Comparing Different Text Similarity Methods

Bao, J., Lyon, C., Lane, P.C.R., Ji, W. and Malcolm, J. (2007) Comparing Different Text Similarity Methods. UH Computer Science Technical Report . University of Hertfordshire.
Copy

This paper reports experiments on a corpus of news articles from the Financial Times, comparing different text similarity models. First the Ferret system using a method based solely on lexical similarities is used, then methods based on semantic similarities are investigated. Different feature string selection criteria are used, for instance with and without synonyms obtained from WordNet, or with noun phrases extracted for comparison. The results indicate that synonyms rather than lexical strings are important for finding similar texts. Hypernyms and noun phrases also contribute to the identification of text similarity,--though they are not better than synonyms. However, precision is a problem for the semantic similarity methods because too many irrelevant texts are retrieved.


picture_as_pdf
S88.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads