopi{foes o [(4q v ost]
{

fiastuadoruras e [{eqjup [sH)
[Fugpvayry ¢ mdujpray
1

((Wfpas &~ [(yjuzpg 751

11

Lyrnpazs)fias - [(Cqjupos)
LFutpnayy § xvpIEs
1

(tafpas o [(ayixopy 1 0si]
1
(Cwyjurpgrasifyes — [(wyjxopgysi])
Spryy § RS

= (ap§22Y }f128 1 {PID1GIEY L) axopr usdy [[o12s U 135 Mdu (o2 XOI§ 12 S U KIZS L AT SSA204d

(« uny . 20adpua
(sjl {0128 (lQupIVI2S U135 U QLD VI2S | TV S
=0 120U (101G 128 * (21015°s j[s2100uuvD iy ssa20ad

tHowunpizsu guuoryiasf f2p sapouunp

(4 42Apads) 202dpua
(foifias:ffokvadgiase— [(spost]
1
(uo)fjas‘upkvadsiag «— [(sjupst jou]
1
(sjlifor251ffoKoadSiagugr2s uQ kvadsizs [Tvgs
=: 1xaou (2101S}f12s © (2101575) [sa10042KDAdS [42K04d SS3204d

{f okvadsias ug Koadsias* [fORvad§iag upkoadsiag} [op savniakvads

]

gD -

(= SOID 2] D0aclpuz

(& 42]]0ATUO YMOTREIAY o) 204d prusa
([0138 Uiy 2

AEOL MDY T 2010 D (MOPUL U0 [FA 12§ IMOPEI 1P S [T FT

=0 xdoU ([5aa)f]AS D {12aE SR OMOpUIM [22110u0 Ymopit yy S8 04d

T RTINS MOPUA BS 0 [D MOPUI U dO'mMopuiIES} [3P Ssamnmopuim

(o 21021]) 204dpua
(1) [2 0125 quyuad vy ir a3 avopam2 (3 2p uado po2 fIaut [2A2 1S 102 L1138 [T T H

= 11X20u (Jasa)18 1 (1A} [s20nL3102y 422 [SS2204d

fuQuuTVIaS D2][22 DR EIUT IDRE128} [3p savnaeivey

(x IMHH) 204dpua
((ifiasiupras & [(1J1aaa-uyyst]
1
({11207 apifias e [(1f12azuipgst 10u])
‘2507129
1
(1if1osiupras - [(1)12 peopst]
1)
{(izazpuy)fias < [(1)ia7 popest 10u])
‘uzdo
]

(M12s 1287771 § (2097128
=: (Jaaa7])fjas : (13a2T:[)[uQras 250 uzdo|aaa 12| I H Ssa202d

Y Y

(QuerewosdAjiung
OAuptuingipeoy
OApruny xenes
OAupruapuipog
(Ao ‘ndsy)symTieg

Omopu pasap
()mopu guado
QnoreAeidgios
Qupredridsias
NP A ID[[OAUCIAOPUL A
‘ngds, 14e1dg

= Quuurpas

S
Ouaeleadgas

OUOULIR[\OSIIMED || PIOA PUILIT
(UOUUEBIVI1SID[[ONUIO) MOPW Ay PLOA PUILI

Onooiudgpsoomaria | ploa puayy
Ouomirdgps:npworfd)] ploa pualy

Ovdsd
(1m15)0TR1GSS00I 12

Quost

“oduRILIAYU I LV ALY Suisn
SSRID-OSRE 21 WO SIULYUI Y $SE[)-qnS

sse[)-ased]|

Quows
Quoes

u amgssasosd
sweyNssa001d

S |

(1VdS

B5es

(291[0nUCY MOPUT TULL] (rereoH UL
(oA TMopUuIMI9g Qeaemmoppg (rewouuay UL
(@[)SNUr 9§ (@) UG (dwapeey
Odwo 1 xej\n08
Quouuryies Quouuenyios (Odwajunaaeg
Qmopu josop QIEO0p | e, (AW T JOY)SHUITHOG
Qamopur gy uado OQmwappuw |
(B WIRIY (R ULRY (uowoppoop
(ameapout
() MOPII A IS0 IO WO |, PLOA PUILY ()MopUI IS0
()MopuI \ 1edoIINPWOULIRY | PLOA PUALY (Omopuguado
(MOPUT NSO IINMWOIT] PLoA puaty (HI0182[{20PILUMDUIVILIMNY [PIOA PUDLL] 1oy [OAUC)AOPUL AL
(Omopur gguado:iawosR S proa puaw (L21Rn] (DU LIDINWOULIDYG | PLOA DUDL] N AU PR TR
- OUANGTTTL OHLLAIU]
(ssa001Pap (Surpeaz) Xy st
O)ssas0s o (Furpeaa)urw | 751
ODUBN SO0 (Jeurm \§SID0IJTRI)
r‘ DA NRN ST CV,N—)JOW
ORA LS Ounanng
SRl
] Tuprayvew
- DAY [$s:000d Surproyuiur
J.L«ﬂu/.w/iu&»:u. Qﬁ._-ww.o/.v.wuuc.n&
I —— A — |
w. .ﬂ;w
(asrudquny
{ JULIRV UL IR Y prea Oneaseidsiag
HOULRVINGIHLR{Y ploa Queuafradgrog
e OuOsrdgios [

“PIRp pUR suenoury oleand s,y sse[o-qns ssoooe Kewr

ettt

g sEans

11 181 05 Y $SB[0-qns o] sunod aIojosot ¢ sse[2-qng a1yqnd
‘¢ SSB[O-GAS JO PUOL B OPRW SBY V¢ SSB[I-qNS -

oreaud

diyspuoiy

pardatoxd

areaud

s5e1)- SV

ainidnus pue Ayddeldty diyspuatay] uondunyg ++) SOHD 1°d Xipuaddy

Appendix D.2: ImpSpec-4: GHCS C++ Class Definitions

j class SPAL
f {
i I use private on dala area so that only devived protecied can access via SPAL
1 protected functions
private;
char processName[kMaxNameSize];

State processSiate;

Il use protected so that functions can be derived
protected:

SPAL(char *name, State initState);
void setQnfvoid);
void SetOfffvoid);
Boolean isOn(void);
void SetProcessState(State state);
void PrintSPAL(void);

k

ttinclude "GHCS-SPALL"
Hinclude "GHCS-HTYGROMETER "

" DERIVED CLASS SPRAYER', INHERITELD FROM "SPAL’ AND NDING BASE CLASS
" WITH INTERNAL setQff(j FUNCTION AND EXTERNAL SetOn(j FUNCTION
1/-

class Sprayer : privaie SPAL

{

friend void Hygromeier: :setSprayerOn(vaid);

Jriend void Hygreme. (SprayerOffivoid),

private:

1 private class functions

void seiSprayerOn(void); f

void seiSprayerQjfivaid);

public:
Sprayer(char *name, State iniiState);
void SetSprayerOnfvoid);
void SeiSprayerQOfftvoid);

void PrintSprayer(void);

Hinclude "GHCS-SPAL "
Hinclude "GHCS-HEATER b
#include "GHCS-WC.h"

/-
" DERIVED CLASS ALARM' FROM BASE CLASS SPAL' (NO ENTENSIONS 10 BASE (1.ASS
" EXCEPT A MODIFIED CONSTRUCTOR FUNCTION WITH NAMIGSTATIE PARAMETERS

class Alarm : private SPAL

{
Sfriend void WindowController::setAlarmOn(void);

friend void Heaier::seiAlarmQnivaid);

private:

1 private class functions

void setAlarmOn(void);

; public:

‘ Alarm{char *name, State initState);
void SetAlarmOfj{void);
void PrintAlarm{void);

; |

;"
.
.
|
.
:

m

1" BASE CLASS IIVTH, USED AS

1 GENERIC TEMPLATE FOR THE HYGROMITTER AND

" THERMOMETER SUB-CLASSES. NO INTERNAL COMAMS PORTS DEFINED IN-TERMS OF
" PRIVATE FUNCTIONS.

'(/

class HYTH

{

private:
char processName[kMaxNameSize];

short minReading maxReading;

protecied:

HYTIH{char *ncme, shovt min, short max);
void SetMin(void);
void SeiMax(void);
char *GetProcessName(void);
Boalean isL.Tmin(short reading);
Boolean isl.Emax(shori reading);
void PrintlIYTI(void);

ki

Hinclude "GHCS-1IYTH.R"

class Sprayer,;

class WindowConiroller;

" DERIVED SUB-CLASS, INHERITING FROM BASE HYTN CLASS INCILUDES 2 POINTERS

" AS LOCAL PRIVATE DATA TO ENABLE INTERNAL COMMS TOQ TAKE PLACE WITH THE
" FRIENDLY CLASSES SPRAYER AND HYGROMETER . COMPLEMENTARY ACITONS (DEF)
" ASINTERNAL (PRIVATE) FUNCTIONS ARE ALSO DEFINED, THESE AR DEFINED HERE

" BECAUSE OF TDIFFERENT SUB-CLASSES CATLED INTERNALLY, ALTHOUGH THEY
1" (apenicloselsetOnlsetOffy APPEAR TO PERFORM TIHE SAMIZACTIONS THEY CALL
" DIFFERENT CLASSES DEPENDING ON THEIR IDENTITY. (.G

class Hygrometer : privaie IINTH
{
privale:
Sprayer tapPtr;

WindowController Ywelir;

vaid selSprayerOn{veid);
vaoid seiSprayerQjfjvoid);
void openWindew(vaid);

void claseWindaw(veid),

public:
Hygrometer(char *name, shovt min, short max),
void Setlinks(Sprayer *sp, WindowCeontraller *wePtr);
void SetMinl Iumidity(void);
void SetMaxtlumidity(veid);
void Readliwnidity(vaid);
vald Printllygrometer(void);

Iy

Hinclude "GHCS-IB

class Heater;

class WindowController;

" SUB-CLASS OF HYTH BASE CLASS DEFINED TO ACT AS A THERMOMETER OBIECT.
1" LOCALLY STORES POINTERS TO THE FRIENDLY HEATER AND WINDOWCONTROLLER
" SUB-CLASSIS

/" DEFINED INTE
" VALUES TO THE FRIENDLY SUR-CLASSES.

class Thermomeier : private HYTI
{
private:
Heater YhePir;

WindewContrailer Swel i

SHY CALLS SPTH CALLS 1HE)

RNAL (PRIVATE) COMPLEMENTARY FUNCTIONS WIHCH USE THE POINTER

void openWVindow(vaidy;
void closeWindaw{vaid);
void inclleater(void);

void declleater(vaid);

public:
Thenmometer(char *name, short min, short max);
vaid Setlinks(Heater *he, WindowController *we);
void SetMinTemp(void);
vaid SetMaxTemp(void);
vold Readlemp(void);

void PrintThermometer(void);

k

/-

" BASE CLASS HEWI DEFINING COMMON DATA STRUCTURE AND INTERNAL (PRIVATE) AND
" EXTERNAL (PUBLIC) COMMUNICATIONS

I

class HEWI
{
private:
1 profected dara struciore

char processNamefkMaxName.

short

protected:
HIEWI(char *namg, short level);
void Setl.evel(vaid),
Boolean isMinlevel(void);
Boolean isMaxLevel(veid);
char ¥*GetProcessName(verid);

void incProcess(void);

s

Hinchide "GHCS-HEW!.h"
Hinclude "GHCS-THERMOMETER b

class Alarm;

1 DERIVED CLASS HEATER, BASED ON HEWE BASED CLASS, EXTENDS HEW! CLASS WITT]

" A POINTER DATA STORE TO A CLASS QF TYPE ALARM. POINTER 18 USED TO GIVE

" ACCESS TO ALARM'S INTERNAL COMMS PORT “se1On(}. POINTER VARIARLIZIS

" ASSIGNED DURING CLASS INSTANCE CRENTION USING CLASS CONSTRUCTOR VARIABLE
" ALLOW THERMOMETER TO ACCESS PRIVATE FUNCTIONS USING FRIEND ASSOCIATION

class Heater : private 1HEW/]
{
friend void Theymemeier: :inclleater(void);

Sriend void Thermometer: decl leater(void);

private:
It private data

Alarm *alPir;

/I privaie functions
vold inclleater{void);
void declleater{veoid),

vaid selAlarmOn(void);

public:
Heater(char * name, shart level);
void Setlinks(Alarm *alj;
vold Setleaterlevel(void);
void Pn'n'/IIcarrr{w;i«'/),‘

D23

tinclde "GHCS-HEW!L.h"
H#include "GHCS-MYGROMETER h"
Hinclude "GHCS-THERMOMETER h”

class Alarm,;

1.

" DERIVED CLASS FROM HEW] BASE CLASS. AILOW IIYGROMETERITHERMOMETER CLASSES

" TO BE FRIENDS AND ACCESS INTERNAL OPENICLOSE FUNCITONS. STORED LOC:

" POINTER TO ALARM DERIVED CLASS SO THAT INTERNAL COMMS CAN TAKE PLACE RETWEEN
1" THIS CLASS AND THIE ALARM . DEFINED INTERNAL apen()iclose() FOUNCTIONS AND A

" COMPLEMENTARY setOn() FUNCTION USED TO CALL ALARM'S EQUIVALENT FUNCTION.

1

class WindowController : private HEW]

{

Sriend void Hygrometer:

copenWindow(vaoid);

Sriend void Hygromele

closeWindow(void);
Jriend void Thermomeier::openWindow(void);

Sriend void Thermometer::claseWindow(veid);

private:
1 private daia

Alarm *alPtr;

11 private funciions
vaid openWindow(void),
void closeWindow(vaid),

vaoid setAlarmOn{void);

public:
WindowCentraller(char ¥ name, sheri lovel);
vaid Seilinks(Alarm *al);
void SeiWindewlevelfvoid);

vaid PrintWindowContyoller{veidj;

