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Abstract 

The function of the nervous system is shaped by the refined integration of synaptic 

inputs taking place at the single neuron level. Gain modulation is a computational principle 

that is widely used across the brain, in which the response of a neuronal unit to a set of inputs 

is affected in a multiplicative fashion by a second set of inputs, but without any effect on its 

selectivity. The arithmetic operations performed by pyramidal cells in cortical brain areas have 

been well characterised, along with the underlying mechanisms at the level of networks and 

cells, for instance background synaptic noise and dendritic saturation. However, in spite of the 

vast amount of research on the cerebellum and its function, little is known about neuronal 

computations carried out by its cellular components. A particular area of interest are the 

cerebellar nuclei, the main output gate of the cerebellum to the brain stem and cortical areas. 

The aim of this thesis is to contribute to an understanding of the arithmetic operations 

performed by neurons in the cerebellar nuclei. Focus is placed on two putative determinants, 

the location of the synaptic input and the presence of channel noise. 

To analyse the effect of channel noise, the known voltage-gated ion channels of a 

cerebellar nucleus neuron model are translated to stochastic Markov formalisms and their 

electrophysiologial behaviour is compared to their deterministic Hodgkin-Huxley counterparts. 

The findings demonstrate that in most cases, the behaviour of stochastic channels matches the 

reference deterministic models, with the notable exception of voltage-gated channels with fast 

kinetics. Two potential explanations are suggested for this discrepancy. Firstly, channels with 

fast kinetics are strongly affected by the artefactual loss of gating events in the simulation that 

is caused by the use of a finite-length time step. While this effect can be mitigated, in part, by 
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using very small time steps, the second source of simulation artefacts is the rectification of the 

distribution of open channels, when channel kinetics characteristics allow the generation of a 

window current, with an temporal-averaged equilibrium close to zero. Further, stochastic 

gating is implemented in a realistic cerebellar nucleus neuronal model. The resulting stochastic 

model exhibits probabilistic spiking and a similar output rate as the corresponding deterministic 

cerebellar nucleus neuronal model. However, the outcomes of this thesis indicate the 

computational properties of the cerebellar nucleus neuronal model are independent of the 

presence of ion channel noise. 

The main result of this thesis is that the synaptic input location determines the single 

neuron computational properties, both in the cerebellar nucleus and layer Vb pyramidal 

neuronal models. The extent of multiplication increases systematically with the distance from 

the soma, for the cerebellar nucleus, but not for the layer Vb pyramidal neuron, where it is 

smaller than it would be expected for the distance from the soma. For both neurons, the 

underlying mechanism is related to the combined effect of nonlinearities introduced by 

dendritic saturation and the synaptic input noise. However, while excitatory inputs in the 

perisomatic areas in the cerebellar nucleus undergo additive operations and the distal areas 

multiplicative, in the layer Vb pyramidal neuron the integration of the excitatory driving input 

is always multiplicative. In addition, the change in gain is sensitive to the synchronicity of the 

excitatory synaptic input in the layer Vb pyramidal neuron, but not in the cerebellar nucleus 

neuron. These observations indicate that the same gain control mechanism might be utilized in 

distinct ways, in different computational contexts and across different areas, based on the 

neuronal type and its function.  
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1  Introduction 

1.1 Motivation 

How does the brain compute? This is a central question in neuroscience and its answer 

would probably provide a fair understanding of higher cognitive functions and psychiatric and 

neural disorders (Adolphs, 2015). To study how the neural system acquires, maintains and 

utilizes its enormous computational capacity a methodical approach of three main steps could 

be applied.  

The first step is to define the basic computational unit of the brain. In that context, a 

neural unit could be a neural system, such as the motor system, a brain region, such as the 

frontal lobe or cerebellum, a neural circuit, such as the cortical or cerebellum microcircuit, a 

single neuron, or a sole dendrite (Salinas and Sejnowski, 2001; Silver, 2010).  

The second step is to identify the principles governing the computational operations of 

the neural system. The neuronal function is based on the interchange of synaptic signals 

between various regions of the brain that are integrated at the single neuron level. Although the 

basic nature of the synaptic inputs, is either excitatory or inhibitory, their integration mode 

could vary, from simple addition to multiplication. In fact, a brain-wide computational 

principle is gain modulation, where the response amplitude (sensitivity) of one neuronal unit 

to one set of signal inputs can undergo multiplicative transformation by the input of a second 

unit, without affecting the selectivity of the neuronal unit to a particular stimulus. For example, 

in the parietal cortex the neuronal responses depend on the retinal location of a visual stimulus 

and are multiplicatively modulated by gaze direction (Salinas and Sejnowski, 2001; Silver, 

2010).  
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The third step is to elucidate the mechanisms underlying these computational 

principles. Again, this investigation can be carried out at the level of a brain region or single 

neuron, and the potential mechanisms could be related to properties either of neuronal 

populations or single neurons (Salinas and Sejnowski, 2001; Silver, 2010). For instance, gain 

modulation at the single neuron level can occur from the presence of background synaptic 

noise, from dendritic saturation due to the level of synaptic activation, or from synaptic non-

linearities, such as short-term depression (Silver, 2010).  

In addition to these steps, other factors related to the neuronal function should be 

considered. Such a paradigm is the presence of noise at distinct levels of the neural system, like 

the synaptic noise in a network of neurons, or the electric noise at the cellular level. Noise is 

manifested in experimental trials, in vivo and in vitro, as variability in the neuronal and 

behavioural responses. Although, at a first glance, its functional implications might seem 

destructive for the neuronal function and communication, they can be beneficial as well. As 

mentioned, synaptic noise underlies gain modulation and therefore supplements the potential 

computational operations of the neuron. In addition, electrical noise, which is generated by the 

stochastic gating of neuronal ion channels, could impact single neuronal dynamics and 

arithmetic. For example, in the presence of channel noise the amplitude of membrane potential 

fluctuations varies between the dendritic locations, with thinner dendrites exhibiting greater 

amplitudes, which affects the reliability of temporal spike patterns (Faisal et al., 2008; White 

et al., 2000).  

The cerebellum, and in particular the cerebellar nucleus neurons, are an excellent 

candidate to study the computational properties of the nervous system. Cerebellar function is 

associated with motor control and coordination and a number of higher cognitive functions. 

Among the features that make it unique is that the majority of the neurons in the brain lie in 

the cerebellar cortex and that they are organized in a well-characterized basic pattern of a 

microcircuit. The cerebellum communicates bidirectionally with both the periphery and other 

brain areas. The cerebellar cortex output is inhibitory, via the Purkinje cells, and projects to the 

cerebellar nucleus neurons, in the deep cerebellar nuclei. These neurons also receive excitatory 

input from mossy fibres, which originate from several locations in the brain and spinal cord, 

and climbing fibres, which originate solely from the brain stem. After processing these inputs, 

they produce most of the output of the cerebellum. Cerebellar nucleus neurons are enriched by 

several voltage-gated ion channels and have an elaborate dendritic tree with variability in its 
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morphology (Apps and Garwicz, 2005; Baumel et al., 2009; Halloran et al., 2011; Saab and 

Willis, 2003; Uusisaari et al., 2007; Uusisaari and Knöpfel, 2012).  

Untangling the integrating properties of synaptic inputs in the cerebellar nucleus 

neurons, by using in silico modelling methods and considering factors such as channel noise 

and input location, could provide a better understanding of cerebellar function, in a context 

closer to real experimental conditions, that is, in the presence of channel noise, and in more 

refined way, that is, input location specific arithmetic operations. Therefore, it could unravel 

new mechanisms underlying the computational operations of the neural system at the single 

neuron level, adding knowledge to the ongoing research to answer the original question: how 

does the brain compute? 

1.2 Aims of the Thesis 

The main aim of this thesis is to elucidate the computational properties of cerebellar 

nucleus neurons by using a systematic approach and in silico methods. In particular, the role 

of stochastic ion channel gating and input location is studied as an underlying mechanism for 

gain modulation.  

Cerebellar nucleus neurons are the main output gateway of the cerebellum, and it has 

been suggested that they use different neural coding schemes, spike rate- or timing-based, to 

convey the information from the cerebellar cortex. Candidate mechanisms for these codes, such 

as post-inhibitory rebound spiking of cerebellar nucleus neurons and synchronicity or 

irregularity in Purkinje cells’ spiking, have been identified in cerebellar nucleus neurons, by 

using computational models with different detail in their complexity and biological abstraction 

(De Zeeuw et al., 2011; Heck, 2015; Steuber and Jaeger, 2013).  

Yet, the exact synaptic arithmetic operations utilized by the cerebellar nucleus neurons 

remain to be investigated thoroughly. A computational study using a cerebellar nucleus 

neuronal model with realistic morphology and a full collection of the known ionic channels, 

suggests that increases in the excitatory input rate from mossy fibres, or decreases in the 

inhibitory input rate from Purkinje cells, can control the output rate of the cerebellar nucleus 

neuron. In particular, inhibition from Purkinje cells performs an additive operation on the 

excitatory input from mossy fibres. Notably, there is no indication of multiplicative operations, 

in the experimental set-up used, that is, both inhibitory and excitatory synaptic inputs are 
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distributed along the cell, and the description of the ion channels of the neuronal model is 

according to the deterministic Hodgkin-Huxley formalism (Steuber et al., 2011). 

Could multiplicative operations, or gain modulation occur in cerebellar nucleus 

neurons? Neuronal noise, such as synaptic noise, can give rise to such computations in 

pyramidal cells, either in a balanced background configuration (Chance et al., 2002) or in 

combination with dendritic saturation (Prescott and De Koninck, 2003). But, neuronal noise 

could also stem from stochastic ion channel gating, and affect the amplitude of the membrane 

potential fluctuations, especially in the thinner dendritic compartments, and as a result the 

synaptic integration (Cannon et al., 2010; Kole et al., 2006). Therefore, different computations 

could take place, in the presence of ion channel noise, based on the input location. A hypothesis 

could be that in the presence of channel noise, inputs in large areas, such as the soma or thick 

dendrites would be integrated in an additive way. However, due to the occurrence of larger 

voltage fluctuations, inputs in thinner dendrites would undergo multiplicative operations.  

These phenomena have not been studied so far in the cerebellar nucleus neuron. 

Therefore, a construction of a neuronal model with stochastic ion channels and a systematic 

approach of stimulations in distinct dendritic locations and with different synaptic input 

combinations would advance the knowledge towards this direction. The following objectives 

are required to achieve this research aim: 

1. Conduct a detailed literature review on the functional implications of neuronal 

noise, and particularly channel noise, and on gain modulation and the 

underlying mechanisms.  

2. Develop a stochastic cerebellar nucleus neuronal model. The new stochastic 

model is based on a morphologically and biophysically realistic computational 

model of a cerebellar nucleus neuron, adjusted to replicate the experimentally 

observed electrophysiological properties of excitatory projection neurons. This 

model also includes a deterministic Hodgkin-Huxley description of its voltage-

gated ion channels (Steuber et al., 2011). In order to introduce channel noise to 

the cerebellar nucleus neuronal model, its voltage-gated channels are translated 

to Markov formalisms, where they are described by a detailed kinetic scheme 

and by a probabilistic transition between the kinetic states, as in Kole et al.  

(2006). The development of the stochastic cerebellar nucleus neuronal model is 

a two-step process: firstly, each channel is described as a Markov model and is 
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behaviour is investigated in a simple single compartment model; secondly, the 

stochastic channels are incorporated and studied in the detailed cerebellar 

nucleus neuronal model.  

3. Study the computational properties of the cerebellar nucleus neuron, in 

particular, its ability to perform multiplicative gain modulation. The arithmetic 

operations of the stochastic cerebellar nucleus neuronal model are considered, 

in the presence (or not) of ion channel noise and when the neuron is stimulated 

in the soma or different dendritic locations or regions.  

4. Investigate the generality of the gain modulation mechanism by simulating 

another neuronal type, a layer Vb pyramidal neuron. 

1.3 Contribution to knowledge 

The research presented in this thesis adds to the body of knowledge of neuroscience, 

and especially to the better comprehension of the impact of ion channel noise and synaptic 

input location on single neuron computational properties, via the following main outcomes: 

1. In the cerebellar nucleus neuronal model, the excitatory input is systematically 

modulated by the inhibitory one in a location dependent manner, where location 

can be a dendritic compartment or dendritic tree region. Inputs to distant 

locations undergo multiplicative operations, which are almost absent in the 

somatic and perisomatic areas. The underlying mechanism is related to the 

nonlinearities introduced by dendritic saturation, enhanced by the synaptic noise 

and synaptic input variability.  

2. The same underlying mechanism for gain modulation mechanism is observed 

in a layer Vb pyramidal neuron. However, in this neuron the type of modulation 

is independent of the input location, since multiplicative operations also occur 

in proximal to the soma dendritic areas (basal and trunk dendrites).  

3. In cerebellar nucleus neuronal model, the extent of multiplication increases 

systematically with the distance from the soma. However, in the layer Vb 

pyramidal neuronal model, the extent of multiplication is smaller than expected 

for the distance from the soma and related to the local input resistances. 

4. The input-location dependent change in gain is correlated with the input 

synchronicity in the layer Vb pyramidal neuron, but not in the cerebellar nucleus 

neuron.    
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5. The choice of a modelling approach to represent the kinetics of ion channel 

models is subject to a trade-off between biological detail and computational 

cost. As in previous research, it is confirmed in this thesis that the representation 

of the kinetics of a single ion channel with Markov methods is possible and the 

average behaviour of a channel populations is a good match with the 

deterministic behaviour as observed with Hodgkin–Huxley counterpart models, 

for the majority of the cerebellar nucleus voltage-gated channels. Single channel 

properties, such as the specific single channel conductance, or modelling related 

factors, such as the integration time step, can affect the simulation results, and 

hence the recorded behaviour of the channel models.  

6. The response of the Markov formalism of some cerebellar nucleus voltage-

gated channels does not overlap with their deterministic Hodgkin–Huxley 

counterpart. Two possible explanations are proposed, which are not mutually 

excluded: Firstly, the impact of the rectification of the distribution of open 

channels is suggested as a factor overlooked in the implementation of the 

deterministic algorithms. This phenomenon could occur for ion channels if their 

kinetic scheme is governed by fast transition rates and it is believed to include 

activation and inactivation variables, which allow the generation of window 

current. In the presence of stochastic gating, if the current equilibrium is close 

to zero, and if the open channel fluctuations magnitude goes below zero, then 

their distribution could be rectified, and as a result the temporal average 

stochastic current equilibrium will not match the deterministic one. Therefore, 

under certain conditions the Hodgkin–Huxley model might misestimate the 

current flow through the voltage-gated ion channels. Secondly, even in the 

absence of rectification discrepancies might still occur. Due to the fast transition 

rates between the different kinetic states of the ion channels, there is a greater 

probability of multiple transitions per simulation time step, which could result 

in discrepancies between the response of the two models. These inconsistencies 

are increased with larger spans of the simulation integration step. 

7. The first stochastic neuronal model of cerebellar nucleus model, where channel 

noise is implemented as probabilistic gating is developed and validated. The 

stochastic cerebellar nucleus neuronal model is detailed in terms of its 

morphological and biophysical features and its electrophysiological behaviour 

matches the available experimental data (as in Steuber et al., 2011).   
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8. The computational properties of the cerebellar nucleus neuronal model are 

independent of the presence of ion channel noise.  

1.4 Overview of the Thesis 

 This thesis has been prepared in seven chapters. Chapter 1 is the introduction, followed 

by a literature review and a summary of the relevant experimental results and computational 

models in Chapters 2, 3 and 4. In Chapters 5 and 6, the findings of the research undertaken for 

this study are presented and analysed in detail. Finally, Chapter 7 contains a general discussion 

and conclusion of this study. The details of each chapter are summarized as follows: 

• Chapter 1 introduces briefly the background and the research questions behind the 

motivation for this study. In addition, the research aims are presented, the contribution 

to knowledge, the structure of this thesis, and its dissemination.  

• Chapter 2 presents the conductance based multi-compartmental neuronal models used 

for this study, the cerebellar nucleus neuron and the layer Vb pyramidal neuron. For 

both neurons, an overview of the function and structure of the brain area they belong 

to, that is, cerebellum and neocortex respectively, is given. Then, their biophysical and 

electrophysiological properties, which define the details of their corresponding 

neuronal models, are summarized. 

• Chapter 3 contains a literature review on neuronal noise, with emphasis on ion channel 

noise and its functional implications for neuronal function. Further, it introduces two 

distinct methods to model ionic channels, the classic Hodgkin-Huxley and the 

stochastic Markov formalisms.  

• Chapter 4 presents literature research on gain modulation. A comprehensive review is 

performed on the functional applications of gain modulation, as a brain-wide 

computational principle, followed by a detailed description of known mechanisms, with 

a focus on the ones at single neuron level.   

• Chapter 5 demonstrates the development of a stochastic cerebellar nucleus neuron 

model. In the first part, the voltage-gated ion channels of the cerebellar nucleus neuron 

are converted to Markov formalisms and their behaviour is studied in a simple 

compartmental model. In the second part, a cerebellar nucleus neuron with stochastic 

ion channels is implemented, and its behaviour is compared with the deterministic 

cerebellar nucleus neuron version.  
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• Chapter 6 describes the arithmetic operations performed by the cerebellar nucleus 

neuron and compares them with those in the layer Vb pyramidal neuron. The chapter is 

divided into two main sections. Firstly, the role of channel noise in the computational 

operations of the cerebellar nucleus neuron is investigated. Then, a systematic study of 

the impact of input location on gain modulation is performed for both neuronal models, 

where factors such as the nature of input (synaptic or current injection), the distribution 

of inputs on the dendritic tree and soma, and the synaptic input synchronicity, are also 

considered.  

• Chapter 7 reviews the findings and presents the conclusions drawn from this research. 

Further, future directions are also explored.  

1.5 Dissemination from the thesis 

Research outcomes of this study have been presented at the following conferences: 

1. Psarrou, M., Schilstra, M., Davey, N., Steuber, V. “A comparison of deterministic and 

stochastic ion channel representations in a model of a cerebellar nucleus neuron”, 

Bernstein Conference 2015, Heidelberg, Germany: Poster presentation. 

2. Psarrou, M., Schilstra, M., Davey, N., Torben-Nielsen, B., Steuber, V. “Input-location 

dependent gain modulation in cerebellar nucleus neurons”, CNS 2016 Jeju, South 

Korea: Oral presentation. 

3. Psarrou, M., Schilstra, M., Davey, N., Torben-Nielsen, B., Schmuker, M., Steuber, V. 

“Input-location dependent gain modulation”, CNS 2017 Antwrep, Belgium: Poster 

presentation. 
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2  Neuronal models 

2.1 Cerebellum 

2.1.1 Function 

The cerebellum (latin for “little brain”) is located at the back of the brain, underlying 

the occipital and temporal lobes of the cerebral cortex (Figure 2.1). There is an extended 

bidirectional communication between cortical areas and the cerebellum, forming cerebello-

thalamo-cerebro-cortical loops, where the cerebral projections deliver output to the same 

cerebellar regions from which they receive input (D’Angelo and Casali, 2013; Halloran et al., 

2011) (Figure 2.2).  

This unique architecture of the cerebro-cerebellar pathways might underlie the diverse 

functions associated with cerebellum. Traditionally cerebellar function has been thought to be 

mostly involved in motor control and coordination, but it also extends to other cognitive 

functions, such as attention, language, learning, memory, visual processing, decision making 

and social, emotional and regulatory behaviour. Cerebellar dysfunction is linked to a variety of 

neuropsychiatric conditions, such as schizophrenia, autism, depression, dyslexia and motor 

impairments, namely, ataxias (D’Angelo et al., 2016; Halloran et al., 2011; Sokolov et al., 

2017). 

The computational principles that govern the function of cerebellum are often 

conceptualized as prediction and error-based learning, although other theories, for example 

related to timing, exist (Moberget and Ivry, 2016; Sokolov et al., 2017). 
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2.1.2 Cerebellar circuitry 

The cerebellar cortex is organized into three layers, with the same basic neuronal 

microcircuit: the molecular layer, the Purkinje cell layer and the granule cell layer. Purkinje 

and granule cells make up the main feedforward circuit of the cerebellum, but other types of 

neurons are also found, such as basket cells, stellate cells, Lugaro cells, unipolar brush cells 

and Golgi cells. The molecular layer is the outer layer and cell-poor. It is mostly made up of 

the axons of granule cells and the dendrites of Purkinje cells but contains basket and stellate 

cells as well. The innermost layer is the granule cell layer, which also contains Golgi cells. 

Situated between them is the Purkinje cell layer. The axons of granule cells innervate the 

Purkinje cell layer up to the molecular layer, where they bifurcate forming the parallel fibres. 

The parallel fibres are glutamatergic and send excitatory inputs onto the Purkinje cells’ 

dendritic trees. Each parallel fibre makes contact with hundreds of Purkinje cells. Moreover, 

they form synapses onto the basket and stellate cells of the molecular layer, which in turn send 

inhibitory projections to neighbouring Purkinje neurons. Golgi cells of the inner layer also 

 

Figure 2.1 Cerebellum gross organization in the human brain. Left upper panel: Midsagittal section 

of the brain gross anatomy showing the four lobes of the brain and the cerebellum (below the occipital 

lobe and above the brain stem). Left lower panel: Paramedian sagittal section through the left cerebellar 

hemisphere illustrating major components of the cerebellum, such as the caudal lobes of the 

vestibulocerebellum and its flocculus and nodulus, the cerebellar peduncles and the organization of the 

cerebellum surface into folia (small gyri). Right panels: Flattened view of the cerebellar cortex surface 

showing its three major subdivisions (cerebrocerebellum, spinocerebellum, vestibulocerebellum) based 

on their source input (see also Figure 2.2 for details). Adapted from Purves et al., 2004.  
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receive parallel fibre input and send inhibitory signals to granule cells (Apps and Garwicz, 

2005; Halloran et al., 2011; Saab and Willis, 2003) (Figure 2.3). 

The cerebellum receives input from the periphery through two main trajectories, the 

mossy fibres and the climbing fibres. This input is excitatory (glutamatergic). Mossy fibres 

project indirectly to Purkinje cells, via the granule cells and parallel fibres. In contrast, climbing 

fibres contact the Purkinje cells directly. Each Purkinje cell is contacted by merely one 

climbing fibre (Apps and Garwicz, 2005; Halloran et al., 2011; Saab and Willis, 2003) (Figure 

2.3). 

Purkinje cells have a significant role in the output of the cerebellum, since they are the 

source of output from the cerebellar cortex to the deep cerebellar nuclei, which are subcortical 

structures embedded at the centre of the cerebellum. Deep cerebellar nuclei neurons receive 

inhibitory (GABAergic) input from Purkinje cells, and then, after further processing this 

 

Figure 2.2 Cerebellum input and output functional organization in the human brain. Coronal 

(upper panels) and sagittal (lower panels) sections through the brainstem and cerebrum. Left panels: 

Major input projections to the cerebellum. Right panels: Major output targets of the cerebellum. 

Pathways leaving the deep cerebellar nuclei also project to upper motor neurons in the red nucleus, the 

superior colliculus, the vestibular nuclei, and the reticular formation. Adapted from Purves et al., 2004.   
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information, they produce most of the output of the cerebellum. Furthermore, mossy and 

climbing fibres project directly to the deep cerebellar nuclei (Apps and Garwicz, 2005; 

Halloran et al., 2011; Saab and Willis, 2003). 

2.1.3 Cerebellar nuclei neuron  

Cerebellar nuclei neurons (CN neurons) are the main communication gate of the entire 

cerebellum with the brain stem and cortical areas. Their activity is modulated by inhibitory 

input from Purkinje cells, and excitatory input from mossy and climbing fibres. The outputs 

from the deep cerebellar nuclei are inhibitory (GABAergic) signals to the inferior olivary 

nucleus and excitatory (glutamatergic) ones to the thalamus and brain stem (Apps and Garwicz, 

2005; Baumel et al., 2009; Halloran et al., 2011; Saab and Willis, 2003; Uusisaari et al., 2007; 

Uusisaari and Knöpfel, 2012).  

 

Figure 2.3 Cerebellum microstructure in the human brain. Right upper panel: Schematic of the left 

cerebellum hemisphere posterior view, illustrating the deep cerebellar nuclei. Left upper panel: Plane 

of the midsagittal cross-section with marked its lobular organization (lobes I–X). Right lower panel: 

Microanatomy of the cerebellar cortex. The cerebellar cortex is divided into three layers. In each one 

distinct types of neurons are found. Adapted from Ramnani, 2006. Right panel: Basic circuit of 

cerebellum. The basic pattern of the microcircuit is repeated throughout the cerebellar cortex. Adapted 

from Purves et al., 2004.   
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The glutamatergic projection CN neurons are characterized by complex and elaborate 

dendritic trees (Steuber et al., 2011; Uusisaari et al., 2007; Uusisaari and Knöpfel, 2012) 

(Figure 2.4). They exhibit spontaneous discharges in a regular pattern, in vivo, despite the 

presence of inhibitory input from Purkinje cells, and in vitro, when their synaptic inputs are 

blocked. The waveforms of the spontaneous action potentials are narrow and characterized by 

the presence of a fast after-hyperpolarization (fAHP) followed by a slow one (sAHP). When 

CN neurons are injected with a hyperpolarizing current, they respond with a post-

hyperpolarization rebound spike burst. This rebound response can have two distinctive 

features: (a) a fast spike burst followed by (b) a prolonged period where the membrane is 

depolarized. The rate of the rebound response increases linearly with the amplitude and the 

duration of the hyperpolarization stimulus. Therefore, an inhibitory input to a CN neuron can 

produce a spike burst output. Additionally, the reproducibility of the CN response to the same 

input depends on the previous synaptic history (Baumel et al., 2009; Saab and Willis, 2003; 

Sastry et al., 1997; Steuber et al., 2011; Uusisaari et al., 2007; Uusisaari and Knöpfel, 2012). 

 A wide variety of voltage-gated channels, mediating Na+, K+ and Ca2+ ionic currents, 

is part of the CN neuron intrinsic mechanisms, shaping its electrophysiological behaviour. The 

Na+ conductances underlie the fast spiking (INaF) and the maintenance of the prolonged rebound 

increased spiking activity (INaP). The K+ currents have several roles. They can serve as delayed 

rectifiers (IfKdr and IsKdr) to repolarize and limit the firing frequency of action potentials, or to 

 

Figure 2.4 CN neuronal model. Left panel: Reconstructed neuronal morphology. The axon is not 

shown. Right panel: Input-Output curve for depolarizing current injection pulses for the neuronal 

simulated model (solid line) and experimental data from recorded neurons (dotted lines). Adapted from 

Steuber et al., 2011. Mint dot: soma’s location (length = 32.4 μm, diameter = 14.4 μm). 
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introduce an after-hyperpolarization (Ca2+-activated K+ channels - ISK) to spikes. There are also 

two Ca2+ conductances. The low-voltage activated T-Ca2+ channels (ICaLVA), which can open 

around the resting membrane potential, generate a low-threshold Ca2+ regenerative current that 

facilitates the fast Na+ spiking, by bringing the membrane potential to the Na+ firing threshold 

after their de-inactivation by strong hyperpolarization. Subsequently, the high-voltage 

activated Ca2+ channels (ICaHVA) can activate and can keep the neuron depolarized for a few 

milliseconds. Additionally, hyperpolarization in CN neuron can activate an inward 

nonselective cation hyperpolarization-activated cation (HCN) current (IHCN or Ih). The effect 

of the Ih current is to depolarize slowly the membrane potential when it has become too 

negative. As a result, it can facilitate the initiation of rebound activity after strong inhibition 

and hyperpolarization (Hille, 2001; Sastry et al., 1997; Steuber et al., 2011; Uusisaari et al., 

2007). 

2.1.3.1 Cerebellar nuclei neuronal model  

Several computational models have been developed with different detail in their 

complexity and biological abstraction, aiming to elucidate the role of CN neurons in processing 

their excitatory and inhibitory inputs and generating the output of the cerebellum. CN neurons 

integrate a range of excitatory and inhibitory inputs and they are assumed to produce output 

signals using different neural coding strategies (spike rate- or timing-based codes). The 

integration of the excitatory and inhibitory inputs that CN neurons receive could underlie their 

rate coding properties, and their output firing rate could be modulated by the rate, degree of 

irregularity and correlation (synchrony) of the inhibitory input spikes from Purkinje cells. 

However, temporal coding could also be the product of synchronized complex spike inputs 

from Purkinje cells or the CN rebound spike bursting activity following strong inhibition. The 

ability of CN neurons to deploy different coding schemes might depend on the behavioural 

task (De Zeeuw et al., 2011; Heck, 2015; Steuber and Jaeger, 2013).  

For the simulations carried out in this study a CN conductance based multi-

compartmental model is used; it is based on a morphological reconstruction and tuned to 

replicate experimentally observed electrophysiological characteristics of excitatory projection 

CN neuron (Steuber et al., 2011) (Figure 2.4). The model consists of 517 compartments that 

represent four distinct morphological areas (soma, axon, proximal dendritic and distal dendritic 

trees), and uniform passive properties (membrane capacitance Cm = 1.56 μF/cm2, specific 

membrane resistance Rm = 3.56 Ωm2, axial resistance Ra = 2.35 Ωm uniform for all 
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compartments). The active properties include eight ion channels distributed differentially over 

the different regions of the model: a fast sodium (NaF), a mixture of fast Kv3 (fKdr) and slow 

Kv2 (sKdr) delayed rectifiers, an SK-type calcium-gated potassium, an HCN current, an HVA 

calcium, a Cav3.1 type LVA calcium (CaT) and a persistent sodium (NaP). The intracellular 

calcium concentration is modelled as a sub-membrane shell with calcium influx from the HVA 

current. Synaptic input is modelled as biexponential postsynaptic conductance changes. The 

excitatory input is represented by a mixed AMPA and NMDA, and the inhibitory by a pure 

GABAA (Steuber et al., 2011) (Appendix A).  

2.2 Neocortex 

2.2.1 Function 

 The neocortex is part of the cerebral cortex, and in terms of evolution a mammalian 

innovation. The size of neocortex is believed to reflect the increasing perception and cognitive 

capabilities across different species and its function is related to higher cognitive functions, 

such as consciousness, sensory perception, reasoning, planning of behaviour, decision making, 

memory and language (Kaas, 2011; Marín-Padilla, 2014).  

2.2.2 Cortical layers 

The neocortex has a unique structure; it is arranged horizontally into cell layers, and 

vertically into functional columns, which include neurons with similar response properties 

(Harris and Shepherd, 2015; Mountcastle, 1997). The laminar structure is organized into six 

layers, namely, layers I-VI, counting from the superficial outer cortical surface to the deep 

cortex. Each layer is characterized by its distinctive neuronal types and density, and their local 

interconnections or connections to other cortical layers or brain regions and can be further 

divided to sublayers. The most superficial layer I or molecular layer contains mainly dendritic 

arborizations emerging from cells located in deeper layers and very few scattered neurons and 

glia cells. The layer II or external granule cell layer is populated by small excitatory neurons 

and granule (stellate) interneurons. The layer III or external pyramidal cell layer is comprised 

of moderate size pyramidal neurons. The layer VI or internal granule cell layer is also occupied 

by granule cells, and excitatory neurons. The layer V or internal pyramidal cell layer contains 

larger pyramidal neurons. The layer VI or polymorphic or multiform layer is inhabited by 

various neuronal cell types (Harris and Shepherd, 2015; Kandel et al., 2014) (Figure 2.5). 
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2.2.3 Layer Vb pyramidal neuron 

The layer V is populated with pyramidal neurons of distinct morphological features, 

electrophysiological properties and axonal projections. The thick-tufted pyramidal neuron 

(LVb pyramidal neuron) is located in the lower part of layer V, namely, the sublayer Vb. As a 

pyramidal neuron, it consists of the characteristic triangle-shaped soma, two distinct dendritic 

trees emerging from the apex (apical tree) and base (basal tree) of the soma, and an axon with 

branches that bifurcate further. Both dendritic trees are elaborate, and the apical tree extends 

to layer I. The thick-tufted pyramidal neuron receives input from all the layers and projects to 

subcortical areas. Its input can be either excitatory glutamatergic on its basal, proximal and 

oblique apical branches, or inhibitory GABAergic, on its soma, proximal basal dendrites, axon 

initial segment, and terminal tufts. Due to the distinct origin of the presynaptic input, different 

 

Figure 2.5 Neocortical microcircuit in the human brain. The neocortex can be divided into six 

laminae, based on the thickness, cell density, and other histological features. Adapted from Purves et 

al., 2004.   
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dendritic domains might act as distinct functional compartments (Ramaswamy and Markram, 

2015; Spruston, 2008).  

The response of the LVb pyramidal neuron to a depolarizing somatic current injection 

is a distinctive firing pattern with an initial discharge of action potentials, followed by a train 

with spike-frequency adaptation (Hay et al., 2011; Le Bé et al., 2007). In addition, LVb 

pyramidal neurons perform different integrations of their synaptic input that depend on the 

synaptic site and that result further in functional compartmentalization of the neuronal regions 

(Spruston, 2008). 

Fundamental for the function and physiological properties of the LVb pyramidal neuron 

are the great assortment of ion channels, such as K+ channels (A-type and persistent), Na+ 

channels (transient and persistent), HCN channels, various Ca2+ channels, and Ca2+ dependent 

K+ channels (small, SK, and large, BK conductances). Their distribution and density varies 

between the distinct neuronal regions, and their function underlies the intrinsic and integration 

properties of the LVb pyramidal neuron and shapes the translation of synaptic input to output 

firing (Ramaswamy and Markram, 2015; Spruston, 2008). 

2.2.3.1 Layer Vb pyramidal neuronal model  

As with the CN neuron, several models have been developed for the study of the 

neocortical pyramidal neurons. However, most of the them do not capture the full range of the 

pyramidal neurons electrophysiological properties, but are designed to replicate specific 

behaviours such as the impact of the HCN current on action potential (Kole et al., 2006). The 

pyramidal neuronal model used in this study is a conductance based multi-compartmental 

model with a detailed morphological reconstruction that reproduces the experimentally 

observed firing behaviour of a neocortical LVb pyramidal cell (Hay et al., 2011) (Figure 2.6). 

The model consists of 196 compartments that represent four distinct morphological areas 

(soma, axon, basal dendritic and apical dendritic trees). The passive properties are not uniform 

(membrane capacitance Cm: for the soma and axon, 1 μF/cm2, for the basal and apical dendrites, 

2 μF/cm2, specific membrane resistance Rm is a free parameter with limits doubled for the 

dendrites, axial resistance Ra = 100 Ωcm uniform for all compartments). The active properties 

include ten ion channels distributed over the different regions of the model: a fast inactivating 

sodium (NaT), a persistent sodium (NaP), a muscarinic potassium (KM), a slow inactivating 

potassium (KP), a fast inactivating potassium (KT), a fast non-inactivating potassium (Kv3.1), 

a non-specific cation (HCN), an high voltage activated calcium (CaHVA), a low voltage 
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activated calcium (CaLVA) and a small conductance calcium activated potassium (SK). All 

dendritic channels, but HCN, CaLVA and CaHVA, are uniformly distributed. The distribution 

of HCN channels is uniform on the basal dendrites but follows an exponential density function 

on the apical tree. The CaLVA and CaHVA channels are distributed based on a step function 

with increased conductance on the low threshold zone for Ca2+ spikes (located 685-885 μm 

from the soma). The intracellular calcium concentration is modelled as a pool in a sub-

membrane shell with calcium influx from the CaLVA and CaHVA channels. Synaptic input is 

modelled as biexponential postsynaptic conductance changes. The excitatory synapse are a 

mixture of AMPA and NMDA, and the inhibitory are only GABAA (Hay et al., 2011; Hay and 

Segev, 2015). 

 

Figure 2.6 LVb pyramidal neuronal model. Left panel: Reconstructed neuronal morphology. The 

axon is not shown. Right panel: Input-Output curve for depolarizing current injection pulses for 

neuronal simulated model (black solid line) and experimental data from recorded neurons (colour lines). 

Adapted from Hay et al., 2011. Mint dot: soma’s location (length = 23.2 μm, diameter = 13.5 μm). 
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3  Ion channel noise 

3.1 Noise in the neural system 

Noise can be defined as any random and unpredictable fluctuation that accompanies an 

expected signal, but is not part of it. A noisy signal varies as a function of time, and its value 

at any time point can be drawn from some probability distribution (Ermentrout et al., 2008; 

Faisal et al., 2008). In the neural system, noise can be present at various levels, externally, that 

is sensory noise, intrinsically, that is, cellular, synaptic noise and in the behaviour. The external 

noise is present in sensory stimuli that are intrinsically noisy, due to their thermodynamic or 

quantum mechanical nature. The perception of a sensory stimulus is usually based on its 

translation to a chemical one and its subsequent transduction and amplification, leading to its 

final conversion in an electrical signal. This process can be direct, or indirect by involving the 

activation of second-messenger signalling pathways. Because of the chemical basis of this 

process, noise is present at every step. The sources of internal noise are random events in the 

cell’s biochemical processes, related either to housekeeping or to neuronal function, such as 

the stochastic gating of ion channels, namely, channel noise, or neuronal transmission, namely, 

synaptic noise. The final behavioural outcome is also prone to variability due to the combined 

effect of the noisy neuronal function and the other cell types that are involved in the behavioural 

implementation, such as muscle fibres (Faisal et al., 2008; Stein et al., 2005; Yarom and 

Hounsgaard, 2011) (Figure 3.1). 
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3.1.1 Functional contribution of noise 

 The role of noise in the neural system could be characterized as controversial 

(Ermentrout et al., 2008; Faisal et al., 2008; Stein et al., 2005). The traditional view suggests 

that noise adds unwanted variability to the neuronal and behavioural responses. In this context, 

the neural system should develop strategies to compensate or overcome the disruption due to 

noise. Since stochasticity underlies the neuronal processes, the signal would be accompanied 

by noise. The main principles that the neural system utilize to counter this phenomenon is 

averaging the sources of noise over time or space, either at the single neuron or network level, 

and prior knowledge of the expected features of the signal or noise, or both (Faisal et al., 2008). 

However, noise could have beneficial functional consequences for the neural system. 

This is based on the idea that an important part of the signal might be also encoded in the timing 

of each spike. Thus, both rate and temporal coding should be considered to explain information 

processing by the neural system (Stein et al., 2005). For instance, the presence of noise in a 

signal can enhance weaker periodic signals (stochastic resonance) and increase the neuronal 

sensitivity. Moreover, the probability of subthreshold signals to be transformed into action 

 

Figure 3.1 Noise in the nervous system. Even in a phenomenological simple behavioural task, such 

as catching a ball, various sources of noise can be identified, such as in the signal transduction, at 

neuronal cellular and network level and in other cell types necessary for the completion of the 

behaviour. Adapted from Faisal et al., 2008.   
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potentials is increased, particularly the ones close to the spiking threshold, and this results in 

threshold smoothing. Further, the precise timing of spikes, such as the first spike in a spike 

response, could be critical and encode important information. Evidence suggests that noise can 

facilitate the triggering of spikes and provide cues for their exact timing (Ermentrout et al., 

2008; Faisal et al., 2008; Stein et al., 2005). Even at the level of a neuronal population, noise 

could induce oscillatory synchronization (Ermentrout et al., 2008) or prevent it (van Rossum 

et al., 2002). In addition, the presence of noise during the formation of neural networks endows 

them with the ability to maintain a robust performance of a particular function in different states 

(Faisal et al., 2008). Noise also underlies principles of neuronal computation, such as gain 

modulation (Silver, 2010). Furthermore, the probabilistic nature of the noisy neural responses 

could be an essential feature, and not a bug in the information processing, where the neuronal 

activity is based on sampling from an underlying probability distribution (Ermentrout et al., 

2008). 

3.1.2 Channel noise  

 The noise generated by the stochastic gating of ion channels has been implicated in 

impacting single neuron dynamics and reliability (Faisal et al., 2008; White et al., 2000). The 

source of this type of noise, namely, electrical or channel noise, is given by the biomolecules 

that constitute the ion channels of the excitable neuronal membranes (Bezanilla, 2008; Hille, 

2001; White et al., 2000). 

Ion channels are proteomic macromolecules that are embedded in the lipid membrane 

layer of the cell. The organization of these biomolecules gives rise to the formation of a pore 

where selected ions can pass in and out of the cell. The ions diffuse across the cell membrane 

according to their electrical and chemical driving force, leading to different ion concentrations 

between the two sides of the membrane, which generates the membrane potential and a 

corresponding electric field. Besides their ion selectivity, these channels are characterized by 

gating properties; they are not constantly open, but their gating is mediated by a specific 

stimulus (or stimuli). Examples of stimuli affecting the channel opening (or closing) are voltage 

changes across the membrane (voltage-gated channels), mechanical stress (mechanosensitive 

channels), or the response to a chemical signal/ligand (ligand-gated channels). Ligands can be 

either extracellular, such as neurotransmitters (transmitter-gated channels) or intracellular 

signals, such as an ion (ion-gated channels) or a nucleotide (nucleotide-gated channels). 
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Moreover, the activity of ionic channels is amenable to covalent protein modifications such as 

phosphorylation or dephosphorylation (Hille, 2001).  

The function of voltage-gated ion channels as gates is based on the ability of their 

transmembrane proteins to sense changes of the membrane electric field. A change in the 

electric field, due to a depolarizing or hyperpolarizing event in the periphery of the channel, is 

translated into conformational changes in the channel protein units that allow the movement of 

ion charges through the channel, and consequently the induction of a transient current, namely, 

the single channel current. Each channel type consists in a different number of conformational 

states, with at least one functioning as the open state, where current conduction is allowed, and 

at least one having the opposite role, that is closed state. The rest could be intermediate or 

inactivated states, where in both situations the channel is impermeable to ions. The transition 

between the different states is a temperature-dependent biochemical reaction driven by the 

 

Figure 3.2 Voltage-gated Na+ channel. An example of a voltage-gated ion channel operation model. 

Na+ channels consist of transmembrane proteins, four α subunits with six α helices each (called S1-6), 

that form a sodium-permeable pore, and are associated with auxiliary β subunits. S4 helix contains 

positively charged amino acid residues, usually arginine, at every third position that endow the channel 

with its gating properties. These residues are attracted by the negative charge in the intracellular space 

and keep the channel closed. In response to depolarization, the charge distribution on each side of the 

membrane changes temporarily, and the residuals rotate clockwise across the membrane and towards 

the extracellular matrix. This results in a conformational rearrangement of the protein that opens the 

channel. During sustained depolarization, the voltage sensor α helices return to their original position, 

but the channel-inactivating segment folds into the intracellular opening of the pore and blocks it, 

resulting in the inactivation of the channel. When the membrane potential is repolarized, the channel-

inactivating channel is displaced from the pore opening and the channel reverts to the closed position 

Adapted from Lodish et al., 2003.    
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thermal environment of the brain, and accordingly is a stochastic process. The transition time 

between states is in the order of nanoseconds, and at every given time point, a single channel 

can be in any of these states. Therefore, the collective behaviour of the channel population 

characterizes its response to an event, such as a change in membrane voltage (Bezanilla, 2008; 

Hille, 2001; White et al., 2000) (Figure 3.2).  

3.1.2.1 Physiological and functional consequences of ion channel noise 

 The impact of the stochastic gating of ion channels on the biophysics and function of 

neurons is often overlooked, either because the neuronal output could be also explained by the 

assumption that the behaviour of a channel population is deterministic (Hille, 2001), or for the 

reason that other sources of noise, such as synaptic noise, could mask the effect of channel 

stochasticity (Destexhe et al., 2003; Faisal et al., 2008). 

Nevertheless, growing evidence indicates that the stochasticity introduced by ion 

channels could influence different aspects of the neural system, from the wiring density of the 

brain to the neuronal arithmetic and dynamics. The fluctuations resulting from the random 

channel gating set a limit for the lower diameter of an unmyelinated axon, in order for it to 

support reliable axonal communication (Faisal et al., 2005). Stochastic gating of sodium 

channels can account for fluctuations in the firing threshold in the frog nodes of Ranvier, with 

the fluctuation magnitude being correlated with the single channel conductance and kinetic 

properties of the sodium channel (Sigworth, 1980). In small embryonic cultured neurons from 

rat hippocampus, which are characterized by a high input resistance, the random gating of ion 

channels underlies the generation of spontaneous action potentials (Johansson and Arhem, 

1994), and the stochasticity introduced by the gating of potassium channels might be the major 

noise source (Diba et al., 2004). The stellate neurons in the superficial medial entorhinal cortex, 

which provide cortical input to the hippocampus, exhibit subthreshold membrane voltage 

oscillations and characteristic clustered patterns of spiking, during prolonged periods of 

excitation. The noise associated with the stochastic gating of persistent sodium current is 

essential for the generation of these oscillations, and it affects also the spike timing and the 

sensitivity of the neuron to weak stimuli (Dorval, 2005; White et al., 1998). Further, stochastic 

gating of the whole collection of the stellate neuron’s ion channels is necessary for the 

formation of the clustered spiking patterns (Dudman and Nolan, 2009). In rat layer IV–V 

pyramidal neurons, the presence of ion channel noise is the main contributor to subthreshold 

membrane  fluctuations, and  their  amplitude  is  largely  determined  by  the  stochastic sodium  
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conductance (Jacobson et al., 2005). Furthermore, in rat cortical layer V pyramidal neurons, 

the stochastic gating of the nonselective hyperpolarization-activated channels is a key factor 

causing noisy fluctuations of the resting membrane potential, particularly in thin distal dendritic 

areas, and it affects the reliability of temporal spike pattern (Kole et al., 2006). Likewise, 

neurons with distinct morphologies, which are populated with identical stochastic ion channel 

distributions, exhibit significant variability in the amplitude of membrane potential 

fluctuations, even in various dendritic locations of the same cell type (Figure 3.3). Stochastic 

gating of the ion channels of hippocampal CA1 pyramidal neurons impact the transformation 

of synaptic input into output, by introducing or failing to evoke spikes in the firing pattern of 

the neuron at almost fixed time points, and injecting jitter into the interspike interval. As a 

result, their neuronal response to synaptic input is rather probabilistic (Figure 3.4). Moreover, 

the impact of the stochastic ion channels on the probabilistic spike generation and timing varies, 

is related to the channel type and their neuronal location, with dendritic ion channels, 

particularly the sodium and potassium ones, accounting for most of it (Cannon et al., 2010). In 

 

Figure 3.3 The impact of stochastic ion channel gating is related to distinct neuronal 

morphologies. Neuronal models with identical ion channel distribution, but distinct morphology (left 

panels) exhibit variability in the amplitude of resting membrane potential fluctuations (middle panels) 

at different regions (soma and at a dendritic location 300 μm from soma). Right panel: Resting 

membrane potential standard deviation for a collection of 29 reconstructed cells from six different 

neuronal types, plotted as a function of increasing distance along the dendrite from the soma. The 

amplitude of the membrane potential fluctuations increases with distance from the soma. Adapted from 

Cannon et al., 2010.   
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weakly excitable dendrites, such as the apical dendrites of layer V pyramidal cells, stochastic 

gating causes little variability in the backpropagation timing and height of single action 

potentials, but introduces jitter in the timing of the action potentials and variability in the 

dendritic calcium spike generation (Diba et al., 2006). Furthermore, channel noise in thin axons 

underlies random fluctuations in the width and height of the propagating action potential 

waveform, which translate into variability in the downstream synaptic processes (Neishabouri 

and Faisal, 2014).  

3.1.2.2 Effect of channel properties on channel noise 

The extent of subthreshold membrane fluctuations is related to the channel properties 

(Cannon et al., 2010; Kole et al., 2006; O’Donnell and van Rossum, 2014; White et al., 2000). 

An increase in the single channel conductance leads to an increase in the membrane potential 

fluctuations. For the same total channel conductance, a larger single channel conductance is 

associated with a smaller number of open channels and hence, greater current and voltage 

fluctuations (Donnell and Nolan, 2014; Kole et al., 2006; White et al., 2000) (Figure 3.5). Ion 

channels with greater open probability near the resting membrane potential provoke also larger 

 

Figure 3.4 Effect of stochastic ion channel noise in synaptic integration. Left panel: Membrane 

voltage somatic responses of pyramidal CA1 neuronal models with deterministic or stochastic ion 

channels that are stimulated with the same pattern of asynchronous and distributed dendritic synaptic 

input. Spikes that occur at a time point with the deterministic neuronal model, might be absent in some 

of the stochastic trials, or additional spikes might be triggered in the stochastic models, and be absent 

in the deterministic one. Right panel: Spike rasters (top) of somatic responses to the synaptic simulation 

for the deterministic (red) and 50 stochastic trials (black). The probability of somatic spiking in 10 ms 

duration bins (bottom) at any time point is either one or zero in the deterministic model (red), but varies 

between one and zero in the stochastic one (black). Adapted from Cannon et al., 2010. 
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fluctuations. Moreover, in a channel population every channel acts independently and therefore 

the distribution of open channels can be described by a binomial distribution. As a result, a 

greater total number of channels is associated with greater fluctuations in the absolute number 

of open channels (for a detailed explanation see also, 5.2.9 The rectified distribution of open 

channels results in differences between the two models), and therefore channel current. The 

single channel current is proportional to the channel’s driving force, which is given by the 

difference between the channel’s reversal potential and the membrane potential. Thus, ion 

channels with larger driving force have greater ion flow (single channel current), which is 

translated at the level of channel population, as current fluctuations with greater amplitude 

(O’Donnell and van Rossum, 2014; White et al., 2000). Slower kinetics are also associated 

with membrane noise, due to the low-pass filtering of the high-frequency membrane potential 

fluctuations by the membrane capacitance in general, the membrane fluctuations from channels 

with slower gating kinetics are less attenuated compared to channels with faster kinetics) 

 

Figure 3.5 Impact of single channel conductance on voltage noise. Left panels: A morphological 

realistic compartmental layer V pyramidal neuronal model is simulated with all its ion channels 

deterministic but the hyperpolarization-activated cation channel (HCN). The somatic membrane 

fluctuations are greater when the single channel conductance (γ) of HCN is increased (upper panel). In 

the same neuronal model, the standard deviation (σV) of the somatic or dendritic (1000 μm from soma) 

resting membrane potential is systematically increased with the γ (and decreased with the total number 

of HCN channels) (lower panel). Adapted from Kole et al., 2006. Right panels: Simulations of Hodgkin-

Huxley potassium channels. The single channel conductance response is fluctuating between discreet 

open and closed states (top conductance trace for one channel), even in the absence of stimulus where 

the probability of channel being open (Popen) is zero (lower panels, voltage stimulus open and probability 

trace respectively). For larger channel populations the conductance response becomes less noise 

(middle channel conductance traces), and for infinite number of channels (bottom channel conductance 

trace) is predictable with little trial-to-trial variability. Adapted from Cuntz et al., 2014. 
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(Cannon et al., 2010; O’Donnell and van Rossum, 2014). The polarity of current flow through  

an open  channel  can contribute  to  the  membrane noise, since the movement of ion inside or 

outside of the cell affects its depolarization (O’Donnell and van Rossum, 2014). Subthreshold 

membrane voltage fluctuations can be decreased with temperature. Increasing the temperature 

causes faster transitions between the channel states, and the resulting high frequency 

components can be filtered out by the membrane capacitance and leak resistance (Steinmetz et 

al., 2000). 

3.2 Modelling channels  

As mentioned, ionic channels have at least two states, open and closed. However, more 

complex gating schemes are found in nature. A lot of channels respond to a prolonged 

stimulation (electrical or chemical) with an inactivation state. During inactivation they are 

closed and refractory to further opening, until the stimulus is removed (de-inactivation) (Hille, 

2001). 

Modelling ionic channels is crucial for understanding the behaviour of neuronal 

systems either at single cell (intrinsic electrical neuronal properties) or at network 

(intercommunication via integration of synaptic inputs) level. The modelling approach depends 

on several factors, such as the aims of the study (research on single channel, neuron or neural 

network properties) and the desired level of detail and precision in the behaviour of model, the 

access to appropriate experimental data, the currently available computational and statistical 

tools, the computational cost and simulation time (Cannon and D’Alessandro, 2006; Hille, 

2001; White et al., 2000). 

Two of the formalisms that have been proposed to model ionic channels are the 

Hodgkin-Huxley and the Markov models. Both assume that the kinetic properties (gating) of 

ionic channels are based on the structure and chemical properties of the channel. The Hodgkin-

Huxley model represents the notion that independent gating particles can block the channel 

pore and control its state (open or closed). The Markov model is more detailed in the way 

channels are represented and adequate to describe their stochastic behaviour. In this formalism, 

each channel can have several states with transitions between some of them. Although the 

Markov model is more accurate than the Hodgkin-Huxley one, it has a main drawback, that is, 

the difficulty to estimate experimentally the various parameters of channel dynamics. On the 

other side, Hodgkin-Huxley parameters can be determined more easily by fitting to data from 

electrophysiological experiments, such as voltage clamp. Furthermore, any Hodgkin-Huxley 
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ion channel model can be written as a Markov scheme, but the opposite is not always feasible 

(Cannon and D’Alessandro, 2006; Hille, 2001). 

3.2.1 Hodgkin-Huxley formalism  

 The Hodgkin-Huxley formalism for ion channel gating was introduced by Hodgkin and 

Huxley in the early 1950s, in an attempt to describe the generation of the nerve output, namely, 

the action potential. Based on: (a) the outcome of a series of electrophysiological experiments 

and, (b) the fact that the electrical properties of excitable membranes, that is, membranes that 

can produce action potentials or spikes, can be represented by an electrical equivalent circuit 

(Figure 3.6), they developed a conductance-based mathematical model of ordinary differential 

equations that accounts for the main properties of action potentials (Hille, 2001). 

 In the Hodgkin-Huxley formalism each single channel of the neuronal membrane is 

considered to contain one or more independent particles or gates. Gates regulate the ion flow 

through the channel pore, and they can be in one of two states, permissive and non-permissive. 

 

Figure 3.6 Electrical equivalent circuit of the neuronal membrane for the Hodgkin–Huxley model 

of the action potential. In the cell membrane of neurons are embedded ion channels and ion pumps 

which are protein structures that render it semipermeable, by allowing the flow of specific ions such as 

sodium, potassium, chloride and calcium. Due to the combined action of these biomolecules, a 

transmembrane electrochemical gradient is formed for each ion, and the intracellular space is charged 

more negative than the extracellular one. Therefore, the neuronal membrane can be considered as a 

capacitor (with capacitance Cm and capacitor current IC). The permeability of the ion channels for ions 

such as sodium and potassium, may depend on the membrane potential, and can be represented by 

variable resistors with non-linear conductances (gNa, current INa, and gK, current IK respectively) and 

their electrochemical gradient that drives their flow is represented by batteries (ENa and EK respectively). 

The ion movement through other channels, such as the leakage channels, may not depend on voltage 

changes and its conductance is constant (gL, current IL and its battery EL). Adapted from Sterratt et al., 

2010. 
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For a channel to be in an open state, all its gates must be in their permissive state. Any other 

gate placement keeps the channel closed. Moreover, gates are considered to be electrically 

charged and hence a voltage change can affect their distribution across the membrane (Hille, 

2001).  

 The transition of gates between these two states is assumed to be governed by a first-

order kinetics schema. When a gate i of a particular channel is considered, then a probability 

pi of that gate being in a permissive state can be defined. Similarly, the probability of that gate 

i being in a non-permissive state will be 1 - pi. When more than only one channel is taken into 

account, this probability represents the fraction of gates i in permissive state in that channel 

population. The transitions between the two gating states are given by a first-order kinetic 

equation and are according to the voltage dependent rate constants αi(V) (forward direction) 

and βi(V) (backward direction): 

Given the initial value of probability pi the subsequent values can be calculated by the rate of 

the reaction, which, based on the law of mass action, is given by the differential equation:  

When the membrane voltage is clamped at a fixed value V, after a time point the system is 

eventually equilibrated and reaches a steady-state value: 

The time course for this process is given by an exponential equation with the time constant 

(Hille, 2001): 

Time constants can be also, represented by: 

(1 − 𝑝𝑖 )
𝛽𝑖(𝑉)
←    

𝛼𝑖(𝑉)
→     𝑝𝑖 Equation 3.1 

𝑑𝑝𝑖
𝑑𝑡

= 𝛼𝑖(𝑉)(1 − 𝑝𝑖) −𝛽𝑖 (𝑉)𝑝𝑖 Equation 3.2 

𝑝𝑖,𝑡→∞ =
𝛼𝑖(𝑉)

𝛼𝑖(𝑉) +𝛽𝑖 (𝑉)
 Equation 3.3 

𝜏𝑖(𝑉) =
1

𝛼𝑖(𝑉) +𝛽𝑖 (𝑉)
 Equation 3.4 
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𝜏𝑖(𝑉) = (
𝐴

𝑒𝑥𝑝 (
𝑉 − 𝐵
𝐶 ) + 𝑒𝑥𝑝 (

𝑉 − 𝐷
𝐸 )

) + 𝐹 Equation 3.5 

where A, B, C, D, E and F are obtained empirically based on voltage clamp recordings (Steuber 

et al., 2011).  

The rate constants αi(V) and βi(V) can be described as: 

𝑎𝑖(𝑉) =  
𝑝𝑖,𝑡→∞
𝜏𝑖(𝑉)

 Equation 3.6 

and 

𝑏𝑖(𝑉) =  
1 − 𝑝𝑖,𝑡→∞
𝜏𝑖(𝑉)

 Equation 3.7 

By combining the Equations 3.2, 3.3 and 3.4, the rate of change of the gate state probability 

with time can be expressed as: 

The voltage dependence of the steady-state 𝑝𝑖,𝑡→∞ is usually represented by a Boltzmann 

(sigmoid) function:  

𝑝𝑖,𝑡→∞ = (
1

1 + 𝑒𝑥𝑝 (
𝑉 − 𝑉ℎ𝑎𝑙𝑓

𝑘
)

) Equation 3.9 

where k is the slope factor, and Vhalf is the membrane potential when the 𝑝𝑖,𝑡→∞ is at half 

maximum, based on experimental voltage clamp data (Hille, 2001; Steuber et al., 2011). 

The above formalism describes the behaviour of a single gate. The conductance gc of a 

channel population c is given by the product of the individual gate probabilities pi and a 

constant 𝑔̅𝑐 that represents the maximum possible conductance of the channel population if all 

the gates were at permissive states, namely, all the channels were opened (Hille, 2001). 

Hodgkin and Huxley modelled the behaviour of the sodium and the potassium channels 

of the squid giant axon. To bring into accordance the mathematical formulation with the 

experimental data, they assumed the existence of three independent types of gating particles, 

the activation gates, m and n, and the inactivation gate, h (Figures 3.7 and 3.8). Each channel 

𝑑𝑝𝑖
𝑑𝑡

=  
𝑝𝑖,𝑡→∞ − 𝑝𝑖

𝜏𝑖(𝑉)
 Equation 3.8 
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type was modelled by a different combination and number of gating particles. Thus, the 

equations for the sodium and potassium channel conductances are (Hille, 2001):  

The definition of number and type of gating variable was based on the experimentally obtained 

time dependence of channel conductance. The time course of the conductance followed a 

sigmoid curve when a depolarizing step was applied, and an exponential decrease during a 

repolarization one. The proposed kinetics governing each gating variable was first-order 

reactions, which could reproduce the exponential part of the curve. However, for the sigmoid 

component of the curve, more than one first-order reactions should take place at the same time. 

Such an assumption favoured the idea of several independent electrically sensitive gates within 

 

Figure 3.7 Voltage dependence of the Hodgkin–Huxley model parameters. Left panels: Forward 

(αm, αh, αn, solid lines) and backward (βm, βh, βn, dotted lines) rate constants for the sodium and 

potassium channels gating variables (m, n, h). Right panels: Equilibrium steady-state (m∞, h∞, n∞, solid 

lines) and time constants (τm, τh, τn, dotted lines). All the parameters are calculated from the empirical 

equations of the Hodgkin–Huxley model for the squid giant axon membrane. Adapted from Sterratt 

et al., 2010. 

𝑔𝑁𝑎 =  𝑔̅𝑁𝑎𝑚
3ℎ Equation 3.10 

𝑔𝐾 = 𝑔̅𝐾𝑛
4 Equation 3.11 
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a channel. When several gates were assumed, their probability to be placed in the permissive 

position would rise along a sigmoid shape, and the greater the number of gating particles, the 

more pronounced the inflexions on the curve. Their probability to transit to a non-permissive 

state would fall exponentially. In the case of the potassium channel, an assumption of four 

independent variables n (Equation 3.11) would fit the exact shape of the experimentally 

measured curve. The time course of the sodium channel conductance suggested different gating 

processes for the sodium channel, activation and inactivation. The best fit to the empirically 

conductance time course curve was actualized by assuming three gates (m) to control activation 

and one (h) for inactivation (Hille, 2001) (Equation 3.10 and Figure 3.7).  

When the membrane voltage V is clamped to another level Vnew, the time course of pi is 

described by the following exponential expression that can be derived from Equation 3.8 

above: 

where Vnew is the new voltage step, 𝑝𝑖,𝑡→∞(𝑉𝑛𝑒𝑤) is the new equilibrium value of pi when V = 

Vnew, 𝑝𝑖(0) is the value of state pi at t = 0, where V = 0, and τi(Vnew) is the value of time constant 

at V = Vnew (Hille, 2001).  

3.2.1.1 Hodgkin-Huxley model for action potential  

 To fully describe the change of the membrane potential locally in the squid giant axon, 

Hodgkin and Huxley suggested an additional voltage-independent current, which accounted 

for a fixed background current flow, mostly made up of chloride ions, and was constant, that 

is the leakage conductance, 𝑔̅𝐿 (Hille, 2001). 

As mentioned, excitable membranes, in a confined area of the neuron, can be 

represented by an electrical equivalent circuit. The basic elements of the circuit are the 

membrane capacitance, which represents the phospholipid bilayer that separates the ions on the 

intracellular and extracellular medium, and non-linear or linear resistances, which represent the 

voltage gated or leak ion channels respectively (Figure 3.6). The Hodgkin-Huxley model for 

action potential generation can be summarized by an equation that corresponds to the 

equivalent electrical circuit of a membrane patch with sodium, potassium currents and leak 

𝑝(𝑡)𝑖 = 𝑝𝑖,𝑡→∞(𝑉𝑛𝑒𝑤) − (𝑝𝑖,𝑡→∞(𝑉𝑛𝑒𝑤) − 𝑝𝑖(0))𝑒𝑥𝑝 (− 
𝑡

𝜏𝑖(𝑉𝑛𝑒𝑤)
) Equation 3.12 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= − 𝑔̅𝑁𝑎𝑚

3ℎ(𝑉𝑚 − 𝐸𝑁𝑎) − 𝑔̅𝐾𝑛
4(𝑉𝑚 − 𝐸𝐾) − 𝑔̅𝐿(𝑉𝑚 − 𝐸𝐿) Equation 3.13 



Ion channel noise  33

 

channels where Vm is the membrane potential. Each ion channel is associated with an 

equilibrium or reversal potential (ENa, EK and EL, for sodium, potassium and leakage channels 

respectively) that is the particular voltage value where the net flow through any open channels 

is zero (Hille, 2001) (Figure 3.8). 

3.2.2 Markov formalism  

 Despite the success of the Hodgkin-Huxley formalism in reproducing the behaviour of 

macroscopic currents, it is based on several approximations regarding the kinetics that govern 

ion channels, and as result there are inconsistencies with some of the experimental data, such 

as modelling sodium channels with resurgent current where the activation and inactivation 

gates are not independent, but coupled (Hille, 2001; Lewis and Raman, 2014). The Hodgkin-

Huxley channel models tend to use oversimplified kinetic schemas compared to the Markov 

models. The latter ones take into consideration more possible conformational states, and thus 

the state diagrams or kinetic schemas describing a channel are more realistic and allow to study 

some of their stochastic behaviour (Hille, 2001). 

 

Figure 3.8 Time course of the Hodgkin–Huxley model parameters during an action potential. 

Upper panel: Action potential. Middle panel: Sodium (gNa) and potassium (gK) conductances. Lower 

panel: Gating variables (m, n, h). Adapted from Sterratt et al., 2010.  
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 The Markov formalism is based on three assumptions: (a) each channel can be 

represented by a collection of conformational states, (b) the system is memory-less (Markovian 

assumption), that is, the transition probability between states depends only on the current state, 

and not on the previous history of how the model reached that state and (c) the elementary 

transitions are first order schemes (Cannon and D’Alessandro, 2006; Hille, 2001; White et al., 

2000). 

 The sequence of the conformational states can be represented by a state diagram of the 

form:  

where S1, S2… Sn are the discrete conformational states. In the Markov formalism, if the system 

has n number of states, the kinetic response will have n – 1 relaxation times, namely, the time 

ranges at which a new equilibrium occurs after a perturbation, and if there are m relaxation 

times, the system includes at least m + 1 states (Hille, 2001). 

 Assume that a channel is at state Si at time t. Then the probabilities that can be defined 

are the probability being at that state Si at t, P(Si, t), and the probabilities for transition from 

state Si to another Sj , where j = 1, 2 …n, P(Si → Sj), and backwards, P(Sj → Si). The kinetic 

equation for such a schema is: 

The temporal evolution of P(Si, t) is described by: 

In a channel population these probabilities can be interpreted at a macroscopic level. 

Therefore, the probability P(Si, t) becomes the fraction of channels being in state Si and the 

transition probabilities P(Si → Sj), and P(Sj → Si) become the rate constants rij and rji 

respectively. The revised deterministic version of the kinetic schema at the channel population 

level is: 

𝑆1 ⟺ 𝑆2 ⟺⋯⟺ 𝑆𝑛 Equation 3.14 

𝑆𝑖
𝑃(𝑆𝑗→ 𝑆𝑖)
←        

𝑃(𝑆𝑖→ 𝑆𝑗)
→        𝑆𝑗 Equation 3.15 

𝑑𝑃(𝑆𝑖, 𝑡)

𝑑𝑡
=∑𝑃(𝑆𝑗, 𝑡)

𝑛

𝑗=1

𝑃(𝑆𝑗 → 𝑆𝑖) − ∑𝑃(𝑆𝑖 , 𝑡)

𝑛

𝑗=1

𝑃(𝑆𝑖 → 𝑆𝑗) Equation 3.16 
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where si and sj are the fractions of channels being in states Si and Sj respectively. The transition 

rates rij and rji can be either voltage or concentration dependent, with appropriate temperature 

dependencies as well (Cannon and D’Alessandro, 2006; Hille, 2001). 

 The macroscopic time course for each state can be expressed as: 

 

Figure 3.9 Kinetic schemas. K+ channel is represented by four n activation gates. Upper panel: Full 

state diagram. If 1 indicates a gate to be in a permissive state and 0 to be in a non-permissive, then there 

would be 15 closed and a single open substates for the system, with 32 permitted transitions. Every 

transition (dashed lines) is governed, from left to right, by the a rate constant, and right to left by the β 

one. Lower panel: Reduced diagram. All the substates with the same number of gates in the same state, 

permissive or non-permissive, are equivalent. Thus, the system can be described by five major states 

(n0, n1, n2, n3 and n4), with the transition rate constants also summarised for all the transitions and their 

4α, 3α, 2α, α and right to left: 4β, 3β, 2β, β is kinetically equivalent to the n4 Huxley-Hodgkin model. 

Adapted from Hille, 2001.  

𝑠𝑖
𝑟𝑗𝑖
← 

𝑟𝑖𝑗
→ 𝑠𝑗 Equation 3.17 

𝑠(𝑡) = 𝐶0 + 𝐶1 𝑒𝑥𝑝 (− 
𝑡

𝜏1
) + 𝐶2 𝑒𝑥𝑝 (− 

𝑡

𝜏2
) + ⋯+ 𝐶𝑚 𝑒𝑥𝑝 (− 

𝑡

𝜏𝑚
) Equation 3.18 
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 where the coefficients Cj (j = 0, …, m) are the initial conditions constants and τj are the time 

constants (Cannon and D’Alessandro, 2006; Hille, 2001).  

Markov models are more general than Hodgkin-Huxley ones, but when channel gates 

are assumed to be independent, they are equivalent. As a result, ion channels can be represented 

by kinetic Markov diagrams of their different states and with a special sequence of rate 

constants, and be kinetically identical to their representation by a Hodgkin-Huxley formalism 

(Cannon and D’Alessandro, 2006; Hille, 2001) (Figure 3.9). 
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4  Gain modulation 

4.1 Gain modulation: Definition 

 The function of the nervous system is based on its ability to transform environmental 

stimuli into representations of the physical world in the brain. In that context, neurons are not 

computing devices that merely receive and summate in an additive manner synaptic inputs 

followed by signal transmission, but they must also be able to combine and even dynamically 

transform the various pieces of information that travel across different brain regions.  

Gain modulation appears to be a brain-wide principle of neuronal computation which 

applies to the way neurons integrate the inputs they receive from different brain areas. The 

response amplitude (sensitivity) of one neuronal unit (brain region, system, population or single 

neuron) to one set of signal inputs (driving input) can be enhanced or dampened by the 

concurrent input of a second unit (modulatory input). Despite the potentially different response 

to a driving input, due to the modulatory input activity, the neuronal selectivity and receptive 

field properties (that is, the region in which the presence of a stimulus will evoke a neuronal 

response) remain unaffected (Salinas and Sejnowski, 2001; Silver, 2010). 

4.2 Gain in neuronal response functions: firing rate and tuning 

curves 

The first step to comprehend the neuronal activity and its underlying computations is 

to depict it in a graph that relates the neuron’s response (output) to an input stimulus. Such a 

graph is highly dependent on the experimental protocol applied to study the particular neuronal 

behaviour, which defines the nature of driving and modulatory inputs (for instance, 
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iontophoretic application of drugs, injected current, or synaptic inputs) or parameters (for 

instance, external relevant stimulus, such as contrast, head or eye orientation, attention, sound 

frequency, joint position etc.) that trigger a neuronal response. Hence, neuronal behaviour can 

be demonstrated either as an Input-Output relation graph (I-O function, I-O relationship, firing 

rate curve or transfer function) of a neuron or as tuning parameter curve (Salinas and 

Sejnowski, 2001; Silver, 2010).  

The I-O function illustrates the average neuronal response (output rate) to an input 

(driving synaptic input rate or injected current amplitude). When a modulatory input is 

integrated at the same time with the driving one, the I-O relation could be shifted or tilted, and 

these transformations correspond to different algebraic operations (addition and multiplication, 

respectively). Gain modulation is equivalent to the change of the slope (but not the shape) of 

the I-O curve in a multiplicative (increase) or divisive (decrease) scaling (Silver, 2010) (Figure 

4.1). 

Furthermore, a multiplicative scaling of the I-O curve could take place on both axes. A 

change in the slope can be produced either along the x-axis, where the input is modulated and 

the maximum response of the I-O curves remains the same, or along the y-axis, where the 

output is modulated and the maximum response of the I-O is scaled (Silver, 2010). 

Additionally, the I-O function of a neuron could be either linear or nonlinear. In the case of a 

linear I-O graph, an additive operation is clearly illustrated as a shift of the curve along the x-

axis and a gain change can be deduced from the change in slope (that is, scaling along the y-

axis) (Chance and Abbott, 2009; Murphy and Miller, 2003). However, in the case of nonlinear 

I-O relationships, an actual additive operation could function as a multiplicative one, since the 

shift of a nonlinear I-O curve along the x-axis, introduces a multiplicative component too (that 

is, gain change as a function of the x-axis). This effect could be also enhanced by an additional 

nonlinear relationship between the driving input and the stimulus parameter (Brozović et al., 

2008; Murphy and Miller, 2003). For that reason, a true change in gain should be quantified as 

a function of the y-axis, because this modulation takes place to the output and scales the 

neuronal dynamic range (Chance et al., 2002; Murphy and Miller, 2003; Silver, 2010). 

Similarly, the tuning curve shows the neuronal average firing rate (output rate) as a 

function of an external tuning parameter. The peak of the tuning curve represents the highest 

neuronal activation that is evoked by the neuronal preferred stimulus. The tuning curves have 

often a bell-like shape (for instance Gaussian). In the presence of a modulatory input the 
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amplitude of peak response is scaled (multiplied or divided), but the tuning curve shape remains 

unaffected. The extent of gain modulation is then defined as the change in the peak amplitude 

(Butts and Goldman, 2006; Salinas and Sejnowski, 2001).  

4.3 Gain modulation in different brain areas 

 Many cortical and subcortical areas utilize gain modulation operations to combine all 

the information emerging from sensory, motor or cognitive systems (Salinas and Sejnowski, 

2001). Examples where gain modulation operations are applied as a neuronal computational 

principle exist in the parietal cortex (Andersen and Mountcastle, 1983; Andersen et al., 1985; 

Brotchie et al., 1995), in the occipital cortex (Bremmer et al., 1997; Galletti and Battaglini, 

1989; Trotter and Celebrini, 1999), in the motor cortex (Boussaoud et al., 1998), in the temporal 

cortex (Winkowski and Knudsen, 2006), in the cerebellum (Herzfeld et al., 2015; Yakusheva 

et al., 2007), and it is also implicated in the brain stem (Khojasteh and Galiana, 2009). 

 

Figure 4.1 Input-Output relationships and gain modulation. Upper panel: Neurons receive 

numerous presynaptic signals that drive their response (green synapse). However, a second input source 

(pink synapse) could modify the computational operations utilized by neurons to transform their 

synaptic input into output firing rate. Lower left panel: A shift along the x-axis of the I-O curve in the 

presence of a modulatory input, such as synaptic or tonic inhibition, is an indicator of an additive 

operations. Lower right panel: A change in the slope (or gain) of the I-O curve in the presence of 

different cellular and synaptic mechanisms, such as synaptic noise, shunting inhibition and synaptic 

plasticity is an indicator of a multiplicative operations. 



Gain modulation  40

 

Moreover, gain modulation control has been suggested in the brain of invertebrates (Baca et 

al, 2008). 

 The monkey parietal cortex was the first brain area where gain modulation was 

observed and as a result thoroughly studied. In that region, neuronal responses depend on the 

retinal location of a visual stimulus and are multiplicatively scaled by gaze direction (Andersen 

and Mountcastle, 1983; Andersen et al., 1985) (Figure 4.2) or head position (Brotchie et al., 

1995). 

 Gain modulation computations are often performed during the conversion of one 

coordinate sensory system with a set reference frame, to another system with a differently 

centred reference frame, namely, during coordinate transformations (as the latter example). 

These transforms are necessary for object localization and visually guided reaching (Pouget 

and Sejnowski, 1997; Salinas and Abbott, 1995; Zipser and Andersen, 1988). 

 Another task where gain modulation has been implicated as its basis is the translation-

invariant object recognition. Visual systems neurons are able to respond with view, size, and 

position (translation) invariance to objects or faces. Such responses could be gain modulated 

by cognitive inputs, like those representing states of attention (McAdams and Maunsell, 1999; 

Salinas and Abbott, 1997; Tovee et al., 1994; Treue and Martínez Trujillo, 1999). Premotor 

activity is also modulated by eye position during preparation of limb movements in space 

(Boussaoud et al., 1998). Moreover, the gaze control circuitry in the forebrain modulates the 

gain of midbrain auditory responses in an space-specific manner (Winkowski and Knudsen, 

2006).  

In the cerebellum, Purkinje cells residing in the vermal cerebellar cortex encode inertial 

motion. This neuronal population performs critical computations for the conversion of the 

head-centred frame into an earth-referenced one, by modulating the information that arises 

from the inner ear structures. Afferents from those organs converge onto cerebellar structures, 

including the (fastigial) cerebellar nuclei, the vestibular nuclei and directly on the Purkinje cells 

residing in the cerebellar nodulus and uvula. The latter are sensitive to translation acceleration, 

but not gravitational force, and their response is modulated by the angle between the motion 

direction (head movement towards a stimulus) and the cell’s preferred direction. Yet, the cell 

population of vestibular and cerebellar nuclei neurons show a mixture response to translation 

and tilt motions (Yakusheva et al., 2007). The cerebellum can also predict in real time the speed  
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and direction of the eye during saccadic movements, via a gain-field encoding. When Purkinje 

cells are organized into a mixed population of firing and bursting neurons (during saccades) 

that share the same complex-spike tuning preference (but not similar simple-spike receptive 

fields), they give rise to presynaptic simple spikes that converge onto a deep cerebellar nuclei 

neuron. This population response is linear to the speed of the saccade but has a cosine-shaped 

tuning curve in relation to the eye direction. The latter, however, is multiplicatively modulated 

by the speed of the saccade (Herzfeld et al., 2015).  

 

Figure 4.2 Gain modulation in parietal cortex. Upper panels: The response of the parietal cortex to 

a visual stimulus, depends both on the retinal location of a stimulus and on gaze direction. In these 

experiments, the monkey directs its gaze to the fixation point (cross), while stimuli are presented, one 

at a time at various locations (eight dots), within the neuron's receptive field. The retinal location of the 

stimuli is the same when the monkey head is turned right or left. The receptive field of a recorded 

neuron is indicated by the coloured (blue and orange) circles, and the direction straight ahead is 

indicated by the dashed lines. Lower panel: The firing rate of the recorded neuron for both conditions 

(right or left head turn) is plotted as a function of the position of the spot (stimulus location) in retinal 

coordinates. The neuronal response can be fitted by a Gaussian function (blue and orange solid lines). 

When the head turns, the peaks (neuron’s preferred location) and shape of the response curve remains 

the same, but the amplitude, namely, gain, changes. Adapted from Salinas and Sejnowski, 2001. 
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The brainstem circuits might also utilize multiplicative gain operations in the control 

of the vestibulo-ocular reflex, which stabilizes images on the retina and thus, provides clear 

vision during head movements. The vestibulo-ocular reflex due to yaw rotations of the head is 

processed by a simple three-neuron circuit. The vestibular canals of the inner ear send their 

afferents to the vestibular nucleus of the brainstem, which in turn innervates the extraocular 

muscles of the eyeball. The response of the vestibular neurons to head speed, that is to the 

activation of the vestibular canals, could be modulated by the eye position stimulus (Khojasteh 

and Galiana, 2009). 

An additional example of gain modulation comes from the invertebrate brain, where 

stereotypical species-specific behaviour can be triggered by an external stimulus/input. The 

amplitude of this response is gain modulated by inhibition and is proportional to the intensity 

of stimulation (Baca et al, 2008). 

4.4 Gain modulation mechanisms 

In order to clarify the mechanisms through which gain modulation occurs in single 

neurons, both experimental and theoretical approaches have been applied, such as dynamic-

clamp electrophysiological techniques and single neuron modelling. The experimental 

conditions vary between the studies, but the typical methodology followed is exciting a neuron 

with an input that could be injection of constant current of various magnitudes, conductance 

steps or synaptic input and at the same time modulating its response with another input (of the 

same or different kind as the driving one). Both the driving and modulatory inputs can be of 

noisy nature. 

4.4.1 Neuronal noise 

The neuronal state (for instance, voltage fluctuations based on background synaptic 

activity) and its biophysical and synaptic determinants (for example, shunting inhibition, 

synaptic depression, ionic conductances) are putative key players in gain modulation. Neurons 

in vivo constantly receive synaptic inputs, which cause membrane potential fluctuations. 

Furthermore, events which are not evoked directly by an action potential but originate from the 

spontaneous release of neurotransmitters at the presynaptic terminal, are considered as a 

continuous background source of noise (Faisal et al., 2008; Kavalali, 2014). The neuronal 

response is not immune to this activity. Synaptic noise could affect the neuronal response in 

various ways. The background presynaptic events activate postsynaptic conductances that add 
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further to the mean membrane conductance. As a result, the input resistance is decreased which 

could decrease the neuronal responsiveness. However, the background synaptic activity 

introduces fluctuations to the membrane voltage. If the spiking threshold of the neuron is close 

to the resting potential, the subthreshold random membrane voltage fluctuations caused by the 

synaptic noise can cause variability in the firing rate and add additional spikes that would not 

occur in the absence of noise. If the membrane voltage is in a suprathreshold regime, the 

additional synaptic discharge affects the output, because there is a decrease in the rheobase, 

that is, the minimum current or conductance that triggers a spike, resulting in an increase of the 

spike rate (Chance et al., 2002; Faisal et al., 2008; Hô and Destexhe, 2000; Shu et al., 2003; 

Silver, 2010). 

4.4.2 Shunting inhibition  

 The component of the synaptic input that is not considered noise can have a different 

impact on the integration properties of a neuron depending on the synaptic reversal potential 

and the membrane resting potential. An activated synaptic conductance could produce a 

depolarization, and thus it would be considered an excitatory one, if its reversal potential is 

above the resting potential of the neuron. Accordingly, if its reversal potential is below the 

resting voltage it would hyperpolarize it, and it would be an inhibitory one. In both cases, there 

would be an increase in the total membrane conductance due to the opening of the postsynaptic 

receptors, and a production of the corresponding subthreshold electrical pulse (Excitatory Post 

Synaptic Potential - EPSP or Inhibitory Post Synaptic Potential - IPSP) that propagates down 

the dendrite. There could be though the case where the synaptic reversal potential is close or 

equal to the resting membrane potential. In this scenario, due to the negligible driving force, 

there would not be any net movement of ions through the synaptic channels, and consequently 

no generation of a measurable postsynaptic potential. However, an increase in the local 

membrane conductance would occur (and hence the input resistance would decrease), which 

consequently would reduce (or shunt) any on path EPSPs. This effect is called shunting or 

silent inhibition. GABAA receptor activation is assumed to mediate the shunting inhibition, 

through the opening of membrane Cl- channels (Paulus and Rothwell, 2016). 

 Much effort has been devoted to investigating the role of various configurations of 

synaptic input, background activity, leak membrane conductance/shunting inhibition in gain 

modulation by taking also into account different neural coding schemes, for example, firing 

rate coding or spatiotemporal coding (Silver, 2010). As aforementioned, shunting inhibition 
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scales down concurrent EPSPs and in particular, is assumed to have a divisive effect on the 

synaptic depolarization, due to Ohm’s law. Ohm’s law states that the membrane voltage (Vm) 

is proportional to the product of the input current (Iin) and the input resistance (Rin), and 

inversely proportional to the input conductance (gin). Hence, the decrease in Rin induced by 

shunting inhibition attenuates the excitatory synaptic potentials and introduces divisive gain 

changes in the subthreshold V-I relationship. However, the role of shunting inhibition, under 

conditions, where a neuron responds to the input with a train of action potentials, seems to be 

different. Inhibitory shunting conductances alone performs a subtractive operation by causing 

a shift to higher input currents in the F-I curve, rather than a change in the slope. The reason 

behind this subtractive effect is that for prolonged periods, such as during sustained firing, the 

action potential train resets and “clamps” the somatic temporal-averaged membrane voltage to 

a new potential, above the resting one and close to the spiking threshold. Subsequently, the 

shunting conductance acts as a constant hyperpolarizing current source (Ayaz and Chance, 

2009; Azouz, 2005; Brizzi et al., 2004; Capaday, 2002; Chance et al., 2002; Gabbiani et al., 

1994; Holt and Koch, 1997; Prescott and De Koninck, 2003; Shu et al., 2003; Ulrich, 2003).  

4.4.2.1 Shunting inhibition and synaptic noise 

 However, shunting inhibition can underlie multiplicative operations in the 

suprathreshold regime when certain conditions are met. Inhibition by shunt can be introduced 

either by a synaptic source (for instance, the background noise) or by a fixed tonic inhibitory 

conductance. Ongoing synaptic noise can modulate the response tuning curves (Ayaz and 

Chance, 2009; Murphy and Miller, 2003) or I-O relationships in a multiplicative manner 

(Azouz, 2005; Burkitt et al., 2003; Doiron et al., 2001; Fellous et al., 2003; Higgs et al., 2006; 

Hô and Destexhe, 2000; Longtin et al., 2002; Mitchell and Silver, 2003; Prescott and De 

Koninck, 2003; Shu et al., 2003; Tiesinga et al., 2000; Williams and Stuart, 2003).  

4.4.2.2 Shunting inhibition and balanced background noise 

 When both the background synaptic components (excitatory and inhibitory firing rates) 

are concomitantly increased in a balanced manner the neuronal response is likewise modulated 

in a divisive manner. Such a configuration leads to enhanced shunting conductance and input 

noise (causing random membrane voltage fluctuations). The shunting inhibition alone results 

in a subtractive operation (right shift of the F-I curve) to the neuronal response. On the other 

hand, the increased input noise gives rise to an additive operation (left shift of the F-I curve) 

and decreases the gain too. During a balanced increase of the background synaptic activity both  
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phenomena take place. Thus, the right and left shift cancel out each other, and a pure gain 

change occurs (Chance et al., 2002) (Figure 4.3). This divisive gain control scheme arises also 

when the input stimulus is not just static, namely, its input statistics are not constant, but time-

varying, where the neuronal response is represented by the mean firing rate over a time 

window, but also incorporates a time-varying component, that is, dynamic stimuli (Ly and 

Doiron, 2009). Yet, a balanced synaptic configuration might not always generate multiplicative 

operations (Capaday, 2002). Such inconsistencies, however, could be explained when bearing 

in mind that the function of a neuron in the presence of balanced synaptic noise could lie in a 

linear or nonlinear regime, depending on the interplay of the stochastic membrane fluctuations, 

membrane leakiness and the time scale that the neuron operates on (namely, the time constant 

of a non-passive membrane). For instance, in a conductance-based integrate-and-fire neuron 

model, the membrane time constant is different compared to a non-passive membrane, when 

synaptic conductances are present. When the background synaptic input increases, the 

leakiness of the membrane also increases, due to opening of more synaptic channels. The time 

constant of a non-passive membrane, however, decreases, and for a spiking-rate driving input, 

the membrane potential approaches a mean value that is decreased as well. Lower values of the 

mean membrane potential could cause also a decrease in the output firing rate. However, at the 

same time, the membrane fluctuations are more rapid (due to the decreased membrane time 

constant). Therefore, there are two competing processes taking place simultaneously, 

membrane leakiness and change in the time scale of the membrane dynamics. When these two 

 

Figure 4.3 Gain modulation from background synaptic input. Changing the level of background 

synaptic input noise modifies the I-O relationship gain in a divisive manner. The firing rates evoked by 

different steps of driving input current at distinct levels of a x concurrent balanced increases in 

background excitation and inhibition together (Chance et al., 2002). Adapted from Silver, 2010. 
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processes cancel each other, there is no change in gain. But, when the effect of leakiness is 

stronger than the effect of a small time constant, there is a change in gain (Burkitt et al., 2003). 

4.4.3 Dendritic saturation 

Further, the divisive effect of the combined synaptic fluctuations and shunting 

inhibition can be enhanced dramatically by dendritic saturation. As mentioned, the background 

noise enhances the probabilistic synaptic driven spiking in the subthreshold regime. 

Subsequently, the spike response to an input does not transit abruptly from one constant value 

to another, that is, a step-function, but follows a smooth course, namely, a sigmoid function. In 

addition, shunting inhibition acts as modulatory mechanism, when synaptic noise is present 

(see 4.2.2.1 Shunting inhibition and synaptic noise). This divisive control of the spike output 

by shunting inhibition, occurs because of the smoothing (resulting from synaptic noise), which 

 

Figure 4.4 Gain modulation from shunting inhibition in the presence of synaptic noise and 

dendritic saturation. The effect of shunting inhibition on the spike output depends on the underling 

conditions. Upper left panel: Traditionally, shunting inhibition alone introduces a subtractive shift to 

the I-O relationship, by acting as a constant hyperpolarizing current source. Upper right panel: In the 

presence of a synaptic noisy source, the threshold nonlinearity is not an abrupt transition, but a smooth 

one. This enables shunting inhibition to perform divisive modulations. Lower left panel: Another 

nonlinearity observed in the relationship between the somatic voltage (Vm) and dendritic synaptic 

excitatory conductance (gexc), due to the dendritic saturation. Again, in the absence of noise effect, the 

shunting inhibition modulation is translated as a subtractive operation to the firing output. Lower right 

panel: The gain modulation of the output firing by shunting inhibition is achieved when both threshold 

smoothing and dendritic saturation occurs. Adapted from Prescott and De Koninck, 2003. 
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is mirrored to the relationship of the firing rate with the underlying somatic depolarization. 

However, shunting inhibition with noise alone exhibits a mild multiplicative operation to the 

soma, or perisomatic areas. On the other hand, the somatic excitation from dendritic excitatory 

synaptic inputs usually requires strong input, due to the electrotonic attenuation of a 

propagating signal. But the stronger the local dendritic depolarization, the larger the reduction 

of the related synaptic driving force, and thus the smaller the effect of the synaptic excitation 

on the soma, due to the occurring dendritic saturation. Therefore, a nonlinearity is introduced 

between the somatic voltage and the synaptic conductance, which, in the absence of synaptic 

noise, is reflected as a subtractive shift in the F-I relationship. But the dendritic saturation 

effect, combined with the threshold smoothing mediated by the synaptic noise, produce 

enhanced divisive modulation (Prescott and De Koninck, 2003) (Figure 4.4).  

4.4.4 Driving input features 

Besides the background synaptic noise, features of the driving input could also 

influence gain modulation mediated by shunting inhibition. For instance, divisive gain 

operations occur when a neuron is driven with tonic excitation during synaptic (noisy) shunting 

inhibition. Nevertheless, the extent of that modulation is limited to low firing rates (Doiron et 

al., 2001; Hamann et al., 2002). Further, when a driving excitatory input is enriched with high 

variability, tonic shunting inhibition can act as a divisive mechanism with an additive shift too, 

due to the inhibitory effect (Mitchell and Silver, 2003). The reason behind this is that an 

increase in the firing rate of a non-tonic driving input will produce corresponding input noise, 

with similar effects as in the background noise-mediated gain modulation. 

4.4.5 Excitation or inhibition alone 

Nevertheless, even simple excitation or inhibition (hyperpolarising or shunting) alone 

can drive divisive control. In these cases, the divisive scaling is not evident in the F-I curves 

but when a tuning curve is considered instead. Yet, some additional conditions are required. 

Firstly, the background noise induces a nonlinear power-law relationship between the 

membrane voltage and the firing rate when the neuron is driven by an excitatory input. 

Secondly, the relationship between the input rate and the corresponding sensory stimulus 

parameter is nonlinear (for instance, sigmoidal or Gaussian). Finally, the modulatory excitatory 

or inhibitory input is small compared to the peak response evoked by the driving excitation 

(Murphy and Miller, 2003). However, for a stronger modulatory stimulus, the effect of a tonic 
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shunting conductance or a hyperpolarizing current on the tuning curve is subtractive. Noisy 

synaptic input, however, can act as a divisive mechanism (Ayaz and Chance, 2009). 

The noise-mediated gain mechanisms described above are observed under in vitro 

and/or in silico conditions. However, in vivo the random synaptic driven membrane voltage 

fluctuations might not necessary result in gain modulation but depend on the spatiotemporal 

features of the synaptic activity evoked by a specific sensory context. Thus, gain modulation 

in vivo may be dynamically defined by the sensory context. Nonetheless, if the membrane 

fluctuations are combined with a depolarization in mean membrane voltage and a decrease in 

the mean input resistance, a divisive operation occurs (Cardin et al., 2008).  

4.4.6 Noise-independent mechanisms 

Additional putative mechanisms for gain modulation have been also suggested, where 

deterministic (that is, noise-independent) intrinsic processes are accountable. Gain control by 

synaptic inhibition can be obtained in neurons, where dendrites are enriched with active 

properties capable of generating backpropagation waves. A backpropagating event enhances 

multiplicatively the firing rate by acting as a feedback excitation process. This is because the 

depolarizing afterpotential resulting from a backpropagating spike is coupled with the somatic 

spiking rate and vice versa. The generation of dendritic spikes follows somatic action potential 

generation. Subsequently, the depolarizing afterpotential is spike-dependent and scales with 

the firing rate, but has no impact on the value of the input firing rate corresponding to the firing 

threshold of the neuron (rheobase). In the presence of dendritic inhibition, this multiplicative 

effect can be scaled down and consequently give rise to a divisive manipulation (Mehaffey, 

2005).  

By applying tonic inhibition at the soma, the total membrane conductance is increased 

and the slope of the steady-state F-I relationship is reduced, under noise-free conditions. The 

increase in the somatic conductance induces both an elevated spike threshold and a 

depolarization of mean voltage during spike generation. In neurons whose biophysical active 

properties support spike frequency adaptation, there is a positive correlation between this grade 

of depolarization and the magnitude of the steady-state spike frequency adaptation. 

Consequently, when a conductance is added, there is an increase in the steady-state spike 

frequency adaptation, which causes a decrease in gain of the steady-state F-I curve (Fernandez 

and White, 2010).  
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4.4.7 Short-Term Depression 

Synaptic nonlinearities can also be the basis of gain modulation. Synapses can be 

dynamic, and their efficacy can be suppressed in a frequency-dependent manner (that is, Short-

Term Depression - STD). When STD is present, the otherwise additive operation on the driving 

excitatory input by a tonic shunting inhibition is transformed, independently of noise, into a 

divisive modulation. The reason behind this effect is a nonlinearity in the relationship between 

presynaptic input firing rate and the time-averaged excitatory synaptic conductance, which is 

introduced by STD. The postsynaptic integration of the time-averaged excitatory synaptic 

conductance, however, is not affected by the presence of STD (Rothman et al., 2009) (Figure 

4.5).  

4.4.8 Synaptic mechanisms 

Ionic cellular mechanisms, synaptic receptors or other voltage-gated channels can have 

a crucial role in defining gain operations. The currents that are generated in response to an input 

are shaped by the kinetics of the synaptic channels that are activated. Thus, their waveform 

characteristics, like peak amplitude, rise and decay time constants, vary accordingly, and their 

integration can result as well in output firing patterns with distinctive features. The 

abovementioned divisive effects of synaptic (shunting) inhibition are facilitated through 

 

Figure 4.5 Gain modulation from Short-Term Depression. STD transforms inhibition-induced 

additive shifts into a multiplicative gain chain. When a tonic inhibitory conductance train (+inh) is 

introduced in a cerebellar granule cell (CGC), the I-O relationship shifts along the input (mossy fibre 

input rate) axis (additive operation, -STD+inh traces). STD adds a multiplicative component to this 

operation (+STD+inh traces) (Rothman et al., 2009). Adapted from Silver, 2010. 
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GABAA receptor currents. Excitatory currents are usually mediated by AMPA and NMDA 

receptors. AMPA-mediated gain can be obtained under noisy conditions, when the modulatory 

input is shunting inhibition. However, when an NMDA component is added to the excitatory 

driving input, the observed change in the gain is rather due to the decrease of the output firing 

frequency range. The presence of NMDA receptors increases the total input current, and as a 

result the range of input frequencies where gain modulation occurs is narrowed. A further 

decrease in gain modulation is added by the NMDA receptor saturation (Berends et al., 2005). 

In a similar way, the synaptic AMPA receptors make the dominant contribution to STD-

dependent gain modulation, and not the NMDA ones. This is because the relationship between 

the mean input frequency and the NMDA conductance is nearly linear, so it does not add any 

further nonlinearity to the gain mechanism (Rothman et al., 2009).  

However, the kinetics of the NMDA receptor render it capable of amplification events. 

The regenerative potentials that arise after the activation of NMDA synapses are characterized 

by a large plateau phase and long duration, favouring the temporal and spatial integration of 

local dendritic events (Antic et al., 2010). In light of this, there is evidence that the amplification 

effects due to the NMDA dendritic spikes might underlie sensory processing by combining 

information from different cortical areas (Palmer et al., 2014) or by multiplying excitatory 

postsynaptic responses to the preferred or null stimulus in a way that will remain proportional 

to the synaptic input, and undergo divisive operation by stimulus-tuned inhibition. As a result, 

the stimulus tuning (neuronal selectivity) is maintained but the fidelity of the signal is enhanced 

by noisy conditions (Poleg-Polsky and Diamond, 2016). 

4.4.9 Ionic, voltage-gated and passive mechanisms 

Furthermore, understanding how gain is modulated by the non-synaptic active and 

passive channel repertoire of a neuron, could provide some insight with regards to the way that 

neurons interpret their inputs, and subsequently how this is translated into sensory processing 

at a network level. The neuronal channels can be modelled by the Hodgkin-Huxley formalism 

where each channel current depends on the product of their maximal specific conductance, 

which is proportional to the channel density, and the activation and/or inactivation variables, 

which are voltage dependent and represent the probability of a channel to permit ion flow 

through the channel. Thus, at different voltage ranges, the current flowing through the channels 

changes according to its activation and therefore the neuronal excitability is altered. For 

instance, in the lobster stomato-gastric neurons, voltage-gated channels contribute to the gain 
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change by modulating the inter-spike interval. Increases in the maximal specific conductance 

of voltage-gated K+ channels (A-type K+ channel, delayed-rectifier K+ channel, Ca2+-activated 

K+ channel) result in gain reduction. On the other hand, there is an enhancement in gain with 

increased channel density of slow voltage-gated Ca2+ channels, and no gain change has been 

found related to the hyperpolarization-activated (HCN) current density. Changes in passive 

excitatory or inhibitory channel conductances produce also no effect in gain. Moreover, 

changes in the density of coupled channels, like the Ca2+-activated K+ channel and the slow 

voltage-gated Ca2+ channel can perform a combined divisive gain operation (Patel and 

Burdakov, 2015). 

4.4.10 Spike frequency adaptation 

 Biophysical mechanisms that generate spike frequency adaptation can also underlie 

gain operations. For example, Na+ conductance inactivation lessens the spike generation and 

enables steady-state divisive modulation by increased tonic somatic inhibition, in the absence 

of noise (Fernandez and White, 2010). Yet, the ability of membrane fluctuations to control the 

gain, can be related to the magnitude of the spike dependent activation of slow 

afterhyperpolarization currents (slow afterhyperpolarization – sAHP). Noise enhances the gain 

in neurons with large sAHP, by reducing the suprathreshold activation of hyperpolarization 

(Higgs et al., 2006). Ca2+-dependent potassium currents also regulate the response gain by 

influencing the AHP (Smith et al., 2002).  

4.4.11 Neurotransmitters 

 The modulation of firing rates can be also carried out by neurotransmitter receptor 

activators, like nicotine, which increases the response gain to a given stimulus (Disney et al., 

2007) and serotonin, which reduces the postsynaptic sAHP and induces a slow 

afterdepolarization (Higgs et al., 2006; Zhang and Arsenault, 2005).  

4.4.12 Neuronal morphology 

Neuronal morphology and input topology can influence the synaptic integration and the 

corresponding mathematical operations (Silver, 2010). The responsiveness to inputs of neurons 

with different complexities of dendritic trees is generally enhanced, in the presence of 

background synaptic noise, but the shape of their corresponding response curves varies slightly 

(Hô and Destexhe, 2000). Further, the capacity of a neuron to modulate its inputs is correlated  
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 to the branching pattern of its dendritic tree, and the balance between background excitatory 

and inhibitory synaptic inputs. The dendritic branch points attenuate the propagating currents. 

Therefore, the integration of synaptic inputs is affected by the branching pattern. The firing 

rate of neurons with a pyramidal shape (a bipolar-like neuron with an apical tree that bifurcates 

with moderate branching) is divisively modulated by the excitatory-inhibitory background 

balance, if the balance ratio is shifted towards the inhibition. In this case, neurons can be driven 

either with current injections in their distal apical dendrites or receive distributed throughout 

the dendritic tree excitatory and inhibitory synaptic inputs. In an analogous way, responses to 

driving injection currents to neuron with multiple dendrites emerging from the dendritic sites 

of stellate neurons (a multipolar soma, but with no elaborate branching pattern), are modulated 

by varying the excitatory-inhibitory background balance. When, however, these cells are 

 

Figure 4.6 Gain modulation from dendritic morphology. Upper panels: A layer V pyramidal cell 

(left panel) is driven with current injections at the soma (middle panel) or dendritic tree (right panel) 

and modulated by altering the balance of background excitation to inhibition (x Inhibition ratio factor). 

Gain modulation occurs in the dendritic site, but not in the soma. Lower panels: Same for the dendritic 

tree of a layer II hippocampal stellate cell, where the I-O function is divisively modulated. The 

background balance, for both neurons, is simulated as light-coactivated opsins (excitatory and 

inhibitory) that are distributed along the neuron. Adapted from Jarvis et al., 2016. 
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driven with distributed mixed excitatory and inhibitory synaptic input, there is rather a linear 

shift in the output response corresponding to the changes in the background amount of 

excitation or inhibition. Moreover, dendritic subtrees that do not receive background input, or 

a centrally located soma, lessen the gain modulation ability of the neuron by acting as current 

sinks (Jarvis et al., 2016) (Figure 4.6). Besides the aforementioned morphological properties, 

dendritic inputs could have distinct control on neuronal gain compared to the somatic ones, 

because of factors such as dendritic saturation (Prescott and De Koninck, 2003) and dendritic 

inhibitory conductances (Holt and Koch, 1997; Mehaffey, 2005) 

4.4.13 Input topology  

In addition, the topological configuration of synaptic input influences the neuronal gain. 

The integration of two excitatory synaptic inputs that are located on the same basal dendrite 

depends on their absolute and relative location. When the driving input is distal, is gain 

modulated by proximal to the soma synaptic inputs, which also lower the neuronal response 

rheobase. On the contrary, when the driving input is proximal to the soma, the distal synaptic 

inputs only lower the rheobase. The biophysical mechanisms underlying this process are related 

to the increased input resistance and signal attenuation of distal stimulus sites, as well as the 

voltage dependence of NMDA currents (Behabadi et al., 2012). The relevant location of 

inhibitory and excitatory inputs also affects their summation in the soma. Distal synaptic 

inhibitory input or input at the same basal compartment with a synaptic excitatory, increases 

the spike threshold. However, somatic inhibition applied with basal dendritic excitation causes 

a reduced gain operation. Basal dendritic inhibition placed on the path between basal dendritic 

excitation and soma has a combined effect, where both an increase in the rheobase and a 

decrease in the slope of the I-O relationship take place. The differential effects of inhibition 

depend on the interplay of the membrane leak conductance increase, due to the inhibition and 

the branch diameter and the voltage dependence of NMDA channels (Jadi et al., 2012). When 

the excitatory tonic conductance is co-localised with an inhibitory one, at a distance from the 

soma apical dendritic compartment, the latter causes a shift of the I-O function, whereas tonic 

inhibition on the proximal apical trunk performs divisive modulation, because it adds to the 

leakiness of the membrane (Pouille et al., 2013).  
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5  Channel noise in the CN 

neuron 

5.1 Introduction  

Neurons are equipped with numerous transmembrane proteins specialized to allow the 

bidirectional flow of ion currents from the extracellular space to the cytosol and vice versa The 

gating of these channels is highly probabilistic and the basis of the channel or electrical noise 

at the cellular level in the neuronal system, with various functional implications (see Chapter 

3).  

 Experimental evidence shows a large variation of the electrophysiological responses of 

the neurons within cerebellar nuclei, in vivo and in vitro (Canto et al., 2016; Steuber et al., 

2011; Uusisaari et al., 2007; Uusisaari and Knöpfel, 2012). This observed trial-to-trial 

variability in CN neurons belonging to the same subgroup suggests that neuronal noise could 

be an important contributor too. However, noise effects on the behaviour of the CN neuron 

have not been studied yet, since there is not any available model with integrated stochastic 

channel noise properties. For instance, ion channel noise could affect the neuronal 

computations in a distinct manner, based on the input location. Neuronal compartments with 

thinner diameters are expected to exhibit larger membrane voltage fluctuations in the presence 

of channel noise, compared to the thicker areas, such a soma or proximal dendrites. Such 

phenomena could be translated into multiplicative operations of distal inputs and linear 

summation of the ones proximal to the soma.  
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To explore research questions like the above, and the functional aspects of ion channel 

noise in the CN a stochastic model needs to be developed. This chapter describes the conversion 

of a detailed deterministic CN model (Steuber et al., 2011) to a stochastic one. Firstly, the CN 

voltage-gated ion channels are expressed by stochastic Markov formalisms and their behaviour 

is validated in a simple compartmental model against the original deterministic channel 

versions and for different conditions. Following this, a fully stochastic CN neuron is obtained, 

and its behaviour is compared with the deterministic CN neuron. Finally, the results are 

discussed.  

5.2 Introducing stochasticity to deterministic CN channels 

5.2.1 Deep cerebellar nucleus channel kinetics 

 In the current study, a morphologically and biophysically realistic computational 

model of a CN neuron is used (see Chapter 2). Each area is enriched with a specific set of ion 

channels. There are eight ion channels distributed differentially over the different regions of 

the model: a fast sodium current (NaF), a mixture of fast Kv3 (fKdr) and slow Kv2 (sKdr) 

delayed rectifiers, an SK-type calcium-gated potassium current, an HCN current, an HVA 

calcium current, a Cav3.1 type LVA calcium (CaT) current and a persistent sodium (NaP) 

current. The channels are modelled according to the Huxley-Hodgkin deterministic formalism 

(Table 5.1). 

5.2.2 Deterministic CN channel models 

The deterministic description of the CN neuron channels is based on the classic 

Hodgkin-Huxley model (Steuber et al., 2011) (see Chapter 3).  

Current Abbreviation Gating schema 

Fast sodium NaF m3h 

Persistent sodium NaP m3h 

Fast delayed rectifier potassium fKdr m4 

Slow delayed rectifier potassium sKdr m4 

High-voltage-activated calcium CaHVA m3 

Low-voltage-activated calcium CaLVA m2h 

HCN HCN m2 

Small conductance calcium-dependent potassium SK calcium concentration 

Tonic nonspecific cation TNC none 

Passive pasDCN none 

Table 1 Biophysical deep cerebellar nucleus neuronal model summary. See text and Steuber et al, 

2001 for details. 
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 The macroscopic current of each channel is described by: 

where 𝑔̅𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is the maximum channel conductance, x is the probability that all gating 

particles are in the permissive position, Vm the membrane potential, and Echannel the reversal 

potential of the corresponding channel. In this case, the current flow varies linearly as a 

function of the driving force and conductance, thus the channels are considered ohmic in 

nature. The current through calcium channels is modelled by the Goldman-Hodgkin-Katz 

equation, because the calcium channels deviate from the ohmic behaviour (Hille, 2001; Steuber 

et al., 2011). 

5.2.3 Stochastic CN channel models 

The stochastic description of the CN neuron channels is based on the stochastic model, 

as described in a previous study (Kole et al., 2006). Each channel is represented by a chain of 

kinetic states, with probabilistic transitions between the states. For example, a simple channel, 

with only one gating variable, m, has two states, an open permissive state m1, and a closed non-

permissive state m0 (Figure 5.1),  

where the rate constants, α and β (or α(V) and β(V), which indicates their voltage dependence), 

are defined as in the Huxley-Hodgkin model (see Chapter 3). If this channel is open, then at 

any given point in time there is a probability to transit to its close state, independently of the 

time spent in the open state or how it acquired this state. Therefore, the system is modelled 

based on Markovian assumptions, namely, any event that occurs in a discrete short time interval 

is independent of the history of the system.  

Each transition (open or close, or intermediate) depends on the rate constant of the state 

transition (α(V) and β(V) or intermediate respectively). As the duration increases, the number 

𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑔̅𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑥(𝑉𝑚 − 𝐸𝑐ℎ𝑎𝑛𝑛𝑒𝑙) Equation 5.1 

 

Figure 5.1 Simple channel kinetic scheme. This hypothetical channel has one gating variable m and 

consists of two gating states. If 1 indicates gate m to be in a permissive state and 0 to be in a non-

permissive, then there would be one closed and a single open state for the system. Every transition 

(dashed lines) is governed, from left to right, by the a(V) rate constant, and right to left by the β(V) one. 

The system can be described by two major states (m0 and m1), with the corresponding transition rate 

constants shown. 
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of successive transitions to m1 can be described by an exponential decay (Sakmann and Neher, 

1995). 

By integrating the above, the probability for the channel to transit to the m1 state during a 

simulation time step dtsim is defined by (see also below and Appendix A): 

The macroscopic current density (per area of membrane A and expressed in nA/cm2) is given 

by: 

The total conductance can be expressed as the product of the single channel conductance and 

the number of open channels per compartment, where Nopen is the number of open channels, 

γchannel is the single channel conductance, and Echannel the reversal potential of the corresponding 

channel (Steuber et al., 2011), and A is the neuronal (soma, dendritic or axonal) compartment 

area. 

5.2.2.1 An example: HCN channel  

 In the present study, the voltage-gated channels of the CN neuron are expressed either 

as deterministic formalisms, based on the Hodgkin-Huxley model, or as Markov formalisms 

(as in Kole et al., 2006). Their behaviour is first investigated using a simple single 

compartmental neuronal model (one compartment cylindrical soma with length = 7 μm, 

diameter = 7 μm, without any axon or dendrites added, and uniformly distributed Cm = 1 

μF/cm2, Ra = 35.4 ohm/cm, Vm = -70 mV), where one type of CN channel is inserted per time, 

and current clamp simulations are performed. Three sets of experiments were carried out: (a) 

adjustment of the deterministic CN channel models and validation of their behaviour, (b) 

conversion of the deterministic CN channel models to stochastic ones, (c) investigation of the 

stochastic CN channel models’ behaviour. For clarity, the conversion and validation of a 

channel with a simple kinetic scheme, the HCN channel (Steuber et al., 2011), is presented 

here.  

𝑓(𝑡) = 𝛼(𝑉)𝑒𝑥𝑝(−𝛼(𝑉)𝑡) Equation 5.2 

𝑝𝑚1 
= ∫ 𝛼(𝑉)𝑒𝑥𝑝 (−

𝑑𝑡𝑠𝑖𝑚

𝑡=0

𝛼(𝑉)𝑡)𝑑𝑡 = 1 − 𝑒𝑥𝑝 (−𝛼(𝑉)𝑑𝑡𝑠𝑖𝑚)  Equation 5.3 

𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
𝑁𝑜𝑝𝑒𝑛𝛾𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝐴
 (𝑉𝑚 − 𝐸𝑐ℎ𝑎𝑛𝑛𝑒𝑙) Equation 5.4 
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5.2.2.1.1 Deterministic HCN model 1 

 The deterministic HCN channel model 1 is a part of the channel collection of the CN 

neuron model (Steuber et al., 2011). The formalism for this channel is a two activating (m) 

gates Hodgkin – Huxley type model. Thus, the total conductance for the HCN channel is given 

by:  

Thereby, the macroscopic HCN current density is given by: 

where 𝑔̅𝐻𝐶𝑁 = 10-3 S/cm2 and EHCN = -45 mV.  

The temporal evolution of m is given by: 

where τm = 400 ms. 

The steady-state activation 𝑚∞ is given by:  

where Vhalf = -80 mV and k = 5 mV (Steuber et al., 2011). 

5.2.2.1.2 Deterministic HCN model 2 

Although the deterministic HCN model 1 is based on the Hodgkin-Huxley model, the 

description of activation variables is given without calculating the state transition rate constants 

explicitly. However, the stochastic formalism of channel models, as described in the work of 

Kole et al. (2006), is expressed based on the rate constants. For this reason, the deterministic 

HCN model 1 is adjusted to a deterministic channel formalism that includes state transition rate 

constants, before proceeding to the stochastic conversion. 

 In the second deterministic HCN model (deterministic HCN model 2) the rate constants 

α(V) and β(V) are introduced, and the temporal evolution of m is defined by: 

𝑔𝐻𝐶𝑁 = 𝑔̅𝐻𝐶𝑁𝑚
2 Equation 5.5 

𝐼𝐻𝐶𝑁 = 𝑔̅𝐻𝐶𝑁𝑚
2(𝑉𝑚 − 𝐸𝐻𝐶𝑁) Equation 5.6 

𝑑𝑚

𝑑𝑡
=  

𝑚∞ −  𝑚

𝜏𝑚
 Equation 5.7 

𝑚∞ = (
1

1 − 𝑒𝑥𝑝 (
𝑉 − 𝑉ℎ𝑎𝑙𝑓

𝑘
)

) Equation 5.8 
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The rate constants α(V) and β(V) are expressed as: 

and 

5.2.2.1.3 Stochastic HCN channel model 

The cerebellar HCN channel is represented by a two activating gate particles Hodgkin 

– Huxley model and can be represented by a Markov model with three states (Figure 5.2). 

When the channel is in state m0, where both activating gates m are non-permissive, or 

m1, where only one activating gate m is permissive, it is closed, but in state m2, where both 

activating gates m are permissive, it is open and allows the movement of ions. The probabilities 

for each state transition during each simulation time step dtsim are: 

Transition from m0 → m1:  

 

𝑑𝑚

𝑑𝑡
=  𝛼(𝑉)(1 −  𝑚) − 𝛽(𝑉)𝑚 Equation 5.9 

𝛼(𝑉) =  
𝑚∞

𝜏𝑚
 Equation 5.10 

𝛽(𝑉) =  
1 −𝑚∞

𝜏𝑚
 Equation 5.11 

 

Figure 5.2 HCN channel kinetic scheme. HCN channel is represented by two m activation gates. 

Upper panel: Full kinetic diagram. If 1 indicates gate m to be in a permissive state and 0 to be in a non-

permissive, then there would be three closed and a single open substates for the system, with four 

permitted transitions. Every transition (dashed lines) is governed, from left to right, by the a(V) rate 

constant, and right to left by the β(V) one. Lower panel: Reduced diagram. The m activation gates are 

independent and kinetically identical. As a result, all substates that share the same number of open and 

closed gates become equivalent and can be reduced to one major state. The system can be then described 

by three major states (m0, m1 and m2). In a similar way, the rate constants are summarized, and their 

sequence (left to right: 2a, a and right to left: 2β, β) is kinetically identical to the m2 Huxley-Hodgkin 

model. 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (2𝛼)𝑑𝑡𝑠𝑖𝑚) Equation 5.12 
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Transition from m1 → m2: 

Transition from m1 → m0: 

Transition from m2 → m1: 

IHCN is given by: 

where 𝛾𝐻𝐶𝑁 = 6.8 pS, and 𝐸𝐻𝐶𝑁 = -45 and A is the neuronal compartment area. The number of 

open channels corresponds to the number of channels in state m2.  

5.2.3 Deterministic channel model validation 

The first step towards the investigation of stochastic CN channels is to validate that the 

behaviours of the two deterministic formalisms are identical. Although such an outcome is 

expected, since the two deterministic formalisms are alternative forms of the classic Hodgkin-

Huxley model, this test is still necessary as a control for the further investigation whether the 

behaviour of the stochastic channel models follow the same pattern as their deterministic 

counterparts. The deterministic HCN models exhibit the same somatic voltage responses and 

channel current waveforms, in response to a 100 pA current injection, and consequently they 

can be considered equivalent (Figure 5.3).  

5.2.4 Stochastic channel model validation 

The next step is to implement stochasticity in the CN channel models. This is introduced 

based on transition probabilities between the kinetic states. The similarity of the deterministic 

and stochastic channel behaviour of the CN neuron is assessed by comparing their voltage and 

channel current response, under the same current injection stimulation conditions. The voltage 

dependence of their gating variables is evaluated as well. Moreover, for the stochastic channel 

𝑝(𝑡) =
𝛼

𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation 5.13 

𝑝(𝑡) =
𝛽

𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation 5.14 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (2𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation 5.15 

𝐼𝐻𝐶𝑁 =
𝑁𝑜𝑝𝑒𝑛𝛾𝐻𝐶𝑁

𝐴
 (𝑉𝑚 − 𝐸𝐻𝐶𝑁) Equation 5.16 
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models, the behaviour of all the intermediate states is evaluated during the course of the 

simulation, that is, before, during and after the current injection.  

The stochastic version of the HCN channel displays the same behaviour as its 

deterministic version, as the deterministic voltage and current waveforms overlie precisely with 

the mean (of ten individual runs) stochastic counterparts (Figure 5.4). Additionally, the 

behaviour of its intermediate states is as expected, according to its kinetic schema. While the 

stimulus is applied, most channels are expected to transition to the open gating conformation, 

namely, the m2 state. Consequently, the number of channels in the closed mo state drops 

gradually, which  mirrors  the  transition  of  channels  to  the open state. In addition, the number  

 

Figure 5.3 Deterministic HCN channel models. Overlay of the somatic voltage response (upper 

panel) and HCN current (lower panel) for both the deterministic HCN channel models, when the 

somatic neuronal model is current clamped. Both deterministic models exhibit the same behaviour. 
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of channels in the intermediate m1 state increases initially, as the channels transition from the 

mo state, then drops, due the transitioning of channels from this state to the open m2 one, and 

increases again, due to more channels transitioning back to the m1 state, since the stimulus is 

not applied any more (Figure 5.4). While this is the case for most of the CN channels (data not 

shown), the behaviour of the NaF and the CaLVA channels models differ. This is further 

 

Figure 5.4 HCN channel behaviour. Upper panels: Deterministic and stochastic voltage and current 

response comparison. Middle panels: Time course of the closed m0 (left) and m1 (right) stochastic HCN 

channel states. Lower panels: Time course of the open m2 (left) stochastic HCN channel state and 

voltage dependence of the steady-state activation gating variable (right). Asterisk: Vrest = -70 mV. 
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investigated in the “5.2.7 Channels whose deterministic and stochastic models produce 

different results” section.  

5.2.5 Effect of single channel conductance 

The total channel conductance in a neuronal area (or in a compartment of a neuronal 

model) is the product of the single channel conductance and the number of channels in that 

area or compartment. Therefore, when the total conductance is kept constant and the value of 

the single channel conductance is altered, the number of channels in that area should alter as 

well (Hille, 2001; Kole et al., 2006). The role of the single channel conductance in affecting 

the behaviour of the stochastic HCN model is investigated here. The same experimental 

configuration is applied as previously, but with a 10-fold increase of the single HCN channel 

conductance. 

The increase of the single channel HCN conductance is compensated by a decrease in 

the number of channels (total and therefore also open ones). Compared to the original stochastic 

HCN model behaviour, this results further in less averaging of the occurrence of channel 

openings, which is reflected in larger membrane voltage and channel current fluctuations 

(Figure 5.5). A larger number of channels results in flattening of the random fluctuations by 

evening out the single channel responses, while smaller numbers of channels and larger single 

channel conductances are associated with larger fluctuations, as described by previous studies 

(Cannon et al., 2010; Kole et al., 2006; Neishabouri and Faisal, 2014; O’Donnell and van 

Rossum, 2014; Steinmetz et al., 2000) 

5.2.6 Channels whose deterministic and stochastic models produce different 

results 

 In the absence of any stimulus, spontaneous channel gating still takes place, resembling 

in vivo and in vitro single-channel recording (Faisal et al., 2008; Hille, 2001; Sakmann and 

Neher, 1995; White et al., 2000). To investigate further the behaviour of the two different 

channel models (deterministic and stochastic) the channel behaviour is studied under different 

conditions, that is, with or without current injection. Additionally, the measurement of a 

stochastic temporal mean is introduced. Firstly, the average of the current or voltage traces 

over a time window is calculated for each of the individual simulation trials and then these 

means are further averaged, resulting in the overall stochastic temporal mean. The comparison, 

over a defined time window, of the stochastic temporal means to the deterministic traces 

indicates whether the two models exhibit corresponding behaviours. 
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Figure 5.5 Stochastic HCN channel model. Due to the stochastic nature of the HCN channel model 

fluctuations between the experimental iterations are observed in the somatic voltage response (upper 

panels), the HCN current (middle panels) and the number of the channels that are open at every time 

point of the simulation (lower panels). When the single HCN channel conductance is increased 10-fold 

(right panels) the total number of channels and number of open channels is decreased. Overlay of ten 

experimental iterations. Mean stochastic is the average value of the experimental trials.  



Channel noise in the CN neuron   65

 

Although the majority of the stochastic CN ion channels (HCN, fKdr, sKdr, SK, 

CaHVA, NaP) show a similar behaviour as their deterministic counterparts (data not shown), 

resulting in a satisfactory overlay of the voltage and current traces for the stochastic and 

deterministic models (for instance HCN, Figure 5.4, and fKdr, Figure 5.6), this is not the case 

for the NaF and CaLVA channels (for instance NaF, Figure 5.7). Both in the presence and 

absence of a stimulus, the models differ in their behaviour, with the mean membrane voltage 

response of the stochastic model being higher than that of the deterministic one.  

5.2.7 Effect of the specific channel conductance on stochastic channel 

behaviour 

The discrepancy between two deterministic and stochastic channel models brings into 

question why these differences arise and whether there are conditions under which the two 

models could exhibit the same behaviour. The NaF channel is chosen for further investigation.  

 

Figure 5.6 An example of deterministic and stochastic models with corresponding behaviour. The 

fKdr channel models showed similar behaviour under different simulation conditions. Left panels: 

Voltage (upper panel) and current (lower panel) response of the fKdr deterministic and stochastic models, 

when no current is injected. Right panels: Voltage (upper panel) and current (lower panel) response of 

the fKdr models when a 200 pA current pulse was injected for 1 s. 
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When no current is injected into the single compartmental model, both the deterministic 

and stochastic channel models eventually reach a steady-state or equilibrium voltage (and 

corresponding current). Due to the nature of the models, the equilibrium state of each model 

behaves differently. In the deterministic channel model, the equilibrium is achieved when the 

membrane potential stays at the exact same level of depolarization until a new event (for 

example, an external stimulus) is presented to the system. In the stochastic channel model, the 

depolarization level of the membrane alters through time as a result of the probabilistic channel 

gating and consequently electrical noise, expressed as fluctuations around the equilibrium 

point, is introduced. However, the stochastic temporal mean of the voltage (or current) gives 

an estimation of the average equilibrium point over a time window. Alternatively, an 

equilibrium value, equivalent to the stochastic temporal mean, could be reached with a very 

large number of channels, because the resulting fluctuations would even out. 

 

Figure 5.7 An example of deterministic and stochastic models with different behaviours. The NaF 

channel models under different simulation conditions. Left panels: Voltage (upper panel) and current 

(lower panel) response of the NaF deterministic and stochastic models, when no current is injected. 

Right panels: Voltage (upper panel) and current (lower panel) response of the NaF models when a 100 

pA current pulse was injected for 1 s. 
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The deterministic models of the channels used in this study are taken from the CN 

neuron model, which is turn is tuned to in vitro electrophysiological experimental data (Steuber 

et al., 2011). Thus, the approach applied here is to tune the stochastic channel model so that it 

matches the deterministic one (and therefore experimental data). The current through the open 

channels is proportional to the total channel conductance in both formalisms (see Equation 5.1 

and 5.4). Therefore, different channel current responses indicate that the two models have 

different total channel conductances and consequently the specific conductance of the 

stochastic model is adjusted to replicate the behaviour of the deterministic model.  

The ratio of the deterministic current mean (Ideterministic) to the stochastic temporal 

current mean (Istochastic) is estimated for different values of the specific channel conductance in 

the stochastic model, when both models are equilibrated, and no current injection is applied. A 

current mean ratio close to one indicates that the channel models exhibit similar macroscopic 

current flow for this particular value of the total channel conductance (Figure 5.8). 

Using the same experimental conditions (only the NaF channel type inserted into a 

single compartmental neuronal model), fixed current injection simulations are performed for a 

specific NaF conductance range of 10 - 16 x 10-3 S/cm2. The behaviour of the two models is 

studied for the pre- and during stimulus period. For the time window when no current stimulus 

 

Figure 5.8 Effect of the specific or single NaF channel conductance Left panel: Adjusting the 

specific NaF channel conductance. The difference between the stochastic NaF channel model and the 

deterministic one is estimated in the absence of current injection, for the same single channel 

conductance (γNaF = 10-11 S). The numbers under the bars indicate the specific channel conductance (in 

S/cm2). Right panel: Testing different single NaF channel conductances. The effect of different single 

NaF channel conductances is estimated in the absence of current injection, and for the same specific 

NaF channel conductance (gNaF = 11 x 10-3 S/cm2). The number of channels is inversely proportional 

to the single channel conductance (10-9 S corresponds to 169 total channels and accordingly 10-10 S to 

1693, 10-11 S to 16933, 10-12 S to 169332). 
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is delivered and both channel models are equilibrated, a total specific NaF conductance of 11 

x 10-3 S/cm2 is enough to match the behaviour of the stochastic model to the deterministic one 

(Figure 5.8 and 5.9, left panels). However, during stimulus application the responses of the two 

models deviate, with the stochastic model showing a smaller depolarization of the membrane 

voltage for the same current injection (Figure 5.9, right panels). Increasing the specific channel 

conductance leads to a larger behavioural deviation in the pre-stimulus window, with the 

stochastic model having a lower temporal current mean and a higher temporal voltage response, 

and to a better match during the stimulus, with the stochastic model gradually getting faster. 

At a specific channel sodium conductance of 15 x 10-3 S/cm2, the response to the stimulus of 

the two NaF channel models is similarly fast (Figure 5.10). Therefore, the two models could 

exhibit similar behaviours under different stimulation conditions, but not for the same specific 

channel conductance value at all conditions. 

 

Figure 5.9 Tuning NaF channel models at gNaF = 11 x 10-3 S/cm2. Right panels: Voltage (upper 

panel) and current (lower panel) response of the deterministic and stochastic NaF models, when no 

current is injected (left panes) and during stimulus (100 pA current, for 1 s) (right panel). 
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5.2.8 Effect of the single channel conductance on the behaviour of the 

stochastic model 

In order to explore further the behaviour of the stochastic model, the effect of the single 

sodium channel conductance is studied for a specific NaF conductance of 11 x 10-3 S/cm2, 

under stimulus-free conditions. For a fixed specific channel conductance and in a confined area 

(that is, the area of the single compartmental neuronal model used in this study), a smaller 

single channel conductance represents more channels. Additionally, a larger number of 

channels in an area results in less noise in the membrane voltage and channel current. As a 

result, a large number of channels could produce a behaviour very similar to the deterministic 

model.  

To explore this, current clamp simulations are performed for a specific NaF 

conductance value (11 x 10-3 S/cm2) and different single NaF conductance values, namely, 

different numbers of total channels, since the compartment area is fixed. Larger populations of 

 

Figure 5.10 Tuning NaF channel models at gNaF = 15 x 10-3 S/cm2. Right panels: Voltage (upper 

panel) and current (lower panel) response of the NaF deterministic and stochastic models, when no 

current is injected (left panes) and during stimulus (100 pA current, for 1 s) (right panel). 
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total channels do not affect the behaviour of the stochastic model regarding its match with the 

deterministic one in the pre-stimulus and during stimulus time windows. However, fewer 

channels produce more noise, which is manifest by jitter in the spike timing (Figure 5.9 and 

5.11), a common behavioural outcome of stochastic channel gating (see Chapter 3). The 

similarity of the two models, in terms of the temporal current mean ratio increases with smaller 

single channel conductances, but decreases when the single channel conductance is decreased 

even further (Figure 5.8). This optimum similarity condition for the two models (at 10-11 S) 

could be the result of the combined effect of two processes. Although, the simulation round-

off errors for larger numbers of channels are smaller, at the same time, there is a larger number 

of missed state transitions. Thus, the overall behavioural convergence of the two channel 

models is sensitive to the number of channels.  

5.2.9 The rectified distribution of open channels results in differences 

between the two models  

 The Hodgkin-Huxley model describes the collective response of a channel population. 

At every time point the current passing through the channels is proportional to the fraction of 

open channels in the overall population, given by the activation and inactivation variables and 

their respective exponents. This fraction is voltage dependent, because the transition rates 

between the open and closed channel states are voltage dependent, and it remains fixed at an 

equilibrium value for every steady-state voltage level. As a result, the response of the system 

(macroscopic membrane voltage and current) is steady, until a new event takes place. On the 

other hand, in the Markov model the transitions between the states are stochastic. Therefore, at 

any time point the transition between states is still voltage dependent, as in the Hodgkin-Huxley 

model, but whether it actually occurs is a stochastic event. Hence, for the same steady-state the 

voltage and channel current responses are not fixed, but fluctuate around a mean point, the 

mean response of the population. Furthermore, the behaviour of the stochastic model is affected 

by changes in the number of channels. The mean current measured in the stochastic model is 

the average of all single (unitary) channel currents. For the same channel population current 

per unit membrane area, a larger single channel conductance implies a smaller total number of 

channels, and a larger unitary current. Thus, channel populations with a larger single channel 

conductance will exhibit greater current flow fluctuations (Donnell and Nolan, 2014; Kole et 

al., 2006; White et al., 2000). 
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The distribution of the open channels in the Markov model can be described by a 

binomial distribution B(N, p), where the number of trials N is defined by the number of channels 

and the success probability p in each trial is the probability of a channel to be open. The mean 

current I through a population of channels is the product of the unitary channel current i, the 

total number of channels N and their open probability, namely, I = iNp, where the product Np 

corresponds to the mean number of open channels. Thus, I can also be described by a binomial 

distribution with the standard deviation of the unitary current fluctuations 𝜎 = 𝑖√𝑁𝑝(1 − 𝑝) 

(Donnell and Nolan, 2014; White et al., 2000). The standard deviation σ describes the absolute 

amplitude of channel current noise for a given channel population. Therefore, for larger channel 

populations, and smaller single channel conductances, the current fluctuations will decrease, 

and the stochastic channel model behaviour will converge with the deterministic channel 

behaviour. This is due to the relationships of the σ with i and N. Smaller single channel 

 

Figure 5.11 Tuning NaF channel models at gNaF = 11 x 10-3 S/cm2 and γNaF = 10-11 S. Right panels: 

Voltage (upper panel) and current (lower panel) response of the deterministic and stochastic NaF 

models, when no current is injected (left panels) and during stimulus (100 pA current, for 1 s) (right 

panels). 
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conductance, γ, results in smaller i, since i = γ(V-Echannel), which in turn will decrease the σ. On 

the other hand, the concurrent increase in Ν¸ could increase the σ. However, σ is not directly 

proportional with the Ν, as it is with the i, but grows proportional with the √𝑁. Thus, the σ 

decreases faster with i than N (Figure 5.12).  

The NaF channel models exhibit this anticipated behaviour (Figure 5.7). However, the 

temporal means of the voltage and current responses do not exactly match the deterministic 

responses under stimulus-free conditions. The stochastic model has a higher membrane voltage 

and current response compared to the deterministic one. The cause of this discrepancy might 

lie in a rectification effect emerging from a combined effect of a little overlap between the 

Hodgkin–Huxley steady-state activation and inactivation variables and a biologically realistic 

feature of the stochastic NaF channel model. There is a voltage range where the steady-state 

values of both sodium channel gating variables are not zero (Figure 5.12). Consequently, in 

this restricted voltage range, a sodium window current flows into the cell, slightly depolarizing 

the membrane and affecting the equilibrium value of the membrane voltage. In the case of the 

stochastic NaF model, the voltage (and current response) will fluctuate around the equilibrium 

value because the number of open channels also fluctuates, due to the probabilistic transition 

rates.  

The stochastic current equilibrium point is the average of all fluctuating unitary channel 

currents. In order to be at the same level as the deterministic current equilibrium, symmetrical 

fluctuations around this equilibrium value would need to occur. However, this is not possible 

as it would require the existence of a negative number of channels, which is a biologically 

unrealistic condition. Consequently, the stochastic equilibrium point is estimated by averaging 

only the biologically allowed fluctuations, namely, a rectification effect is applied, which shifts 

the stochastic equilibrium up. Hence, for the observed rectification effect to take place, three 

conditions should apply: (a) the channel kinetics and state variable characteristics allow the 

generation of a window current, (b) the current equilibrium is close to zero and (c) the number 

of open channels exhibit fluctuations with a magnitude greater than their mean (which would 

be clipped at zero) (Figure 5.12).  

An alternative way to depict this phenomenon is to study the distribution of open 

stochastic channels. Since a negative number of channels is biologically unrealistic, the 

distribution of the open stochastic channels is ‘forced’ to move to more positive values (for 

instance, 0, 1, 2), causing a rectification effect. As a result, the average fraction of open 
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stochastic channels is higher compared to the average deterministic fraction without any 

parameter correction. Without such an adjustment of the total conductance the behaviour of the 

two models cannot match exactly (Figure 5.8, 5.9, 5.10 and 5.12).  

 

 

Figure 5.12 Rectification effect due to clipped distribution of open NaF channels. Upper panels: 

Distribution of the open channels when no current is injected (gNaF = 11 x 10-3 S/cm2 and γNaF = 10-11 S. 

Left panel: Channel population behaviour for all experimental trials with the stochastic NaF channel 

model. Right panel: Distribution for the first experimental trial and its probability density function 

(PDF). The distribution is clipped because there cannot be negative number of channels. Lower panels: 

Voltage dependence of the steady-state activation and inactivation variables of the NaF channel (left 

panel) and fraction of open NaF channels for both the stochastic and deterministic models (right panel). 

The average fraction of open stochastic channels is larger compared to the average deterministic 

fraction, and without any parameter correction (adjustment of the gNaF), the behaviour of the two 

channels models (voltage and current response) will deviate. Asterisk: Vrest = -70 mV: 
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5.2.10 Sensitivity to simulation time step 

 In the current study, the stochastic ion channels are modelled as memoryless chemical 

Markov chains, where the transition probabilities are voltage-dependent. The simulations use 

a fixed time step, which might impact the accuracy of the simulation results (White et al., 

2000). The reason for this potential inaccuracy lies in the characteristic kinetic properties of a 

channel, and especially the relative magnitude of the transition lifetime from one intermediate 

state to another, compared to the simulation time step. Simulation methods that use a fixed time 

step assume that for each channel either nothing happens within a time step, or one event takes 

place that is, transitioning to a new state. However, in the case of the fast ion channels, where 

the transitioning time is significantly shorter than the simulation time step, more events could 

take place in the same time step. Thus, fewer events would be registered, which could lead to 

deviations in the number of open and close channels, resulting in less precise average 

 

Figure 5.13 Effect of the simulation time step. Voltage (upper panels) and current (lower panels) 

response of the deterministic and stochastic NaF models, when the simulations step is 25 μs (left panels) 

and 5 μs (right panels) and no current is injected. For both, gNaF = 30 x 10-3 S/cm2 and γNaF = 10-11 S. 
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macroscopic currents and voltages. Therefore, the behaviour of the stochastic NaF channel is 

investigated here for different simulation time steps.  

As shown in Figure 5.13 and 5.14, the length of the time step indeed has an impact on 

the simulation accuracy, namely, the similarity of the stochastic and deterministic responses. 

Longer simulation time steps are associated with greater differences between the two 

formalisms. For instance, in this study at 1 or 5 μs there is a great overlap between the temporal 

stochastic and the deterministic voltage mean (Figure 5.14). The mean voltage difference is 

greater for larger time steps, such as 50 μs. The same trend can be seen in the case of the 

temporal current mean. However, at small time steps (1 or 5 μs) there is still a noticeable 

difference. 

This difference between the various simulation time steps could be related to the 

probability of an opening or closing events occurring for a given time window. For the smallest 

time window (1 μs), there is still a chance of 0.12% of one opening event happening (transition 

from the closed state without inactivation m2h1 to the open state m3h1 with rate αm). For greater 

simulation time steps, the probability of more than one event taking place increases, and for 

larger time steps, such as 25 or 50 μs, there is a 0.05% and 0.18% probability, respectively. 

Furthermore, at the same time the probability of predicted closing events taking place is greater 

for the transition from m3h1 to m2h1, (probability of one event: 36.67% for 25 μs and 29.14% 

for 50 μs and probability of more than one event: 23.59% for 25 μs and 55.07% for 50 μs, with 

 

Figure 5.14 Relative change and simulation time step. Voltage (left panel) and current (right panel) 

temporal mean change, when the simulation time step varies. The change is defined as the relative 

percentage difference between the deterministic and temporal stochastic voltage or current mean. For 

both, the response of NaF models is shown, when no current is injected, and gNaF = 30 x 10-3 S/cm2 and 

γNaF = 10-11 S.  
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rate βm). Similar phenomena are observed for the predicted transitions between m3h1 and the 

inactivated state m3h0, with rates αh and βh (Figure 5.15). Hence, for larger time steps, due to 

the fast transition rates, there is a greater probability that more events will take place, in 

 

Figure 5.15 Predicted events per simulation time step according to the transition rates. Upper 

panel: NaF kinetic scheme. Lower panels: Probability of zero events, one event or more than one event 

occurring for a given time simulation step, and for the different transition rates. The probabilities are 

calculated based on the Poisson model, where the average number of events is given by the product of 

the transition rate and a given simulation time step.  
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different directions, based on the channel kinetic scheme, which can lead to the detected 

discrepancies. 

In addition, for the case of the deterministic formalism, there is no prerequisite of 

considering the independent opening events occurrence for the determination of the channel 

response. Therefore, the channel behaviour would be recorded the same for all time steps, until 

a new external event, such as new stimulus is applied. However, in the stochastic formalisms, 

the number of opening events is important for the measurement of the channel’s behaviour, for 

instance current flow. Each opening event is considered independent and equally contributing 

to the channel’s population response. As a result, the impact of the predicted transitions is 

accumulated, and is scaled-up for simulations with large number of channels.  

Thus, more accurate stochastic simulations of fast channels could be achieved with 

smaller time steps, as previously reported as well (Cannon et al., 2010; Kole et al., 2006). 

Nevertheless, smaller time steps could lead to accumulation of numerical errors and high 

computational cost. These factors should be all considered for the selection of the optimal time 

step. 

5.3 Implementing stochastic channels in a CN neuron model 

The output of a neuron is shaped by the interplay of its intrinsic properties and the 

inputs (synaptic input or current/conductance injections) it receives. On top of this, the specific 

morphological features of a neuron could also affect the integration of its electrical inputs 

(Silver, 2010). Current computational representations of CN neurons are based on deterministic 

descriptions (Steuber and Jaeger, 2013), neglecting the realistic stochastic nature of neuronal 

channels and their possible impact on the neuronal response.  

To investigate the impact of the deterministic and stochastic channels on the behaviour 

of the CN neuron, two set of experiments are performed. Firstly, the effect on the CN behaviour 

of one stochastic channel type per time is investigated. Secondly, stochasticity is introduced to 

all the channels of the CN neuron. 

5.3.1 Semi-stochastic CN neuronal models 

The semi-stochastic CN models are built by introducing stochasticity to one channel 

type while retaining the rest  as  deterministic. Simulations  of  somatic  fixed  current  injections 
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are carried out by applying two conditions: (a) only one stochastic channel type model is 

investigated per time and the rest of the CN channel collection are described by their formalism, 

 

Figure 5.16 Semi-stochastic CN neuron models. Somatic voltage response of the CN neuron with no 

stimulus (left panels) and pre-stimulus and during 100 pA current injection for 1.5 s (right panels). 

Green arrow: Beginning of stimulus; Orange arrow: End of stimulus 
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(b) the single channel conductance of the channel under investigation is adjusted so that even 

the smallest neuronal compartment would have at least 100 channels. By using this 

experimental configuration, it is possible to study the behaviour of each stochastic channel 

model  without  any  interference  due to  the  other  stochastic  channels. Moreover, by adjusting  

 

Figure 5.17 Semi-stochastic CN neuron models. Same as Figure 5.16 for the rest of the channels. 
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the number of channels to a moderate population size, noise is limited but not totally 

eliminated.  

The semi-stochastic CN neuron models exhibit qualitatively similar 

electrophysiological properties as their deterministic counterpart, that is, the CN neuronal 

model that has been tuned to match in vitro electrophysiological data (Steuber et al., 2011). 

Their behaviour is characterized by spontaneous firing in the absence of stimulus, and a regular 

spike pattern in response to a fixed current injection (Figure 5.16 and 5.17). However, as for 

the single compartmental model, the CN neuron models with stochastic NaF channels do not 

behave exactly like their deterministic version. Moreover, the model with stochastic CaHVA 

channels also exhibits a slightly faster spike response compared to the deterministic one (Figure 

5.18).  

 

Figure 5.18 CN neuron model behaviour for different stochastic channel models. Current pulses 

(100 pA for 1.5 s) are injected into a CN neuron model where only one stochastic channel model type 

is implemented each time. Firing rate (upper panel) and interspike interval (lower panel) of the CN 

neuron models for different time windows during simulation. 
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5.3.2 Fully-stochastic CN neuronal models 

The construction of a fully-stochastic CN neuron model is achieved by implementing 

stochasticity to all the voltage-gated ion channels. However, this configuration does not result 

in a good match of the two models, independently of the stimulation with injected current 

(Figure 5.19). Since the semi-stochastic CN models with only NaF or CaHVA channels are the 

ones with the most different behaviour compared to the deterministic model (Figure 5.16, 5.17 

and 5.18), the NaF and CaHVA in an altered stochastic CN neuron model are changed back to 

deterministic formalisms. This new stochastic CN model, hereafter referred to as stochastic CN 

model, shows electrophysiological properties similar to the deterministic one, namely, the 

ongoing spontaneous spiking without a stimulus and a regular spike pattern in response to a 

fixed current injection (Figure 5.19). In addition, the spike rate as a function of injected current 

in the soma for both the neuronal models is similar (Figure 5.20). Therefore, this stochastic CN 

neuron model is chosen for further investigation in the current study.   

 

Figure 5.19 Fully-stochastic CN neuron models. Somatic voltage response of the two stochastic CN 

neurons with no stimulus (left panels) and pre-stimulus and during 100 pA current injection for 1.5 s 

(right panels). Green arrow: Beginning of stimulus; Orange arrow: End of stimulus. 
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5.4 Discussion 

 The aim of this chapter is to present the steps taken while constructing a stochastic CN 

neuron model. This study is divided into two parts: (a) conversion of all the voltage-gated ion 

CN channels to stochastic versions and exploration of their behaviour using a simple 

compartmental model, (b) implementation of a fully-stochastic CN neuron model and 

validation of its behaviour against a detailed deterministic CN neuron model (Steuber et al., 

2011).  

 Several CN neuron models have been developed in order to study synaptic integration, 

neural coding and computation in the CN. Depending on the scientific question addressed, CN 

neuron models differ in their complexity and biological abstraction, but a feature they have in 

common is that they are all based on deterministic ion channel models (Steuber and Jaeger, 

2013). Ion channel noise could play an important role in signal processing and neuronal coding. 

Moreover, implementing stochastic processes in voltage-gated channels of the CN neuron 

could lead to a more realistic model, ideal for the study of neuronal computations in the 

presence of ion channel noise (Faisal et al., 2008; Silver, 2010; White et al., 2000). 

5.4.1 Determining the stochastic behaviour  

To study the behaviour of the stochastic voltage-gated CN neuron channels, a single 

compartmental neuronal model is chosen for all initial simulations. A simple neuronal somatic 

 

Figure 5.20 I-O relationships of CN models for current input. The CN neuronal model is injected 

with somatic current steps for 1.5 s.  
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compartment without dendrites and axon, although unrealistic compared to real neurons or 

detailed single-cell neuron models, can still reveal the function of ion channels, by establishing 

a cause-and-effect relation of the variables in question, that is, the total or single channel 

conductance. This is beneficial when untangling the function of voltage-gated channels, since 

by nature they are coupled to membrane voltage perturbations and subsequently can be affected 

by the function of neighbouring ion channels. For example, in the simple model, the stochastic 

channel models whose behaviour differs significantly from the deterministic models are the 

NaF, NaP and the CaLVA channel, but in the detailed CN model, the response of the semi-

stochastic CN models with NaF, CaHVA, or fKdr (and not CaLVA or NaP) channels produces 

a phenotype that is not similar to the deterministic CN neuron model. Hence, the behaviour of 

the same stochastic voltage-gated channel, in this case the NaP or CaLVA, could not always 

be matched to their deterministic counterparts, but this depends on the neuronal cell that is 

simulated. Possible factors contributing to this discrepancy could be the complex 

morphological features of the detailed compartmental model and the inference due the other 

channels, that are not present in the simple neuronal model. Nevertheless, as demonstrated, an 

(almost) fully-stochastic CN neuronal model where all the channels but the NaF and CaHVA 

channel are stochastic matches the behaviour of its deterministic counterpart. In addition, the 

existing variability in experimental data, as also shown in the current study, and the potential 

functionality it underlies (see Chapter 3), support the concept of a more realistic representation 

of ion channels that replicates this trial-to-trial variability. 

The differences between deterministic and stochastic models that arise in some 

channels could also be due to the fact that the deterministic formalisms consider the behaviour 

of a channel population rather than taking into account the individual channel behaviour. 

Hence, either the deterministic formalism deviates from the real behaviour of a channel or a 

stochastic formalism ‘overestimates’ the behavioural impact of the probabilistic channel 

gating. Further, as the findings also suggest, the deterministic models might not be able to 

address fast kinetic processes or other phenomena such as the rectification effect described 

above, which could affect the single channel behaviour. 

Thus, the method how stochasticity in channels is implemented is critical, and it needs 

to be able to represent the above phenomena or the sensitivity to the specific conductance or 

single channel conductance, and the transition time between states. The latter is extremely 

important for the decision on the simulation time step, and there is a trade-off between accuracy 

and computational cost. As is also highlighted in this study, the integration time step can have 
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a great impact on the simulation results, and its definition prior to conducting any research is 

critical. For instance, the discrepancy between the stochastic and deterministic behaviour for 

some ion channels and the hypothesis of the rectification effect could be only verified, if the 

simulations are repeated with stochastic algorithms and an appropriate time step. Yet, even in 

the absence of a rectification effect, fast transitions rates between the multiple states of the 

channel might still underlie the discrepancies between the two models, and for different 

simulation time steps, as the predicted number of events is associated with the span of the 

simulation time step.  

Existing algorithms, such as the Gillespie algorithm, tackle some of these issues. In the 

Gillespie method, the time step is not fixed, but is considered as an additional continuous 

Markov process with a discrete state space, with the time of the next state transition being also 

a probabilistic choice. As a result, more events in total would register, since there is no “one or 

nothing event per time step” restriction that applies with algorithms that use a fixed time step, 

such as the backward Euler that is applied in this study. For slower channels, the probability 

that an event will take place within a fixed time step is usually small, and therefore, no great 

deviation will occur at macroscopic level. However, this can be detrimental for channels with 

faster kinetics where more events could take place, during a fixed time-step simulation.  

Furthermore, the morphological neuronal features and the distribution of the channel 

type could affect the neuronal output. In the stochastic channel model, larger single channel 

conductances imply a smaller number of channels and greater single channel current 

fluctuations, namely, more noise. This phenomenon could be enhanced in narrow regions, such 

as thin dendrites, due to the greater input resistance, with impact on the neuronal output 

(Cannon and D’Alessandro, 2006; Diba et al., 2006; Faisal et al., 2005; Kole et al., 2006). In 

the stochastic CN neuronal model, there is also some variability in the spike pattern, which is 

depicted as interspike interval variability. The impact on the computational properties of CN 

neurons is studied in detail in Chapter 6.  
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6  Computational properties 

of the CN neuron  

6.1 Introduction 

As discussed (see Chapter 4), the neuronal synaptic noise, neuronal morphology and 

topological arrangement of the synaptic inputs on dendritic branches are amongst the 

mechanisms that can affect gain modulation operations. Synaptic noise can act as a modulatory 

input when delivered in mixed background input (for tonic driving input), be present in the 

driving synaptic input itself or operate in combination with other factors, such as dendritic 

saturation. However, noise in neurons can originate from various sources with further 

implications for its computational role. An important contributor to neuronal noise could be 

the ion channel noise, which arises from the intrinsic stochastic nature of ion channel gating 

(see Chapter 3) and its role can be influenced by the morphological properties of the structure 

that carries the channels.  

Thus, important questions arise when considering the above phenomena. 

(a) Does ion channel noise affect the input integration of a single neuron? If yes, in 

what ways? 

(b) What is the role of input location in gain modulation operations? Could ion channel 

noise impact neuronal computations in an input location dependent way? 

This chapter focuses on exploring various aspects of these questions. Initially, the 

impact of intrinsic noise on neuronal computations in the CN neuron is investigated. Then a 
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systematic study of possible effects of input location on gain modulation is carried out, in two 

different neuronal models (CN and LVb pyramidal neurons). Lastly, the results for the two 

different types of neurons are compared and discussed.  

6.2 Channel noise and neuronal response 

 An investigation of the computational operations a neuron could undergo in the 

presence of intrinsic channel noise should be conducted through the prism of the channel 

kinetics, and the neuronal toolkit of voltage-gated channels (active properties), as well as the 

electrical membrane properties, such as capacitance and resistance, and the morphology of the 

neuron (passive properties).  

Firstly, ion channel noise could impact the characteristics of the action potential output. 

The stochastic gating of ion channels could contribute to the variability of the neuronal firing 

that is observed experimentally. The mechanism is analogous to the effect of synaptic noise. 

Probabilistic ion channel gating leads to membrane voltage fluctuations, which subsequently 

affect the output fidelity of the neuron, by introducing variability in the timing and generation 

of action potentials (White et al., 2000). Secondly, the ion channel repertoire of the neurons is 

not distributed uniformly along the cell. Different ion channels can be found in the soma and 

the dendrites, and their number (and subsequently their total conductance) varies, too, between 

different neuronal compartments. On top of that, there is a third aspect, the dendritic 

morphology. Even if two dendrites share the same ion channel distribution, their morphological 

features, such as the thickness and distance of the integration compartment (axon initial 

segment, hillock or soma), will translate the impact of probabilistic gating differently to the 

neuronal output (Cannona et al., 2010; London and Häusser, 2005; Silver, 2010). 

Morphologically distinct neurons (or even subregions of the same neuron) that share the same 

density of stochastic ion channels exhibit a variability in the amplitude of membrane 

fluctuations, which affects the probability of a synaptic input to trigger an action potential. The 

intrinsic ion channel properties, namely, channel kinetics, and their open probability affect the 

extent of these membrane fluctuations too (Cannon et al., 2010).  

Even a single type of stochastic ion channel, when inserted into a fully deterministic 

model, can impact greatly the amplitude of the membrane potential fluctuations. For example, 

the number of channels responsible for generation of the hyperpolarization-activated cation 

current (Ih) increases exponentially in the distal apical dendrites of the cortical layer V 

pyramidal neurons compared to their somatic regions. The single Ih channel properties (channel 
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kinetics and single channel conductance) are the same though, along all subcellular 

compartments. Still, the stochastic gating of the Ih channels contributes significantly to noisy 

fluctuations of the resting membrane potential and affects the reliability of temporal spiking 

pattern (Kole et al., 2006).  

In addition, the contribution to membrane noise of the various types of channels is 

expected to vary. When, in the same deterministic neuronal model (cortical layer V pyramidal 

cell), a stochastic voltage-activated Na+ channel is inserted, the impact on the resting membrane 

potential fluctuations is less than that of the Ih one. Although the density of the voltage-

activated Na+ channels is uniform across the somato-dendritic area, distal dendritic areas 

exhibit larger membrane voltage fluctuations induced by the random voltage-activated Na+ 

channel gating. Moreover, when the Ih density is low and uniform across the somatic and distal 

dendritic compartments, the membrane noise attributed to the Na+ channel gating is the same 

for both regions. This phenomenon might be attributed to colocalized high Ih channel density 

at these regions, which can lead to greater activation of the voltage-activated Na+ channels due 

to the depolarizing Ih action (Kole et al., 2006). Thus, the output response of a neuron could be 

affected by the interplay of different stochastic channels and its morphological features (see 

also Chapter 3). 

6.2.1 Deterministic CN vs Stochastic CN neuronal response 

6.2.1.1 Excitatory synaptic input to one location 

In order to explore the impact of channel noise on neuronal computations, a model of 

the CN neuron enriched with noisy ion channels (stochastic CN, see Chapter 5) is used and its 

behaviour is compared to a fully deterministic CN model, under a number of different 

experimental conditions.  

In the first set of experiments, excitatory synaptic input is delivered to the stochastic 

and deterministic CN models, in different neuronal branches (somatic, proximal and distal) and 

the Input - Output relationships are identified. Both of the models show similar integration of 

their excitatory inputs, with distal inputs giving rise to lower firing rates, compared to the 

somatic and proximal ones, as it is also expected, due to the dendritic signal attenuation and 

low-pass filtering (London and Häusser, 2005; Papoutsi et al., 2014) (Figure 6.1). The neuronal 

response of the two models is also similar, indicating not a significant impact of ion channel 

noise on the mean firing output rate. However, such a model matching should be expected since 
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the number of the ion channels used per compartment is probably large enough (>100) for the 

stochastic model to approach the deterministic behaviour (Figure 6.2). Nevertheless, a 

discrepancy could be observed in the most distal areas of the neuron, where the effect of the 

stochastic channel-induced noise could be enhanced by the higher input resistance of thinner 

dendritic branches, but potentially this would take place for smaller number of channels. 

 

Figure 6.1 I-O relationships of CN models for synaptic inputs. The CN neuronal model is stimulated 

with 50 synchronous excitatory synapses confined in one dendritic compartment per time, in the 

presence of ion channel noise (dashed green lines) or not (solid green lines). When synaptic inhibition 

(450 synapses at 10 Hz) is applied (pink lines), it is distributed along the dendritic tree and soma. Top: 

Schematic distance map from soma of the distinct synaptic excitatory input locations. 
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6.2.1.2 Effect of single channel conductance 

One of the core differences between the two CN formalisms, is the definition of the 

total channel specific conductance and consequently, the macroscopic channel current. In the 

deterministic model, the channel population is considered homogenous in terms of open 

channel probability, and its total specific conductance is expressed as the product of this total 

open channel probability and the maximum possible specific channel conductance. On the 

other hand, in the stochastic model it is assumed that each single channel is governed by its 

own independent gating probability, and channel conductance is the product of the single 

channel conductance and the number of open channels per neuronal segment. For a given area, 

the total number of channels is therefore given by the fraction of the total channel conductance 

divided by the single channel specific conductance (see Chapter 3). This allows for the 

experimental manipulation of the total number of a specific channel in a neuronal compartment, 

by simple changing the value of its single channel conductance (and keeping the total 

conductance constant).  

To investigate if there are any conditions where the ion channel noise could distinguish 

the behaviour of the stochastic CN neuron, the number of ion channels is decreased by the same 

factor in all the neuronal subregions, but the total conductance of each channel type is kept the 

same. In that way, the mean macroscopic current generated by each cannel would be the same, 

but fewer channels are expected to give rise to more fluctuations in the membrane voltage 

(Diba et al., 2006; Kole et al., 2006; White et al., 2000). Hence, the integration of the synaptic  

 
Figure 6.2 Number per channels type in the stochastic CN model. Left panel: Soma. Right panel: 

Dendritic compartments. The type of channels in the dendritic compartments (right panel) corresponds 

to the colour mapping in the soma bar chart (left panel). 
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inputs and the neuronal output might be affected, since the channel gating induced voltage 

fluctuations underlie the variability to the spiking threshold, propagation and timing (Cannon 

et al., 2010; Diba et al., 2006; Faisal et al., 2008; Kole et al., 2006; White et al., 2000). 

Moreover, thinner dendrites are expected to have greater voltage fluctuations, because they 

have a smaller diameter, and thus a greater input resistance. In contrast, larger compartments, 

like the soma, have a large capacitance, which could act as a filter for membrane fluctuations, 

and are expected to contain a larger number of channels, resulting in averaging out of the 

 

Figure 6.3 I-O relationships of CN models for synaptic inputs, and 100 fewer ion channels per 

compartment. Same as Figure 6.1, but for 100 times fewer channels per compartment, in the stochastic 

CN neuron.  
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random voltage fluctuations (Cannon et al., 2010; Faisal et al., 2005; London and Häusser, 

2005).  

Still the stochastic CN neuron, even with 100 times fewer channels all over the neuronal 

compartments, exhibits similar firing rates as the deterministic one, in response to increasing 

firing rates of the excitatory synaptic input and for all the different synaptic locations (Figure 

6.3). To explore in more detail the impact of the ion channel noise, the mean non-spiking 

membrane voltage and standard deviation are estimated in both models, during the stimulation 

with excitatory and inhibitory synaptic input. The total mean membrane voltage is similar to 

the deterministic CN model (Figure 6.4). A smaller number of channels per compartment is 

predicted to trigger more and steeper membrane fluctuations (Faisal et al., 2008; White et al., 

2000). However, when the number of channels is 100 times fewer the standard deviation is still 

 

Figure 6.4 Impact of ion channel noise in the non-spiking membrane voltage. The CN neuronal 

model is stimulated with 50 synchronous excitatory synapses at 30 Hz, confined in one dendritic 

compartment per time, in the presence of ion channel noise (dashed green lines) or not (solid green 

lines). When synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed along 

the dendritic tree and soma. The spikes were removed by applying median filter with a window of 200 

points. Top: Schematic distance map from soma of the distinct synaptic excitatory input locations. 

Upper panels: Stochastic vs deterministic CN model, without (left panel) or with (right panel) synaptic 

inhibition. Lower panels: Same, but for 100 times fewer channels per compartment.  
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Figure 6.5 Impact of ion channel noise in the fidelity of spiking. Samples of voltage traces of the 

response of the deterministic and stochastic CN models at (a) soma and (b) 151 μm further form soma. 

As in Figure 6.4, the CN neuronal model is stimulated with 50 synchronous excitatory synapses at 30 

Hz, confined in one dendritic compartment per time. The coloured lines show the spikes removed by 

applying median filter with a window of 200 points, in the presence of ion channel noise (dashed lines) 

or not (solid lines). When synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines) it is 

distributed along the dendritic tree and soma. Top: Schematic distance map from soma of the distinct 

synaptic excitatory input  
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at similar levels with the corresponding deterministic (Figure 6.3 and 6.4) Moreover, a 

stochastic formulation of the ion channels in the CN model introduces some variability in the 

timing of individual output spikes (Figure 6.5 and 6.6) as indicated also by previous studies 

(Cannon et al., 2010; Diba et al., 2006; Faisal et al., 2008; Kole et al., 2006; White et al., 2000).  

 

Figure 6.6 Impact of ion channel noise in the fidelity of spiking for 100 fewer channels per 

compartment. Same as Figure 6.5, but for 100 times fewer channels per compartment, in the stochastic 

CN neuron. 
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Thus, the level of noise generated by the random ion channel gating in the stochastic 

CN neuron is not sufficient to cause a change in the firing rate and the behaviour of the model 

might be dominated by the noisy synaptic input (Destexhe et al., 2014). Yet, the stochastic ion 

channel gating affects the spike timing. Furthermore, the level of the neuronal response across 

the different dendritic branches is also in accordance with the expected outcome, namely, the 

further the location of the excitatory input, the weaker the neuronal activation (London and 

Häusser, 2005; Papoutsi et al., 2014).  

6.2.1.3 Excitatory synaptic input to different regions 

So far, excitatory synaptic input is applied to one compartment per time. Yet, neurons 

in vivo receive synaptic input all over their somato-dendritic area, and different neuronal 

regions might be functionally compartmentalized by receiving synaptic inputs from distinct 

brain areas (for example, pyramidal neurons) (Spruston, 2008). Moreover, different modes of 

activation (clustered inputs onto one specific dendrite or dispersed onto different dendritic 

branches) might support diverse functions too (Stuart and Spruston, 2015).  

Since the neuronal response to clustered activation is similar between the two models, 

it is investigated whether a distributed synaptic activation of distinct dendrites could distinguish 

the behaviour of the deterministic and stochastic CN neurons. For that reason, the neuronal 

area is divided into dendritic subregions, based on their distance from the soma (proximal, 

distal and dendritic tips). Each subregion is excited by synaptic inputs to distinct dendritic 

compartments, with one synapse per compartment. The total synaptic input is equal to the 

amount used for the clustered stimulation of single dendritic compartments.  

Still, with this experimental configuration, the neuronal response of the two models is 

very similar, with weaker drive of the soma for the subregion away from it, and with no 

substantial effect of the channel noise (Figure 6.7). The signal attenuation is related to the 

distance of the input from the integration point, as with the clustered synapses (London and 

Häusser, 2005; Papoutsi et al., 2014). Since the same number of synapses are distributed along 

the dendritic compartments, and not confined in one dendritic compartment as in the previous 

experiments, the dampening of their signal strength from the dendritic branching (Vetter et al., 

2001), could be more profound, since it applies to the signal generated by every individual 

synapse, which due to the experimental set-up would be weaker compared to the clustered 

signal, and propagates across pathways to the soma with various number of branchpoints from 
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the cluster synapses. Therefore, the membrane fluctuations introduced by the channel noise are 

filtered out further, and do not have a great impact on the mean output firing level of the 

neuronal models.  

 

Figure 6.7 I-O relationships of CN model for distributed synaptic inputs. The CN neuronal model 

is stimulated with 50 synchronous excitatory synapses distributed in one neuronal subregion per time, 

in the presence of ion channel noise (dashed green lines) or not (solid green lines). When synaptic 

inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed along the dendritic tree and 

soma. Right: The detailed reconstructed morphology of the CN neuron is shown, with distinct colours 

for the different neuronal subregions (orange: proximal, cean: distal and pink: tip subregions).   
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6.2.1.4 Current input to one location  

 The findings thus far suggest that the stochastic CN neuron does not significantly 

deviate in behaviour from the deterministic CN neuron, under synaptic stimulation. One 

possible explanation is that the synaptic noise, introduced by the variability of the synaptic 

input, masks the ion channel noise (Destexhe et al., 2003; Faisal et al., 2008). To test this 

assumption, the input driving both models is changed to a non-noisy current. In this way, any 

noisy synaptic component is removed and the only source of noise for the generation of the 

membrane voltage fluctuations is the random ion channel gating.  

 In a comparable way to the synaptic protocol, somatic and dendritic compartments are 

stimulated one per time with a series of current step injections and the neuronal response of the 

two neuronal models is investigated. Both models respond similarly, with the spike response 

dependent on the distance, and with no considerable impact of the ion channel noise (Figure 

6.8). Therefore, the membrane fluctuations due to ion channel noise are not adequate to impact 

the firing rate, either surpass or add to the already established impact of the neuronal noise 

related to the synaptic input, as it is also suggested by previous studies (Destexhe et al., 2003; 

Faisal et al., 2008).  

6.3 Input-location and neuronal computations  

 Neurons come in different shapes and sizes, and it is likely that their morphological 

features could be correlated to their output firing (London and Häusser, 2005; Papoutsi et al., 

2014; Psarrou et al., 2014; Silver, 2010; Spruston, 2008). On the other hand, neuronal 

computations could be as simple as a mere summation of the inputs, or more complicated where 

the input integration is nonlinear and it is dependent on combined spatial and/or temporal 

factors (Silver, 2010).  

Gain modulation is an example of input integration, where the combination of signals 

from various sources (local neural circuit or other brain areas) can scale the neuronal response 

to an input. When neurons utilize this mechanism, their behaviour acquires a dynamic character 

that is correlated to the degree of gain change. Weaker inputs can be detected more easily, 

because a high gain change could transform them into a robust output. Stronger inputs could 

be mapped onto firing rates of a physiologically plausible range. Thus, while the neuronal 

selectivity remains unaffected, individual neurons are provided with a dynamic tool to integrate 

a larger range of synaptic inputs. In addition, since different input sources originate from 

different  environmental  stimuli, this  adaptive  scaling  of  neuronal  input-output  relationships 
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Figure 6.8 I-O relationships of CN models for non-synaptic inputs. The CN neuronal model is 

injected with current steps confined in one dendritic compartment per time, in the presence of ion 

channel noise (dashed green lines) or not (solid green lines). Tonic inhibitory conductance (9 nS) is 

applied (pink lines), at the soma. Top: Schematic distance map from soma of the distinct synaptic 

excitatory input locations. 
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allows for multiple encoding of input parameters in a single neuronal output pattern (Salinas 

and Sejnowski, 2001; Silver, 2010). 

Several mechanisms have been suggested to underlie gain modulation, including noise 

(originating from the background synaptic activity or the input train variability), and 

mechanisms related to morphological or other cellular properties. Neurons can perform 

multiplicative gain modulation in the presence of a sufficient amount of noise, whereas additive 

operations occur in its absence. In addition, the neuronal morphology and topological input 

configuration contribute to gain operations (see Chapter 4). The previous analysis in this study 

does not reveal any significant effect of the channel noise in the behaviour of the CN neuronal 

model. However, the presence of a second source of variability, such an inhibitory synaptic 

input, might affect the response of a stochastic CN neuronal model. 

6.3.1 Channel noise and neuronal computations  

 In order to characterize the effect of ion channel noise on gain modulation, a series of 

experiments is conducted, where the deterministic CN and stochastic CN are driven by 

excitatory synaptic input or current injections, on one dendritic location or one neuronal 

subregion, and their response is modulated either by inhibitory synaptic inputs distributed along 

the somato-dendritic axis, or tonic somatic inhibition.  

 So far, the neuronal response of both models to a driving excitatory input has been very 

similar. In addition, the impact of ion channel noise appears to be negligible, or to be totally 

masked by the fluctuations introduced by the excitatory synaptic input. However, an additional 

inhibitory input could still reveal variances in the integration properties of the two models. For 

instance, when the inhibitory synaptic input is delivered simultaneously throughout the 

neuronal cell, it adds a shunting factor to the signal attenuation as the excitatory input 

propagates from its synaptic location to the soma. Furthermore, since the inhibitory input is 

inherently variable and delivered all over the cell, it could be seen as source of background 

voltage noise, which could disguise the ion channel noise, depending on the relative magnitude 

of the voltage fluctuations induced by the inhibitory synaptic noise or the channel noise (see 

Chapter 4). 

Nevertheless, the deterministic and the stochastic CN model display very similar 

response amplitudes, no matter the applied stimulation protocol (Figure 6.1 and 6.8), synaptic 

site (Figure 6.1 and 6.7) or number of channels (Figure 6.1, 6.3 and 6.4). Thus, the ion channel 
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noise appears not to introduce dissimilar integration operations in the CN stochastic neuron 

model. However, the mapping of the driving input on the output firing rate of both models, in 

the presence of the modulatory input, is different for proximal dendritic and somatic locations 

and the distal ones, implying diverse mathematical operations (Figure 6.1, 6.7 and 6.8). This 

phenomenon is investigated further and discussed in detail in the following sections.  

6.3.2 Input-location dependent gain modulation 

The input summation of the CN models seems to be independent of the ion channel 

noise, but not of the input delivery site, in the presence of a second input source (Figure 6.1, 

6.7 and 6.8). A close observation of the I-O relationships of both CN models reveals that 

different mathematical operations take place for input to the somatic and perisomatic and distal 

dendritic areas. The dependence of the neuronal arithmetic operations on the input topology is 

explored systematically, both for input onto a single dendritic compartment, and input 

distributed across a neuronal subregion, when the neuron is driven by excitatory synaptic or 

current input and modulated by distributed synaptic inhibition or tonic somatic inhibition. 

Additionally, the behaviour of two cell models is compared, (deterministic) CN and LVb 

pyramidal neuron, under different input conditions. 

6.3.2.1 Cerebellar nuclei neuron 

6.3.2.1.1 Synaptic input to one location 

When the CN neuron is driven with only excitatory input the output firing rate is 

correlated with the input distance from the soma. The distal input results in lower firing rates 

compared to the proximal to the soma and somatic one. The shape of the I-O relationship 

depicts this process (Figure 6.9). The neuronal response tends to saturate at lower input firing 

rates, when the input site is distal, due to greater reductions of the local driving force. 

Accordingly, the I-O curve acquires a characteristic sigmoid shape. On the other hand, the I-O 

shape for inputs on thicker compartments (for example, soma or proximal dendrites) is more 

linear and saturates in much higher firing input rates (Silver, 2010).  

As soon as the modulatory inhibitory input is applied, the shape of the I-O curve 

remains the same for the various input sites, however, its relative position to the x- and y- axes 

changes (Figure 6.9). For somatic or perisomatic inputs, the I-O curve is predominately shifted 

along the x-axis, while for distal inputs it tilts. Thus, different neuronal computations take place 

in the presence of synaptic inhibition; additive shifts for inputs for somatic  and  proximal  sites 
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Figure 6.9 I-O relationships of CN model for synaptic inputs. The CN neuronal model is stimulated 

with 50 synchronous excitatory synapses confined in one dendritic compartment per time (green lines). 
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that transform to divisive slope changes (namely, gain change) for distal and tip locations. The 

change in the gain is also quantified for a series of locations, covering a distance range from 

the soma to very distal locations, and it is revealed that the extent of divisive operations is 

systematically correlated to that distance (Figure 6.10). 

Moreover, in the current experiment, the inhibitory input is not colocalized with 

excitation only in one dendritic area (Holt and Koch, 1997; Jadi et al., 2012; Mehaffey, 2005; 

Pouille et al., 2013) or completely segregated (Jadi et al., 2012; Mehaffey, 2005; Pouille et al., 

2013; Prescott and De Koninck, 2003), but rather distributed randomly across the somato-

dendritic area. Thus, its effect is both upstream and downstream from the driving input location. 

6.3.2.1.2 Synaptic input to different dendritic regions  

 The dendritic area of some neurons can be divided into subregions of functionally 

clustered inputs (Silver, 2010). In addition, different combinations of the synaptic delivery site 

of excitatory and inhibitory inputs affect their summation (Holt and Koch, 1997; Jadi et al., 

2012; Mehaffey, 2005; Pouille et al., 2013; Prescott and De Koninck, 2003). The previous 

analysis shows that in CN neurons an inhibitory input distributed across the dendritic tree and 

the soma performs distinct modulatory operations to excitatory inputs to single compartments 

depending  on  their  relative  location  to  the  soma. Hence, it is further  investigated  if  similar  

When synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed along the 

dendritic tree and soma. Top: Schematic distance map from soma of the distinct synaptic excitatory 

input locations. 

 

Figure 6.10 Changes in gain (ΔG%) for different neuronal locations in the CN model. As per 

Figure 6.9, the CN neuronal model is stimulated in different locations along the somato-dendritic area, 

either with synaptic driving and modulatory inputs (circles), or, as per Figure 6.14, injected with current 

and somatic tonic inhibitory conductance (squares). ΔG% is calculated after fitting the simulations’ data 

(Figure 6.9 and 6.14) to sextic polynomial functions (Rothman et al., 2009). The dotted and dashed 

lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: soma. 

Other shapes: dendritic compartments   



Computational properties of the CN neuron   102

 

arithmetic operations occur when driving the neuron with distributed synaptic input applied to 

separated dendritic regions, which are distinguished based on their proximity to the soma 

(proximal, distal, dendritic tips).  

 The neuronal response follows the same pattern as before, where the excitatory synaptic 

inputs to the proximal to soma region undergo additive operations, and divisive operations are 

 

Figure 6.11 I-O relationships of CN model for distributed synaptic inputs. The CN neuronal model 

is stimulated with 50 synchronous excitatory synapses distributed in one neuronal subregion per time 

(green lines). When synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed 

along the dendritic tree and soma. Right: The detailed reconstructed morphology of the CN neuron is 

shown, with distinct colours for the different neuronal subregions (orange: proximal, cean: distal and 

pink: tip subregions).   
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performed in the distal and tips regions (Figure 6.11). As for inputs to single compartments, 

the change in gain is correlated with the distance of inputs from the soma (Figure 6.12).  

Due to the experimental design, the excitatory inputs are colocalized with a fraction of 

the inhibitory inputs. Prior research has focused on the neuronal response under similar 

conditions. The modulatory effect of inhibition depends on to the relative location of inhibitory 

and synaptic inputs (Holt and Koch, 1997; Jadi et al., 2012; Mehaffey, 2005; Pouille et al., 

2013) and on other conditions, such as the presence of background noise (Prescott and De 

Koninck, 2003). In particular, somatic shunting inhibition acts in a subtractive way (Holt and 

Koch, 1997), but in combination with dendritic saturation and background noise, can act 

divisively on distal dendritic inputs (Prescott and De Koninck, 2003), which is in accordance 

with the observed CN behaviour. 

6.3.2.1.3 Dendritic saturation introduces nonlinearities  

The I-O function maps the neuronal response (output) onto the driving (input). 

However, prior studies have shown that dissecting further this relationship, to intermediate 

mappings that examine the relationship of input and output, with for example the excitatory 

conductance, can reveal where nonlinearities are introduced. For example, a nonlinear 

relationship between the presynaptic input firing rate and the time-averaged excitatory synaptic 

 

Figure 6.12 Changes in gain (ΔG%) for different neuronal subregions in the CN model. As per 

Figure 6.11, the CN neuronal model is stimulated in different subregions with synaptic driving and 

modulatory inputs. ΔG% is calculated after fitting the simulations’ data (Figure 6.11) to sextic 

polynomial functions (Rothman et al., 2009). The distinct colours in the bars correspond to the ΔG% in 

the different neuronal subregions (Figure 6.11).  
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driving conductance underlies STD-dependent gain modulation (Rothman et al., 2009), while 

the nonlinear mapping between the excitatory dendritic conductance and the output firing rate 

caused by dendritic saturation enhances the divisive effect of shunting on the output firing rate 

(Prescott and De Koninck, 2003). Since the divisive modulation by inhibition in the CN model 

is more evident in the distal compartments, a hypothesis could be that the nonlinearity caused 

by dendritic saturation underlies the observed change in gain when the inhibitory modulatory 

input is applied.  

 As a first step to test this hypothesis, the relationships of the excitatory input rate to the 

excitatory conductance, and of the output firing rate to the excitatory input conductance are 

examined for two different locations, one  proximal  to  the  soma, and  a very distal one (Figure 

 

Figure 6.13 Breaking down the I-O relationship in the CN model. The I-O function of the CN model 

is analysed further for different dendritic locations (upper panels: 24 μm and lower panels: 151 μm) by 

investigating the relationships between neuronal output firing rate, synaptic excitatory conductance and 

synaptic excitatory input rate. The CN neuronal model is stimulated in different subregions with 

synaptic driving and modulatory inputs, as in Figure 6.9. Left panels: Mapping of excitatory input rate 

to excitatory input conductance. Right panels: Mapping of excitatory input conductance to output firing 

rate. Top: Schematic distance map from soma of the distinct synaptic excitatory input locations. 
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Figure 6.14 I-O relationships of CN model for non-synaptic inputs. The CN neuronal model is 

injected with current steps confined in one dendritic compartment per time (green lines). Tonic 

inhibitory conductance (9 nS) is applied (pink lines), at the soma. Top: Schematic distance map from 

soma of the distinct synaptic excitatory input locations. 
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6.13). The first mapping (excitatory input rate to excitatory input conductance) exhibits a linear 

relationship, independent of the presence of the modulatory input, and of the location tested. 

Such a result is expected, because the excitatory input conductance is direct outcome of the 

activation of the excitatory synapses at the given excitatory input rate, and unaffected by the 

delivery site or the presence of inhibition. The second mapping (excitatory input conductance 

to output firing rate) has a different profile for the proximal and distal location. For the proximal 

location, the relationship between input conductance and output rate is linear, and the effect of 

the excitatory input conductance is attenuated by the modulatory input in an approximately 

subtractive manner. In the case of the distal location, however, a nonlinearity introduced in the 

excitatory synaptic conductance - output firing rate relationship, resembling is the one caused 

by dendritic saturation (Prescott and De Koninck, 2003). 

The source of the dendritic saturation is a combination of the proportionally increased 

leakiness of the dendrites, when conductance is added, and the input current driving force, that 

is, the difference between membrane potential and excitatory synaptic reversal potential, which 

is reduced with strong depolarization. Increasing excitatory input firing rates for thinner 

dendrites are saturated faster than for thicker ones, due to the higher input resistance of thinner 

dendrites that causes larger membrane depolarizations and reduces the driving force (London 

and Häusser, 2005; Papoutsi et al., 2014). Therefore, increasing excitatory input to a distal 

dendrite has a gradually diminishing (and eventually negligible) effect on the output firing rate, 

resulting in the nonlinear relationship between the excitatory synaptic conductance and output 

firing rate (Prescott and De Koninck, 2003).  

In order to investigate further the effect of dendritic saturation on the multiplication of 

dendritic inputs, a series of experiments is carried out where the CN neuron is driven by a 

depolarizing injected current to individual compartments and modulated by a tonic inhibitory 

conductance step in the soma. Voltage changes in response to injected current are independent 

of the driving force that affects conductance-based inputs and consequently, the output firing 

rate of the neuron is not affected by underlying dendritic nonlinearities.  

The modulation of the I-O function, resulting from the mentioned current-based 

experimental protocol, for all locations along the somato-dendritic axis is mainly subtractive 

(Figure 6.14). The resulting change in gain is very small and independent of the distance from 

the soma, confirming further this result (Figure 6.10). The divisive modulation of inputs to the 

distal areas that has been observed for synaptic conductance-based inputs has almost vanished, 
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Figure 6.15 I-O relationships of CN model for synaptic and tonic inhibitory inputs. The CN 

neuronal model is stimulated with 50 synchronous excitatory synapses confined in one dendritic 

compartment per time (green lines). Tonic inhibitory conductance (9 nS) is applied (pink lines), at the 

soma. Top: Schematic distance map from soma of the distinct synaptic excitatory input locations. 
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suggesting that the dendritic saturation is indeed the underlying gain modulation mechanism, 

as in previous studies (Prescott and De Koninck, 2003). 

6.3.2.1.4 Synaptic input noise enhances gain modulation  

The role of noise in gain modulation has been thoroughly researched. Both background 

synaptic noise and the inherently noisy synaptic driving input can contribute to gain changes 

in I-O relationships (see Chapter 4). In the present study, the modulatory input is synaptic and 

delivered ubiquitously distributed across the somatic and dendritic area of the neuron. Thus, it 

could account as a source of background noise too, which could enhance its divisive effect on 

excitatory input to the distal dendrites.  

Thus far, the CN behaviour has been studied with inputs of pure synaptic or pure non-

synaptic nature Figure 6.9, 6.10, 6.11 and 6.13). To evaluate the contribution of the synaptic 

inhibitory modulatory input as a source of background noise to the numerical operations of the 

CN neuron, different combinations of synaptic and tonic current or conductance inputs are 

applied to distinct neuronal locations: (a) synaptic excitation as driving input, and somatic tonic 

inhibition as modulatory input (Figure 6.15 and 6.16), (b) injected current as driving input, and 

synaptic inhibition as modulatory input (Figure 6.17 and 6.18). 

In the first scenario, the modulation of the CN neuron does not follow a similar pattern 

as if the modulatory input was synaptic, but more as if the neuron was driven by current 

injections. This behaviour is consistent with the hypothesis that the enhanced change in gain 

 

Figure 6.16 Changes in gain (ΔG%) for different neuronal locations in the CN model. As per 

Figure 6.10, the CN neuronal model is stimulated in different locations along the somato-dendritic area, 

either with synaptic driving and modulatory inputs (circles), or, as per Figure 6.15, with synaptic driving 

and somatic tonic inhibitory conductance (squares). ΔG% is calculated after fitting the simulations’ data 

(Figure 6.10 and 6.15) to sextic polynomial functions (Rothman et al., 2009). The dotted and dashed 

lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: soma. 

Other shapes: dendritic compartments 
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Figure 6.17 I-O relationships of CN model for current and synaptic inputs. The CN neuronal model 

is injected with current steps confined in one dendritic compartment per time (green lines). When 

synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed along the dendritic 

tree and soma. Top: Schematic distance map from soma of the distinct synaptic excitatory input 

locations. 
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of the I-O function in the distal areas is caused by the nonlinearities introduced by the dendritic 

saturation, in the presence of a modulatory inhibitory synaptic input (Figure 6.15 and 6.16). 

However, there is a slight increase in the change in gain, when inspecting it individually at 

some distal compartments, for instance at 71 μm and 120 μm away from the soma, implying 

that the variability present at driving synaptic input might contribute to the distant-dependent 

multiplicative operations (Figure 6.16). Moreover, the synaptic inhibition appears to cause a 

stronger reduction of the output firing rate, compared to the tonic somatic inhibition (Figure 

6.9 and 6.15). The degree of inhibition is not normalized for the two conditions, namely, the 

degree of the applied tonic inhibition to the soma is not adjusted to produce the same effect as 

the synaptic inhibition to every location. However, even for a normalized somatic tonic 

inhibition the activation of synaptic inhibition along the cell is expected to result in greater 

reduction of, the firing output, because it renders the neuronal membrane leakier. 

 In the second scenario, the modulation of the CN neuron is different compared to the 

one when the driving input is synaptic (Figure 6.9 and 6.17). It has been assumed up to now 

that the change in gain is introduced by dendritic nonlinearities and, hence, driving the neuron 

with injected current is expected to result in predominantly subtractive operations, 

independently of the synaptic location and the nature of the modulatory input. Still, the change 

in gain with modulation by the synaptic input is increased slightly in all the locations, compared 

to the somatic tonic inhibition, and in accordance when both driving and modulatory inputs are  

 

Figure 6.18 Changes in gain (ΔG%) for different neuronal locations in the CN model. As per 

Figure 6.10, the CN neuronal model is stimulated in different locations along the somato-dendritic area, 

either with synaptic driving and modulatory inputs (circles), or, as per Figure 6.17, with driving current 

steps and synaptic inhibition distributed along the somato-dendritic area (squares). ΔG% is calculated 

after fitting the simulations’ data (Figure 6.10 and 6.17) to sextic polynomial functions (Rothman et al., 

2009). The dotted and dashed lines are linear trend fits, to the data shown in circles and squares, 

respectively. Mint shapes: soma. Other shapes: dendritic compartments 
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Figure 6.19 I-O relationships of CN model for synaptic inputs. The CN neuronal model is stimulated 

with 50 asynchronous excitatory synapses confined in one dendritic compartment per time (green lines). 

When synaptic inhibition (450 synapses at 10 Hz) is applied (pink lines), it is distributed along the 

dendritic tree and soma. Top: Schematic distance map from soma of the distinct synaptic excitatory 

input locations. 
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synaptic (Figure 6.10 and 6.18). Therefore, modulatory inhibitory synaptic input can introduce 

small gain changes in the absence of nonlinearities in the driving input, and it can add to the 

divisive modulation of the output firing rate originating from the dendritic saturation.  

Since, in this experimental configuration, no other known factor could contribute to the 

gain changes, it is postulated that the intrinsic high variability of the inhibitory synaptic input, 

in combination with its distribution all over the neuron, serves as background noise, with 

divisive modulatory effects on the output firing rate (Chance et al., 2002; Hamann et al., 2002; 

Ly and Doiron, 2009; Mitchell and Silver, 2003). Nonetheless, the combination of synaptic 

driving and modulatory input results in the largest change in gain, for location further from the 

soma (Figure 6.9 and 6.10). 

6.3.2.1.5 Asynchronous synaptic inputs  

 Thus far, in the simulation set-ups, synchronous excitatory synaptic input has been 

applied. The synchronous input is applied as a large excitatory synaptic conductance, which 

represents 50 identical and concurrent synaptic inputs. In vivo networks, however, support both 

synchronous and asynchronous synaptic activity with functional implications (Vogels et al., 

2005). The balance between synchronous and asynchronous inputs can also affect the features 

of the I-O relationships. Synchronization of stimuli can lower both the gain and the rheobase 

and result in a more linear I-O relationship, compared to asynchronous inputs (Li and Ascoli, 

2008). 

 

Figure 6.20 Changes in gain (ΔG%) for different neuronal locations in the CN model. As per 

Figure 6.10, the CN neuronal model is stimulated in different locations along the somato-dendritic area, 

either with synaptic driving and modulatory inputs (circles), or, as per Figure 6.19, with asynchronous 

synaptic driving and modulatory inputs (squares). ΔG% is calculated after fitting the simulations’ data 

(Figure 6.10 and 6.19) to sextic polynomial functions (Rothman et al., 2009). The dotted and dashed 

lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: soma. 

Other shapes: dendritic compartments 
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To identify the impact of synchrony on the I-O relationships, the CN neuron is driven 

at different dendritic locations with the same level of excitatory synaptic stimuli as before, but 

delivered asynchronously, that is 50 independent excitatory synaptic inputs, which are 

delivered at the same time window, but their presynaptic trains are not simultaneous. The 

modulatory input is the same, namely, the distributed inhibitory synaptic input (Figure 6.19). 

The transformation of the I-O relationship in all locations is similar as with synchronous input: 

somatic and perisomatic areas are additively modulated by the inhibitory input, whereas the 

distal areas are modulated divisively. In a similar way, the change in gain is correlated 

systematically with the distance, but it is not considerably different compared to the simulation, 

where the excitatory synaptic input is synchronous (Figure 6.20). 

6.3.2.2 LVb pyramidal neuron 

The cerebral cortex is highly populated with pyramidal neurons, which are found in 

structures that are associated with advanced cognitive functions. They have a characteristic 

bipolar structure with a pyramidal shaped soma and two distinct dendritic trees that emerge 

from it (Spruston, 2008). Pyramidal cell-like shapes are more susceptible to gain modulation 

by changes in the background balance of synaptic excitatory and inhibitory inputs (Chance et 

al., 2002; Jarvis et al., 2016). Thus, differences in gain modulation for inputs to the proximal 

and distal areas of a thick-tufted LVb pyramidal neuron model (Hay et al., 2011; Ramaswamy 

and Markram, 2015) are investigated here. 

To detect any potential differences in the arithmetic operations occurring in the LVb 

pyramidal neuron, similar experimental protocols as for the CN neuron are applied. The LVb 

pyramidal neuron is driven with excitatory synaptic inputs or injected current to one 

compartment (dendritic branch or soma) or inputs that are distributed across one region and 

modulated by inhibitory synaptic inputs that are distributed or confined to the soma, or somatic 

tonic inhibition. The impact of synchronicity is also investigated. 

6.3.2.2.1 Synaptic input to one location 

The pyramidal neuron’s behaviour is tested for input to distinct locations along the 

apical and basal tree and the soma. When the neuron is driven with only synaptic excitatory 

input, the amplitude of its output response is proportional to the distance from the spike 

initiation site (soma) as expected because of the electrotonic signal attenuation (London and 

Häusser, 2005; Papoutsi et al., 2014). In the presence of inhibitory synaptic input scattered 
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across the neuron, the I-O relationship is modulated in a divisive manner for all of the driving 

input site locations, but soma (Figure 6.21, 6.22 and 6.23).  

The change in gain for the soma is negligible (Figure 6.20 and 6.21). When driving the 

soma with the same input (150 synchronous excitatory synapses) but with larger modulatory 

inhibitory  input  rate  (178  synapses  distributed  along  the  somato-dendritic  area  at 50 Hz) 

 

Figure 6.21 I-O relationships of LVb pyramidal model for synaptic inputs. The LVb pyramidal 

neuronal model is stimulated with 150 synchronous excitatory synapses confined in one dendritic 

compartment per time (green lines). When synaptic inhibition (178 synapses at 10 Hz) is applied (pink 

lines), it is distributed along the dendritic tree and soma. Top: Schematic distance map from soma of 

the distinct synaptic excitatory input locations. Mint: soma; Orange: basal compartment; Blue: apical 

trunk compartment; Pink: oblique compartment; Green: tuft compartment. 
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(Figure 6.23), the arithmetic operations of the driving input, are additive (with -11% ΔG). 

However, the change in gain in the LVb pyramidal neuron is not correlated with the distance 

in a systematic way, as in the CN neuron (Figure 6.22). In the case of LVb pyramidal neuron, 

the change in gain for the trunk is smaller than expected for the distance from the soma (Figure 

6.21 and 6.22).  

 

Figure 6.22 Changes in gain (ΔG%) for different neuronal locations in the LVb pyramidal model. 

As per Figure 6.21, the pyramidal LVb neuronal model is stimulated in different locations along the 

somato-dendritic area, either with synaptic driving and modulatory inputs (circles), or, as in Figure 6.29, 

with synaptic driving and somatic tonic inhibitory conductance (squares). ΔG% is calculated after 

fitting the simulations’ data (Figure 6.21 and 6.29) to sextic polynomial functions (except for the blue 

square, which is fitting to cubic polynomial function) (Rothman et al., 2009). The dotted and dashed 

lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: soma; 

Orange shapes: basal dendrite; Blue shapes: trunk dendrite; Pink shapes: oblique dendrite 

 

Figure 6.23 I-O relationships of LVb pyramidal model for synaptic inputs in soma. The LVb 

pyramidal neuronal model is stimulated with 150 synchronous excitatory synapses confined in soma 

(green lines). When synaptic inhibition (178 synapses) is applied (pink lines), it is distributed along the 

dendritic tree and soma (left panel) at 10 Hz), and (right panel) at 50 Hz. ΔG% is calculated after fitting 

the simulations’ data to sextic polynomial functions (Rothman et al., 2009). Top: Schematic distance 

map from soma of the distinct synaptic excitatory input locations.  
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Pyramidal neurons receive most of their inhibitory inputs at the somatic and proximal 

dendritic areas, rather than the distal dendritic branches (Ramaswamy and Markram, 2015; 

Spruston, 2008). In addition, as mentioned, modulation by somatic inhibition could be additive 

and not multiplicative (Holt and Koch, 1997; Jarvis et al., 2016; Mehaffey, 2005; Prescott and 

De Koninck, 2003). To unveil the role of somatic inhibition in the modulation of somatic and 

dendritic inputs, the pyramidal neuron is driven with excitatory synaptic dendritic or somatic 

 

Figure 6.24 I-O relationships of LVb pyramidal model for synaptic inputs. The LVb pyramidal 

neuronal model is stimulated with 150 synchronous excitatory synapses confined in one dendritic 

compartment per time (green lines). Synaptic inhibition (50 synapses at 15 Hz) is applied (pink lines) 

only at soma. Top: Schematic distance map from soma of the distinct synaptic excitatory input locations. 

Mint: soma; Orange: basal compartment; Blue: apical trunk compartment; Pink: oblique compartment; 

Green: tuft compartment. 



Computational properties of the CN neuron   117

 

inputs at distinct locations and modulated by synaptic somatic inhibition only. As in the case 

of the distributed synaptic inhibition along the somato-dendritic area, the modulatory effect is 

divisive for the driving input on dendritic sites (Figure 6.24 and 6.25). 

For both types of inhibition, the effect is negligible in the soma. Increasing the 

inhibitory input decreases the neuronal response, but it also diminishes the effect of excitatory 

signals arriving from the dendritic locations (data not shown), which are already electronically 

attenuated. Furthermore, since in this experimental set-up, the excitatory driving input is 

clustered on one dendritic compartment, the responses saturate fast for increasing input firing 

rates, especially in the thin pyramidal dendritic branches. As a result, stronger synaptic input 

would not boost any further the output firing rate, which in turn could make the different 

modulatory operations more evident (London and Häusser, 2005; Papoutsi et al., 2014). In 

addition, the distributed inhibitory synaptic input along the somato-dendritic area makes the 

dendritic membrane leakier, and in combination with the electrotonic signal attenuation could 

weaken the driving input more. Therefore, the effect of the neuron-wide inhibition is stronger 

compared to the synaptic somatic inhibition only (Figure 6.21 and 6.24).  

Still, the I-O transformations triggered by the inhibitory modulatory input for excitatory 

input to the somatic and proximal locations are different in the two neuron models. One striking 

difference between the CN and LVb pyramidal neuron is their morphology. Both cells have 

trees with moderate branching, but the CN neuron is a multipolar neuron and the LVb is bipolar. 

 

Figure 6.25 Changes in gain (ΔG%) for different neuronal locations in the LVb pyramidal model. 

As per Figure 6.21, the LVb pyramidal neuronal model is stimulated in different locations along the 

somato-dendritic area, either with synaptic driving and modulatory inputs distributed along the somato-

dendritic area (circles), or, as per Figure 6.24, with synaptic driving and modulatory inputs confined in 

soma (squares). ΔG% is calculated after fitting the simulations’ data (Figure 6.21 and 6.24) to sextic 

polynomial functions (Rothman et al., 2009). The dotted and dashed lines are linear trend fits, to the 

data shown in circles and squares, respectively. Mint shapes: soma; Orange shapes: basal dendrite; Blue 

shapes: trunk dendrite; Pink shapes: oblique dendrite.  
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When neurons with different morphologies are driven with dendritic excitatory and inhibitory 

signals, and modulated by shifting the balance of mixed background input towards the 

inhibitory compound, their I-O function can undergo different neuronal arithmetic operations; 

in a bipolar-like neuron (for instance, pyramidal neuron) the input is divisively modulated, 

whereas in a multipolar-like one (for example, hippocampal stellate cell) the I-O relationship 

is shifted (Jarvis et al., 2016). Hence, the modulation of the CN and LVb pyramidal neuron 

response by a somato-dendritic wide synaptic inhibitory input, as observed in the current study, 

might be found in the first instance inconsistent with these results (Jarvis et al., 2016), that is, 

the multipolar-like CN neuron exhibits both additive and divisive arithmetic operations. 

However, in the mentioned study (Jarvis et al., 2016) the mixed background input is delivered 

by simulating an optogenetic protocol and the excitatory and inhibitory input is a photocurrent 

product that lacks the intrinsic synaptic variability, namely, the noisy nature of the synaptic 

signals. but it is in accordance with the notion that the dendritic tree morphology can affect the 

arithmetic operations performed by neurons. 

6.3.2.2.2 Synaptic input to different dendritic regions 

In an analogous way to the synaptic activation of distinct CN subregions, the LVb 

pyramidal neuron is stimulated with segregated synaptic excitatory (driving) input at various 

subregions (soma, basal, trunk, oblique and tuft), with neuron-wide distributed synaptic 

inhibition as modulatory input. As in the CN neuron simulations, the amplitude of the output 

firing rate is reduced as a function of distance of the excited subregion from the soma. The 

activation of the modulatory input generates multiplicative transformations of the I-O 

relationship for excitatory input to the distal oblique subregion, while the perisomatic basal 

regions and trunk are characterized of negligible change in gain (Figure 6.26 and 6.27). The 

activation in the tuft region does not result in neuronal spiking, due to the attenuation of the 

distal tuft signals (data not shown).  

The experimental protocol for applying synaptic input to both neurons (CN and LVb 

pyramidal) follows the same principle: excitatory driving synaptic input distributed across one 

subregion, and inhibitory modulatory synaptic input distributed across the whole somato-

dendritic area. The subregions are selected based on their proximity to the soma, so that the 

results are comparable to the ones when the synaptic driving input is clustered on one dendritic 

compartment. Nonetheless, the selection of subregions differs for the two neuronal types, due 

to their distinct morphology. The CN neuron is a multipolar-like neuron, with its soma located  
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centrally and the dendritic tree bifurcates around it. Thus, the division of the neuronal area 

based on distance results in distinct concentric zones of dendritic branches, as in a Sholl 

analysis (Sholl, 1953). Therefore, the signal pulses, generated by the synaptic excitation of the 

neuron in one subregion, propagate directly to the soma through these zones via various 

dendritic paths, and the change in gain is related mainly to the path length (or distance) from 

the soma. 

 

Figure 6.26 I-O relationships of LVb pyramidal model for distributed synaptic inputs. The LVb 

pyramidal neuronal model is stimulated with 150 synchronous excitatory synapses distributed in one 

neuronal subregion per time (green lines). When synaptic inhibition (178 synapses at 10 Hz) is applied 

(pink lines), it is distributed along the dendritic tree and soma. Right: The detailed reconstructed 

morphology of the LVb pyramidal neuron is shown, with distinct colours for the different neuronal 

subregions. Orange: basal; Cean: oblique; Purple: trunk; Pink: tuft.  
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 The LVb pyramidal neuron, however, is a bipolar-like neuron. The soma is located 

between two distinct dendritic trees with characteristic architectures. The branches of the basal 

tree emerge directly from the soma (like the dendritic tree of the CN neuron). The apical tree 

also extends from the soma, but via a large and thick dendrite (apical trunk), which bifurcates 

to give rise to thinner oblique dendrites, and at its end branches further to form the apical tuft. 

The division of subregions based on the proximity to the soma, can be matched to the already 

existed morphological groups of the apical and basal dendrites. However, these subregions do 

not give rise to concentric zones, as in the CN neuron, with putative implications for the 

computational operation of the synaptic inputs. As mentioned, dendritic trees with different 

morphological features endorse the neurons with different modulatory potential (Jarvis et al., 

2016). 

The change in gain in the LVb pyramidal neuron for its different subregions follows 

the same pattern as in the synaptic input to one location. The basal and tuft subregions have a 

similar extent of gain change which is much smaller compared to the oblique subregion. 

Therefore, the change in gain is not systematically correlated to distance, as in the CN neuron 

(Figure 6.26 and 6.27). 

6.3.2.2.3 Dendritic saturation and synaptic input noise effect 

As  described  in  the  previous  sections, the  LVb  pyramidal  neuron  does  not  exhibit  

 

Figure 6.27 Changes in gain (ΔG%) for different neuronal subregions in the LVb pyramidal 

model. As per Figure 6.26, the LVb pyramidal neuronal model is stimulated in different subregions 

with synaptic driving and modulatory inputs. ΔG% is calculated after fitting the simulations’ data 

(Figure 6.26) to sextic polynomial functions (Rothman et al., 2009). The distinct colours in the bars 

correspond to the ΔG% in the different neuronal subregions (Figure 6.26).  
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similar behaviour as the CN neuron, with multiplicative gain changes for excitatory dendritic 

inputs that increase systematically in magnitude with an increasing distance of the inputs from  

 

Figure 6.28 Breaking down the I-O relationship in the LVb pyramidal model. The I-O function of 

the pyramidal LVb model is analysed further for different dendritic locations (upper panels: 29 μm 

(basal), middle panels: 276 μm (trunk) and lower panels: 313 μm (oblique)) by investigating the 

relationships between neuronal output firing rate, synaptic excitatory conductance and synaptic 

excitatory input rate. The LVb pyramidal neuronal model is stimulated in different subregions with 

synaptic driving and modulatory inputs, as in Figure 6.21. Left panels: Mapping of excitatory input rate 

to excitatory input conductance. Right panels: Mapping of excitatory input conductance to output firing 

rate. Top: Schematic distance map from soma of the distinct synaptic excitatory input locations. 
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the soma. There are differences between the behaviour of the two neuronal models: (a) the 

excitatory inputs delivered in their perisomatic area are modulated differently by the inhibitory 

input. In the LVb pyramidal neuron, the divisive operations governing the integration of the 

synaptic excitatory inputs are also predominant in the proximal to soma locations (Figure 6.21 

and 6.22), where in the CN neuron, more additive operations are found to take place (Figure 

6.9 and 6.10), (b) the change in gain for the trunk area is not related to distance, and it has 

similar extent to the proximal basal areas.  

 

Figure 6.29 I-O relationships of LVb pyramidal model for non-synaptic inputs. The LVb 

pyramidal neuronal model is injected with current steps confined in one dendritic compartment per time 

(green lines). Tonic inhibitory conductance (12 nS) is applied (pink lines), at the soma. Top: Schematic 

distance map from soma of the distinct synaptic excitatory input locations. Mint: soma; Orange: basal 

compartment; Blue: apical trunk compartment; Pink: oblique compartment; Green: tuft compartment. 
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In order to shed light on the underlying cause of this difference, the mappings of the 

excitatory input rate to excitatory input conductance and excitatory input conductance to output 

firing rate are obtained for the LVb pyramidal neuron, and again as for the CN neuron, for a 

proximal to the soma and very distal one location. In addition, an apical trunk location is 

investigated (Figure 6.28).  

 

Figure 6.30 I-O relationships of LVb pyramidal model for synaptic and tonic inhibitory inputs. 

The LVb pyramidal neuronal model is stimulated with 150 synchronous excitatory synapses confined 

in one dendritic compartment per time (green lines). Tonic inhibitory conductance (12 nS) is applied 

(pink lines), at the soma. Top: Schematic distance map from soma of the distinct synaptic excitatory 

input locations. Mint: soma; Orange: basal compartment; Blue: apical trunk compartment; Pink: oblique 

compartment; Green: tuft compartment.  
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The relation between the excitatory input rate and the excitatory conductance (first 

mapping) exhibit the same characteristics as the CN neuron: linear and independent of the 

modulatory input and synaptic input delivery site. However, the relation of excitatory input 

conductance and output firing rate (second mapping) is different between the two neurons for 

the proximal (basal) to the soma location and the apical trunk one. In the case of the LVb 

pyramidal neuron this relation is nonlinear for both cases, and in the presence of the modulatory 

input is attenuated in a divisive manner. The same nonlinearity is also apparent for the distal 

location, like the CN neuron, and the trunk location (Figure 6.28).  

However, the extent of nonlinearity for the trunk location is close to the proximal to the 

soma location, and not the distal one. Based on the distance from the soma, a large change in 

gain would be expected for input locations on the trunk. Nevertheless, the change in gain for 

the trunk is smaller than anticipated and closer to the extent observed in the perisomatic 

locations. Yet, the compartments of the apical trunk are characterized by a large diameter 

resulting in reduced local input resistance, which consequently could lead in reduced 

nonlinearities in the trunk.  

Further, as in the CN neuron, it is investigated if the combination of dendritic 

nonlinearities and synaptic background input also underlies gain modulation by synaptic 

inhibition in the LVb pyramidal neuron. The neuron is either injected with a depolarizing 

current in different dendritic compartments and modulated by a tonic inhibitory conductance  

 

Figure 6.31 Changes in gain (ΔG%) for different neuronal locations in the LVb pyramidal model. 

As per Figure 6.21, the LVb pyramidal neuronal model is stimulated in different locations along the 

somato-dendritic area, either with synaptic driving and modulatory inputs (circles), or, as per Figure 

6.30, with synaptic driving and somatic tonic inhibitory conductance (squares). ΔG% is calculated after 

fitting the simulations’ data (Figure 6.21 and 6.30) to sextic polynomial functions. The dotted and 

dashed lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: 

soma; Orange shapes: basal dendrite; Blue shapes: trunk dendrite; Pink shapes: oblique dendrite. 
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in the soma (Figure 6.22 and 6.29) or by neuron-wide synaptic inhibitory input (Figure 6.32 

and 6.33) or is excited synaptically in different dendritic locations and modulated by somatic 

tonic inhibition (Figure 6.30 and 6.31).  

The results are similar to the CN neuron. The observed divisive operations, when 

synaptic input (driving and modulatory) is delivered, are substituted by additive in the presence 

of current inputs (Figure 6.22 and 6.29), favouring the idea that the saturation of synaptic input  

 

Figure 6.32 I-O relationships of LVb pyramidal model for current and synaptic inputs. The LVb 

pyramidal neuronal model is injected with current steps confined in one dendritic compartment per time 

(green lines). When synaptic inhibition (203 synapses at 5 Hz) is applied (pink lines), it is distributed 

along the dendritic tree and soma. Top: Schematic distance map from soma of the distinct synaptic 

excitatory input locations. Mint: soma; Orange: basal compartment; Blue: apical trunk compartment; 

Pink: oblique compartment; Green: tuft compartment. 
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is the source of dendritic nonlinearities, and hence the underlying mechanism of the gain 

modulation. When the driving input is synaptic excitation and the modulatory input is tonic 

inhibition, the effect of dendritic nonlinearities is still present, and as for the CN neuron is 

additive in the proximal (and trunk) locations, compared to the distal branches (Figure 6.30 

and 6.31). 

Shunting input can underlie gain modulation in cerebellar granule cells when the 

driving input is enriched with high variability (Mitchell and Silver, 2003). An analogous 

divisive mechanism might be applied in the case of LVb pyramidal neuron too, and it scales, 

based on the input location (but not in a systematic manner), with the inhibitory synaptic input 

enhancing it further. When the driving input is current and the modulatory one is synaptic, 

there still a multiplicative component (Figure 6.32 and 6.33). As in the CN neuron, the 

inhibitory synaptic modulation might serve as background noise giving rise to divisive 

operation (Chance et al., 2002; Hamann et al., 2002; Ly and Doiron, 2009; Mitchell and Silver, 

2003).Thus, the source of gain modulation in pyramidal LVb and CN neurons is both from the 

excitatory and inhibitory synaptic input. 

6.3.2.2.4 Asynchronous synaptic inputs  

In the synaptic simulations that were described previously, a synchronous driving 

excitatory input is applied. However, input synchronicity can have an impact on gain 

modulation in hippocampal pyramidal cells (Li and Ascoli, 2008), but not in the CN neuron as 

 

Figure 6.33 Changes in gain (ΔG%) for different neuronal locations in the LVb pyramidal model. 

As per Figure 6.21, the LVb pyramidal neuronal model is stimulated in different locations along the 

somato-dendritic area, either with synaptic driving and modulatory inputs (circles), or, as per Figure 

6.32 with driving current steps and synaptic inhibition distributed along the somato-dendritic area 

(squares). ΔG% is calculated after fitting the simulations’ data (Figure 6.21 and 6.32) to sextic 

polynomial functions (Rothman et al., 2009). The dotted and dashed lines are linear trend fits, to the 

data shown in circles and squares, respectively. Mint shapes: soma; Orange shapes: basal dendrite; Blue 

shapes: trunk dendrite; Pink shapes: oblique dendrite. 
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it is shown in the current study (see 6.3.2.1.5 Asynchronous synaptic inputs). 

To explore the effect of synchronicity on the neuronal response of the LVb pyramidal 

neuron, an analogous synaptic simulation to the CN neuron is carried out, with asynchronous 

excitatory driving input in somatic and various dendritic locations, and neuron-wide inhibitory 

modulatory synaptic input (Figure 6.34). The pattern of the neuronal computations occurring 

in the presence of the modulatory input, in the various cell locations, is the same with the 

 

Figure 6.34 I-O relationships of pyramidal LVb model for synaptic inputs. The LVb pyramidal 

neuronal model is stimulated with 150 asynchronous excitatory synapses confined in one dendritic 

compartment per time (green lines). When synaptic inhibition (178 synapses at 10 Hz) is applied (pink 

lines), it is distributed along the dendritic tree and soma. Top: Schematic distance map from soma of 

the distinct synaptic excitatory input locations. Mint: soma; Orange: basal compartment; Blue: apical 

trunk compartment; Pink: oblique compartment; Green: tuft compartment. 
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synchronous synaptic input (Figure 6.21 – 6.27). Nevertheless, the extent of divisive change is 

larger for the asynchronous input in the layer LVb pyramidal neuron (Figure 6.35), as in 

previous studies (Li and Ascoli, 2008). 

6.4 Discussion 

 The aim of this chapter is to investigate the location dependent gain changes in two 

types of neurons, CN and pyramidal LVb. Two possible players are considered: ion channel 

noise and modulation by inhibitory synaptic input. The rationale to study these factors lies in 

the nature of the CN neuron itself. The cell is enriched with an elaborate dendritic tree and a 

plethora of ion channels that shape its unique electrophysiological properties (Steuber et al., 

2011; Steuber and Jaeger, 2013; Uusisaari et al., 2007). CN neurons receive excitatory input 

from climbing and mossy fibres and inhibitory input from the Purkinje cells, across their soma 

and dendritic tree. In addition, they fire spontaneously action potentials without requiring the 

presence of synaptic input and during behavioural tasks their firing frequency increases. Their 

position in the cerebellar circuit is central since they provide the major output of the cerebellum 

(Knöpfel, 2013).  

Considering that even a single type of stochastic channel located in thin dendrites can 

affect the generation of actions potentials and the fidelity of spiking (see Chapter 3), the 

question arises which mathematical operations on its inputs could a fully stochastic CN neuron 

 

Figure 6.35 Changes in gain (ΔG%) for different neuronal locations in the pyramidal LVb model. 

As per Figure 6.21, the LVb pyramidal neuronal model is stimulated in different locations along the 

somato-dendritic area, either with synaptic driving and modulatory inputs (circles), or, as per Figure 

6.34, with asynchronous synaptic driving and modulatory inputs (squares). ΔG% is calculated after 

fitting the simulations’ data (Figure 6.21 and 6.34) to sextic polynomial functions, except for the blue 

square, which is fitting to quintic polynomial function (Rothman et al., 2009). The dotted and dashed 

lines are linear trend fits, to the data shown in circles and squares, respectively. Mint shapes: soma; 

Orange shapes: basal dendrite; Blue shapes: trunk dendrite; Pink shapes: oblique dendrite. 
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perform, when the excitatory input is delivered in various locations and a second inhibitory 

input is present. For that reason, the behaviour of a detailed morphological conductance-based 

compartmental deterministic model of CN is compared to a stochastic counterpart. Further to 

investigate the generality of some of the results, a parallel comparison is carried out for a LVb 

pyramidal neuron.  

6.4.1 CN neuronal arithmetic and noise 

 The putative impact of noise on the mathematical operations occurring during synaptic 

integration in the CN neuron is addressed at two distinct levels, ion channel noise and synaptic 

noise. 

 Ion channel noise can affect the characteristics of neuronal output firing patterns, by 

introducing substantial fluctuations in the membrane voltage. The interplay between factors 

such as channel kinetics, single channel conductance, cellular distribution and density, open 

probability and electrical membrane properties (for example, capacitance) and dendritic 

morphology influence the stochastic membrane potential fluctuations. Subsequently, they can 

affect the initiation and propagation of dendritic spikes that is translated to a probabilistic 

generation of somatic spikes, in the firing pattern (Cannon et al., 2010; Kole et al., 2006). The 

current study is focused more on the quantitative feature of the output firing, namely, if the 

probabilistic generation of spikes is reflected by higher firing rates, rather than the time fidelity 

of spiking. Thus, an analysis of the temporal features of the firing pattern is not carried out 

here.  

 The simulations of the stochastic CN model confirm that a stochastic implementation 

of ion channels results in the generation of noisy membrane potential fluctuations. 

Nevertheless, the comparison to a deterministic counterpart CN model shows no substantial 

difference in the firing rates in response to synaptic input between the two models. Equivalent 

results are also obtained when the synaptic noise is not present, and both models are driven 

with injected current, or when the synaptic input is distributed across a cellular subregion, 

rather than delivered to a single branch location. Further, the impact of the single channel 

conductance on the membrane potential fluctuations is in agreement with previous studies, 

namely, for a constant current density increasing the single channel conductance and scaling 

down the total number of channels will increase the amplitude of the voltage fluctuations (Diba 

et al., 2006; Faisal et al., 2008; Kole et al., 2006; White et al., 2000). This impact of stochastic 

ion channel gating on voltage fluctuations, however, is not translated into a change in the mean 
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output firing rate of the stochastic CN neuronal model. Therefore, the membrane voltage 

fluctuations due to the random gating of the ion channels are not adequate to change the I-O 

relationship, by means of altering the mean output firing rate, even if they are expected to 

modify the fidelity of spiking (Cannon et al., 2010; Diba et al., 2006; Faisal et al., 2008; Kole 

et al., 2006; White et al., 2000). One possible explanation is that the noise generated by the 

stochastic ion channels is either too small (Chance et al., 2002; Kole et al., 2006) or in some 

cases masked by the synaptic input noise (Destexhe et al., 2003; Faisal et al., 2008). However, 

since the response of the stochastic CN model to current injection is also similar to the 

deterministic one, it is more likely that the ion channel noise is not adequate to affect the mean 

output firing of the CN neuron. Further, dendritic morphology shapes the impact of ion channel 

noise on membrane potential fluctuations. The fluctuations of the resting membrane potential 

are increased with distance from the soma for neurons enriched with stochastic ion channels. 

However, this phenomenon depends on the specific channel kinetics, and the ion channel 

distribution and density across the neuronal cell (Cannon et al., 2010). Hence, ion channel 

driven membrane voltage fluctuations in neurons with different morphologies and channel 

profiles from the stochastic CN neuron might have a different influence on the mean output 

firing rate.  

 On the other hand, the synaptic noise has a more profound effect on the neuronal 

response of the CN neuron. When the CN neuron is driven with excitatory synaptic input or 

injected current and a second inhibitory input is delivered along the somato-dendritic axis, the 

gain of the neuronal response is modulated in an input location-dependent manner. The 

synaptic noise, generated by the inhibitory input, appears to contribute to this divisive effect 

by acting as a neuron-wide background source of noise (Chance et al., 2002; Hamann et al., 

2002; Ly and Doiron, 2009; Mitchell and Silver, 2003). The modulatory effect of the inhibition 

is independent of the presence of ion channel noise; the amplitude of the membrane potential 

fluctuations in the full stochastic ion channel model is too small to affect the mean spiking 

output rate.   

 Therefore, a dual functional role of neuronal noise is identified for the CN neuron. The 

first is the effect of the ion channel noise on the fidelity of the CN spike trains. While this 

phenomenon is not studied thoroughly in the current investigation, evidence from previous 

studies support it (Cannon et al., 2010; Diba et al., 2006; Faisal et al., 2008; Kole et al., 2006; 

White et al., 2000). Hence, the ion channel noise could affect temporal coding in CN neurons 

(Steuber and Jaeger, 2013).  
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 The second is the introduction of divisive modulations to the neuronal I-O relationship, 

via the synaptic input variability. This is evident in both the CN and LVb pyramidal neurons. 

The functional impact of noise arises both from the excitatory and inhibitory synaptic inputs 

Thus, synaptic noise has an impact on rate coding in the CN and LVb pyramidal neuron (Silver, 

2010; Steuber and Jaeger, 2013).   

6.4.2 Input-location dependent gain modulation 

 A systematic investigation of an already proposed mechanism of gain modulation 

(Prescott and De Koninck, 2003) is carried out. The mechanism assumes the synaptic noise 

and dendritic saturation as key players for gain modulating the mean firing output rate. The 

approach undertaken in the current study, unveils further the impact of the morphology and the 

background noise on the integration of synaptic inputs. 

The morphological influence is evident in many aspects. Firstly, it is via the relation of 

neuronal response with the input distance from the soma. The output firing rate of a neuron 

depends on the input site delivery, since the input signals attenuate as they propagate to the 

soma. Thus, the lower mean firing rates of the CN and PN neurons for distal inputs are in 

agreement with previous studies (London and Häusser, 2005; Papoutsi et al., 2014) and only 

being reduced further by the presence of the inhibitory input. However, the presence of active 

ion Ca2+ channels in the dendrites of the Purkinje cell, amplify the distal synaptic signals by 

generating dendritic spikes, in a non-NMDA dependent manner. As a result, the somatic 

response to excitatory synaptic inputs is independent of the exact synaptic delivery site (De 

Schutter and Bower, 1994). Such a phenomenon, though, is not apparent for both neurons, in 

the current study. Moreover, distal synaptic inputs are usually located on thinner dendrites, 

compared to the thicker perisomatic and proximal branches or the soma itself. Therefore, the 

effect of dendritic saturation that is more evident in thinner compartments, could trigger distinct 

types of modulation (Prescott and De Koninck, 2003). This is the case in the current study for 

the CN neuron, where distal inputs are divisively modulated in a distance systematic way, in 

the CN neuron. For the LVb pyramidal neuron, the extent of modulation is not systematically 

correlated to the distance from the soma.  

Secondly, via the structure of the cell. The mechanism is tested in two neuronal types 

(CN and LVb pyramidal neuron) with characteristic distinct dendritic morphology. Although, 

the distant-dependent divisive gain modulation of excitatory inputs occurs in both neurons in 

the presence of neuron-wide inhibitory input, the mathematical operations taking place for 
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input to the somatic and perisomatic sites of the CN neuron are mainly additive. This is not the 

case, however, for the LVb pyramidal neuron, where proximal to the soma dendritic operations 

are divisive too. In addition, the extent of change in gain for the trunk is smaller than it would 

be expected for the distance from the soma. Nevertheless, the same nonlinear mechanism, 

namely, dendritic saturation, appears to underlie multiplicative operations in both neuronal 

models. In the LVb pyramidal neuron, the thick structure of trunk dendritic compartments, and 

the resulting reduced local input resistance, might attenuate these nonlinearities. Hence, the 

cellular architecture might have a stronger impact, by not only facilitating dendritic saturation 

effects, but also allowing similar underlying nonlinearities of the relation of excitatory input 

conductance to output firing rate occur in other neuronal regions, such as proximal to soma 

locations, leading to different modulatory operations in different neurons.  

However, pyramidal neurons can exhibit different gain operations for similar input 

locations and the stimulation parameters are critical, because different experimental conditions 

can mask or unveil mathematical operations. Colocalized excitatory and inhibitory inputs in an 

apical or basal pyramidal neuron region have a subtractive effect on the I-O relationship. But, 

when inhibition is placed after the excitation and on the path to the soma, it performs a divisive 

modulation of the neuronal firing rate (Jadi et al., 2012; Pouille et al., 2013). In the electric 

brown ghost knife fish pyramidal cell in the electrosensory lateral line lobe (EEL), excitation 

placed on different apical (distal or more proximal to the soma) sites or on basal dendrites is 

divisively modulated by apical dendritic inhibition. Somatic inhibition, however, has a 

subtractive effect on apical or basal inputs (Mehaffey, 2005). Similarly, somatic shunting 

inhibition acts in a subtractive way (Holt and Koch, 1997), but in combination with dendritic 

saturation and background noise, can act divisively to the distal dendritic inputs (Prescott and 

De Koninck, 2003). Moreover, the background balance of (dendritic) synaptic and inhibitory 

inputs modulates only dendritic inputs in a divisive manner (Jarvis et al., 2016). Such impact 

of the relative distribution of the driving and modulatory input on the CN neuronal arithmetic 

is not known to date. Regardless, neurons might be able to adjust their gain operations, 

according to the colocalization or not of their inputs. 

Third, the dendritic morphology, and in particular the various dendritic subregions, are 

suggested to be modulated by the neuron-wide inhibition to a different extent and manner 

between the two neuronal types. As mentioned above, prior studies have indicated the role of 

specific subregions in gain modulation. The different configuration of excitatory and inhibitory 

inputs in different regions of the pyramidal neuron can give rise to distinct computations (Jadi 
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et al., 2012; Mehaffey, 2005; Pouille et al., 2013). In addition, removing background (noisy-

free) excitatory and inhibitory input from dendritic subregions, transforms them to current sinks 

and consequently lessens the gain modulation potential of a neuron (Jarvis et al., 2016). This 

suggests that the background input could perform different types of arithmetic operation to the 

driving input to different regions, as it is also shown in the current study.  

Further, it implies a functional compartmentalization of the neuron, dependent on the 

subregion where the excitatory inputs are delivered. Such functional distinct domains are found 

in pyramidal neurons, which receive inputs from different cortical layers or brain regions 

(Spruston, 2008). An equivalent compartmentalization in the CN neuron is yet to be 

discovered. However, CN neurons receive excitatory input from different sources (mossy and 

climbing fibers) that could be organized in functional distinct regions. In addition,  CN neurons 

show a mixture response, including being gain modulated, to translation and tilt head motions 

(Yakusheva et al., 2007). Input organization could take place for the excitatory inputs of the 

CN that could converge onto one subregion and undergo multiplicative operations.  

The noise, originating from the intrinsic synaptic input variability, results in enhanced 

divisive gain modulation, for both neuronal models. Consequently, stronger or more noisy 

Purkinje input onto the CN neurons (or equivalent synaptic excitation or inhibition onto the 

LVb pyramidal neuron) would cause a greater change in gain between the different synaptic 

locations or regions. Therefore, an additional level of gain control is available. Nevertheless, 

gain mechanism is robust in the presence of ion channel noise, in the CN neuronal model. 

The input-location dependent change in gain is correlated to the input synchronicity in 

LVb pyramidal neuron. Asynchronous excitatory inputs enhance the divisive modulatory effect 

in LVb pyramidal neuron (Li and Ascoli, 2008), without the requirement of the dendrites to be 

equipped with active properties that support regenerative events or spike adaptation (Fernandez 

and White, 2010; Li and Ascoli, 2008; Mehaffey, 2005). On the other hand, introducing 

asynchronicity in the synaptic excitatory inputs delivered in the CN neuronal model does not 

result in enhanced change in gain, compared to the asynchronous synaptic excitatory input. 

Nonetheless, both neurons are characterized by a distinguished morphology (Hay et al., 2011; 

Steuber et al., 2011), and the structural properties of dendritic trees are known to impact the 

spatiotemporal summation of the excitatory postsynaptic potentials (London and Häusser, 

2005; Papoutsi et al., 2014). Even, in the same neuron, for instance, the rat CA1 pyramidal 

neuron, subtle differences in the geometrical features of oblique branch points, alter the branch 
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excitability, synchrony of synaptic inputs originating from different branches, and coupling 

between dendritic and somatic spikes (Ferrante et al., 2013). Thus, diversity in the 

morphological features between neuronal types, could affect drastically their computational 

properties.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Computational properties of the CN neuron   135

 

 

 

7  Conclusions 

7.1 General discussion  

The aim of this thesis is to provide an insight into the computational properties of CN 

neurons. The key focus is set on two related objectives, the role of ion channel noise and the 

mechanism of gain modulation. To study the first one, stochasticity is implemented in the 

gating of the voltage-gated ion channels of a detailed conductance-based CN neuronal model. 

The second objective is investigated in both the deterministic and stochastic CN neuronal 

models, but as a control also in a detailed deterministic conductance-based LVb pyramidal 

neuron.  

7.1.1 CN neuronal model with ion channel noise 

In this study, conductance-based CN and LVb pyramidal neuronal models with detailed 

biophysical and morphological properties are utilized. The use of compartmental models to 

elucidate nervous system function has been proven extremely valuable, by providing 

predictions and insights that shape new avenues for nervous system research. Experimental 

evidence is always the reference point for theoretical and computational neuroscience. 

Therefore, the implementation of ion channel noise, an existing biological phenomenon, in a 

computational CN model already tuned to replicate experimental data is a step further to 

produce a more realistic computational model. In that context, one of the outcomes of this 

thesis is a more biologically accurate CN neuronal model.      
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To develop the mentioned stochastic CN model, a systematic approach is applied. Each 

of the known CN voltage-gated ion channels is modelled to reproduce the stochastic gating. 

The modelling strategy is based on Markovian assumptions, because it offers a more realistic 

representation of the ion channel kinetic scheme, compared to the classic Hodgkin-Huxley 

formalism, and therefore the simulation results have in principle the potential to be closer to 

experimental recordings. The behaviour of each voltage-gated channel is tested both in a simple 

compartmental model and in the detailed CN model. In order to validate the translation from 

deterministic channels, the temporal stochastic voltage or current mean of an ion channel 

population is compared to the deterministic one. An approach like this allows the observation 

of the stochastic behaviour and its dependence on parameters, such as the single channel 

conductance. This thesis provides a systematic analysis of the correlation of these parameters 

with the CN voltage-gated ion channel and consequently neuronal behaviour. In addition, it is 

highlighted that the main effect of ion channel noise on the CN neuronal behaviour is the 

probabilistic generation of actions potentials in the output spike pattern.  

However, the temporal mean voltage (and current) behaviour of the NaF channel, which 

a voltage-gated channel with fast kinetics, could not match its deterministic counterpart. One 

possible explanation could be the choice of appropriate integration method and integration time 

step for the simulation. Indeed, as the findings of this research confirm again, smaller 

integration time steps give more accurate results, because they allow the registration of faster 

gating events. However, smaller time steps are associated with accumulation of numerical 

errors and high computational cost. It is suggested here that an integration method with a 

dynamic time step would be a wiser choice for fast kinetics modelling.  

Nonetheless, the investigation in this thesis indicates that the match of the stochastic 

and the deterministic representation of a voltage-gated channel with fast kinetics might not be 

possible under specific conditions, even if the integration time step is small enough. A 

hypothesis is that the distribution of the open channels of voltage-gated ion channels might be 

rectified if their channel kinetics and state variable characteristics allow the generation of a 

window current in the absence of any external stimulus such as synaptic input or injected 

current. For this to occur, the equilibrium current should be close to zero and the number of 

open channels exhibit fluctuations with a magnitude greater than zero. The result would be a 

shift of the stochastic equilibrium up, compared to the deterministic one. An additional 

explanation could be that multiple events could take place in a given time step due to the fast 

transition rates between the kinetic states. Both effects could take place simultaneously, adding 
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to the observed discrepancy between the response of the stochastic and the deterministic 

models. However, to verify, the hypothesis of the rectification effect and the impact of fast 

transition rates more investigation is needed, extending the research undertaken in this thesis.  

7.1.2 Gain modulation 

The study of single neuron arithmetic is fundamental to comprehend brain function. 

Such studies have been mainly conducted in pyramidal neurons, due to their presence in areas 

usually associated with higher cognitive functions, or for reasons related to experimental 

constraints, such as the thick apical trunk that allowed experimental manipulations, before 

more refined methods of exploring electrical excitability were developed. The cerebellum has 

a pluripotent function as well, extending from motor control and coordination to visual 

processing, memory and decision making, and CN neurons are assigned with processing the 

cerebellar output. Therefore, the study of their computational properties could unravel how the 

cerebellum carries out its important functions for the organism.  

The main objective of this thesis is to study in a systematic way the computational 

properties of a stochastic CN neuronal model. As reviewed, ion channel noise can have 

functional implications for neuronal function, and its impact is related to the neuronal 

morphology. Ion channel noise causes larger membrane voltage fluctuations in thin neuronal 

compartments favouring probabilistic spiking, compared to the thick ones proximal to the 

soma. Thus, a gradient of multiplicative integration could exist along the neuronal dendrite, 

with strong multiplicative operations taking place at distal locations, which are replaced with 

linear summation for proximal to somatic ones. However, as the findings of this study 

demonstrate, the introduction of ion channel noise to a CN neuronal model only affects the 

spiking fidelity, but the mean output firing and rate-coded neuronal computations remain 

unaffected.    

Nevertheless, the input location defines the arithmetic operations of the neuron. The 

main finding of this thesis is that the CN neuron utilizes different integration modes for the 

inputs in distinct locations, in a systematic manner. In particular, distal excitatory synaptic 

inputs undergo a multiplicative modulation by inhibitory synaptic input, which becomes 

systematically less apparent when the input location is shifted towards to the somatic and 

perisomatic areas. The underlying mechanism is the combined effect of dendritic saturation 

and synaptic noise, arising from both the excitatory and inhibitory synaptic input. In particular, 

dendritic saturation is crucial as it introduces a nonlinear relationship between the excitatory 
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input conductance and output firing rate. Although this multiplicative process takes place in 

the distal areas of both CN and LVb pyramidal neurons, the two types of neurons exhibit 

different arithmetic operations for input to their proximal regions. In the pyramidal neuron, 

more apparent multiplicative operations occur along the perisomatic area. In addition, the 

extent of gain modulation in the LVb pyramidal neurons appears not to be systematically 

related to the input location as in the CN neuron. In the LVb pyramidal neuron the change in 

gain for trunk is smaller than it would be expected for the distance from the soma. This is due 

the reduced local input resistance, as the trunk is characterized by large diameter. Hence, the 

results of this thesis indicate that different neurons might apply the same gain mechanism in 

distinct ways.  

In pyramidal neurons, functional compartmentalization based on the origin of synaptic 

inputs is a popular concept. A similar hypothesis has not been expressed for the CN neuron, so 

far. Nonetheless, the outputs of this study suggest that different neuronal regions might support 

different function since they vary in the extent of change in gain modulation. 

Moreover, it is shown that synchronicity of the driving synaptic input has a different 

effect on the extent of gain change between the two neuronal models. The change in gain is 

sensitive to the synchronicity of the excitatory synaptic input only in the LVb pyramidal 

neuronal model, implying that neurons might apply this as a second level of shaping the 

integration of their inputs.  

Lastly, since both neuronal models used in this study share similar types of ion 

channels, but distinct morphologies, it is implied that the latter might contribute greatly to the 

differences in the computational properties of both neurons. 

7.2 Future work 

The following future avenues to explore can be considered: 

• The simulations in the current study are performed in the NEURON simulation 

environment (Hines and Carnevale, 1997), and the integration method to solve the set 

of the model’s ordinary differential equations is backward Euler. As shown in this 

thesis, such an algorithm might not be suitable for the description of the stochastic 

gating of the CN ion channels. Therefore, it is suggested that the same analysis 

performed here is repeated with the implementation of a stochastic simulation 
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algorithm, such as Gillespie. Then, the hypothesis of the effect of the rectified open 

channel distribution could be examined in detail. 

• The findings of this thesis indicate that ion channel noise introduces variability to the 

timing of the spikes in the CN output rate, with each stochastic voltage-gated channel 

affecting the CN firing pattern differently. Thus, an analysis of the temporal features of 

the firing pattern could be carried out here, when the CN model is enriched with 

stochastic voltage-gated channels. 

• Functional compartmentalization, as it is demonstrated here, might also be applied in 

the CN neurons. Further experimental and theoretical investigation, where the synaptic 

stimulation of specific regions is associated with a specific behavioural task could shed 

light on this. 

• An important future study would be the experimental testing of the arithmetic 

operations predicted in this thesis for the CN and LVb pyramidal neurons, aiming to 

verify the relation of change in gain to the input location.  

• The findings here suggest that the shape of the dendritic tree might affect the extent of 

change in gain. Therefore, a systematic theoretical study could confirm this and identify 

related morphological patterns or features. 

• There is a great variability in the morphology of the CN neurons. A step further to this 

research could be the building of a cerebellar neural network, including CN neurons 

with distinct morphology and studying the impact of their computational properties on 

the network activity 
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Appendix A  

A.1 Neuronal models  

Both neuron models were obtained from ModelDB database (Hines et al., 2004). The 

simulations were carried out in NEURON (Hines and Carnevale, 1997). The data analysis was 

performed in Matlab (The Mathworks Inc., 2016). 

A.1.1 CN neuronal model  

A.1.1.1 Deterministic model 

The CN neuronal model was developed originally by Steuber et al., 2011, and translated 

in NEURON by Luthman et al., 2011 (accession numbers: 136175 and 144523, respectively).  

A.1.1.2 Stochastic model 

A.1.1.2.1 Transition state probabilities 

A.1.1.2.1.1 Fast sodium (NaF) and persistent sodium (NaP) channels 
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The transition probabilities are:  

Transition from m0h0 → m1h0: 

Transition from m0h0 → m0h1:  

Transition from m1h0 → m1h1: 

Transition from m1h0 → m2h0: 

Transition from m1h0 → m0h0: 

Transition from m2h0 → m2h1: 

 

 

 

Figure A1 NaF and NaP channels reduced kinetic diagram. The system can be described by eight 

major states. The rate constants are summarized, and their sequence is kinetically identical to the m3h 

Huxley-Hodgkin model. 

𝑝(𝑡) =
3𝛼𝑚

𝛼ℎ + 3𝛼𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 3𝛼𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.1 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 3𝛼𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 3𝛼𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.2 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 2𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 2𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.3 

𝑝(𝑡) =
2𝛼𝑚

2𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.4 

𝑝(𝑡) =
𝛽𝑚

2𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.5 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 𝛼𝑚 + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 𝛼𝑚 + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.6 
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Transition from m2h0 → m3h0: 

Transition from m2h0 → m1h0: 

Transition from m3h0 → m3h1: 

Transition from m3h0 → m2h0: 

Transition from m0h1 → m0h0: 

Transition from m0h1 → m1h1: 

Transition from m1h1 → m1h0: 

Transition from m1h1 → m2h1: 

Transition from m1h1 → m0h1: 

 

 

𝑝(𝑡) =
𝛼𝑚

𝛼𝑚 + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.7 

𝑝(𝑡) =
2𝛽𝑚

𝛼𝑚 + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.8 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 3𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 3𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.9 

𝑝(𝑡) =
3𝛽𝑚

𝛼ℎ + 3𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 3𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.10 

𝑝(𝑡) =
𝛽ℎ

3𝛼𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (3𝛼𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.11 

𝑝(𝑡) =
3𝛼𝑚

3𝛼𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (3𝛼𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.12 

𝑝(𝑡) =
𝛽ℎ

2𝛼𝑚 + 𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.13 

𝑝(𝑡) =
2𝛼𝑚

2𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.14 

𝑝(𝑡) =
𝛽𝑚

2𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.15 
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Transition from m2h1 → m2h0: 

Transition from m2h1 → m3h1: 

Transition from m1h1 → m1h0: 

Transition from m3h1 → m3h0: 

Transition from m3h1 → m2h1: 

A.1.1.2.1.2 Fast delayed rectifier potassium (fKdr) and slow delayed rectifier potassium 

(sKdr) channels 

The transition probabilities are:  

Transition from m0 → m1: 

Transition from m1 → m2:  

 

𝑝(𝑡) =
𝛽ℎ

𝛼𝑚 + 2𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 2𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.16 

𝑝(𝑡) =
𝛼𝑚

𝛼𝑚 + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.17 

𝑝(𝑡) =
2𝛽𝑚

𝛼𝑚 + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.18 

𝑝(𝑡) =
𝛽ℎ

3𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (3𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.19 

𝑝(𝑡) =
3𝛽𝑚

3𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (3𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.20 

 

Figure A2 fKdr and sKdr channels reduced kinetic diagram. The system can be described by five 

major states. The rate constants are summarized, and their sequence is kinetically identical to the m4 
Huxley-Hodgkin model. 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (4𝛼)𝑑𝑡𝑠𝑖𝑚) Equation A.21 

𝑝(𝑡) =
3𝛼

3𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (3𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.22 
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Transition from m1 → m0: 

Transition from m2 → m3:  

Transition from m2 → m1: 

Transition from m3 → m4:  

Transition from m3 → m2: 

Transition from m4 → m3: 

A.1.1.2.1.3 High-voltage-activated calcium (CaHVA) channel 

The transition probabilities are:  

Transition from m0 → m1: 

 

 

𝑝(𝑡) =
𝛽

3𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (3𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.23 

𝑝(𝑡) =
2𝛼

2𝛼 + 2𝛽
(1 − 𝑒𝑥𝑝(− (2𝛼 + 2𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.24 

𝑝(𝑡) =
2𝛽

2𝛼 + 2𝛽
(1 − 𝑒𝑥𝑝(− (2𝛼 + 2𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.25 

𝑝(𝑡) =
𝛼

𝛼 + 3𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 3𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.26 

𝑝(𝑡) =
3𝛽

𝛼 + 3𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 3𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.27 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (4𝛽)𝑑𝑡𝑠𝑖𝑚) Equation A.28 

 

Figure A3 CaHVA channel reduced kinetic diagram. The system can be described by four major 

states. The rate constants are summarized, and their sequence is kinetically identical to the m3 Huxley-

Hodgkin model. 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (3𝛼)𝑑𝑡𝑠𝑖𝑚) Equation A.29 
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Transition from m1 → m2:  

Transition from m1 → m0: 

Transition from m2 → m3:  

Transition from m2 → m1: 

Transition from m3 → m2: 

A.1.1.2.1.4 Low-voltage-activated calcium (CaLVA) channel 

The transition probabilities are:  

Transition from m0h0 → m1h0: 

 

𝑝(𝑡) =
2𝛼

2𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (2𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.30 

𝑝(𝑡) =
𝛽

2𝛼 + 𝛽
(1 − 𝑒𝑥𝑝(− (2𝛼 + 𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.31 

𝑝(𝑡) =
𝛼

𝛼 + 2𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 2𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.32 

𝑝(𝑡) =
2𝛽

𝛼 + 2𝛽
(1 − 𝑒𝑥𝑝(− (𝛼 + 2𝛽)𝑑𝑡𝑠𝑖𝑚)) Equation A.33 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− (3𝛽)𝑑𝑡𝑠𝑖𝑚) Equation A.34 

 

Figure A4 CaLVA channel reduced kinetic diagram. The system can be described by six major 

states. The rate constants are summarized, and their sequence is kinetically identical to the m2h   Huxley-

Hodgkin model. 

𝑝(𝑡) =
2𝛼𝑚

𝛼ℎ + 2𝛼𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 2𝛼𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.35 
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Transition from m0h0 → m0h1:  

Transition from m1h0 → m1h1: 

Transition from m1h0 → m2h0: 

Transition from m2h0 → m2h1: 

Transition from m2h0 → m1h0: 

Transition from m0h1 → m1h1: 

Transition from m0h1 → m0h0: 

Transition from m1h1 → m1h0: 

Transition from m1h1 → m2h1: 

 

 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 2𝛼𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 2𝛼𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.36 

𝑝(𝑡) =
𝛼ℎ

𝛼ℎ + 𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.37 

𝑝(𝑡) =
𝛼𝑚

𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.38 

𝑝(𝑡) =
𝑎ℎ

𝛼ℎ + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.39 

𝑝(𝑡) =
2𝛽𝑚

𝛼ℎ + 2𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼ℎ + 2𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.40 

𝑝(𝑡) =
2𝛼𝑚

2𝛼𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.41 

𝑝(𝑡) =
𝛽ℎ

2𝛼𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (2𝛼𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.42 

𝑝(𝑡) =
𝛽ℎ

𝛼𝑚 + 𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.43 

𝑝(𝑡) =
𝛼𝑚

𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.44 
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Transition from m1h1 → m0h1: 

Transition from m2h1 → m2h0: 

Transition from m2h1 → m1h1: 

A.1.1.2.1.5 Small conductance calcium-dependent potassium (SK) channel 

 The transition probabilities are:  

Transition from z0 → z1: 

Transition from z1 → z0: 

A.1.1.2.2 Single channel conductance  

For the simple compartment simulations, the values of the specific channel 

conductances are based on the model files of each voltage gated channel based on the CN 

model by Steuber et al., 2011, and as translated in NEURON by Luthman et al., 2011. However, 

some values are corrected so there would be a response (spike) to injected current (Table A1). 

The single channel conductance is chosen arbitrary based on values as in Hille, 2001, except 

for the HCN channel which is based on the value from the Kole et al., 2006. 

𝑝(𝑡) =
𝛽𝑚

𝛼𝑚 + 𝛽𝑚
(1 − 𝑒𝑥𝑝(− (𝛼𝑚 + 𝛽𝑚)𝑑𝑡𝑠𝑖𝑚)) Equation A.45 

𝑝(𝑡) =
𝛽ℎ

2𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (2𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.46 

𝑝(𝑡) =
2𝛽𝑚

2𝛽𝑚 + 𝛽ℎ
(1 − 𝑒𝑥𝑝(− (2𝛽𝑚 + 𝛽ℎ)𝑑𝑡𝑠𝑖𝑚)) Equation A.47 

 

Figure A5 SK channel reduced kinetic diagram. The system can be described by four major states. 

The rate constants are summarized, and their sequence is kinetically identical to the z Huxley-Hodgkin 

model. 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− 𝛼)𝑑𝑡𝑠𝑖𝑚 Equation A.48 

𝑝(𝑡) = 1 − 𝑒𝑥𝑝(− 𝛽)𝑑𝑡𝑠𝑖𝑚 Equation A.49 
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In the fully stochastic CN model, the total channel conductance values are as in Steuber 

et al., 2011. The single channel conductance for each stochastic channel is adjusted (Table A2) 

so in each neuronal compartment there would be at least 100 channels of each type, which is a 

moderate population size, so the impact of noise is limited but not totally eliminated. There are 

not known data for the numbers of each channel type in reality. 

Current Single channel conductance (S) 

NaP 3.06626e-13 

NaF 3.83283e-12 

fKdr 3.44954e-12 

sKdr 2.87462e-12 

SK 2.52967e-14 

CaLVA 1.35682e-14 

CaHVA 1.91641e-15 

HCN 2.2997e-13 

Table A2 CN detailed compartmental model 

A.1.1.2.3 Ion channel families 

The model used in this study is a conductance based multicompartmental model, which is 

tuned to replicate experimentally observed electrophysiological characteristics of excitatory 

projection CN neuron. Ion channel subunit heterogeneity is omitted from the description of this 

model (Steuber et al., 2011) and it was not also taken into account for this study. However, a 

possible identification of the CN ion channels’ families is shown in the table below (Table A3)  

Current Family  References 

NaP 
Nav1.1, Nav1.6, 

Naβ1 
 

(Alexander et al., 2017; Magistretti and Alonso, 1999; 

Schaller and Caldwell, 2003; Steuber et al., 2011) 

NaF 
Nav1.1, Nav1.6, 

Naβ1 
 

(Alexander et al., 2017; Raman et al., 2000; Schaller and 

Caldwell, 2003; Steuber et al., 2011) 

fKdr Kv3  
(Alexander et al., 2017; Baranauskas et al., 1999, 2003; 

Steuber et al., 2011) 

Current Specific channel conductance (S/cm2) Single channel conductance (S) 

NaP 1.0e-02 1.0e-12 

NaF 2.5e-03 1.0e-12 

fKdr 1.0e-03 1.0e-12 

sKdr 1.0e-03 1.0e-12 

SK 1.0e-05 1.0e-13 

CaLVA 1.77e-02 1.0e-12 

CaHVA 7.5e-06 1.0e-16 

HCN 1.0e-05 6.8e-12 

Table A1 Single compartmental model  
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sKdr Kv2  
(Alexander et al., 2017; Baranauskas et al., 1999, 2003; 

Steuber et al., 2011) 

SK SK1, SK2l, SK3  

(Aizenman and Linden, 1999; Alexander et al., 2017; 

Jahnsen, 1986; Raman et al., 2000; Sailer et al., 2004; 

Steuber et al., 2011) 

CaLVA Cav3.1  
(Alexander et al., 2017; Gauck et al., 2001; Molineux et 

al., 2006; Steuber et al., 2011) 

CaHVA 

Cav1.2, Cav1.3, 

Cav2.1, Cav2.2, 

Cav2.3 

 
(Alexander et al., 2017; Gauck et al., 2001; Schlick et al., 

2012; Steuber et al., 2011) 

HCN HCN2  
(Alexander et al., 2017; Raman et al., 2000; Steuber et al., 

2011) 

Table A3 CN Ion channel families 

A.1.2 PN neuronal model  

The PN neuronal model is based on the model by Hay et al., 2011 (accession number: 

139653) and enriched with the dual-exponential synaptic conductance models for AMPA, 

NMDA and GABA, with their properties acquired from the model by Hay and Segev, 2015 

(accession number: 156780). 

 


