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Introduction. Suppose A and B are two adequately described structures— can we decide whether
and how A is interpretable in terms of B?

The question is itself in need of interpretation, of course. In different contexts, the term
interpretation admits of different readings, suggesting different kinds of operations
between the alleged structures; and even the term structure, popular and precise as it may
sound, is already used with somewhat divergent senses within the range of Mathematics
itself—the very discipline that is supposed to focus on structure per se. The use of the term
interpretation is certainly neither restricted to structures that are models of the same first-
order theory, nor even to such as are merely "structures for" the very same minimal set of
predicates. As we all know, it is possible to envisage reductive "interpretations"—and
Science is full of such—whereby the fundamental individuals and predicates in one
structure are mapped on totally different types of entities, logically—entities which may be
much more complex and derivative within the "interpreting” structure. (Statistical
Thermodynamics, for instance, can be considered as a prescription for interpreting classical
thermodynamic "models" in terms of particles in a mechanical "model" and in terms of
sums and averages of some of their mechanical functions).

Regarding interpretations as mappings, however, it is incontestable that one must satisfy
at least two conditions: First, that the basic entities in the interpreted source structure
must be mapped on entities which are in some sense definable in the interpreting target
structure; and, secondly, that truths of the interpreted source must remain, under such
interpretative mapping, truths—basic or derivative— of the interpreting structure. We
explore some of the ramifications of these minimal constraints on interpretability for first
order strucures , as understood by Model Theory.

This exploration sets the stage for a different approach to concepts of structure in general,
which will nominalistically elucidate such concepts in terms of certain equivalence relations
between descriptions. From the vantage point of interpretability, however, the significant
thing about this approach is that the various inter-descriptive equivalence-relations that
count for our purposes, can all be understood as different types of bilateral interpretability.
The weaker our contraints on what constitutes an "interpretation", the more liberal and
fuzzy will be our general concepts of structure!

Definability and Invariance in first order structures. Definability is normally
understood with respect to theories. Yet since first-order models —exemplifying for us the
simplest and strictest concept of structurel—are defined for a given first-order language,
it also makes sense to talk of sets of various kinds as being definable or undefinable in a

given first order structure. Suppose L is a first order language for which 2 is a structure,
in the sense used in Model Theory. A subset S of | & |n—where | A | is the universe of a first
order structure A—will be said then to be definable in &, iff when there is a formula
F(x1,....xn)EL such that F(ay,...,an) is true in A iff <ay,...,an> €S — where M is 2
expanded to contain a name a for each a€[#]. (A is sometime denoted by (R X)xep)?.
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For some first order structures, including all finite first order structures, there is a perfect
correspondence between definable sets and invariant (set-theoretical) entities.

Aset SCIAIN will be said to be invariant in A iff for every automorphism, o, of A, we

have oS=5 (assuming always that oS={ox |xES}, for any set S). Now, it is easy to show
that any finite structure, A, has the following property

B: A subset of | & |Nis definable in 2 if and only if it is invariant in 2.

For finite structures B can be easily derived from Beth's Definability Theorem or by other
means, more directly and constructively. Yet for structures with a denumerable infinity of
elements, B constitutes an extremely powerful constraint. It does not hold for many of the
best known infinite mathematical structures, such as the Standard Model of Number
Theory, the rationals, or field of complex Algebraic Numbers. In the case of the Standard
Model of number theory, for instance, every subset of n-tuples of natural numbers is
invariant (there are no non-trivial automorphisms), but there are clearly more subsets

(2R0) than available definitions ( Xy only). With respect to B, in fact, one can prove (see
appendix I, §4., later), that

THEOREM A. A countable structure, 2, has the property B iff Theory(®) is Ro-categorical.

The requirement that Invariance and Definability be coextensive therefore restricts us to

countable models of categorical and properly Ro-categorical theories, and it can be shown
in either of these cases, that for each n there must be only finitely many invariant subsets
of n-tuples.

The trouble with B is that it restricts the number of invariants only to what can be
"explicated" by finite first order formulae. We can easily see that in | 2| there are bound
to be 2€ unary invariants (including 1% | and the empty set ) where C is the cardinality of

the set of all minimal non-empty invariant subsets of |2 1. If there are infinitely many such
minimal invariants—as is the case in the standard model of number theory—there will be
more invariants than available definitions.

This suggests that we should consider weaker constraints than g (but still sufficient for

our purposes). Consider the following property, B fin, restricting the equivalence of
definability and invariance to finite sets:

B fin : For any n, a finite subset of |2 | is definable in 2 iff it is invariant in X.

This property is shared by many well-known countable structures, including some that
were the main subject of traditional Mathematics—e.g., the Standard Model of The
Natural Numbers, the Rational field and the field of Algebraic Numbers, and is exactly the kind
of property we need in order to study humanly useful interpretability relations between
first order structures. As it turns out (see §5 in appendix I), this property too is closely
related to a pure Model Theoretic property of (first order) structures—a property we call
Elementary invariance :

Elementary Invariance. A structure 2 (for language L) is said to be elementarily invariant
if and only if its domain is an invariant in any elementary extension thereof.3
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There are some recognisable features of first order models that guarantee their elemen-
tary invariance. The most useful feature of this kind (a necessary and sufficient criterion)
has each individual in the model's domain belonging to some finite definable subset. This
is tantamount to requiring that the orbits of individuals be all finite and definable (the orbit of
an entity, here, it the set of its images under all of the structure's automorphisms). While
trivially satisfied in the case of finite structures, this is not so for an infinite structure.

Galois Theory of Structures. Classical Galois Theory is sometimes upheld as a paradigm
of transforming a seemingly intractable problem, in one mathematical framework, into a
relatively simple problem in another. The solvability by radicals of Algebraic equations
over a given field is transformed by Galois Theory into a decidable question about the
structure of certain finite groups. The fundamental mapping behind this miraculous
transformation is the one which maps an algebraic structure on the group of those of its
automorphisms which leave unmoved the elements of a certain substructure.

Although Galois Theory was generalised for other algebraic structures beyond the
original fields, it was not usually presented as a paradigmatic solution to interpretability
questions. In our work we show, however, that many of the classical percepts and
theorems of Galois Theory are naturally applicable to all elementarily invariant
structures—with a near perfect analogy in the case of those structures with finitely many
symmetries. Thus, the generalised Galois Theory will apply in particular to interpretability
relations between any finite structures, and provide for decidability in principle.

Such a Galois theory is fundamentally predicated on relative notions of definability and
invariance (in the original theory the terms used were quite different!). Given a

substructure o, of 2, one may ask which entities in 2 are definable by means of the
individuals in | %o | —using them in addition to the structural predicates and functions.
In the same vein one may talk of Invariance-relative-to-2¢ , by which is meant invariance
under all those automorphisms which leave every individual in 2y unmoved [such
automorphisms constitute a subgroup G(#/2,) of the group G(®*) of all automorphisms

of A]. As an example of a close analogue of a classical Galois theorem consider the
following

THEOREM (see appendix I, §6, theorems D and E): Let A be any Elementarily Invariant
Structure and let &g be an invariant substructure thereof, with corresponding subgroup
G(&/2o) of finite order r. Then (1) G(2/2o) is a normal subgroup of G(2);

(2) Ao will be functionally closed in X [i.e., | Ao includes any %o-definable singleton in
A] if and only if | K¢ | is the set of all elements in & unmoved by G(%/2o) [in which case
one can call 2o a Galois substructure of 2]; 3) if G(&/Ao) is finite then there is a finite
subset SC | A |, with K elements, where 0 <K <logor, and where X is the functional closure
of | 2o | US ; and (4) % can be viewed as the "splitting” structure over ¢ for some
monadic formula in S1(L(%))with a finite number N of solutions [i.e., % is functionally
generated by these solutions over | % |], where N<rlogyr. (r can be actually chosen as
the maximal order of commutative subgroups of G(24/ Xo)).
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Interpretability. The last theorem only illustrates the degree to which a general Galois
theory of Elementarily Invariant structures mimics the classical theory for Algebraic
extensions, a significant portion of which it includes. It does not tell us how we are to use
such tools to decide on the existence of interpretability-mappings between structures—
especially when we allow such transformations to map basic individuals onto complex
entities, constructed by means of the host-structural language and the normal set-
theoretic aparatus.

Here again the direction is pointed out by the classical theory: Just as we can understand
classical Galois Theory to be dealing with the existence of a monomorphic embedding
from a given field into what is obtained by repeated radical-extensions, so can we reduce
the problem of interpreting one structure in an extension of another to the existence of a
suitable monomorphic embedding of one structure in some set-theoretic extension of
another—for which we can generate necessary and sufficient group theoretic criteria.
However, we know how to do this, in general, only for injections of finite structures in set-
theoretic extensions of elementarily invariant host structures.

To have the flavour of such results, we introduce a few definitions and notations:

Let Cget (%) denote the union of [#| with the class of all sets constructible (by normal set-theoretic operations)
from the structure 2 [Set Theoretically this means starting with the sets {{#| ,..., R1,..}—where ® Yy models
in% the n-ary predicate-symbol R;—and repeatedly applying the set-construction tools provided by
standard ZF set theory]. We extend the original L to Lget, to include the symbols of set membership ('€"),

and of set-formation ( '{’,'}' and 'I"). A finite entity in Cger(®) is constructed, starting with the elements of ||
at stage 0, by forming only finite sets of finite entities, at each set-theoretic stage, using only a finite number
of stages, but never using @. Excluding @, the ST-type of such an entity will be defined here as the set of

ST-types of its members, where the ST-type of individuals in 2 is set to 0. The ST-type of any subset (=J)
of | %] is {0}, while a subset (D) of [%|x|%| will be of ST-type {{0,{0}}}={<0,0>}.

We expect of any interpretation 1 [A—2 (y:4—C ;¢ ()) that the individuals of 2 should
be mapped on entities in which are all of the same (arbitrary) ST-type =, and that any
definable subset of the ST-type{<0<,.n. .=,0>} should be then mapped onto an entity in

Coct®) of type {<v=,.n. .~v>}. The definitions of A-Invariance and X-Definability of

~ entities in C,o(R) are obvious generalisations of our previous definitions [the only
difference being that we allow for formulae in Lg..to serve in definitions]. It is easy to
show that if B fin is true of 2 then every finite invariant entity (in %) is definable (in 2)
by a formula in L ;ec. We now define a strong interpretation % —% to be an

interpretation y:%—C,..(®) , which satisfies—in addition to preserving relative type
differences—the following conditions:

(D)  restricted to || is an injection (monomorphism) into a set of definable entities of Cgee(®),
all of same ST-type {t}; (2) If XEC see()-1%], then yX={yw| weX]; and
() IfR is any predicate symbol in L then yRy is definable in B.

(We may take y& 3 or its definition to be the "interpretation” of R in 3 ).

A simple example of an interpretability result is the following
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THEOREM (see §7, theorem 7.G). When 2 is elementarily invariant and A is finite,
A necessary and sufficient condition for an injection y:A—B to constitute a
strong interpretation (of & inB) is

Y loG@Blyia)epC G&) ,
(31| Al stands for the substructure of 3 determined by M|, and '® signifies composition.)
An equivalent formulation of this condition is that y ® G(%) @ y-1 must contain a
subgroup isomorphic to the quotient group G)/ G /p(Al)) [ where, of course,
G@/ y(|&)) must be a normal subgroup of G(3)].

This is directly proved on the basis of the following instructive
Lemma (see 7.1 in §7): When2 is elementarily invariant and 2 is finite,
an injection < will constitute a strong interpretation of XinB iff
forany a€ |AIn (n21), y( orbit( a™)) is an invariant of G®).

Although injections are very particular and rigid kinds of strong interpretations, they are
useful in studying the more general type (this, in fact, is the gist of using Galois Theory as
a paradigm for studying interpretations). Any strong interpretation can be conceived as
an injection into a derived structure of the original host (interpreting) structure—where a

derived structure of 2 is defined as the structure we obtain by considering, for some ST-
type v, only those finitary entities that can be constructed out of type t entities in Cgo(24).

Structural Information Theory. How much information does a structure % provide
about one of its individuals or, more generally, about any particular element, e,

in Coer()? -
Define the minimal neighbourhood of e relative to 2, as the smallest invariant set in %
containing e, (or the orbit of e). It is obvious that this minimal neighbourhood, Sx(e),
contains only elements of the same type as e, and that in the case of a basic individual of
the structure it is none other than its classical orbit. If e is of type Tand M is a measure on
~ the subsets of A7 ={x | xEC s (®) & type(x)=t}, then the specific information provided by
A about e, Infy(e), will be an appropriate function of M(Sx(e))/ M(AT). If % is finite we
can take M to be the cardinality-function for any finite subset of A7, and we can choose
Infx(e) = -logN(cardinality(Sx(e))/ N), where N=cardinality of A

To be of general semiotic utility, such a concept needs to be elaborated further for the case
of a complex structure providing more information than necessary for complete individu-
ation of an entity within its type-set (category). Nonetheless, we can still deal with the
information per entity, in the above sense, by dealing first with the information
contributed by different "aspects" of the structure (per different fragments of the
structural language)—inasmuch as these are separable. However, we will not dwell here
on this feature of the general theory of structural interpretation, and restrict ourselves to
illustrating the new concept of information in the simplest cases.
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Thus, In the case of the following three structures

orbits

o
d
Mg 2 ol ol

v, ,.'ff

A Aq Ay
where the arrows represent a binary relation, we have, in A, Infa(a)=1,Infa(b)=0.5,
Infa(c)=0.5, Infa(d)=1, and an average information per individual (type 0), 10 (A), of 0.75.
In A1 on the other hand we have InfA; (x)=0 for any individual x (so 10 (A1)=0).

The picture is different for orderd pairs, however! In Aq , for example, we have
InfA, (<x,y>)=-log16(4/ 16)=0.5 (or 1<0.0> (A1)=0.5).
Finally, in the linear structure A we have Infp,(e)=1, for e of any type !

Internal Informability vs. Metaphorical Suggestiveness. While such measures of the
Semantic Information contained in a structural description give us a handle on the
structure's capacity to encode specific information (about whatever is described when one
uses it), they do not reflect the true relative value of various structures in their general
use! We may have other reasons to use a specific structure, which far out-weigh its lesser
"Internal Informability”. Culturally and Scientifically we gravitate towards structures that
have for us a high metaphorical suggestiveness—the potential to serve as a metaphorical
vehicle in describing and representing many different types of data and phenomena.

- While some of the reasons for such a metaphorical value are historical and cultural,

others are certainly grounded in the nature of the structures themselves. The Intrinsic
"Metaphorical” qualities of a structure have to do with its intrinsic simplicity and
symmetricity, since it is a higher value of these, according to our Galois analysis, which
will be positively correlated with a greater chance of successfully serving an interpretative
role vis a vis new, empirically provided, structural descriptions.

It is easy to see that when "universes" of the same nominal size are organised by different
structures , Internal Informability and Metaphorical Power are inversely correlated, and a
decision may have to be made as to how much specific Information should be sacrificed
for the sake of simplicity of description and of analogy to structured descriptions of other
data. This balancing act between Information and Metaphorical power is at the heart of both
Science and Art. The above tools allow us to develop precise measures of the intuitive cost-
effectiveness of such multi-faceted activities, which integrate various explanatory desiderata,
in Science, and which correspond to vital aspects of intuitive evaluation of metaphors in
the Arts.




Appendix I: GALOIS THEORY OF ELEMENTARILY INVARIANT STRUCTURES.

1. Definitions and Preliminaries. In the foregoing we shall consider only first order

languages with equality, with no more than X g non-logical symbols (including individual
names). Since we are interested here only in countable structures, it can be assumed,

unless stated otherwise, that all structures to which we refer are such (finite or Rg).

Let & be a structure for language L, and let D be a subset—possibly empty—of |%|, the
universe of &. 'L(D)' denotes the language L extended to contain, for each e €D, a name e.
AD" will denote the structure 2 considered as a structure for L(D). If R' is a non-logical
symbol in L, then 'R, will denote its extension in 2. An automorphism of 4 is a bijective
mapping, B, from [A| to |A] satisfying BR,=R,, for every non-logical symbol R in L. The
Group of all such automorphisms is denoted by 'G(#)". The subgroup of all
automorphisms for which every member of a subset D, of ||, is a fixed point (unmoved),
is denoted by 'G(&4/D)". If B is a substructure of 2 then 'G(%/3)' will mean
the same as 'G(2/[B). Note that G(%/J)=G(®). Let {z;|i<w} be a countable sequence of
" individual variables L , and let Sy(L") be the set of all formulae in a language L' 2L in
which any free variable belongs to the initial finite sequence <zy,...,z,>. A setS CJA|n is
called D-invariant in or invariant with respect to D iff BS=S for every f in G(%/D). A set S
CIAn is D—definable in A, or definable with respect to D in &  iff there if a formula
®d(21,...,2n) In Sp(L(D)), such that

AD I= ®(ay,..., an) Iiff <ai,...an>€ES

[We usually write loosely '?¥|= ®(aq,...,an )" instead of the ~proper*.’?¥D I= ®(ay,...,an)’ |.

Let G* be any subgroup of G(2). Define K,®G* as the set of all n-tuples of [#n, that
are unmoved by any element of G'. ( Note that o<aq,...,an>=pef<cay,...,can>). A subset of
[&|n is called invariant in (or relative to) 2 iff it is @-invariant in %. It is called definable in
A iff it is P-definable in . We abbreviate ' K,()G* as ' K,G* . Note that

K,WG* = (K,G"n.

An individual a€[}|is functionally definable in 2 with respect to D iff the singleton {a} is D-
definable in 2. The functional closure of D (CIA|) in 2 is the the set of all elements in

|| which are functionally definable in % with respect to D. Denote this by 'Cf, (D)'.

D is called functionally closed iff D=Cf, (D), and it is called a Galois sub-domain iff

=K, G(*/D), i.e, iff every element of [#|-D is moved by some automorphism which
keeps all elements of D unmoved. A substructure is Galois iff its domain (universe)

is a Galois sub-domain. We shall say that 5 is a Galois extension of & iff X is an invariant
Galois substructure of 3.
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The following are elementary lemmas concerning the above concepts:

Lemma 1.1. Cf,(Cf,(D))=Cf,(D)

Lemma1.2. Cf,(D1UCf,(D2))=Cf,(D1UD>).

Lemma1.3. A Galois sub-domain is functionally closed.
(The converse for Elementarily Invariant structures—lemma 6.2—is proved later)

Lemma1.4. IfDyC D CI|A| and D is Dy-invariant in 2, then G(&/ D) is a normal
subgroup of G(%/Dy) .
corollary: G(A/D) is a normal subgroup of G(& ) for an invariant D.

Lemma 1.5. IfDis a Galois sub-domain of |%| and G(& /D) is a normal subgroup of
G @), then D is invariant.

Notation: we use ' G1<I| Gz' to say that Gy is a normal subgroup of G3 .

Proofs of Lemmas. 1.1 and 1.2 are left to the reader. For 1.3, it is enough to notice that if any
element of |21 is functionally definable with respect to D, then it will be unmoved by

- any automorphism of G (%/D). Hence DCCf,(D)CK,G(*/D) and if D is a Galois

subdomain we will have K, G(%/D)=D, and therefore Cf, (D)=D.

For Lemma 1.4, note that if G(%/D) is not a normal subgroup of G(?/Dy), then there
must exist automorphisms o€ G(2/Dp) and uE G(&/D) such that o-lpc €G(A/D).
Hence there would be b€ D for which o-1po(b)#b, which implies po(b)= ob, entailing
that ob€¢ZD or, since o€ G(#/Dy), that D could not be a Dg-invariant.

For Lemma 1.5, suppose D were not an invariant. Then there must be a o€ G(%), such
that ocD=D. We can assume then that for some b€ D, ob&D (note that if 5DCD, we'll
have DC o-1D and we could choose -1 instead of o). Since D is assumed to be a Galois
sub-domain, ob must be movable by some uE G(#*/D), i.e, uo(b)= ob or o-tuc(b)=b, for
some b& D, implying o-1po# G(#/D) — contrary to the assumed normality of G(%/D).

2. Beth's Theorem And Related Results. Let & and® be structures for L, and suppose
'R'is an n-place predicate symbol of L. An R-isomorphism from 2 to 3 is a bijective
mapping B: & — B, satisfying <aj,...,an>ER, iff <fay,...pap>€ER, (fora function
symbol 'f' the condition is f(Bay,....pan)= pf(ay,...,an), as usual). If ITis a set of non-logical
predicate or function symbols of L, then a IT -isomorphism from2 to 3 is a bijective
mapping B: 2 — 3 , which is an R-isomorphism for every REIT.

One way to state Beth's Definability theorem is the following (see [Shoenfield,
Mathematical Logic, p. 81]) :
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BETH'S DEFINABILITY THEOREM. Let I1 be a set of non-logical predicate or function symbols of
L, and let P be such a symbol which is not in I1 . Then a necessary and sufficient condition for P
to be definable in (or with respect to) a theory T in terms of I1alone— i.e, for having
TH— P<> ¢, where ¢ is a formula of L using only members of II as non-logical symbols —

is that every TI -isomorphism between T-models is also a P-isomorphism.. [note: One can
restrict the T-models considered here to countable ones].

There are several ways to prove Beth's theorem, one of which proceeds from Craig's
famous Interpolation Lemma (see [Shoenfield, Mathematical Logic, pp. 79-80], or [Chang and
Keisler, Model Theory, pp. 84-88]). Using the same Lemma and a few other basic results
of Model Theory one can prove from Beth's Definability theorem above a similar result

concerning the notion of disjunctive definability. If, as before, II is a set of non-logical
predicate or function symbols of L, and P is such a symbol which is not in II,

say that P is disjuctively definable in (or with respect to) T in terms of I iff there are finitely
many formulae ¢1,...,¢n, all of whose non-logical symbols belong to II,

such that TF— (P<> ¢1)CV. . .V (P<> ¢,)C, where '(f)C' stands for the (universal) clo-

sure of f . One can then prove (see [Shoenfield, Mathematical Logic, p98, 14, a and b]
or cf. [Chang and Keissler, Model Theory, p.251] ):

DISJUNCTIVE DEFINABILITY THEOREM (Svenonius). P is disjunctively definable in T in terms

- of I1 iff every Tl-automorphism of any (countable) model of T is also a P- automorphism thereof.
In the proof of this theorem, as well as in proofs to follow, the following Model Theoretic
result is extremely useful:

Extending Automorphism Lemma. Let a be a bijective mapping between two subsets S1 and
Sz of |Rl, which is a TI-isomorphism between them. Then there is dn elementary extension % of 2,

and a automorphism { of B extending o. (i.e, a=P|s,). —see [Shoenfield, Mathematical Logic,
p-98, 13, d]).

3. Minimal Invariants and n-types. If S is a subset of |#[n which is an invariant in 2 ,
We shall say that it is an n-ary invariant. A minimal n-ary invariant is one that does not

~ contain any other non-empty n-ary invariant. For any <aj,...,an> €A the set

{<oay,....can> | cEG(H)} is obviously such a minimal invariant—also known as the orbit of
<ay,...,an>. Likewise, if S is a minimal (n-ary) invariant, S=orbit(<ay,...,an>), for any
<ap,...,an>ES. Furthermore, we have

Lemma 3.1. In a minimal invariant, S, any two members are related by automorphism— i.e, for
any a~ and b~ in S, ca==b-, for some cEG(H).

For otherwise the orbits of unrelated members would be smaller invariant subsets of S.

Definition. Given a structure 2 for L, the type (in &) of <ay,...,an>E[AI" is the set of all
formulae in S, (L) that are satisfied at <aj,...,an> for the interpretation (or substitution)
v(zj)=aj. An n-type of 2 is the type of some n-tuple in |%|1, and an n-type in (or of) a theory

T is an n-type in some model of T. An n-type, T, in T, is called principal if there is a
formula in it that T-entails every formula therein.
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The following are three trivial consequences concerning invariants and types:

Lemma 3.2.  Different minimal invariants are disjoint.
[Notice that the elements of a minimal invariant must be all of the same set-theoretic type,

even if we extend our approach to set-theoretic constructs based on |A].]

Lemma3.3.  Every n-ary invariant is a unique union of minimal invariants and
every union-set of a set of minimal invariants is itself a unique invariant.
[This, in fact, is true even of invariants of a mixed set-theoretic sort ]

Lemma3.4.  All the members of a minimal n-ary invariant share the same n-type.
[This follows from lemma 3.1].

We can therefore talk without ambiguity of the n-type of S, when S is an n-ary minimal
invariant. We now have

Lemma 3.5. A minimal (n-ary) invariant in A (structure for L) is definable in & only if

its n-type is principal in Th(%)—the theory made of all formulae of L that are valid in 2.
Proof. Let S be such a minimal invariant and let @ be a defining formula (for S), so that
Al |= @(ay,....an) iff <ay..,an>ES. Then clearly ®En-type(S). Let ¥ be any other
formula of n-type(S); then % |= D(X1,..,Xn) implies that <xi,...,xn>ES , which implies

?¥|= W(X1,.e X ). Thus ?&|= D(X1,ee X0 ) > T (X100, Xn ) and Th(H) I—— O—-Y,

The converse does not always hold, but it does for homogeneous structures.

Definition . A structure is homogeneous iff for any n, and any two n-tuples <ay,...,.an>
and <by,...bp> the have the same n-type, there is an automorphism mapping <ay,...,an>
on <by,..,.bp>.

Lemma 3.6. An Elementarily Invariant structure is homogeneous.

Proof: A bijective mapping y between two subsets S1 and Sy of 2 is called an isomorphism
of S1and Sy in A iff for any formula ¥ of L(S1), ¥ holds in 2 (%51 ) iff ¥Y holds in

2 (A452)— where WY is obtained from ¥ by replacing a by the name of y(a) for every a€S;
occuring in ¥. We now use the extending automorphism lemma of §2 above, which
implies that such isomorphism is extendible to an automorphism  of an elementary
extension, 3, of 4.

If & is elementarily invariant, however, then 8|%|=|%|, and 3|, — & restricted to 2% — must
be an automorphism of A extendingy . If n-type(<az,....an>)=n-type(<by,..,bn>) then the
mappingy: {a1,...,an} = {b1,...,bn} defined by y(aj)= b; (i<n) constitutes an isomorphism of

{ag,..,an} and {by,... by} that can be extended to an automorphism of & . 4 is therefore
homogeneous.

We now prove the modified converse of 3.5.
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Lemma 3.7.  If, in a homogeneous structure & , a minimal invariant S has a principal
n-type in Th(R ), then S is definable in % .

Proof: Let I'=n-type(S), and suppose I®ET such that Th(%) — &—W for all WET. Clearly
@ is satisfied at any member of S. On the other hand, if any n-tuple <x,...,xn> E[%In
satisfies @, it must have an n-type including all the Th(%)-consequences of ®, and

therefore identical to I' (no n-type can properly include another) . Since % is
homogeneous, the identity of n-types implies that such <x1,...,xn> is related to any

member of S by some global automorphism (of 2). The invariance of S under any such
~automorphism, however, implies then that <xj,..,xa> must belongs to S (or we would
have some automorphism moving an element of S outside S).

The last argument in the above proof shows in addition that we also have the

Corollary. For a homogeneous structure, X, there is, for any n, a 1-1 correspondence
between n-types and minimal n-ary invariants and, furthermore, minimal n-ary

invariants are definable iff they have principal n-types in Th(X).

4. Structures that satisfy f§ . We now deal with infinite countable structures in which
every invariant set is definable and show that they are exactly the infinite countable

structures whose complete theory is X g-categorical—i.e, those countable structures
to whom a countable structure can be elementarily equivalent only if it is isomorphic .
All finite structures (whose complete theory, in a language with equality, is necessarily

categorical) can be proved directly to satisfy B (see remarks at the beginning of §5 below).

An Xo-categorical theory, T (in a countable L) that has only infinite models, is complete
by the £0$Vaught theorem, if it is consistent; whereas by Ryll-Nardjewski's Theorem
it can have only principal n-types, and only finitely many of them, for each n.
Furthermore, by the same theorem, either of these last two properties guarantees

Ro-categoricity of a complete and consistent T with no finite models. (cf. [Shoenfield,
Mathematical Logic, pp.89-91]). Concerning Rg-categoricity, we shall use the following
model theoretic results (where any theory is presumed an R -theory) :

Lemma 4.1. A countable model of an R o-categorical T, with no finite models, is saturated.
Proof: Let € be a countable model of such a theory, T. To show that it is saturated, we have
to show that for any n-type I' in T which contains the type of <ajy,...,ap.1> € |€C] 01,

there is an ap in |€] such that <ay,...,an1,an>has T as an n-type in €.
Since every type of a countable theory is realised in some countable model thereof (by the

completeness theorem), they must be all realised in €, because all other countable models

are isomorphic to it (X ¢-categoricity). From the above comments we also know that T is
complete and that every n-type in it is principal (i.e, generated by some formula

inSn(L) ). In particular, it follows that the existential closure any formula of L that is
satisfied in some countable model of T must be a theorem of T. Let y(z1,...,z,) and

3(z1,....2n-1) be the generating formulae, respectively, of I" and of the (n-1)-type of
<ai,...,an-1>. From the assumptions above we have that
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T [— Y(Z1,-4Zn-1,Zn) —> 0(Z1,-..,Zn-1), which implies by Logic that
T |—— =d(Z1,0.0Zn-1)~> ~(AXN(Z 1,00y Z1n-1,X).
On the other hand, if we suppose that (Ix)y(a1,...,an-1,X) is not satisfied in €, then the
formula —(3x)y (z1,...,zn-1,X) belongs to the type of <ay,..,an.1> and is implied in T by its
generator, 8(z1,...,Zn-1). Being T-entailed by both & and -9, ~(3x)y(z1,-..,zn-1,X) becomes a
theorem of T, contradicting the fact that y(z1,...,2n-1,2n) belongs to an n-typeI of T and
must be satisfied at some n-tuple <a'y,...,a'n-1,a'n> in € (and any other countable model)—
which implies, by the completeness of T, that T |— (3z1)...(Azn-1X3zp) y(z1, wZn-1,Zn)-
We can thus conclude (by negation) that (Ix)y(az,...,an-1,X) is satisfied in €, and we can
select a, as any value in |€] satisfying the existential quantifier. Since y(z1,...,zn) is the

generating formula of T', T will be included in the n-type of <aj,...,an.1,an> after such a
selection and must therefore be identical to it .

Lemma 4.2. Let A and B be two countable saturated models of complete theory T having only
infinite models, and let <ay,..,an>EA|"and <b1,..,bn>EMB|" have the same type. Then there is an

isomorphism y from 2 to 3 which maps <ag,..,an> on <b1,..bn>. (i.e, for every i, y(aj)=Db;).
The proof of this lemma follows the same type of reasoning as employed in proving
Ryll-Nardjewski's theorem, beginning with the "isomorphism" of <ay,..,an> and <by,..,b,>,

but using here the property of saturation at each stage to add a new a€|%| and a new
bEB| in order to extend the previously "constructed” partial isomorphism . One can

- define this process in such manner that every member of [#| and [3| will be selected (for
details see [Shoenfield, Mathematical Logic, pp.91-92, 26,b, in pp. 102-103].

Lemma 4.3. A countable model of an R o-categorical T having no finite model is
homogeneous.

This follows from the previous two lemmas. By Lemma 4.1 such a model ,& , must be
saturated. Apply lemma 4.2 then to the reflexive case of & and 2 to obtain an

automorphism of % extending any initial correspondence between two n-tuples in 2
that share the same type.

THEOREM A. For an infinite countable structure 2 , invariance is equivalent to definability if and
only if Th(&) is Ro-categorical .

Proof: Assuming first that Th(#) is X-categorical , it follows from the last lemma that %
is homogeneous. This, together with the fact that any type in Th(%) is principal, will
imply by Lemma 3.7 that any minimal invariant in 2 is definable. Since different
minimal n-ary invariants have different n-types (corollary of 3.7), it will follow from Ryll
Nardjewski's theorem that there are only a finite number of minimal n-ary invariants, for
each n. Thus every n-ary invariant must be a finite union of minimal n-ary invariants,
which are definable, and must therefore be itself definable by a disjunction of the defining
formulae for its minimal constituents.

To prove the converse, assume every invariant in 2 to be definable: This implies that
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there are only finitely many minimal n-ary invariants for each n, or else we would obtain,
by lemma 3.3, 2o distinct n-ary invariants, in general, requiring 2X° distinct definitions).
Thus there are only finitely many n-ary invariants, in general, for each n (exactly 2C(n)
such, including @ and A", where C(n) is the number of minimal n-ary invariants).

Let 3 be any model of Th(%); we prove that any type in it is principal. Let I be an n-type
in®, and let {y,y2,,} be any enumeration of its formulae. Define 81=y1, ..-,d 1 1=V - 1881+
etc; clearly each 6; belongs to I, and each ; implies all the previous ones. Since
(3z1)...(3zp) 8i(Z1,...,,2n) is valid inB it must be in Th(%*) and must be valid in 2. Let S(&),

for evey natural index i, be the subset of |&[n defined by i(z1,...,,zn) . No such subset can
be empty, and every such subset (since definable) is an n-ary invariant. Since there are

only finitely many n-ary invariants in 4 , there must be some natural number, say ko,
such that S(3;)= S(8y), for infinitely many values of i. We claim that 8k, generates I" in
Th(), for if we take any y; in the the first enumeration of its formulae, there will always
be some (in fact, infinitely many) k=i, such that S(8x)= S(ko). The last equality implies 2
|= dk<>dko, which implies Th() |— dx<>dk, . But, since k=i, we have both

}— dk—0; and |—— di—>vi , and therefore Th(X) }-— dko =>Vi -

It thus follows that every type in Th() is principal (since we placed no restriction on 3,
save its being a model of Th(#)), and therefore, by Ryll-Nardjewski's theorem, that Th(%)
is X g-categorical H. | ‘

Corollary. Tis No-categorical iff T is complete and satisfies  in all its countable models .

Theorem A demonstrates the power of the unrestricted equivalence of structural
invariance and structural definability, for (countable) theories that have infinite models.
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5. Elementarily Invariant Structures and the B fin Property. We shall now study the

structures that satisfy B fin—the equivalence of definability and invariance for finite subsets
only. We shall first show that elementarily invariant structures ("EI structures", for short)
satisfy this property. From this it will follow in particular that all finite structures must

satisfy f.

We start with the intuitively obvious but important observations:

Lemma 5.1. Definability and Invariance are preserved by isomorphism .
For definability this means merely that when o is an isomorphism from 2 onto 3 (with
respect to all the non-logical symbols that are interpreted by both 2 and2 (=a2t)),

a subset, S, of [A|" is definable in 4 iff oS is definable by the same formula in 3.
This is provable by induction on the syntactic structure of formulae.

The preservation of invariance, although equally obvious, can be understood as a
category-theory observation: Given an isomorphism (both mono- and epi-)

a :A—23 and an automorphism ¢: % — % , a-l¢a must be an automorphism: %3,
and every automorphism of 3 can be obtained in this way—so that the functor

F: ¢ — a-lpa is an isomorphism between G(%#) and G@) [1 A is mapped on 1,

F(g)= a~lgppo=( orlpa)( a-lpa)=F(@)F(p), and, FgD)= a-l¢la = (a-lpo)~I=(Fp)? ]

This treats the automorphisms of each structure as a separate category with a singleton
set of one underlying structural "object".

Lemma 5.2. Elementary Invariance is preserved by isomorphism .
Take the isomorphic image, A, by an isomorphism, a, of a structure,2 that has an
elementary extension 3, and show (by "transplanting” &' instead 2 of in 3) that it must

have an elementary extension,3', isomorphic to 3, under an isomorphism extending o .
One uses then the previous lemma (to prove preservation of invariance in an elementary
extension).

THEOREM B. If & is an EI structure for L, then a finite subset of |A|n is mvarumt iff
it is definable.

Proof: Since any definable subset is invariant, we can assume that SC|%[n is a finite
invariant, and proceed to prove its definability. Let S={<bjj,...bin>1 1<i<K}, where

{by}CIA|. Let L+ be the language obtained from L by adding a special n-ary predicate

symbol RS and special unary predicate symbols {A, | ac|%|}. Let %+ be the structure
defined by

[P+ = [A] .
RSx¢.=S and Ax.=({a} (for a€lA]) and "
X#+=Xz for any other non-logical symbol, X, of L+ .

Let Thy (&) and Thy+(%+) be the complete theories of 2 and 2+ (relative to L andL+)
respectively.

Let T be Thy+(2&+). It must include the following sentences of L+ that are true inX+.
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M {(3)(Abyx) | i<Kjsn}; and (1) (Vx1)(Vx0) Rx1n = Vg A Apx)

[where '(3!x)(®x)' stands as usual for'(IxN Px) &(Vy)(Vz)(Py&dz—>y=2)'].

Let 2+ be any model of T, and let 3 be the restriction of B+ to L (obviously 3| = B3+).
2+ must be an elementary extension of a model isomorphic to A+, and it is clear then

that % must be an elementary extension of some L-structure isomorphic to . From the
above lemmas (as well as the preservation of elementary extensions and elementary
submodels by isomorphism) it follows that there would be no loss of generality if we were

to assume that B+ is an elementary extension of 2+, and that? is an elementary
extension of 2 .

From T ((I) and (I) ), and the assumption that A+ is an elementary submodel of %+, it
follows that {Ap,; } and therefore RS must have the same extensions {{b i} | i<Kj<n}and S
in both A+and B+. Let ¢ be any L-automorphism of 3+ (and thus of 3 as well). Since % is
EI, it follows that (|2 | =|A| and hence that ¥ | ,yjis an L-automorphism of %. Thus
PRS3=9pS =9, S =S =RSs, and hence YRS»,=RSy, and v is an RS-automorphism.
From the disjunctive definability (Svenonius) theorem (§2) it follows that for some finite k
T RS<> @1)CV. . .V (RS<> ®k)C, where @y, .., Dk are L-formulae . Let &%, ..., %

be the closure of @y, ..,Px over all variables not used in RS in the above disjunction.
Then, by logic,

T|— (Vz1)...(Vzn)(R5[zl...zn]<—> D*[z1.2n]) V. .V (Vzl)...(Vzn)(RS[zl...zn]<—>f D*k[z1...Zn))
In particular 3&+|= (Y21)...(V2p) (RS[21...20]<> D [Z1...2n]) for some i*<k, or loosely

?¥|= ®*[ar..an) iff <ay,.,an-€ RSy, =S, for any <ap,...,an> M.

We now use the following;:

Lemma 5.3. If SC|A| is finite and definable in 2 by P then it is so in any elementary extension
and, in addition, invariant in any elementary extension,

Proof: For any a€|A], .'A|= ®(a) implies B|= ®(a) for any elementary extension? of %
Likewise the fact that AS|= (Vz)(®(z) <> [(z=b1)V. . .V ((z=by)], where S=({by,...,bi}

implies 35|= (Vz)(@(z)<> [(z=b1)V. . .V ((z=by)]. Thus the set {z | ®(z)} has the same

extension in any elementary extension of 2. Also, as definable in every such extension it
is invariant therein.

Lemma 5.4. If every element in |A| belongs to a finite set definable in &,  must be EL
Proof: |A| would be then, by lemma 5.3, a union (finite or infinite) of sets {S;} that are

invariant in any elementary extension of 2. Since fU,S;=\U, £5; for any function {
satisfying {S=(fx | xS}(the same is not true for ﬂ) we get for any automorphism 1 of any
elementary extension of 2 that |A|= Ui Si=Ui PSi= P Ul Si=p|Al .
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Corollary 1. Every finite structure is elementarily invariant.

Corollary II. A structure satisfying B fin in which every minimal unary invariant is finite
must be elementarily invariant.
(Notice that other minimal invariants must be then finite too, since

orbity<aj,...,an> Corbity<a;>X.-Xorbity<a,>)
corollary IIL. B holds for every finite structure.

corollary V. Finite G(%) = (X satisfies B fin, < 2 is EI).

Lemma 5.5. If a countable 2 contains an infinite minimal invariant, then it can not be
an Elementarily Invariant structure,
Proof: By the remark following corollary II above, if there were such an invariant, there

would be then an infinite minimal unary invariant subset Sy, of |%|. Furthermore, all the
elements in S, would share the same 1-type, %, and given any a€S,,, we must have
Se=orbit(a).

Let L* be the language L(|%|Ufapew$), where L(|A]) is augmented to contain one
additional constant symbol, apew . Let T* be the deductive closure of (1)+(2)+(3), where
(1) is the complete theory of 2 as a structure for L(|%4]) (i.e, Th(A®) ), which includes, for
any constant, a, whose reference in (%) belongs to S, , the result of substituting a in all
the formulae of X; where (2) = {¢(anew) | ¢€=}; and where (3)= {a#anew | aEL(|R])}. Notice

that anew is bound to have the 1-type Z, in the restriction to L of any T*-model (since X is
included in its 1-type), but this would be vacuously true if T* were inconsistent.

It is easy to show that T* is consistent (if |#| were finite, it would not be so!), by using the
compactness theorem and the infinitude of S,. For given any finite subset of sentences, in
T* we can satisfy them as follows: If {a;, ,...,a;,} is the finiite subset of all the constant

symbols, in L(|#]), that are used in these sentences, define the model At iy} to bethe

same as A | as far as its universe, its non-logical predicates and function symbols, and
{aj, ,..,ai,} are concerned, but as one that picks the reference of apew to be some (any)

member of S, - {aj, ,...,aj,}. Given the above assumptions about A and Sy, it is clear that
this model would satisfy any subset of T* that utilises only the constant-symbols a;,

s @nd anew .

Let 3* be a model of T*, and let 2 be its restriction to L. is an elementary extension of a
model isomorphic to 2 , which we can assume—without loss of generalisation—to be %
itself. Furthermore, picking any particular constant symbol , say a*, whose reference in
belongs to S, a* and apew inB must have the same (L-) 1-type—i.e, Z—a fact which
constitutes an isomorphism, T, of {a*} and {anew} in2 . By the extending automorphism
lemma, then, T is extendible to an automorphism of an elementary extension, €, of 3. We
thus get an elementary extension of 2, €, in which an automorphism fails to conserve
either S, or [A] (for in any case an invariant subset of an EI structure must be invariant in
any elementary extension thereof) M.

We can therefore characterise EI structures by the following
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THEOREM 5.6. A structure is Elementarily Invariant iff every minimal invariant (every
orbit) is both finite and definable.

This, of course, does not imply that elementarily invariance must entail a finite number of
symmetries, but merely that each element can be acted upon only in finitely many ways.
Examples of EI structures with infinitely many symmetries are

(1) The infinite full binary tree, in which each node has exactly two successors, and

(2) The field of all algebraic numbers over the rationals.

We can define, now, the property B min, requiring every minimal invariant to be definable.
By lemma 3.5 it would follow that in a structure satisfying B min every minimal n-ary
invariant must have a principal n-type. Now it is true, in general, that any n-type in Th(%)
must be realised in (all the members of) some n-ary minimal invariant of 2 if it is
realisable in 2. Let S be the set of all n-tuples in [%| that have this n-type. Clearly any
automorphism will preserve the satisfaction of this n-type, and therefore any member of S
can be moved by it only info S. If S is finite any automorphism moves it onto itself; while
if S is infinite and is moved by an automorphism into a proper subset of S, T, the reverse
automorphism would move members of S-T out of S, and would not preseve the n-type.
Hence S must be an invariant and any minimal n-ary invariant contained in S must satisfy
the given n-type. It thus follows that in any structure, 2, satifying B min, every realisable
n-type is principal in Th(%), and by a well known model theoretic result (see [Shoenfield,
Mathematical Logic, pp.103- 104, 27,g.]), this is equivalent to % being an elementarily prime
model of Th(A)—i.e., to the fact that every model which is elementarily equivalent to %
must be isomorphic to an elementary extension of A. We can therefore infer

Corollary V. A structure for L is Elementarily Invariant only if it is an Elementarily Prime
Model of its own L-theory. ‘

The converse is not necessarily true. It is easy to produce an example of an elementarily
prime model of a complete theory with an infinite minimal invariant , which would fail
then to be elementarily invariant.

One example of such a model is any countable model of the theory of a dense ordered set
without first or last element (in a language containing only '<' as a non-logical symbol!),
e.g, Q<, the Rationals with respect to their order type.

Any two countable models of this theory are <-isomorphic (i.e. the theory is Rg-
categorical). The theory is complete (and there are no finite models) and any of its models
is saturated. Thus any countable extension model of this theory—such as Q<(v2), or the
real algebraic numbers, with respect to order only— would be an elementary extension.
Such extensions of Q have infinitely many <-automorphisms (e.g, any linear
transformation X—> aX+b with a>0 and b in the extension model) which do not map Q
on Q. (e.g, X—> X+v2 for Q(v2)). However, we notice that all invariants of these
automorphisms are infinite!
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Another example: Consider the theory T that has, as axioms, sentences in a language with a only one
monadic predicate, P, asserting that for any set of n different individuals satisfying P, there is another
individual satisfying P, as well as a sentence asserting that there is an individual satisfying P. Given any

countable model satisfying this theory, the submodel &' , determined by all individuals satisfying P would
itself be a countable elementarily prime model of T satisfying, in addition, (¥x)(Px). It is easily proven that
any two countable models of T'= T+(Vx)(Px) are P-isomorphic. Therefore T is X(-categorical and complete,

so T' is deductively equivalent to Th(&'). It is clear then that any model elementarily equivalent to '
—which must satisfy T'—contains an elementary submodel isomorphic to % . On the other hand &' is not
elementarily invariant, because |#'|is the only non trivial invariant in A’, and is infinite. This can be seen

directly by proving the existence of an elementary extension3' of &' containing one additional element
(also satisfying P). That such an extension exists can be easily proved by applying the compactness theorem

to prove the consistency of the union of the complete diagram of 2' with an infinite set of statements, each

of which asserting that the only new individual is different from an individual of &', but collectively
referring to every element of ' . Any permutation of the elements of 2' defines an automorphism therein,
but some such permutations fail to move [#'| onto itself.

In the next section we will deal only with EI structures and their "Galois Theory".
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6. Galois Theory of EI structures.

We start with a generalisation of Theorem B (§5):

THEOREMC. Inan El structure 2, a finite subset of |A|" (n<w) is D-definable—where D is

countable subset of |A|—iff it is D-invariant.
Proof. Let LU(D) be the language L augmented by a countable set of unary predicates

{Uala€D}, Let A*D be a structure for LUD) identical to % for L, but in which for any a€D
the extension (interpretation) of each U, is {a}. We first notice that if % is EI so is A*D.
For, any automorphism of an elementary extension, D, of A*D, is by definition nothing
but an automorphism g of 3=+ , for which every member of D is a fixed point! A-
fortiori, [%+D|=|%|=p|A|=p|A+D|. Now, from theorem B above it follows that any finite
subset of |#|n = [A+D|n, which is an n-ary invariant in A*D, is definable in 24+D. To be
invariant in 2*D means, by the above remarks, to be invariant under all those
automorphisms of & which leave every element of D unmoved, which constitute the
subgroup G(/D) . Invariance in % +D is therefore tantamount to what we defined as D-
invariance in % (or invariance in 2 with respect to D). Similarly, for a set SE[A[n ={#+D|n
to be D-definable in A means that there exists a formula ¥(z1,...zy, di, ,...,d;,) in Sp(L(D))—
where d;, ,...,d;, are all the names of elements of D (in AP) that occur explicitly in the
formula—such that AD |= ¥(ay,..,an, di .., di,) iff <ay,..an>€ES.
For any such W let ¥(z1,...z,) be the formula

(@, ) Fxip)-(Ixi )l Udil(xi1 ) &Udiz(xiz) & . & Udik(xik) &W(Z1Zn, Xig soerXiy) |-
It is obvious that AP [= W (z1,2zn, di, oo, diy) iff 21D {= W*(z1,...zn). Thus D-definability is
tantamount to simple definability in A+D H.
Suppose D is an invariant subset in %. Consider the substructure, %|p , of %, defined by
restricting the domain to D. We shall use 'G(D)' to loosely denote G (&|p). The
relationship between this group and G(®) is provided by the following

Lemma 6.1. If D is an invariant subset of |A| in an El structure 2 , then

G (D)=pr G(AD) is isomorphic to G @)/ G(&/D).
Proof. From lemma 1.4 we know that G(&/D)< | G(%). Define the natural mapping
N1:G(@*) —>G (D) by 7(o)=0lp=0-restricted-to-D. This is a proper definition since
o(D)=D implies olp EG(H|p). To show v is surjective, suppose pEG(H|p); then by the
extending automorphism lemma p. can be extended to an automorphism of an elementary
extension of %, which, by the elementary invariance of %, becomes by restriction to |%| an
automorphism v of & satisfying n(y)=p.
The kernel of nis {o| c€G@A) & olp= identity on D} which is exactly G (%/D). Thus
G([D)=G*)/ G(A/D) and the isomorphism is defined by ¢(cG(%/D))=clp.
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Lemma 6.2. In an El-structure a functionally closed subdomain is a Galois subdomain.
(This is the converse of lemma 1.3).

Proof. Let D=Cf, (D). This means that if d€éD, {d} is not D-definable, and, by theorem C,
not D- invariant. d must be movable then by some uG(*/D). Hence D=K,G®/D).

We thus see that in an EI-structure the Galois subdomains are exactly the functionally
closed subdomains. We are now in position to prove a near analogue to one of the main
theorems of classical Galois Theory:

THEOREM D. Let & be an elementarily invariant structure and let D be a Galois subdomain.
Suppose further that G(2/ D) is a finite normal subgroup of G(A) . Then
(1) D 1s invariant in A.
. (ii) |#| =Cf, (DUS), where cardinality(S)<o( G(2/ D)), and
(iii) [A| =Cf, (DU {x | ®(x)}), where &< S1(L(D)), and
cardinality ({x | ®(x)})<o(G(@/D))x(o(G(&/D))-1).

This shows, in effect, that when G (% /D) is finite, 2 is the splitting extension of %4|p—i.e,
it can be generated from it by adding to D the finite number of A-solutions of a 1-free-

place formula of L(D), having no solutions in D. '
Proof. (i) follows from lemma 1.5. We shall define now a finite ascending chain

of Galois subdomains of %, as follows:
(1) Do=D; (2) if D; is constructed, and it is a Galois subdomam, and D;= |&], choose

ViEIA-D;, and let Zj={o1®,...,01;D)} be the set of all elements of G(#*/D;) which really
move yi. By definition (of a Galois subdomain) kj>1. Define then

Di+1 =Cfy(D;Ufyi}). Therefore Di;; must be Galois by lemmas 6.2 and 1.1.

We can easily establish that c €2 —> o & Uk<iZk , since o €2 —> oEG(A/D;) implies
that any o€Z; leaves unmoved any element of D; . Thus, if u €3k and k<i, we have
ykEDk+1ED; and pyk# yk , whereas oyg=yy forany o €% .
The automorphisms of ZgU...UZ;; are all different ones belonging to G(#%/D)- {1},
(where v is the identity of G(*))and no Z; is empty unless Di=|%| . Thus, since G(%/D)

is finite, we must have Dn=|*| for some N< o(G (%/D))-1.

Lemmal.2 entails now, by induction, that Dy=|%| = Cf,(DU{yo,...,y N1 }); so

|A| = Cf, (DUS), where cardinality(S)<o(G(2/D)).

Let S*={oyi| yi€S & cEG(A/D) }. Then |A| = Cf,(DUS*), where S* is a D-invariant and
cardinality(S*)< order(G(%/D) )xcardinality(S) < order(G (%*/D))x(order(G(*/D))-1 ).
By theorem C, S* is the solution-set in for some 1-free-place formula ® in S1(L(D)) .
We note that the above proof is wasteful—since the arbitrary choice of Vi€IAI-D; |, at the
i-th stage, does not allow us to postulate more than one automorphism of G(2/D;) that

really moves y;. The freedom to choose any y;E[%|-D; , at the i-th stage, means that we
can use it to maximize kj—the number of appropriate automorphisms moving it.
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Furthermore, while the set S* above is obviously the smallest D-invariant containing S,
one can still improve the estimates on the size of the solution-set required, in addition to
the base domain D, in generating the full structure by functional closure.

Finally we note that one does not necessarily require an entire solution set of some

formula @ in order to define, on the basis of a smaller structure, a full splitting structure
for F. Some of the solutions of a predicate may be definable in terms of others (and in any
case any one of them is definable in terms of the others, in a language with equality).

Definition. Suppose 2y is a functionally closed substructure of %. The Functional
Dimension of & over g —to be denoted by ' FD(2t:%¢)' ) will then be the minimal integer,
M, for which there is a set S with M-1 members satisfying |%| = Cf, (|2|US).

Theorem D above shows then that the functional dimension of an EI structure, A, over

a Galois subsructure, XAy ,with a finite normal subgroup G@/Ap), can not be greater than
the size (order) of that group. The actual value of the functional dimension, however, is
far smaller in most such cases, since we can easily prove

Lemma 6.3. Under the above conditions on 2 and 2o, FD(2:2g) < 1+logo(o( G(2/Ap)).
This will follow from

'THEOREM E. Let & be an elementarily invariant structure and let & be a Galois substructure.

with a finite subgroup G (A/20). Let M =FD(A:Xg), and let {b1,....by)} be a minimal
basis for generating 2 out of Ao by functional closure, i.e, one that satisfies
|| = Cf, (%] U{b1,....ba1}) — while no lesser set (in cardinality) does.
Then there exist in G (A/A¢) M-1 automorphisms, o1,...,0M-1 , satisfying
(i) 0'ibj¢bj iff i=j ,and
(i)  The subgroup generated by o,...,0M.1 is Abelian of orders 2M-1,

Proof. Let S=(b,...,byp.1} and let S. =S-{bj} . It is obvious that no b; belongs to

Cf,, ([P0l US. i), or otherwise S_; would provide a basis with a smaller number of elements.
Furthermore, by lemma 6.2 any functionally closed subdomain such as Cf,,(|2o|US. ;) must
be Galois.Therefore, for any j, 1<j<M-1, there must be an automorphism oj in

G /A o|Us. j) which moves b; but leaves unmoved any other b;, where i} .

We now show that the automorphisms, o1,...,0p.1 commute with each other:

By assumption [&| = Cf, ([Ao] U{b1,....br.1}) ; therefore , for any a€|Hg|, there is a formula
F(z1,...,zm-1,2m) in Sp(L([A&g))), such that

APd|= F(b1,...by1, a) & (VX[ F(by,...,bpr1, X) —> x=a ] .

This implies (applying o) that
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)Und |=F(b1,,0’lb] /---rbM-lr oja) & (VX)[ F(bl,...,O'jbj ,...,bM_l, X) —_ x=oja] ’
which implies (applying o;, where, say, i<j) that
Amd|= F(by,...,0ibi ,...,0jb; .., bM1, Gi0fR) & (VX)[F(by,...,01b; s GD; e DML, X) —> x=0;0a]
If, instead, we were to apply o; first and then 0j, to the "definability" of {a}, we would get
ARd |= F(by,...,01b; soer D) DM, Of012) & (VX)[F(b1,0..,0; D5 e Gby .. M, X) —> x=cjo;al.
Thus, by (2nd order) logic, (Va)[a€|Xy| —> gjoia=oiaal.
Now let 1; be the the least positive exponent for which o;"ib; =b; (there must be such
because every orbit is finite!). By the definition of o; above r; =2, and therefore the order
of oy in G(A/A¢) is > r; =2.
The Abelian group Ga generated by oy,...,0p1 , contains the set

{ o1™M o0y "1 | 1<nj<r i } . Now, each <ny,...,ny1> defines a unique

automorphism in this set, since <ny,...,nyp.1># <n'y,...,n'\ 1>, where 1< nj,n)j<x; , implies
ni=nj for some i<M, and then o1™ oy™0y ;"™ 1 b; = 5;"ib;, while
T s WLV oib; ; but oMb; =0ib;, since 0<| ni-n'jl<rj .
Thus the order of GA > r;x...xry, > 2M-1 H,

From this theorem it follows that M-1< logy(o(G(%/2g)), which is lemma 6.3.
Furthermore, since we can always find in A an [%¢|-invariant subset of size<(M-1) x
order(G(@/4), containing a subset of size M-1, we have the following result:

THEOREM F. If & is an elementarily invariant structure and g is a functionally closed
substructure determining a finite subgroup G(&/2q), then 2 is a splitting structure over A for a
1-free-place formula € S1(L(Al)), with a finite number of solutions N (in any elementary
extension of 2 ) where N< RlogoR and R is the order of an Abelian subgroup contained in
G(&/20). In any case we have N<o(G (%/Ag)xloga(0( G(H/Hp)). (see below for better result),

Emended Upper Bound for "Splitting Degree": From the proof of theorem E above we can easily see that
for each minimal basis the elements of a certain Abelian subgroup of G (?/40) ( G4 in that proof ) act on it
in a special way, which might allow us to get a slightly better upper bound for N above. We thus look at the
minimal invariant closure, S*, of a minimal basis, {b...,by,}, as a union
{obj 10 E€GA } U {obj| 0EG(A/D)-G 4 }. Remembering that G A is generated by o,...,0y; ,
where each moves exactly one (corresponding) basis element , and letting rj again be the minimal positive
exponent satisfying o; "1 b; =b; , we get
cardinality {ob, |0 €GA } <2 1r; < (M - 1) X max{r}
cardinality {obj| cEG@®/D)-GA} <M - 1) x(o(G@/A0) - o(G4 )), where o(G 4) = ITr;.
Thus N=cardinality $* < (M - 1)X [ o(G®&/%0) - (ITr; - max{r;}) |<

M - 1)x [ o(G(#/20) - max{r}(2M - 2 - 1) ], therefore giving the improved upper bound

N< logz(O(G(%))x [ o(G@/Ag) - max{r}(2M-2- 1) ]. (Emended Upper Bound for
“splitting degree " when M>2)
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Irreducible Predicates, Minimal Invariants and proper Splitting Extensions—More
about the Analogy with classical Galois Theory. Until now we have been rather cavalier
in our use of the term splitting extension. We will now show how the analogy to the
classical Galois theory, that is suggested by the use of this term, in the context of
investigating EI structures, could be made almost perfect by obtaining for such structures
the general analogues of the allied classical concepts, such as irrducible polynomials, and
minimal normal extensions (the last corresponding, via the Galois functor, to single steps
in a composition series of the symmetry-group of the larger structure). We start with a
review of the classical theory in comparison to the results we have presented thus far.
This can be skipped over without affecting the continuity of what is to follow.

In classical Galois theory the term splitting extension is used when one has a base field, F, and an extension
field E, in which a polynomial p(x) over F is factorable into linear factors, but not in any intermediate field.
E is then said to be a splitting field of p(x) , and is generated by a root or roots of p(x). The concept of a
splitting extension for p(x) is well defined up to isomorphism. An extension field is classically called normal,
when it is a Galois extension according to our terminology. One of the basic classical theorems states that E
is a normal extension of F iff it is a splitting field of a polynomial over F. This corresponds to parts of our
above theorem D and theorem F for EI structures which, in turn, fit in with the idea of an Algebraic
extension (such an extension of an EI structure is El itself, while a transcendental extension need not be so!).
In the classical theory it is proved that an intermediate field, B, between a base field, F, and a splitting
extension, E, is normal (that is, Galois in our sense) iff G(F/B) is a normal subgroup of G(E/F). This could
be proved by our lemmata 1.4, and 1.5 provided, however, that we added the requirement that when any
such B is the fixed field of G(E/B)—i.e, when it is Galois, according to our terminology—it must be an F-
invariant in E, i.e, any automorphism of G(E/F) must move B onto itself! This fact (which is just as crucial in
the classical case, where it is stated as "B is a normal extension of F if and only if each isomorphism of B into
E is an automorphism of B"—see, for example, [Artin, E., Galois Theory, p. 48, bottom paragraphl]), is

+ classically proved by using first the concept of the degree of one field (as a vector space) over another, in order

to show that if G is a group of automorphisms of E (a subgroup of G(E)) and B is the fixed field of G, then
the degree of E over B is equal to the order of G) and by exploiting specific field properties ( existence of
inverses, the distributive law, etc.). In general, however, this invariance with respect to a core structure is
not automatically guaranteed for an intermediate structure unless it is explicitly required (It is conceivable
that a more suitable sense of Galois substructure would include this desideratum of invariance, but this
would always make it relative to a third core structure, besides itself and the larger structure, and would
not automatically conform to the standard use of Galois as a synonym for normal when applied to field
extensions).

Classically a polynomial p(x) over F is irreducible iff it is not the product of two
polynomials over F—whose degrees are both less than that of p, but higher than 0.
Suppose p is separable, i.e, in its splitting field, Ep, no two linear factors are "numerically"
proportional (with a ratio in F). Another way to state then the irreducibility of p over F is
to use the following metamathematical formula:

(Vq)(q is a polynomial over F —>Ep |= ([(Vx)[qx=0 = px=0] —>( ¥x)[px=0 —> qx=0]) —
in other words, "any polynomial whose roots are all p-roots must share all the roots of p".
One can generalise this idea, for all unary predicates, on the basis of the observation that,
like polynomial-equations, any formula defining a minimal (unary) invariant in an EI
structure, must be satisfied only by finitely many values (This observation means, in
particular, that for finite structures we can regard all predicates as "polynomial-equation-
like") . It is trivial to note that that finitely satisfiable predicates—just like polynomial
equations over splitting fields—are equivalent to finite disjunctions of the simplest linear
"equations”, equating a variable to an element of the splitting field.
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This analogy was explored already by [Morely 1965], where the idea of irreducible
polynomial was taken up and generalised for structures of different infinite powers. It is
much more obvious perhaps, in the context of our elementary investigations, that the
irreducibe predicates should be correlated in EI structures with minimal (unary)
invariants. If irreducibility is to be defined by the lights of the above metamathematical
formula, then the following ought to be true: In EI structures every irreducible (unary)
predicate defines a minimal invariant and vice versa, every minimal invariant is definable only by
irreducible predicates.

In fact, this is true for all models in which every minimal invariant is definable—i.e, those

satisfying Bmin (see lemma 6.5 below). In EI structures, however, every irreducible
predicate has only a finite number of "solutions". Thus, it is only in EI structures that
predicates defining minimal invariants constitute perfect analogues of irreducible
polynomial equations.

Definition. For a structure % for L let a 1-place formula ®(z) belong to S1(L(D)). Then, we
shall say that it is (semantically) D-irreducible in 2 iff _

(VW) [ PES1(L(D)) & AP|=(F2)Wz — ( AD|= (Vz)(¥z—>Pz) — AP |=(Vz)(Dz—Wz) ) .
We say that such a ®€ Sq(L) is irreducible in 2 iff it is D-irreducible there.

We can use the notation 'A(¥)' to signify, for W& S1(L), the subset {x | % |=¥x} of |4].
The irreducibility in 2 of ®E S;(L) can alternatively be spelled out then as
(YY) [PES (L) &AW #T — (((PITH(D)) — (A(F)DHD)) )] (V)
® is properly irreducible., when it is irreducible and satisfied by some individual(%(®) #0).

Let ®€ Sy(L) & A(P) #J and let £ be defined by Soa={A(F) | ¥E Sy (L) &AW)24(D) ).
Fo:4 is a proper principal filter. Furthermore , we have (omitting the simple proof).
Lemma 6.4. If @ is properly irreducible in A, then for every WE Sy(L) either A(¥)or

|2|-2A(¥) belongs to S but not both.

We now establish the correlation between proper irreducibility and minimal invariance.

Lemma 6.5. In a model satisfyying B min(minimal invariants are definable) every properly
irreducible (1-place) predicate defines a non-empty minimal ( unary) invariant, and every such
invariant is definable by some (and only by ) properly irreducible predicate.

Proof. Let @ be properly irreducible in . %(®) is clearly invariant and not empty. It
contains a non-empty minimal unary invariant (an orbit of any of its members), that must

be definable by a formula ¥ of S1(L) . We thus get (%) =3 & (A(¥)CHD)) , which, by
the irreducubility of @, imply that 2(¥)=2(®), and therefore that A(®) is a minimal
invariant.

Conversely, if S is a minimal unary invariant it is definable by some formula ®, and if
for some other formula W of S1(L), we have 2A(¥) = & A(¥)CA(P), then we have a non-

empty invariant 2(¥)—any definable set is invariant— contained in 2(®), and by the
minimality of the latter, must be equal to it. -
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EXAMPLES: We want now to discuss a few simple examples which would show that

the upper bounds— provided by Theorem E and the last remark following theorem F—
on the relative functional dimension, and on the size of the smallest invariant containing a
minimal functional definiton basis (defined by the "splitting formula" ), can not be
improved-upon in general.

Examplel. Let L1 be the finite lattice, with the Hasse diagram depicted in figure 1.

al Let LO be the substructure defined by the closure
of {a2,a3}. L0 can be depicted then by the diagram
below. G(L1/L0) is the group of permutations on

{a5,a6}, i.e, S ,
a5 ab
al
a4 . A Galois sub-Lattice
ad (functionally closed)
a2 a3 2 a3

‘a0

a0  Figure 1. A seven element Lattice

The size of a minimal set we must add to L0 in order to functionally define L1

is 1<logp2=1, while the smallest invariant we must consider is of size < 1x2=2.

In this case we see that the upper bounds of theorem F—for the sizes of minimal basis
and minimal invariant containing it— are both reached(and the possibe improvement
indicated by the remark following theorem F does not materialise—since

log2(o( G(/A0))x [ o(G@/2g) - max{ri}(2M -2+ 1)]=1x[2-2(20-1)]=2 ).

If Rxy is modelled by the partial order relation in the lattice ("x is connectedly lower than
y"), then the 1-free-place formula, Fz= Ragz & Rzaj, over LO defines the invariant {a5,a6}.
Both {a1} and {a4} are definable, respectively, in both L1 and L0 by

P1(x)=(Vu) (x=u v Rux) and »
Wy(x)=Aw) u)@Fv)(Vy) (V2)[(y=w v Rwy) & (z=u v z=v v z=w v (Ruz & Rvz)) &
Rux & Rvx & ( =Rux v =Rvx v Rxz)].
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Example2. Let L2 be the finite lattice, with the Hasse diagram depicted in figure 2.

Let LO be the substructure defined by the closure of
{al0,a01}. LO can be depicted then by the diagram below.
G(L2/L0) is isomorphic to $2xS52. The full group G(L2) is
isomorphic to the Abelian 52x52xS2.

a22

a22

o

A Galois sub-Lattice
L1(functionally closed)

al0 / a01

a00

all

An intermediate Galois substructure, L1, is

isomorphic to the seven element lattice of

the previous example. |L1 = (L2-{a20,a02}).
Figure 2. A Nine Element Lattice

The size, M-1, of a minimal set (for example, {a20,a21} we must add to L0 in order to

functionally define L2 is 2$log2(o(G(L2/ L0)) =2, while the smallest invariant we must
consider is of size 4, where by the emended formula of theorem F
4<logr(0(G(L2/L0))X [0(G(L2/L0) - max{ri}(2M-2- 1)]=2x [4-2 (21 - 1)]=4,

since the automorphisms which move each element of the basis but not the other, are
each of order 2. Notice that the upper bound provided by theorem F for this size of

the smallest invariant we need (comparable to the degree of the polynomial for which a
larger field is a "splitting field" of a given Galois subfield) is logz(o(G(LZ/ L0))x
0(G(L2/L0) = 8, which is double the actual size! This invariant (comparable to the set of
all solutions in the larger field of a certain polynomial over the smallest Galois subfield)
is the set Sp= {a20,a02,a12, a21}.

If Rxy is modelled by the partial order relation in the lattice ("y is connectedly above x", in

the diagram), then the 1-free-place formula over L0, Fz=F1zvF»z defines Sy, , where
F1z= (Ra11z & Rzap; ), and Frz= ~Rallz &-Rzall. The fact that the defining formula of
Sm, Fz, is a disjunction of two formulae F1z and F;z, each of which defines a certain
minimal invariant, is completely analogous to the way a field constructed out of

the roots of a polynomial over a base field can be constructed via an intermediate field,
using at each stage a factor-polynomial. If f(x)=g(x)h(x), in a field, f(x)=0 <=>

(g()=0)v(h(x)=0).
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Example 3. In the two previous examples the groups considered were all Abelian. We
now consider a trivial case of non-commutative groups.

Let U=<U, UXU> be a finite model, with nindividuals, of the single statement
(V)(Vy)Rxy.

Since every permutation is an automorphism, here, there are no invariants save

@ and Uk, k>1. Every domain of less than n-1 elements is a proper Galois subdomain
(since for any such domain any two external elements can be interchanged by a 2-cycle,
that keeps unmoved all the internal elements), but none of them, save &J, is an invariant.
The subgroup G (U /{my,.... mk})—where {mj,...,mg} is any subset of k< n different
elements of U— is clearly isomorphic to Sy x .

Thus, by lemmata 1.4 and 1.5, Sk will be a normal subgroup of Sp, —for 1<k< n-1—if and
only if {1,...,k} is an invariant, but since none of these subsets are invariant, we will have
obtained the well known Group Theoretic fact that for n> 3, the sub-groups of S,
isomorphic to S»,...,Sp-1, are not normal subgroups!

The functional degree of U over the empty structure is n (since a minimal basis requires

n -1 elements). The group of U over & is isomorphic to S, and is of order n!, and we
have, of course,

log2GQL/ @)= logon! =21 iclogoi = (n-1) (with equality only when n =1 or2).

but according to the emendment on F we should have, for n>3,

n<logon! x[n!- 2(2 ™2~ 1) ], since n is the size of the minimal invariant needed to
functionally generate U out of & is n (size of U itself), but this is even more trivial than
the previous inequality.
We note that according to Theorem E, some Abelian subgroup of S, must have an

order > 211, A direct proof of the existence of such a subgroup is slightly more tedious.
It is possible to get much more interesting results of this sort by considering less trivial
structures. '

Consider the structure €=<{1,2,3,..,n},{1,2,....m}>, where m<n, for a language with one
extralogical monadic predicate symbol. The functional degree of € over the empty

structure is n -1 (since a minimal basis requires n -2 elements). The group of € over & is
isomorphic to Smx Sp- m and is of order m!x(n- m)!, and we have

log2G(€ /)= logrm! +loga(n - m)! =leismlog2i + leisn.mlogzi .

The minimum of the last sum is obtained when m = n- m. So we should have
2loga(n/2)! = n- 2, which is equivalent to logy(n/2)! = n /2 - 1 —the same weak
inequality obtained before.
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Example 4. The Symmetries of Trees.

A Tree T is a structure <A,R>, RCAXA, satisfying

(@) (ANN(Vy)(x2y—Rxy) ;

(1) (Vx)(Vy)(Rxy — —Ryx);

(i) (Vx)(Vy)(Vz)(Rxy&Ryz —> Rxz); and

iv) (V)(Vy) (VW) (x2y&Rxw&Ryw —Rxy v Ryx).

The individuals (members of A) are usually referred to as nodes.

'Rxy' is often read as "x is theancestor of y".

Axioms (i)+(ii) guarantee that any tree will have a unique "base" node, without ancestors,

which is an ancestor of every other node. There can be no "cycle" in a tree. (iv) guarantees
that branches will never merge after separation.

In "discrete" trees (including all finite trees) there is a functional relationship of immediate
ancestry (x is a parent of y: Pxy) applying to all nodes but the base node, and a relationship
of immediate descent (x is a child of y: Cxy), applying to all except those without any

descendents (terminal nodes). Thus Pxy <> pr Rxy&(Vz)(Rzy &x=z—Rzx) and Cxy < pr Pyx.
The mapping a: x—> {y | Ryx} is an isomorphism from <A,R> into a substructure of

< (A),C >, in which the base node is mapped on &. For each node a the set ®(a)=

{x | x=a v Rax } is a subtree with a as a base node. Any subtree that can be defined so will

be called hereditarily complete. The family of x, Fam(x), will be defined as a(x)U ®(x)—i.e,
the subtree obtained by grafting the subtree defined by x (as a base) on top of the
gnealogical past line of x. Notice that while every family is a subtree the only hereditarily
complete family is the entire original tree.

We will consider trees in which for every node the set of ancestors is well ordered by

R. Call such trees well-grown. All finite trees are well-grown, of course.

For well-grown trees the height of a node is a mapping of the nodes into the ordinals,
inductively defined by : h(x)=0 if x is the base node, h(x) = n+1 if (Iy)(h(y)=n & Pyx),
and h(x)=limsupf{h(y) | Ryx}, otherwise. It is easily proved that this is a proper definition
for well grown trees.

The branching factor of a node, x, is cardinality{y| Pxy}, i.e, the number of its "children".
A laterally uniform tree is a well grown one in which any two elements of the same height
have the same branching factor.

It is fairly obvious that height and branching factor are preserved by any isomorphism.

One can prove the following properties of well grown trees:
(). A hereditarily complete subtree is an invariant iff there is no other such subtree
isomorphic to it at the same height (of its base node).
(ii). The (unary) minimal invariants are exactly the sets of all nodes of equal height that
belong to invariant, laterally uniform, subtrees.
(iii). A subtree is a Galois substree iff it is an invariant family of some node.
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Example 5. Standard and non-standard Models of Arithmetic.

We know that the standard model is Elementarily Invariant (since every singleton is
definable), with a trivial Galois group. What about non-standard models? Is any of them
Elementarily Invariant? The answer is negative.

Lemma: A non-standard model of Arithmetic is not elementarily invariant.

Proof. If any such model were EI, then every minimal invariant would be finite and
definable. Let h be any infinite number and let f(x) be the arithmetical formula defining
the minimal invariant containing it. Since f(h)& h>n, for any finite numeral n , then

(@)(f(x)& x>n) is satisfiable in the standard model for any finite numeral n, i.e,

(Vn)(Ix)(f(x)& x>n) is true in the standard model. It follows that the minimal invariant
containing h must already contain infinitely many standard "natural” numbers. Contra-
diction.

Corollary I. Any non-standard countable model of arithmetic has an elementary extension in
which it is moved by some automorphism onto another non-standard submodel of arithmetic.

Corollary II. In a non-standard model of arithmetic any finite definable subset is standard.

The last corollary, reformulating the argument above, actually "demonstrates" the non-
algebraic nature of any non-standard model—as an extension of the standard. For,
inasmuch as any non-standard number can be dinstinguished from others by some
arithmetical property, there must be infinitely many other (natural) numbers satisfying it.
There are no irreducible predicates and no splitting structures (for finitary formulae).

A non-standard model of arithmetic must be of the order type w+(w+ w~)A, where A is an
order type of a dense linear set without first or last element. We can thus describe such a
model as consisting of the natural integers followed by a dense ordered set of "blocks"—
each of which is of the order type of the whole numbers—without a first or last block. It is
clear that any automorphism o preserves the naturals, and that if it moves any infinite
integer, it must move with it the whole block containing it. Suppose an infinite x is moved
to a(x), then it is easy to prove that any finite number divides a(x) - x, since x=n(mod m)

implies a(x)=n(mod m ), when m is finite.







