

Citation for the published version:

Shallaw Mohammed, Doolan, M., Wernick, P., & Wakelam, E. (2018). Developing an
agent-based simulation model of software evolution. Information and Software
Technology, 96, 126-140. DOI: 10.1016/j.infsof.2017.11.013

Document Version: Accepted Version

This manuscript is made available under the CC-BY-NC-ND license
https://creativecommons.org/licenses/by-nc-nd/4.0/

Link to the final published version available at the publisher:
https://doi.org/10.1016/j.infsof.2017.11.013

General rights

Copyright© and Moral Rights for the publications made accessible on this site are retained by the
individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied and it is a
condition of accessing publications that users recognise and abide by the legal requirements
associated with these rights. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url
(http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or
not-for-profit purposes without prior permission or charge.

Take down policy

If you believe that this document breaches copyright please contact us providing details, any such
items will be temporarily removed from the repository pending investigation.

Enquiries

Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at
rsc@herts.ac.uk

1

1. Introduction

In software engineering, the process of the sequence of changes that

occurs during the software systems lifetime comprising both system

development and maintenance, was first termed a software evolution

process by Lehman and Belady in the 1970s [1]. “The successful

evolution of software is becoming increasingly critical since the

increasing dependence on computers and software at all levels of the

society” [2]. Therefore, in order to find ways to manage and control the

evolution of software systems, researchers and practitioners have strived

to reveal the process by which software systems have evolved [3].
One of these endeavours was Lehman’s description of the “global

software process” [4] as a feedback system of a collection of people and

events that control the evolution of software-based systems. Lehman

presents this process as being driven by feedback which is made explicit

in the 7th law of software evolution that the “E-type evolution processes

constitute multi-level, multi-loop, multi-agent feedback systems” [5].
Based on this view of the software evolution process, Wernick and

Lehman [6] and Kahen et al. [7] developed several simulation models of

software evolution in an attempt to understand and reveal the reasons and

the factors behind software evolution. Recently, Wernick et al. [8] have

developed a simulation model of the software evolution process by

applying social view actor-network theory (ANT) presented by Latour

[9]. ANT can be described as a perspective for viewing and describing

social and technological situations by considering both human and non-

human elements equally as active entities within an interconnection

network [10]. Wernick et al. built this model by using a system dynamic

(SD) general purpose simulation environment. They justified using this

tool for modeling as it provides a usable and simple toolset. However,

according to [8], a pure SD simulation environment is not the most

appropriate environment for representing some ANT aspects. The SD

environment provides no support for the flexibility to represent the

complexity of the participants making up the model.

Therefore, Wernick et al. suggested reworking the SD model to a

more appropriate, agent-based simulation environment and modifying

the new model to a more accurate simulation model, then checking the

behaviour of the new model against the existing SD model. Based on this

suggestion, the study presented in this paper was undertaken to rework

the current SD model to an agent-based simulation environment and to

check the behaviour of this new model compared with the current SD

model. Therefore, in this work, the Repast simulation toolkit was chosen

as an agent based simulation platform that was used to develop the new

model based on the specifications of the existing SD model.

Furthermore, this study addresses the issue of calibrating the SD

model which was conducted without referring to any real world data due

to the lack of available data in representing real world processes of

evolution [8]. In other words, the ability of the model to reflect the real

world of software evolution processes has not yet been investigated. This

study addresses this issue through an investigation conducted to check

the ability of the new agent-based model to reflect real-world aspects of

software evolution. At this stage of the research, the new model does not

take into account individual human aspects; the model is a starting point

for future work where this aspect will be further developed.

Consequently, this work aims to address the following research

questions:

RQ1 How does the ANT-based model of software evolution built

in an SD simulation environment behave if reworked to an agent-

based simulation environment, in comparison to the existing SD

model?

RQ2 Does the new agent-based simulation model of software

evolution processes have the ability to reflect the real-world process

of software evolution?

Section two presents the background and literature review of actor-

network theory (ANT), an explanation of the ANT-based model of

software evolution ‘SD model’ and a description of the agent-based

simulation modeling including its advantages and issues. Section three

describes the methodology of conducting this research which includes

specifications, design and implementation phases that were undertaken

to build the Repast simulation model of software evolution. In section

four, the investigation conducted to evaluate the Repast simulation

model and the findings of these investigations is presented. This section

consists of two parts. The first part presents a comparative evaluation

between the new Repast model and the previous SD model, including

their results. This part addresses the first research question. In the second

part, an investigation of the Repast model to check its ability to reflect

the real-world process of software evolution is described, including the

calibration of the investigation results. The second research question is

addressed in this part. In section five, the discussion of the above findings

is presented. Finally, this paper ends with section six which presents

evaluation of the research work including its limitations and future work,

and the concluding view of the contributions made in this work.

2. Background and Related Work

This section presents a background of ANT theory, an explanation of

the SD simulation model of software evolution and a literature review of

agent-based simulation modeling.

2.1 Actor Network theory (ANT):

With the aim of explaining complicated interactions in a research setting,

Bruno Latour and Michel Callon described, in the early 1980s, the

principle of actor-network theory (ANT) as a perspective for viewing

complex social situations [11]. Latour [10] claimed that ANT theory

differs from the traditional view of social and technological theory. In

the traditional view, elements forming the social situations are described

as categories such as large, small, human and non-human [12], while

ANT theory describes both human and non-human elements equally as

an active entity within an interconnection network [10]. According to

Wernick et al. [8], the ANT view of the social world can be described as

seeing the complexity of social world behaviour and the technical

situations within it as a situation caused by the correlations between the

elements that form the social world. In the concept of ANT, Latour [10]

presented three types of elements: actors, mediators and intermediaries.

Within ANT, the actor was described as an active entity that is “not

the source of an action but the moving target of a vast array of entities

swarming toward it” [9]. The actor can be a collective of human

‘developers, manager’, non-human ‘system’ and even intangible

elements such as ‘idea, situation’ [13]. Latour [9] also stated that using

the term actor was not arbitrary. According to the author, it refers to the

actors in theatre shows whose acting is constrained by different factors

that shape their roles.

2

Latour described a mediator as an element within ANT that can

transform, translate, distort and modify the meaning or elements that they

are supposed to carry [9]. This means that even if the mediator looks very

simple it may turn out to be complex since it can create unpredictable

behaviour which will affect the entire element connected with it in the

actor-network. Therefore, mediators can be recognised as the elements

that are both written and interpreted by humans and by whom the

interpretation of the written elements may differ from one person to

another [3]. Latour described possible examples of the mediator as law,

science, religion, economies, psyches, moralities, politics and

organizations [9].

An intermediary was described by Latour as an element whose output

depends only on its inputs. It is anything that passes information from

and stands between one actor and another [13], transparently moving

data without affecting its meaning. Therefore, in order to define an

intermediary’s outputs, it is enough to define its inputs. No matter how

complex the intermediaries, they can be ignored in building cause-and-

effect models. However, Latour illustrates the changeability and

complexity of a description of both intermediary and mediator by

example of a simple intermediary such as a computer function that can

turn out to be a horrendously complex mediator if it breaks down;

intermediaries can only be ignored if they continue to make no semantic

changes to their inputs over a simulation run.

The essential concept in ANT is the communications channel:

networks that link together the actors, mediators and intermediaries.

Within this network of communications channels, actors may join or

leave a network and are constantly changing the web of relationships. By

joining the network, these actors may bring their own network with them;

an actor can sometimes be decomposed into one or more sub-networks.

Moreover, within ANT, the level of commitment of each actor to the goal

of the system is illustrated as a changeable commitment that depends on

the actor’s own situation and the influences on it from other network

elements [9].

2.2 System dynamic (SD) simulation model of software evolution:

The following description of the SD software evolution simulation

model is based on Wernick et al.’s paper [8]. The reason of focusing on

Wernick et al.’s paper in illustrating SD model is that the concept and

the implementation of this model was essentially presented and

described through this paper. Furthermore, the new model (Repast

model) is the continuing work of Wernick et al.’s paper

recommendations.

By using ANT, Wernick et al. developed a software evolution simulation

model of a global software process based on a system dynamics

environment. A global software process includes in one concept the

collections of people, things and events that control software-based

system evolution [4]. The purpose of developing an ANT-based model

of software evolution is to reveal and illustrate better the factors under

which a software-based system is evolved. By adopting ANT in the

modeling of a software evolution process, it is possible to consider both

human and non-human elements within the system as active elements.

This enables a wider range of entities to be considered in this model than

in previous models such as [7], [6]. It also provides the ability to consider

the software system as a participant on its own. Wernick et al. illustrated

that the first task in building an ANT model of software evolution is

identifying the entities, ‘actors, mediators and intermediaries’ that make

up the social and technical situation within which evolution occurs

through the connections between them. Accordingly, this model is

structured as 16 entities, comprising 13 actors and 3 mediators, which

can be seen in Appendix 1. For the reason noted above, intermediaries

such as programming language compilers have not been included as

elements in this model.

In [8] these entities were identified by the authors based on their

experiences as users and software developers, their previous research

[14] and general knowledge of software development. The behaviours of

these actors and mediators were quantified in the form of SD equations

to provide the ability to quantify the changing degree of support of each

of these participants to the evolution process based on the structure of

the ANT model. A typical equation for the participants in the model can

be seen in the Health of software evolution process equation as follows:

Health of system evolution process = (Health of system evolution

process × health own weighting) +

(Developers + Immutable tools

 + Mutable tools + Project manager

 + System change input queue + System design/architecture +

System development owners)/7× (1 -Health own weighting)

This equation illustrates how each participant re-computes its value

based on the average of the values of each of those participants that

influences it in each time step. The average of these participants is

calculated in the following part of the equation:

Average = (Developers + Immutable tools

 + Mutable tools + Project manager + System change input queue +

System design/architecture + System development owners)/7

Then the average value is weighted against the (health of system

evolution process) value from the immediate past as following:

Health of system of evolution (current time step) = Health of system

evolution process (past time step) × health own weighting + Average

x (1- health own weighting)

The ‘own weighting’ variable above is contained in each participant.

It refers to the percentage of the participant's own existing state weighted

against the extent to which other participants affect it. The degree of

commitment of each participant actor and mediator is represented

numerically with a default value of 1, which represents the situation in

which this participant maintains a position of neutrality as to whether

system evolution is necessary or desirable – irrespective of whether this

evolution is objectively necessary or not. A health value greater than 1

represents a positive attitude of the participant, i.e. a desire to evolve the

system, while a value of less than 1 represents a definite negative stance

against evolving the system.

The equation above was used in SD model to perform the connection and

behaviour of that participant (Health of system evolution process in the

previous case) with other participants in the network. This is illustrated

in Fig 1.

3

Fig 1: Sample of SD model equations interconnection.

Figure 1 is a sample of how the equation works in each participant. The

hexagon shape represents health of system evolution process and its

interactions with other participants in the actor network.

The result of each equation will then be going through complex

interconnections in the actor network to return eventually to affect its

own value; this can be seen in Appendix 1.

This earlier model was developed using an SD simulation

environment because using this tool for modeling provides a usable and

simple toolset. However, an issue encountered with this simulation

environment is that the SD environment is not the most appropriate

environment to represent some aspects of ANT. The SD simulation

environment provides no straightforward support for flexibility in

representing changes in the linkages between participants making up the

model. Therefore, it was suggested by Wernick et al. that this SD model

be reworked in a more appropriate simulation environment, an agent-

based simulation environment, to form the basis of a model more

representative of the real world.

2.3 Agent-based simulation modeling

Agent-based simulation modeling (ABM) can be defined as a

modern computational simulation method that enables researchers to

build, analyse and investigate models consisting of autonomous agents

that interact with each other within an environment [15], [16], [17]. This

new method of modeling has gained increasing importance, growth and

popularity during the last 10 years [16], [17]. According to Railsback et

al. [15], the growth of ABM is driven essentially by its ability to address

the issues and problems that cannot be solved in traditional simulation

modeling, such as implementation of social complexity. The meaning of

the term agent in the context of ABM is controversial between authors.

Bonabeau [18] argues that the term agent in agent-based simulation

modeling refers to the collection of autonomous decision-making entities

that are used in simulation modeling. On the other hand, Gilbert [16]

states that the agents are “either separate computer programs or, more

commonly, distinct parts of a program that are used to represent social

actors—individual people, organizations such as firms, or bodies such as

nation-states”. While, according to Macaland North [17] in the context

of ABM, the term agent has no accurate definition or clarification and it

is the subject of occasional arguments and discussion.

 Each agent independently determines its position and situation and

makes decisions based on a set of rules and conditions [18]. Helbing and

Balietti [19] also argued that agents’ behaviour and interaction can be

formalised as equations, but they are commonly built through conditions

such as the if-then kind of logical operation that provides the modeling

approach with more flexibility. These agents are typically represented in

a programming language implementation as objects that contain their

state and behaviour rules. In building each agent, the modeler needs to

encode the rules that define its behaviour, how these rules interact and

the specification of the agent’s activation [20].

According to Helbing and Balietti [19], the advantage of ABM is that it

not only represents interactions between agents but also allows the ability

to determine the implementation of different assumptions and

hypotheses; it also gains from modularity, great flexibility, large

expressiveness, and the possibility to execute agent actions in a

parallelized way.

Bonabeau [18] describes three issues related to the implementation of

ABM in different areas such as social, political and economic science.

The first issue is common to all simulation modeling techniques in that

the model should be built for a specific purpose with an accurate level of

description and detail. Accordingly, simulation modeling is considered

more as an art than a science. The second issue is related more to social

sciences in which the simulating of human agents is difficult to quantify

as human behaviour is complex, subjective and potentially irrational.

The third issue is related to the practical aspect of using ABM. Within

the modeling of a system using ABM, beside the aggregate level of

describing the system, a description of low-level agents that make up the

system is also required. With regard to modeling complex systems, it can

be difficult and time-consuming to model such systems in sufficient

detail; hence the simulation of a complex system remains a problem.

Based on previous literature, although the use of ABM can provide

usability, flexibility and expressiveness for investigation and

experiments in different scientific areas such as social science,

economics and political science, there are some issues that need to be

taken into account in creating ABM simulations, especially in social

modeling, which require simulation of human behaviour and need

detailed descriptions for low-level agents.

3. Research Methodology

To address the research questions an agent-based simulation platform

was chosen and the existing SD model reworked using the latter as a

specifications. A comparative evaluation between the new model and the

current SD model was conducted to check the behaviour of the new

model followed by further tests to check why the new model performed

with such behaviour. Finally, an investigation was carried out to check

the ability of the new agent-based simulation model to reflect the real-

world simulation of software evolution. This included an interview with

an expert in software development to help in the quantification of inputs

to simulation variables.

3.1 Specification and Design:

3.1.1 The specifications required to develop the new model

The development of the new agent-based simulation model of system

evolution process was based on reworking the current SD model.

4

Therefore, the design specification of this new model was required to

meet the specifications of the existing SD model as presented by Wernick

et al. [8] as follows:

 Each participant in the ANT network is represented and treated

as an autonomous entity that has its own identity, a potentially

complex, multi-variable state.

 Represent an arbitrary number of inward and outward links that

represent participants’ connections with each other in the

network.

 Produce and export graphical and numerical outputs that

represent the behaviour of the new simulation model.

 Cope with complex multilevel feedback flows between the actors

and mediators.

 Provide the ability to control and schedule time steps during the

running process.

 The model should have the ability to change and control variable

values that represent each participant in the network during the

running period in order to monitor the rate of change in the degree

of commitment of each of these participants.

Moreover, in order to build a new simulation model that represents

more accurately the real-world process of software evolution,

Wernick et al. [8] proposed an improvement in the specifications of

the new simulation model to support the ability to calculate and

store complex data that represents the condition of each participant,

actor or mediator, in the actor-network.

3.1.2 Description of the Repast simulation environment

Repast can be defined as a free, open source, agent-based simulation

toolkit that was developed by Sallach et al. at the University of Chicago

in close collaboration with Argonne National Laboratory [21] , [17]. It is

applicable in a pure Java and Microsoft implementation as an agent-

based simulation environment [21].

Although the Repast toolkit focuses essentially on simulating social

behaviour, it can be used for a different range of applications from social

systems, to evolutionary systems, to market modeling, to industrial

analysis [21]. Due to this variety of uses, Repast is represented in two

editions, Repast Simphony and Repast for high-performance computing

(Repast HPC) [22]. The edition used for the work reported here to

implement the new simulation model is Repast Simphony 2.2, released

on 26 June 2014.

Repast Simphony is defined as a Java-based modeling system that

provides a richly interactive, tightly integrated platform running on

Microsoft Windows, Apple Mac OS X and Linux, and supports the

ability to develop models of interacting agents with high flexibility [22].

Repast Simphony consists of two basic platforms of programming

language: Java and Repast ReLogo which is defined as a workplace tool

based on the Groovy programming language. According to [23], Repast

ReLogo represents the construction of models in the form of packages,

each of which contains a number of default Groovy classes such as

UserGlobalsAndPanelFactory and UserObserver. These classes provide

the ability to create, control and perform interactions between the agents

in the simulation model. ReLogo also symbolises the agents in the model

in terms of turtles, which represent a class of code that can be used to

state the behaviour of each agent in the model [24].

3.1.3 Reasons behind choosing Repast

The reasons behind choosing the Repast Simphony simulation

environment, particularly the ReLogo platform, to rework the current SD

model are that this simulation environment provides the following

abilities:

 It can create an autonomous entity, agent, in the form of

Groovy classes termed turtles [23]. These turtles can be easily

controlled to represent the behaviour and characteristics of

actors and mediators. This capability is crucial to build the

structure of each actor and mediator in the simulation model.

 It provides different platforms of programming languages and

tools, including “the ReLogo dialect of Logo, point-and-state

charts, Groovy, or Java, all of which can be fluidly

interleaved” [22]. It also provides the capability of transferring

from one platform to another without rebuilding the model

from scratch. These capabilities provide the flexibility to

rework the new model into further platforms in future work.

 Repast Simphony also supports a flexible environment to build

links between the agents [24]. This provides the ability to

develop and represent the linkages between ANT elements

‘actors and mediators’ and in particular the ability to cope with

the frequent dissolution of actors from the network.

 According to [15] Repast Simphony can export output data in

files of different formats such as text and Excel worksheet, and

also record and schedule actions at predefined times.

 Repast ReLogo is a suitable environment for representing

agents in separate pre-built classes and objects [23] that make

it easier to reuse these classes to code new agent types without

building them from scratch.

3.1.4 Design and structure of the Repast simulation model:

The participants: actors and mediators

Wernick et al.’s SD ANT-based model of software evolution consists

of 16 participants: 13 actors and 3 mediators [8]. In order to meet the

requirement to represent each of these participants as an autonomous

entity, the design of the new model exploits the ability of Repast to create

independent agents.

The structure of each agent consists of two parts: a declaration part and

a behaviour part. In the declaration part, the local variables and values

that represent the characteristic of the actor or mediator are declared,

while in the behaviour part, the rules that form the behaviour of each

participant are defined using equations and if-then conditions, as

proposed by Helbing and Balietti [19] (see Section 2 above). The

common structure of each participant is shown in Fig 2. The same shape

of box used by Wernick et al. in the diagram of their SD model is used

here to illustrate both actor and mediator structure.

The linkages between the participants in the model

In order to meet the specification of representing linkages between

actors and mediators, the design of these linkages was performed using

global variables. Each of these variables carries the participant’s degree

5

of support and commitment toward the software evolution process and

represents the influence of each of these participants in the model. Fig 2

shows the structure of the interaction between the participants in the

Repast model. The term "Link variable" in this Figure represents the

global variables that perform the links between actors in the model.

Fig 2: Structure of the participants in the Repast model and the linkages between them (Edited Source: [8](.

3.1.5 Constraints and limitations of the design

In the design of the Repast model it has been noticed that there are

limitations in the interface design. The current interface design is built

upon the execution screen provided by the Repast simulation toolkit

which is not flexible enough to control all the output tools accurately.

Therefore, it is recommended for future work to design an appropriate

interface that provides more flexibility to control the Repast simulation

model.

3.2 Implementation:

This subsection presents the implementation work undertaken to develop

the Repast simulation model of software evolution.

3.2.1 Participants: actors and mediators

In order to meet the specification requirement of representing each

actor-network participant as an autonomous entity, these participants

were implemented by exploiting the ability of the Repast ReLogo toolkit

to represent each participant as an independent agent. Such agents are

represented in Repast ReLogo as turtles. To build the model, the 16

participants (developers, project manager, mutable and immutable tools,

etc.) were implemented as 16 independent turtles. Fig 3 shows a sample

of these turtles.

Fig 3: Sample of implementing participants in the model as turtles.

Within each of these turtles, the participant’s structure is partitioned into

two parts as stated previously, representing data declaration and

behaviour respectively.

In the declaration part, the value of ‘own health weighting’ for each actor

is defined as afloat variable named health_weighting. The own health

weighting represents “the effect of potential opinion-forming inputs on a

key individual depending on how receptive that individual is to ideas

from and the opinions of others” [8]. The reason for defining the

health_weighting as a float variable is to provide the ability to set the

weighting value of each participant’s own health to a more accurate value

than would be the case were an integer type to be used. In the behaviour

part, the characteristic that controls the behaviour of each participant in

the model is defined using an if-then type of condition code and

equations.

3.2.2 Linkages between the participants

As mentioned in the specification and design subsection, the link

variables which represent the linkages between participants are

developed using global variables to meet the specification requirement

of building the interactions between the participants. The declarations of

the global variables are implemented using the Repast method

addGlobal (variable name, value). This method is used to declare the

linkages between the participants in the model and also to set the initial

value of each of these links that represent the commitment of each these

participants. It is used to build 16 links, each of which represents the link

of one participant in the model. Fig 4 shows a sample of the declaration

of these variables within the Repast ReLogo workplace and the values

which were set for each variable.

6

Fig 4: The declaration of the linkages between participants.

The default value for each of these variables was set to a value of 1 to

represent the case in which there is no positive or negative attitude from

the participants toward the evolution process of the system.

3.2.3 The construction of a running platform

In the Repast ReLogo simulation toolkit, a description of how the

program runs must be written in the UserObserver.groovy class [23].

According to Kielbasa [23], the UserObserver.groovy consists of two

functions that always exist, setup() and go(). The Setup() function

creates instance types of agent-named instantiation and indicates their

initial state, while the go() function specifies the order and modality of

agent behaviour. Accordingly, the running platform of the Repast

simulation model was built using the UserObserver.groovy class. In the

setup() function, an instance of each participant in the model was created

using the method createTurtle_name(Turtle_number). While in the go()

function, the behaviour of each of these participants is implemented by

calling each turtle using the method ask (turtles()){method()}. Within

this method the behaviour part built in each participant is called. By

calling the behaviour part, each participant will behave according to the

conditions and equation in the behaviour part that was explained

previously; see Fig 5 shows samples of creating and calling the instance

turtles.

Fig 5: Samples of creating the instance for each participant and calling its behaviour.

3.2.4 Output tools The output tools of the new Repast simulation model of software

evolution are implemented by exploiting the ability of the Repast

7

ReLogo simulation environment toolkit. According to [23] The ReLogo

workplace provides the ability to display each agent’s ‘participant’

outcome through a Time chart screen that shows the behaviour for that

agent in each time step. Accordingly, the output tools of the new Repast

simulation model are implemented by building two observation windows

of time series chart: the evolution health observer chart and the

participant tracer chart.

1) Evolution health observer: this chart displays the output of

the participant ‘Health of the system evolution’ at each time

step which represents the evolution health of the system.

2) Participants’ tracer: this chart displays the output of all 13

actors and 3 mediators in the Repast model. By displaying the

output of these participants, the model provides the ability to

trace each of these participants and their behaviour in response

to the change of influence of other connected participants.

These two output tools can be seen more clearly in the Results section

below.

4. Findings and Results

4.1 Comparative evaluation:

The aim of conducting a comparative evaluation method in this study

was to explore how the new Repast simulation model of software

evolution process behaved in comparison with the existing SD model,

and to reveal and understand the reasons behind this behaviour.

Therefore, the Repast simulation model of software evolution was tested

using the same conditions that were used in the calibration of the SD

model in order to conduct a comparative evaluation between the two.

According to Wernick et al. [8] in the calibration of the SD model, the

default values of the participants in the model were represented by a

value of 1. This value represents the behaviour of each participant in the

SD simulation model that has no positive or negative effect on the system

evolution process. A value of >1 in the model represents a positive

feeling and attitude toward the system and the process of software

evolution, while a value <1 represents negative feelings and support

toward the system [8]. In addition, the inputs of the computation of each

participant were given an equal weighting percentage, 50%, to enable the

model output to be computed. According to Wernick et al. [8], the first

calibration was carried out by running the SD model for 100 time steps

without any change in the actors’ attitudes, while in the second

calibration, the system sponsor attitude was reduced to -0.4 for one time

step at time step 45.

Accordingly, similar to the calibrations of the SD model, in this study

the first test was conducted to check the behaviour of the Repast

simulation model by setting the nominal ‘default’ value of the model

participants to 1, and equal weighting percentages of 50%. Following

this the model was executed for 100 ticks. For the second test, the value

of the sponsor’s support was reduced to -0.4 at tick 45 to represent a

temporary loss of enthusiasm towards system evolution by this actor. In

the Repast model, this change was conducted by using a condition code

of, if (tick_count ==45) {Sponsor=-0.4} in the behaviour part of the

Sponsor’s agent turtles. Note that the reason for using the reduction of to

-0.4 in testing the Repast simulation model is to apply the same

conditions that were used by wernick to calibrate the SD model,

consequently to perform the comparison evaluation precisely.

Following this, the comparison evaluation was conducted based on

Vartiainen’s proposal. According to Vartiainen [25], in order to conduct

an effective comparative evaluation between two similar cases, the

comparison should be conducted by finding out the differences between

them rather than the similarities. Vartianinen illustrated the relationship

between the methods of comparison and similarities of the cases in Fig

6.

Fig 6: Similarity versus difference of the case compared [25].

Therefore, the results of the first and second test of Repast simulation

model were compared with the results of the SD model calibration

presented by Wernick et al. [8]. This was undertaken by checking the

differences between each case. By using the evolution health observer

output tool and applying the first test to the Repast simulation model in

which there are no changes in actors’ attitudes; the result illustrated in

Fig 7 shows that the health of the system evolution process denotes a

stable behaviour fixed on a value of 1 for 100 ticks ‘time step’.

.

While the result of the second test shows that when the sponsor’s attitude

is reduced to -0.4 for one time tick in tick 45, the health of the evolution

process dropped to 0.993 at tick 45, to 0.987 at tick 46, and to 0.982 at

tick 47 as illustrated in Fig 8.

8

Fig 7: Health of system evolution process: ANT equal weighting.

Fig 80: Health of system evolution process with negative support.

9

The result in Fig 8 shows that the health of the evolution process

continues to decline until tick 50 when the health of evolution is equal to

0.978. According to this result, after tick 50 the evolution health starts to

increase again to become 0.979 at tick 51 and 0.980 at tick 52. The

system evolution health continues to increase to 0.980 at tick 53 and to

0.981 at tick 54. However, the software evolution health does not return

to its stable health at the value of 1, even at tick 100. To indicate the tick

step in which the health of the software evolution process returns to its

previous stability at a value of 1 before applying the pulse, the model is

re-run for 200 ticks. The numerical result shows that the software

evolution process will not return to its stable health ‘0.999 ~1’ until tick

152 as shown in Table 1.

To evaluate the results above, a comparison was conducted by

checking the difference between these results and the results of the

calibrations of the SD model proposed by Wernick et al. [8]. According

to Wernick et al. [8], the results of the first calibration of the SD model

show a pattern of stable behaviour illustrated in Fig 9. This can be

explicitly seen in the ANT equal weighting without pulse. While in the

second calibration Wernick et al. presented the SD model “shows a

pattern of increasing oscillations. ...due to a single stimulus” [8]. This

can be seen in Fig 9, see ANT equal weightings with pulse.

Table 1:

The tick in which system health return to stability

Health of system evolution Tick ‘time step’

0.998 151

0.999 152

0.999 153

0.999 154

0.999 155

Fig 9: The behaviour of the existing SD model [8].

In comparison, the result of the first test of the Repast simulation

model in Fig 7 shows no differences in behaviour, compared to the result

of the first calibration of the SD model. This shows stable behaviour

fixed on a value of 1 for 100 time steps, when there is no change in the

With Pulse line

Without Pulse line

;

10

attitudes of the participants in the model, whereas the results of the

second test show that when the attitude of participant ‘Sponsor’ is

reduced to -0.4 in tick 45, the health of the system evolution in the Repast

simulation model reduces rapidly to 0.978 in 5 tick times and then

gradually increases to its stable trend in 135 tick times. This shows a

pattern of stability behaviour which differs from the pattern of increasing

oscillations in the behaviour of the SD model in the result of the second

calibration [8]. While on the other hand, the Repast model shows similar

behaviour to the SD model, showing a pattern of decrease in the

evolution health when affected by negative pulse of a participant.

Further observation:

In order to gain a better understanding of possible real-world reasons

underlying the Repast model results, the behaviour of all participants in

the model was traced using the participants’ tracer output tool. This tool

was developed especially to provide the ability to observe the behaviour

of each actor and mediator in the Repast model, as mentioned in section

three. The results of this show that all actors and mediators in the model

are affected by the change of sponsor’s support; in particular, system

development owners, users and sales people, as shown in Fig 10. The

results indicate that the support value of the system development owner

‘in blue’ was reduced to its lowest value of 0.899 at tick 46. The results

also show that the lowest point of support value of the users ‘in pink’

was 0.905 at tick 47 and the value of sales peoples’ support ‘in light blue’

was reduced to 0.910 at tick 65 as shown in Fig 10.

It can be seen from Fig 10 that the Sponsor’s health fell to 0.3 at time

step 45 instead of 0.4 this is because the effect of feedback in the ANT

network, which made the sponsor’s reduction in commitment return to

affect itself.

 Based on these observations, the results show that all the participants

in the model are affected by this temporary negative support of the

Sponsor. These participants in turn pass on this change, which eventually

shapes the behaviour of the system evolution health. This shows a

multilevel and complex feedback of processes between the participants

in the actor-network which is compatible with Lehman’s 7th law of

software evolution in which he states that, “E-type evolution processes

constitute multi-level, multi-loop, multi-agent feedback systems” [5].

 As presented by [8], the SD model was calibrated without reference to

any data or estimations that reflect real-world aspects of system

evolution. Therefore, in order to check the ability of the Repast model to

reflect a real-world system evolution environment, the next investigation

was conducted.

Fig 10: The response of each actor and mediator to the change in sponsor’s attitude.

11

4.2 Investigation using the Repast model:

To investigate the ability of the Repast simulation model to reflect

real-world process of software evolution, Wernick et al. [8] proposed

checking the behaviour of this simulation model by using real-world

data. Wernick et al. also noted that this sort of quantitative data are not

readily available but can be approximated through experts’ views. Based

on these suggestions, an interview was conducted with one of our authors

(Wakelam), a researcher at the University of Hertfordshire and an expert

with 40 years’ experience in managing software development [26], to

investigate the Repast model. According to Wakelam [27], in the

software development industries, the attitude and influence of human

factors (particularly the project manager), have more effect on software

evolution health and software project success or failure than the tools

used in the development process.

With regard to this, Charette [28] stated that the, “Bad decisions by

project managers are probably the single greatest cause of software

failures today. Poor technical management, by contrast, can lead to

technical errors, but those can generally be isolated and fixed”. Similarly,

according to Gulla [29], the documented causes of software project

failure show that the majority - 54% - are associated with project

management, while technical and tools were the least likely factors at

3%.

Based on the above it was concluded that the criterion used for

investigating the behaviour of the Repast model is that the behaviour of

the Repast simulation model should test whether the health of the

software evolution process is affected significantly by the level of

support from the project manager.

From our discussions, estimates were made of the effect that

participants, in particular sponsor, project manager, developer, user and

mutable tools; have on the health of system evolution. On this basis, the

most significant factors in the software development process were

arranged in the following orders and percentages:

1) Project Manager 70%

2) Sponsor 65%

3) Developers 60 %

4) Mutable Tools 25 %

Each of these percentages was taken individually to represent the degree

of the effect of each of these four factors on software development in

industries without intending to be added up to 100 %. In other words,

these percentages refer to, for example, the project manager’s relative

impact on the success of the software development worth 70 points.

Although these estimates of the participants’ relative influence are to

some extent subjective and depend strongly on the particular situation,

they do form a first step in representing these real-world impacts in the

calibration of ANT-based software evolution modeling. As presented in

section three, the own health weighting for each participant in the Repast

simulation model refers to the percentage of these participants’ effect on

the health of system evolution. Therefore, in the Repast model, the

assumptions above are used to reset the own health weighting value for

each of the participants ‘project manager, sponsor, developers and

mutable tools’. Accordingly, instead of the arbitrary value of 50 %, the

own health weighting value is reset to 70 % for project manager, 65 %

for sponsor, 60% for developers and 25% for mutable tools.

Following this change to the model, a test was conducted to check

and measure the behaviour of the simulation by measuring the health of

the system evolution when it is affected by change in the level of support

of one of these participants. This test was conducted by reducing the

degree of support of the project manager arbitrary to -0.4, while the other

participants in the model retain their initial degree of support at a value

of 1. “In the real-world, such temporary reductions in an individual’s

support could be due to causes such as financial or political pressures”

[8]. This was represented in a simulation run of the Repast model by

applying the condition of reducing the value of support of project

manager in the test, to -0.4 for one time tick at tick 45, when the Repast

model is run for 100 ticks.

4.2.1 Testing Project Manager’s Influence

By conducting this test and reducing the support of the project

manager for the evolution to -0.4 at tick 45, the result shows that the

health of the system evolution declined to 0.921 at tick 45, as shown in

Fig 11.

The result also shows that the health of the system evolution continues

to decrease rapidly to 0.863 at tick 46, 0.834 at tick 47 and to its lowest

value of 0.825 at tick 48. Then it gradually increases to 0.827 at tick 49,

0.836 at tick 50 and to 0.848 at tick 51, toward its stable trend. This

behaviour of the health of system evolution shows that negative support

and attitude of the project manager toward the development goal for just

one tick time will reduce the health of the system to 0.825 in 3 ticks and

will not return to its normal trend until tick 260 when the tick value is

0.999 ~ 1 as shown in Table 2. This means that the system will remain

affected by this negative pulse for 215 ticks. The model therefore

suggests that a short-term change in the behaviour of an important person

in the process has resulted in a long-term perturbation to the process

behaviour.

To further examine the behaviour of the Repast model, three additional

tests were conducted by reducing the support of the participants of

“developer, sponsor, and mutable tool” to -0.4 for one time tick at the

tick 45 separately for each test. These tests were conducted similarly to

the project manager's test by applying the same conditions to each of

these other agents. The results of these tests show that the Repast model

behaviour responses vary according to each change in the support of each

of these participants in a manner equivalent to the results obtained from

the project manager test.

Table 2:

12

The tick in which system health returns to stability

Health of system evolution Tick ‘time step’

0.998
259

0.999 260

0.999 261

0.999 262

0.999 263

Fig 11: The behaviour of the Repast model in response to the test.

13

4.3 Results analysis:

The results of the test above show that the health of the system

evolution process declined significantly as a result of reducing the

support of the project manager, as illustrated in Table 3. It shows the

participant for which the reduction of its attitude has the highest effect

on the health of the software evolution. Moreover, the table shows the

time tick in which the health of the system evolution is reduced to its

minimum value and also the period needed for the evolution health to

return to its stability for each test case.

Table 3:

Repast model responses in the test

 Effect on the behaviour

Participants
Minimum health of system

evolution

In tick (time step) Period needed to return to

stability

Project Manager (in influence

test)
0.825 48 215 ticks

Sponsor (in comparative test) 0.978 50 102 ticks

5. Discussion

This section considers the results obtained from the modelling

activities in the context of the Research Questions set out in Section 1

above.

RQ1: How does the ANT-based model of software evolution built in

an SD simulation environment behave if reworked to an agent-based

simulation environment, in comparison to the existing SD model?

The results of the comparative evaluation presented in Section 4 above

show that by re-implementing the ANT-based model of software

evolution as a Repast agent-based simulation model, the new simulation

model in comparison with the behaviour of the current SD model has the

following characteristics:

 Similar behaviour to the SD model when there are no changes

in the attitude of the participating actors and mediators.

 Similarly to the SD model, the Repast model also shows

decreasing behaviour of evolution health when affected by a

negative pulse applied to a participant.

 Greater stability in simulation runs; a return to stability after

temporary changes in parameter values compared with the

increasing oscillation behaviour of the SD simulation model.

By having the ability to measure the lowest point that the health of the

software evolution reaches and being able to measure the time in which

health returned to its stability in the Repast model as shown previously

in Fig 8, the Repast simulation model shows that ANT-based model

behaviour representing the health of software evolution can be calibrated

quantitatively, at least in theory. This result can be considered as

additional support to the conclusions drawn from the SD model

calibration that, “the ANT-based model can be calibrated quantitatively,

at least in theory” [8].

In addition, the Repast simulation model provides the ability to trace

each participant in the model by using the participants’ tracer tool which

was developed specially for this purpose. Such functionality was not

available in the SD model. Through this ability, the Repast model shows

that all the participants in the actor-network are affected by a single pulse

from an actor for one tick time generating complex multi-level feedback

behaviour between these participants: see Fig 10. This behaviour

supports the conclusion previously drawn by Wernick et al. [8] that the

ANT-based model supports Lehman’s 7th Law that “E-type evolution

processes constitute multi-level, multi-loop, multi-agent feedback

systems” [5].

This behaviour of the Repast model was also tested to reveal the factors

that drive its stability trend. The results show that the stability trend of

the Repast model behaviour is driven by its initial stability value before

the negative pulse. This result requires more calibration in future work

to check this deduction.

However, the comparative evaluation that was conducted to answer this

question has the same weakness and limitation as the calibration of the

SD model that was performed by Wernick et al. [8], since it was

undertaken without reference to any data or assumptions that reflect the

real-world aspect of software evolution. The value of all participants and

their weighting factors are arbitrary. This means that it cannot yet be

calibrated against real-world software evolution processes. Hence to

address this limitation, an investigation was undertaken to answer the

second research question:

RQ2: Does the new agent-based software evolution process simulation

model have the ability to reflect real-world software evolution?

In order to answer this question a test was conducted by modifying the

‘own weighting’ values for developer, project manager, sponsors and

mutable tools, based on values obtained through an expert interview.

This test was performed by resetting the weighting of own health of

project manager to 70%. Then in this test, the support of the “project

manager” was reduced to -0.4 in the tick 45 in order to measure its effect

on the health of system evolution.

By calibrating the results of these tests against real-world factors of

the above participants on project failures in industries, it been concluded

14

that these results are compatible with expected real-world software

evolution process behaviour.

This compatibility gives confidence that the Repast simulation model

of software evolution has the ability to reflect real-world software

evolution if sufficiently accurate participant ‘own weighting’ and other

parameter values can be obtained.

According to Wernick et al. [8]:

“We intend to develop our current model into a more detailed

simulation [an agent-based simulation model], and expect that this

simulation, when calibrated to values representing real-world

activities and actions, will be able to replicate behaviours observed

in real-world software evolution processes”.

Wernick et al. also illustrate the potential contribution of this step when

they suggest that “Such a calibrated model would undoubtedly assist in

improving the understanding of the global software process and its

behaviours” [8]. However, the investigation conducted to answer this

research question has some limitations that need to be addressed in order

to reflect more accurately real-world software evolution process

calibration in future work. These limitations and suggested future works

are presented in section 6.

6. Conclusions and Future Work

6.1 Conclusion:

The outcome of this study is the development of a new agent-based

‘Repast’ simulation model of system evolution process based on an

existing SD simulation model. This study has shown how the Repast

simulation model behaves in comparison with the previous SD model.

This work further demonstrates the ability of the Repast model to reflect

the real-world process of software evolution by conducting an

investigation built upon expert views of real-world software

development, which forms a first step in representing real-world

assumptions in the calibration of ANT-based software evolution

modeling. Another outcome of this study is an observation tool, the

‘Participants’ tracer’, to trace the behaviour of all participants in the

model, something which was not possible in the previous simulation

model.

6.2 Threats to validity:

As presented previously, the assumptions in this work were based on

an interview with an expert instead of real-world data. The reason of this

was that the sort of soft data needed over a long-term real-world project

will be difficult to capture and it might not be kept, or only be revealed

in confidential or commercially sensitive information such as progress

meeting minutes and opinions recorded in one actor’s archives on

another actor’s apparent stance. However, this might cause a potential

threat to validity. Therefore, in order to mitigate this threat, these

assumptions were calibrated against real-world studies of the factors that

impact on failures and success of software development in industry. With

regard to this matter, [28] stated that “Bad decisions by project managers

are probably the single greatest cause of software failures today. Poor

technical management, by contrast, can lead to technical errors, but those

can generally be isolated and fixed”. Similarly, according to [29], the

documented causes of software project failure show that the majority -

54% - are associated with project management, while technical and tools

were the least likely factors at 3%. [30] Also argued that large software

projects fail because of people, particularly the executive sponsor, rather

than tools and technology used in the development of software. In

addition, according to the [31], the most important person in the project

is the sponsor. Accordingly, the above studies show that the assumptions

made in this work are compatible with those of the real-world. In

addition, another potential threat to the validity of this work was the

methodoloy of comparative evaluation conducted to test the differences

and similarities between the SD model and the new REPAST simulation

model. Hence ,in order to prevent this threat, the compartive evaluation

was carried out based on Vartiainen methodology as presented in section

3.

6.3 Project evaluation and Future work:

As stated in Section 4 above, the investigation conducted to check

the Repast model’s ability to reflect real-world software evolution has

two main limitations which need to be addressed to support more results.

The first limitation is that the tests conducted in this work were

undertaken by changing the ‘own weighting’ factor of a limited number

of participants, while the ‘own weighting’ of other participants in the

network was still equally and arbitrarily weighted by 50%. The ‘own

weighting’ for all participants needs to be calibrated based on research

and interviews to reflect real-world behaviours. Following this it is

recommended that further investigations be conducted by applying

realistic temporary changes for the value for each actor and the results

compared with real-world software evolution trajectories.

The second limitation is that the attitude value of each participant in

the model was based on a generalisation from expert opinion, since the

investigation was conducted without refereeing a particular system

development project. This can be addressed by recalibrating the model,

referring to a particular system development project in the real world.

15

16

Appendices

Appendix 1: The complete structure of the ANT-based model of the global software process which was used to develop the SD model [8].

17

Appendix 2: The declaration of the switch variables that control the links between the participants.

18

References

[1] M. Lehman and L. Belady, "An Introduction to Program Growth

Dynamics," Statistical Computer Performance Evaluation, pp. 503-

511, 1972.

[2] O. Okwu, "Software Evolution: Past, Present and Future," American

Journal of Engineering Research (AJER), vol. 03, no. 05, pp. 21-28,

2014. [Online]. http://www.ajer.org/papers/v3(5)/C0352128.pdf

[3] P. Wernick, T. Hall, and C. L. Nehaniv, "Software Evolutionary

Dynamics Modelled as the Activity of an Actor-Network," IEEE,

2006. [Online].

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4595502

[4] M. M. Lehman, G. Kahen, and J. F. Ramil, "Empirical studies of the

global software process – the impact of feedback," 1999. [Online].

http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/622.pdf

[5] M. M. Lehman, J. F. Ramil, and P. Wernick, "Metrics and Laws of

Software Evolution - The Nineties View," in Software Metrics

Symposium, 1997. Proceedings., Fourth International, Albuquerque,

NM, 1997, pp. 20 - 32. [Online].

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=637156&tag=1

[6] P. Wernick and M. M. Lehman, "Software process dynamic

modelling for FEAST/1," Journal of Systems and Software, vol. 46,

pp. 193-201, 1999. [Online]. http://uhra.herts.ac.uk/handle/2299/637

[7] G. Kahen, M. M. Lehman, J. F. Ramil, and P. Wernick, "System

dynamics modelling of software evolution processes for policy

investigation: Approach and example," Journal of Systems and

Software, vol. 59, no. 3, pp. 271–281, 2001.

[8] P. Wernick, T. Hall, and C. L. Nehaniv, "Software evolutionary

dynamics modelled as the activity of an actor-network," IET

Software, vol. 2, no. 4, pp. 321–336, 2008. [Online].

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4595502

[9] B. Latour, Reassembling the Social.: Oxford, 2005.

[10] B. Latour, "On Actor-Network Theory: A Few Clarifications," in

Soziale Welt, 1996, pp. 369-381.

[11] M. Callon and B. Latour, Unscrewing the Big Leviathan: How

Actors Macro-Structure Reality and How Sociologists Help Them

Do So. Boston: New Genetics and Society, 1981. [Online].

http://www.tandfonline.com/doi/abs/10.1080/146367703200014722

5

[12] C. Darryl, A Brief Overview of Actor-Network Theory:

Punctualization, Heterogeneous., 2009.

[13] R. Heeks, "Development Studies Research and Actor-Network

Theory," Institute for Development Policy and Management, 2013.

[14] M. Loomes and Ch. L. Nehaniv, "Fact and artifact: reification and

drift in the history and growth of interactive software systems," in CT

'01 Proceedings of the 4th International Conference on Cognitive

Technology: Instruments of Mind, 2001, pp. 25–39.

[15] S. F. Railsback, S. L. Lytinen, and S. K. Jackson, "Agent-based

Simulation Platforms:Review and Development Recommendations,"

Society for Modeling and Simulation International, vol. 82, no. 9,

pp. 609-623, 2006.

[16] N. Gilbert, AGENT-BASED MODELS.: sage, 2008.

[17] Ch. M. Macal and M. J. North, "AGENT-BASED MODELING

AND SIMULATION," IEEE, 2009.

[18] E. Bonabeau, "Agent-based modeling: Methods and techniques for

simulating human systems," Proceedings of the National Academy

of Sciences of the United States of America, vol. 99, pp. 7280–7287,

2002. [Online]. http://www.pnas.org/content/99/suppl_3/7280.full

[19] D. Helbing and S. Balietti, "Agent-Based Modeling," in How to Do

Agent-Based Simulations in the Future: From Modeling Social

Mechanisms to Emergent Phenomena and Interactive Systems

Design.: Springer, 2012, pp. 25-70.

[20] S. E. Page, Agent Based Models. New York: The New Palgrave

Dictionary of Economics, 2005.

[21] Mi.l J. North, N. T. Collier, and J. Vos, "Experiences Creating Three

Implementations of the Repast Agent Modeling Toolkit," ACM

Transactions on Modeling and Computer Simulation, vol. 16, no. 1,

pp. 1–25, 2006. [Online].

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2313

&rep=rep1&type=pdf

[22] Repast Simphony. (2013) Repast. [Online].

http://repast.sourceforge.net/repast_simphony.php

[23] J. Kielbasa, "An Introduction to RePast using ReLogo with Groovy,"

2013. [Online].

http://www2.econ.iastate.edu/tesfatsi/RepastSIntroUsingGroovey.Ja

kubKielbasa.2Sept2013.pdf

[24] J. Ozik, "RELOGO GETTING STARTED GUIDE," 2014. [Online].

http://repast.sourceforge.net/docs/ReLogoGettingStarted.pdf

[25] P. Vartiainen, "On the Principles of Comparative evaluation," SAGE

Publications, vol. 8, no. 3, pp. 359–371, 2002. [Online].

http://evi.sagepub.com/content/8/3/359.full.pdf

[26] Linkedin. (2014) linkedin. [Online].

https://www.linkedin.com/pub/ed-

wakelam/1/152/aa9?trk=seokp_posts_secondary_cluster_res_author

_name

http://www.ajer.org/papers/v3(5)/C0352128.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4595502
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/622.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=637156&tag=1
http://uhra.herts.ac.uk/handle/2299/637
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4595502
http://www.tandfonline.com/doi/abs/10.1080/1463677032000147225
http://www.tandfonline.com/doi/abs/10.1080/1463677032000147225
http://www.pnas.org/content/99/suppl_3/7280.full
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2313&rep=rep1&type=pdf
http://repast.sourceforge.net/repast_simphony.php
http://www2.econ.iastate.edu/tesfatsi/RepastSIntroUsingGroovey.JakubKielbasa.2Sept2013.pdf
http://www2.econ.iastate.edu/tesfatsi/RepastSIntroUsingGroovey.JakubKielbasa.2Sept2013.pdf
http://repast.sourceforge.net/docs/ReLogoGettingStarted.pdf
http://evi.sagepub.com/content/8/3/359.full.pdf
https://www.linkedin.com/pub/ed-wakelam/1/152/aa9?trk=seokp_posts_secondary_cluster_res_author_name
https://www.linkedin.com/pub/ed-wakelam/1/152/aa9?trk=seokp_posts_secondary_cluster_res_author_name
https://www.linkedin.com/pub/ed-wakelam/1/152/aa9?trk=seokp_posts_secondary_cluster_res_author_name

19

[27] E. Wakelam, "The factors on software evolution in software

inudstries," march 25, 2015.

[28] R. N. Charette, "Why software fails," Spectrum, IEEE, vol. 42, no. 9,

pp. 42 - 49, 2005. [Online].

http://spectrum.ieee.org/computing/software/why-software-fails

[29] J. Gulla, "Seven Reasons IT Projects Fail," 2012. [Online].

http://www.ibmsystemsmag.com/power/Systems-

Management/Workload-Management/project_pitfalls/?page=1

[30] D. Smith, "Why do most IT projects fail? It’s not because of

technology," 2008. [Online].

http://www.bizjournals.com/portland/stories/2008/10/20/smallb4.ht

ml?page=all

[31] C. H. A. O. S. Manifesto, "Think Big, Act Small," The Standish

Group International Inc., 2013.

http://spectrum.ieee.org/computing/software/why-software-fails
http://www.ibmsystemsmag.com/power/Systems-Management/Workload-Management/project_pitfalls/?page=1
http://www.ibmsystemsmag.com/power/Systems-Management/Workload-Management/project_pitfalls/?page=1
http://www.bizjournals.com/portland/stories/2008/10/20/smallb4.html?page=all
http://www.bizjournals.com/portland/stories/2008/10/20/smallb4.html?page=all

	Elsevier
	Developing an agent-based simulation model of software evolution Ali Doolan Wernick Wakelam Final accepted copy

