DIVISION OF COMPUTER SCIENCE

Formal Dialogue Specification for Hypertext and Multimedia
Systems

Lisa Jacob
Sara Jones

Technical Report No.175

January 1994

g
i
1
o
i
it
B
|
Bl
|
|

Technical Report No. 175 January 1994

Formal Dialogue Specification for Hypertext and Multimedia Systems

Lisa Jacob, Sara Jones
L.Jacob,S.Jones@herts.ac.uk

School of Information Sciences, University of Hertfordshire,
College Lane, Hatfield, Herts, AL10 9AB, UK.

Tel: +44-707-284370
Fax: +44-707-284303

Abstract

We discuss issues relating to the use of CSP, a process-based formal notation, in the
specification of human-computer dialogue with hypertext and multimedia systems. We
illustrate our discussion with a small example and describe how this demonstrates
important features of three systems: a simple bibliographic database; a multimedia
information system; and a hypermedia exhibition guide. We consider the way in which
CSP dialogue specifications can be used in the design and development of such systems
and identify some areas for further work. '

Submitted for presentation at EWHCI '94, the 1994 East-West International Conference
on Human-Computer Interaction, to be held in St Petersburg, Russia, August 1994.

Formal Dialogue Specification for Hypertext and Multimedia Systems

Lisa Jacob, Sara Jones®
L.Jacob,S.Jones@herts.ac.uk

School of Information Sciences, University of Hertfordshire,
College Lane, Hatfield, Herts, AL10 9AB, UK.

Tel: +44-707-284370
Tlax: +44-707-284303

Abstract

We discuss issues relating to the use of CSP, a process-based formal notation, in the
specification of human-computer dialogue with hypertext and multimedia systems. We
illustrate our discussion with a small example and describe how this demonstrates important
features of three systems: a simple bibliographic database; a multimedia information system;
and a hypermedia exhibition guide. We consider the way in which CSP dialogue specifications
can be used in the design and development of such systems and identify some areas for further
work.

1. Introduction

The Human Factors Consultancy team at the University of Hertfordshire have developed
a number of hypertext and multimedia systems over the past 5 years. As the range of
technologies available for supporting input and output of various kinds of information
has grown, the task of designing and developing such systems has become increasingly
complex. We have therefore begun to investigate the way in which methods and tools
currently used in software engineering can be incorporated into the process of developing
systems in which the human-computer interface is of primary importance.

This paper focuses on the question of human-computer dialogue design. It considers the
way in which the use of a particular notation (CSP) might support the specification,
implementation and evaluation of hypertext and multimedia systems by providing a basis
for modelling the kind of dialogue such systems support. We begin with an introduction
to existing work on dialogue modelling and the use of CSP. We then describe some of the
particular issues confronting developers of hypertext and multimedia systems. We present
a small example which demonstrates how important features of hypermedia system
dialogue can be represented using CSP. We describe how the example could be extended
for use in representing more realistic examples, and explain its relation to three systems
built at the University of Hertfordshire. We suggest a number of ways in which CSP
dialogue models might be used in the development and evaluation of hypermedia
systems, and identify directions for further development in this area.

* denotes primary contact

2. Modelling Human-Computer Dialogue

In HCI design and research, the term 'dialogue’ is used to refer to the sequence of events
through which a computer and its human user communicate with each other. The
structure of a dialogue - that is, the nature and order of actions through which
communication takes place - depends both on the nature of the computer system and the
interface it presents, and on characteristics of the user such as familiarity with the system
and task of interest.

Models of human-computer dialogue provide system designers with a basis on which to
discuss and reason about a variety of design options before even the first prototype is built.
In large or complex systems, discussion of such options is only possible if concerns of
dialogue design are separated from those relating to other aspects of the system. The
existence of a concrete model which can be presented graphically or animated supports
communication between different members of a design team, and if the model is written
using a formal notation, it can also be used as a basis for rigorous mathematical reasoning
about the consequences of particular design decisions.

Various approaches to human-computer dialogue modelling have been reviewed by
Green [1] and Palanque et al [2]. These include the use of state transition diagrams, context-
free grammars, events and Petri nets. The continuing development of interface
technologies has placed increasing demands on notations for dialogue description as
developers have needed to model not just command-line interfaces, or even menu driven
interaction, but direct manipulation interfaces in which several forms of communication
can be used at the same time. Neither grammars nor transition diagrams are well-suited to
the representation of concurrency. Petri nets are sufficiently expressive but can become
unwieldy if the systems to be represented are large.

Considerations such as these have lead some researchers (see, for example, [3] and [4]) to
investigate the benefits of modelling human-computer dialogue using CSP [5], a process-
based formal notation developed for the specification of reactive systems involving
communication and concurrency. CSP can model all systems or dialogues which can be
modelled using either state transition diagrams or Petri nets. The CSP notation is quite
readable for non-mathematicians, even in its textual form. Its utility as a basis for
discussions about dialogue design options has, however, been further enhanced by the
development of tools such as Alexander's SPI [3] which support animation of CSP
specifications. This means that it can be used in discussions not only between different
members of a design team, but also with clients negotiating system requirements. Because
CSP has a sound mathematical basis and well-defined semantics, it is also possible to
reason about specifications in a mathematically rigorous way and to prove that they
possess the properties which designers intend or clients require. Automated support is
available for carrying out some of these checks as described in the final section.

3. Dialogue in Hypertext and Multimedia Systems

The development of hypertext and multi-media systems presents the HCI designer
with unique challenges [7].

Dialogue with hypertext systems can take different forms depending on the platforms
on which they are implemented and the purposes for which they are intended. A
dialogue with a system implemented in HyperCard may be similar to that with many
windows-based systems in that the user simply moves between different screens of
information by clicking on buttons in the interface. However, other hypertext systems,
such as NoteCards, permit windows displaying the contents of a number of nodes to be
open and 'active' (in the sense that they are ready to receive input) at any time.

The defining feature of multimedia systems is their use of a wide range of input and
output technologies. Input may be through keyboard, mouse, speech recognition or
touch screen devices. Output may take the form of text, graphic stills, animation, video,
speech, sound or music. Multimedia system designers must take account of the
temporal nature of audio and video sequences in synchronising presentations, and
must also consider which inputs and outputs may be used concurrently. A series of
graphic stills may, for example, be accompanied by explanatory speech output, or music
may be played while a video clip is shown. On the other hand, a designer would
probably want to avoid playing two segments of speech output simultaneously, and
may also wish to permit only one video to be shown at any one time.

Hypermedia systems combine elements of both hypertext and multimedia and
designers of such systems are currently forced to make decisions about the kinds of
issues identified above in the absence of any guiding principles or tools for reasoning
about the available options. As one text puts it: 'Multimedia extensions to current
systems have grown like weeds without well-defined or well-understood principles' [6],
and the need for such principles becomes increasingly urgent as growing numbers of
such systems are produced. It is intended that the thoughts presented below should
form a basis for the development of precise models of hypermedia dialogue which will
support discussion and experimentation and ultimately lead to the development of
sound principles for hypermedia system design.

4. A CSP Model of Hypermedia System Dialogue

An interactive system can be described in terms of the activities or behaviours in
which it appears to engage. CSP is a mathematical notation which allows us to describe
systems precisely in these terms. Using CSP, systems can be described in terms of
processes or behaviour patterns. These processes can in turn be described as sets of
events, or atomic actions in which some element of the system engages. In the
example below, the names of processes are shown beginning with upper case letters,
and the names of events are written all in lower case.

CSP provides many different constructs for modelling aspects of the interactions
between processes and events. The example below uses only a small subset of the
notation. Symbols used include: 2 which means 'is defined as'; -> which can be read
as 'then’; [and [0 which denote choice between two alternative paths of behaviour,
internally and externally to the process in which the choice is made; | | which means,
roughly speaking, 'in parallel with' or 'at the same time as’; ';' which can be read as

'followed by'; and SKIP which denotes successful termination of a process. For a full
description of the precise meaning of these symbols and of their mathematical
significance, the reader is referred to [5].

Before building a model of a system or the dialogue which it embodies, we must make
decisions about which parts of the system will be included in the model and what level
of detail we will use. With CSP, we can model a human-computer system as consisting
of two key processes: one representing the user, and the other the system. The
interactions between these two processes constitute the human-computer dialogue
with which we are concerned here. These top-level processes may be broken down into
sub-processes, so that different aspects of the behaviour of either the user or the system
may be considered in more detail. For example, we could model the user in terms of
separate processes corresponding to auditory and visual attention mechanisms, or to
processes dealing with different forms of input device such as the keyboard, mouse or
touch screen.

In the model below, we have given a highly simplified view of the user in which we
are interested only in his or her ability to perform one of two actions. Our aim has been
to focus on elements of the system which characterise it as a hypermedia system, so that
we can demonstrate how CSP helps us to tackle some of the unique challenges of
hypermedia design described above. While the system we consider here is necessarily
small (it contains only two hypermedia nodes), we hope our treatment of it illustrates
the way in which more realistic systems could be modelled.

In our example, the two operations of which a user is capable involve asking the
system to display the contents of either the first node in the hypermedia network, or
the second:

User £ (open node 1 -> User) [1 (open _node 2 -> User)

The system is represented as a collection of processes, some managing the use of the
various output media, and some monitoring the user's requests for displaying nodes:

System 2 Text Displayer || Graphic Displayer ||
Video Player || Sound Player || Voice_Player
[
(open node 1 -> Node 1 Display
a
open_node 2 -> Node 2 Display)

This division of output media managers allows us to reason about the fact that
different output media must be handled in different ways. For example, while text and
graphics can be presented instantaneously, and may simply remain on the screen until
they are cleared, video, sound and voice must be output over a period of time. For this
reason, static and dynamic media must be treated differently in composing hypermedia
presentations. 'Sound' output has been distinguished from 'Voice' or 'Speech'. This

allows us, for example, to model the fact that two fragments of speech should not be
played simultaneously, whereas a single speech fragment may be accompanied by other
sound such as music. Finally, we have assumed here that computer-generated
animation can be viewed as a kind of video output, and that music can be managed by a
general-purpose 'Sound_Player' as we have so far not encountered any situations in
which these kinds of output need to be distinguished.

Now, to model the fact that node 1 contains text and graphics and that a user's request
to open that node should result in the relevant text and graphics being displayed on the
screen, we use the following notation:

A

Node 1 Display = Node 1 Text Display || Node 1 Graphic_Display

This states that the process for displaying node 1 consists of two processes running in
parallel, one of which displays the relevant text, and the other, the graphic. These two
processes may be described in more detail as follows:

Node 1 Text Display = begin node 1 -> display node 1 text -> SKIP

A

Node 1 Graphic Display = begin node 1 -> display node_ 1 graphic
-> SKIP

Notice that both begin with an event called 'begin node_1'. This event is used to
synchronise the two processes, so that we have some assurance that the text and
graphics will be displayed at the same time.

The system processes which manage the display of text and graphics are described as:
Text Displayer = display node 1 text -> Text Displayer
Graphic Displayer £ display node 1 graphic -> Graphic Displayer

These descriptions seem rather unwieldy in the context of such a small specification,
but in a larger example, they would be expanded and parameterised to describe the fact
that text or graphics from any node in the hypermedia network could be displayed.

Moving on to the second of the nodes in our toy network, we wish to describe the fact
that activating node 2 starts a video. The beginning of the video is accompanied by
music, but part way through the video, the music stops, and a fragment of speech is
played in its place. We model this arrangement as follows:

Node 2 Display 2 Node 2 Video Play ||
(Node 2 Sound Play ; Node 2 Voice Play)

Thus the video for node 2 is specified as being shown in parallel with a sound sequence
consisting of a short piece of music followed by some speech.

The description of playing a video is slightly more complicated than that of displaying a
static graphic, owing to the fact that it is extended in time. We need to model both the

beginning and end points of the video so that we can synchronise the presentation of
other media with those points. In the description below, we have also modelled a mid-
point in the video which is the time when the second part of the soundtrack
(containing the speech fragment) should be begun.

Node 2 Video Play % begin node 2 -> begin node 2 video play ->
mid node 2 video play —> end node 2 video_play
-> SKIP

The processes for playing the music and speech clips are modelled in an analogous way,
with the event 'begin node 2'being used to synchronise the beginning of the video
with the start of the music, and the event 'mid node 2 video play' being used to
time the introduction of the speech as intended:

>

Node 2 Sound Play = begin node 2 -> begin node 2 sound play ->

end node 2 sound play —-> SKIP

>

Node 2 Voice Play mid node 2 video_play ->

begin node 2 voice play ->

end node_2 voice_ play -> SKIP

Finally, we model the process managing the display of the video in a manner
analogous to that used in 'Text Displayer'and 'Graphic Displayer' above. The
only difference is that the ongoing playing of successive sections of the video is
described recursively as a process, rather than being modelled as a single event (as in
the case of 'display node 1 text' or 'display node 1 graphic'):

>

Video Player begin node 2 video play -> Play Video 2

>

Play Video 2 Play First Section Video 2 ; Play Rest Video_2

Play First Section Video 2 £ first section video 2 -> SKIP
Play Rest Video 2 £ next section video 2 -> Play Rest Video 2
O
mid node 2 video play -> Play Rest Video_ 2
- :
last_section_video 2 ->

end node 2 video play -> SKIP

The 'Sound_Player'and 'Voice Player' would also be modelled recursively, but will
not be described here due to constraints of space.

Considering the hypermedia systems built at the University of Hertfordshire, we can
see that the simple CSP constructs used in the example above can be used to model
most of their distinctive features. Our simple bibliographic database system was built
using HyperCard [7], a hypertext development environment for the Apple Macintosh.
However, a brief analysis of the dialogue it supports revealed that interaction with this
system was much like interaction with a wide range of other windows-based systems in
which commands can be issued to the system through the use of buttoris and menus.

Dialogue of this kind can be described using CSP in the way demonstrated by Alexander
in [3] and [8].

A second system, MODEMA [9], was built using KnowledgePro [10], a knowledge-based
system and hypertext development tool which runs under Microsoft Windows.
MODEMA is an information system for employers of people with disabilities. Its main
use of distinctive hypermedia features is in the concurrent display of text and graphic
information about products and case studies of interest. This method of displaying

information can be described with the CSP constructs used to model Node 1 in the
example above.

Finally, we may consider Libtech [11], a hypermedia exhibition guide, again developed
for the Macintosh. Libtech also displays information using a combination of text and
graphic stills. Additionally, it makes use of video sequences which were intended to
introduce exhibition attendees to features of the location of the exhibition for which it
was built. As we have seen, the use of video can be described with simple CSP
constructs such as those used in Node 2 above. If we wanted, in future, to consider the
addition of speech or music fragments to accompany the videos, we Would also be able
to do this using the techniques described above.

Some features of our systems are not incorporated in the simple example presented
here. For example, we have not modelled the fact that the user may interrupt a video at
any time and switch to viewing a different node in the system. Nor have we modelled
the co-ordination of low-level events which are intended to happen at the same time
in displays of different forms. For example, in Libtech, a mouse click on an element in a
piece of text can result in highlighting, not only of that piece of text, but also of a
corresponding element in an accompanying graphic. Perhaps the most important
omission, however, is that of error conditions. We aim in future to extend models like
that shown above, to investigate how effectively they allow us to reason about aspects
of hypermedia systems such as these.

5. Conclusions

A number of the distinctive features of dialogue with hypermedia systems can be
modelled quite naturally using the CSP notation. The example presented in section 4
shows how it provides us with a basis for reasoning about key concerns of integrating
presentations using a number of different output media, some of which are temporally

extended and therefore pose particular problems of synchronisation. It thus provides a
formal basis for modelling at least some of the features identified as being of interest in
the recent Amsterdam model of hypermedia systems [12], and assists the hypermedia
designer in avoiding 'media ghettos' [13] by supporting better integration of
information represented using different media.

One important feature of formal models such as that presented above is that they
provide a basis for stating and proving properties which the system modelled is
intended to have. A property of hypermedia systems in general is that they should not
require the user to attend to more than one fragment of speech at any one time. This
property can be expressed in terms of CSP event traces, and can be shown to hold (or
not) for a particular system by a process of mathematical reasoning for which
automated support can be provided. Individual clients may also wish to state particular
requirements for hypermedia systems in terms of, for example, their resource usage. If a
client does not have the hardware necessary for producing sound output, we can model
the fact that their system should not make use of sound or voice output, and show, for
any proposed system design, that this is the case. We can also, as system designers,
compare different models of a system to discuss the effectiveness with which they
support particular activities. For example, the fact that one potential implementation
might require a user to engage in more low-level activities (such as keypresses and
mouse clicks) than another would be evident from CSP traces of system events.

We aim to develop the work described in this paper in a number of directions. As
described earlier, our first priority will be to extend models such as those presented in
section 4 to investigate the extent to which they can be scaled up to model complete
systems such as those we have already built, and the way in which they can then be
used to support design and development activities as suggested above. We also intend
to investigate the use of extensions to CSP such as Timed CSP (see, for example, [14]) in
describing timing and synchronisation constraints between presentations using
different media more precisely. Finally, once we have developed a fuller understanding
of the potential applications of CSP in the design of hypermedia systems, we would like
to evaluate its utility with respect to other notations for modelling concurrent systems.

Acknowledgements

The authors would like to thank Ben Potter, Jean Baillie, Martin Loomes, Jill Hewitt,
Mike Bearne and Ian French for the advice and discussions which contributed to the
writing of this paper.

References

[1] M. Green. A survey of three dialogue models. ACM Transactions on Graphics, 5(3),
July 1986.

[2] P.A. Palanque, R. Bastide, L. Dourte and C. Sibertin-Blanc. Design of user-driven
interfaces using Petri nets and objects. In Advanced Information Systems Engineering,
C. Rolland, F. Bodart, C. Cauvet (eds), Proceedings of the Fifth International

Conference, CAiSE '93, Paris, France, June 1993. Lecture Notes in Computer Science 685,
Springer-Verlag.

[3] H. Alexander. Formally-Based Tools and Techniques for Human-Computer
Dialogues. Ellis Horwood, 1987.

[4] G.D. Abowd. Agents: Communicating interactive processes. In Human-Computer
Interaction - INTERACT 90, D. Diaper, D. Gilmore, G. Cockton and B. Shackel (eds),
Elsevier Science Publishers B.V. (North-Holland), 990.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[6] R. Dannenberg and M. Blattner. The trend toward multimedia interfaces. In
Multimedia Interface Design, M.M. Blattner and R.B. Dannenberg (eds), Addison-
Wesley, 1992.

[7] HyperCard Reference, Claris, 1989.

[8] H. Alexander. Structuring dialogues using CSP. In Formal Methods in Human-
Computer Interaction, M. Harrison and H. Thimbleby (eds), chapter 9, Cambridge
University Press, 1990.

[9] J. Hewitt, J. Sapsford-Francis, G. Bolstad, O. Eftedal, P. Halford, D. Vervenne and M.
Verheyen. MODEMA - A knowledge based browsing system to facilitate the
employment of people with disabilities. In Rehabilitation Technology, E. Ballabio, I.
Placencia-Porrero and R. Puig de la Bellacasa (eds), IOS Press, 1993.

[10] KnowledgePro Windows User Manual, Knowledge Garden Inc, 1991.

[11] J. Hewitt, J. Sapsford-Francis and P. Halford. Use of multi-media in a public
information system. In Proceedings of the 1993 International Symposium on Multi-
Media Technologies and Future Applications, BCS/IEEE/RTS, Southampton, April
1993.

[12] L. Hardyman, D.C.A. Bulterman and G. Van Rossum. The Amsterdam hypermedia
model: Extending hypertext to support real multimedia. Hypermedia 5(1), 1993.

[13] B. Laurel, T. Oren and A. Don. Issues in multimedia interface design: Media
integration and interface agents. In Multimedia Interface Design, M.M. Blattner and
R.B. Dannenberg (eds), chapter 3, Addison-Wesley, 1992.

[14] GM. Reed, A.W. Roscoe and S.A. Schneider. CSP and timewise refinement. In 4th
Refinement Workshop, J.M. Morris and R.C. Shaw (eds), Proceedings of the 4th
refinement workshop, organised by BCS-FACS, January 1991, Cambridge. Springer-
Verlag, 1991.

