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Abstract

Large-scale, high-resolution, photometrically calibrated images are key for
many astrophysical problems. The INT Photometric Hα Survey has imaged
the entire northern Galactic Plane in r, i and Hα filters. However, these
images suffer from a number of common imaging problems, including, most
critically, large-scale gradients due to scattered moonlight. The objective of
this work is to produce an automated method for cleaning this data so that
it can be used to produce large-scale and reliable Hα mosaics for scientific
use.

We created dark-time templates to account for airglow, fringing, and other
sources of dark-time counts in the images and then used a Markov Chain
Monte Carlo method to fit a linear, 2-dimensional model to the scattered
moonlight. Bright stars in the images are censored from the fitted images so
they do not influence the fit. Other types of model were explored, as well as
a method that employed Fourier transforms to clean the data, but without
fruition. The method to fit the model to the moonlight background was
originally tested in the i-band, before moving onto the the r-band, subtracting
scaled Hα images to remove nebulosity. An empirical scaling factor was then
used to translate the model fit from the r-band to the Hα band, necessary
because of varying atmospheric conditions.

Finally, the cleaned data were shifted onto a common zero point be-
fore mosaicking into large scale images. The result is a strong groundwork
for cleaning astronomical images by accounting for the various components
to sky background but preserving features of interest. The results of this
process applied to images that cover supernova remnant Simeis 147 show a
substantial improvement over uncleaned imaging data. We also illustrate the
versatility of this process by applying it, unprepared, to other regions in the
Galactic Plane.
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1 Introduction

This work focusses on the cleaning of imaging data from wide field surveys,
particularly narrow-band Hα imaging data that reveals the complexity of the
interstellar medium and the processes at work within it. I therefore begin
my introduction with the interstellar medium (section 1.1) and move on to
the linked phenomena of young stars (1.2) and supernova remnants (1.3),
before going on to briefly introducing the area of sky we have chosen to test
our work. Then I will introduce the observational data itself and discuss its
features.

1.1 The Interstellar Medium (ISM)

The term Interstellar Medium (ISM) encompasses all of the material in a
galaxy between the stars. It is made up almost entirely of gas in various
forms, while the rest of it is dust.

The ISM is intricately connected to star formation, stellar evolution, and
the final death of stars. The ISM covers a wide range of physical scales, from
the sub-pc scales within molecular clouds and compact HII regions, up to
the tens of kpc of entire galaxies.

The most widely used model to describe the composition of the ISM splits
it into 4 phases (Osterbrock, 1984), though it is often described as a 3-phase
model, with the WNM and WIM making up one ’warm phase’;

• Cold gas in the cold neutral medium (CNM) making up HI clouds. The
CNM makes up around only 3% of the ISM by volume but contains
most of its mass, and is in approximate pressure equilibrium with its
surroundings (Field et al., 1969).

• Warm gas in the warm neutral and warm ionized medium (WNM/WIM)
makes up roughly half of all the ISM material by volume. The WNM is
typically found at the edges of HII regions and molecular clouds, while
the WIM is the main component of HII regions, like giant molecular
clouds. The WIM (temperatures of ∼ 8000K) is the primary source of
Hα emission, and therefore of most interest in this work.

• Hot gas in the hot ionized medium (HIM) which fills most of the other
50% of volume of the ISM (McKee and Ostriker, 1977). The HIM is
made up of overlapping supernova bubbles.

This replaced the previously accepted two phase model in Field et al.
(1969), which described the ISM as being made up of only the HIM and CNM.
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Figure 1: A diagram from McKee and Ostriker (1977) displaying the locations of
the 4 main phases of the ISM in a small cloud. Typical values of hydrogen density
are given as n, while the ratio of the number of ionized particles to neutral particles
is x.

Mass exchange is possible between the 3 phases, as cold clouds can be heated
to become diffuse gas, which can further be swept up by SN blast waves and
compressed, forming high-pressure, ionized regions at the shell of supernova
remnants. McKee and Ostriker (1977) proposed that the hot ionized medium
is heated by supernova explosions, occurring in the dying moments of massive
star evolution, that move through the dense ISM cloud with the shock front
of the supernova remnants. In this way, through supernovae as well as stellar
winds flowing from stars throughout their life-cycles, vast amounts of energy
are pumped into the ISM, sparking turbulence and ionization of gas, as well
as star formation. The ionised gas produced by these interactions with the
ISM, allow us to observe and study it in detail.

While many different models of the composition of the ISM exist, another
of note is the five phase model (Osterbrock, 1984). This model adds to the
already set CNM, WNM,WIM and HIM with the fifth thermal phase of H2

molecular clouds. These cold (∼15K) clouds are sites of star formation that
contain around a third of the total mass of the ISM, while making up only
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Figure 2: The sweeping up of cold clouds by a SN blastwave (the HIM) propagating
from the top right, from McKee and Ostriker (1977). The blast wave sweeps up
clouds and distorts their warm gas (dotted regions, the WIM/WNM) around the
cold cores (dark, hatched dots, the CNM).

∼0.05% of its volume. As well as molecular clouds, dust must also be included
as it is a strong source of extinction and consists of all the non-gas particles
within the ISM.1

The cold, dense clouds that make up the CNM phase are found embedded
in the HIM and form the smallest phase in terms of volume in the ISM with
a filling factor of ' 0.025. The typical structure of a cold cloud in McKee
and Ostriker (1977)’s 3-phase model can be seen in figure 1, and shows a
cold, central cloud surrounded by warm neutral and warn ionized gas from
the WNM and WIM phase. This extended cloud, itself a part of the ISM, is
surrounded by the HIM which makes up the majority of the volume with a
filling factor of ∼ 0.7.

The pressure in the ISM is maintained by supernovae (SN) in the HIM.
Where supernova remnants (SNR) expand and overlap before they fade away,
the ISM pressure will rise until, at the overlapping point, the pressure in the
SNR is the same as the pressure in the ISM. Using this assumption, McKee
and Ostriker (1977) was able to correctly predict the pressure of the ISM
from the evolution of SNR in the 3-phase ISM model. As the expanding SN
blast-wave propagates through the ISM, sweeping up material, it ’evaporates’
the cold clouds of gas in the CNM, ionizing them and elevating their material
to the HIM (Figure 2).

1Ohio State University course notes, P. I-25: http://www.astronomy.ohio-
state.edu/ pogge/Ast871/Notes/Intro.pdf
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1.2 Star formation

As the ISM cools, the cold molecular clouds collapse to form new stars of
various masses. These stars fuse the abundant hydrogen into more complex
elements which, in their dying moments, they expel into the surrounding ISM,
enriching it. These interactions with the local ISM mean that when future
star formation occurs and a protoplanetary disk forms and collapses to form
planets, those planets will contain heavier elements than just hydrogen or
helium, like those we see on Earth.

Pre-main sequence stars are split into 2 types; T Tauri and Herbig Ae/Be
stars. T Tauri stars are pre-main sequence stars that become visible when
they are able to generate sufficient energy and have dispersed enough material
to be optically detected (Bertout and Bouvier, 1989). T Tauri stars are
divided into two classes: Classical T Tauri stars (CTTS), which are strong
accretors, and Weak-lined T Tauri stars (WTTS), which are not. About half
of all T Tauri stars still have a disk of matter surrounding them, and are in
the process of contracting onto the main sequence in the Hertzsprung-Russel
(H-R) diagram.

Herbig Ae/Be stars are the more massive counterparts to T Tauri stars
and range in mass from around 3 to 10M�. These intermediate mass (Waters,
2006) HAeBe stars are pre-main sequence objects since they have not yet
started burning hydrogen.

High mass pre-main sequence objects (masses greater than 8M�) are not
observed often, since they have short lived pre-main sequence life-cycles,
which are over while the star is still embedded and obscured from us in the
molecular cloud it was formed in. T Tauri and HAeBe stars are short-lived
phases and therefore examples of them are rare, which hinders our attempts
to understand their properties and their evolution. Wide area surveys, par-
ticularly those using the Hα filter, are useful for identifying CTTS due to
their excess Hα emission that arises from accretion.

1.3 Supernovae and Supernova Remnants

1.3.1 The origin of supernovae

Supernovae are amongst the most luminous and energetic events in the Uni-
verse. They come in a number of varieties and originate from two major
cosmic events: the thermal runaway of a white dwarf star (resulting in Type
Ia supernovae) or the core collapse of a massive (> 8 M�) star (resulting in
Type Ib, Ic or Type II supernovae).

High mass stars (masses greater than 8M�) have main sequence lifetimes
that are considerably shorter than low-mass stars, but are massive enough
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that their core temperatures can eventually reach the high temperatures
needed to fuse helium, followed by carbon, then neon, and so on, until the core
is primed for the final extremely rapid burning of silicon to nickel, with layers
of the remains of previous burning phases encircling it. Once nuclear burning
ceases, the star is no longer in hydro-static equilibrium and it collapses at
around a quarter of the speed of light, causing the outer layers to rebound
off the collapsed core in a brilliant supernova explosion. These explosions
return a considerable amount of material to the ISM, material that has been
enriched within the progenitor star, thus enriching and replenishing the ISM.
The material ejected in a supernova forms a hypersonic shock wave which
continually expands with the cooling material. As the material expands
and cools over time, it becomes visible at progressively longer wavelengths,
allowing us to view its various properties. The remaining ’bubble’ of material
is a ’supernova remnant’ (Weiler and Sramek, 1988).

Figure 3: A Chandra X-ray image of Tycho’s supernova remnant displaying the
key role X-ray astrophysics plays in studying the early stages of a SNR. Image
taken from: chandra.harvard.edu/photo/2011/tycho2/.

Type Ia supernova originate from a star with a mass of less than 8M�.
Once such stars have finished burning hydrogen they will collapse, before
moving on to the red giant branch (RGB) where the star burns hydrogen
in a shell surrounding a degenerate helium core. Following this, it will burn
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helium in a ’helium flash’ before, once the star has heated up sufficiently, it
begins helium burning in its core, at which point it is found on the horizontal
branch (HB). When core helium burning has finished and the star is left
with a carbon-oxygen core the star contracts and heats up. It is unable
to reach sufficient temperatures to fuse carbon in its core, but instead will
undergo an unstable process of helium burning in shells surrounding the core.
During this time the star is observed on the asymptotic giant branch (AGB).
During the AGB phase, the dying star sheds most of its mass in its outer
layers, which are then ionized by the exposed hot core, briefly becoming
visible and prominent as a planetary nebula (PN), before dispersing and the
star eventually cooling as a white dwarf. White dwarfs cannot have masses
higher than 1.4 M�(the Chandrasekhar limit), where their densities would be
high enough to overcome electron degeneracy and they would collapse into a
neutron star.

Type Ia supernovae occur in a binary system where one star (the primary)
is a white dwarf and the other (the secondary) is a mass-transferring ’donor’
star. Mass from the donor star is accreted into a disk around the primary,
making the donor star unstable, resulting in nova explosions (smaller than
supernovae). The accreted matter in the disk falls steadily on to the primary,
increasing its mass. In some cases, this mass increase pushes the mass of the
white dwarf over the Chandrasekhar limit, resulting in a supernova explosion
(Robinson, 1976). Because these type Ia supernovae are often viewed as
occurring when the primary star reaches the Chandrasekhar limit, they are
treated as standard candles.

1.3.2 The evolution of supernova remnants

In general, a supernova explosion, regardless of its type, follows the same set
of phases (Weiler and Sramek, 1988):

• As soon as a supernova goes off, the ejecta is far denser and hotter
than the circumstellar medium (CSM) around it. In fact, core col-
lapse supernovae will have already cleared much of their environment
through stellar winds and ejecta. At this point, the ’blast-wave’ of
ejecta propagates through the CSM at a near constant velocity caus-
ing a shock-wave as it goes. This is called the ’free expansion phase’.
(Reynolds, 2008; Smartt, 2009)

• At the point at which the pressure of the shocked CSM exceeds the
thermal pressure of the ejecta, a reverse shock begins to propagate
backwards, moving back towards the supernova. As this reverse shock-
wave moves through the ejecta, it slows and heats it. Once this reverse
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shock reaches the centre and all the ejecta is very hot, the free expansion
phase is over. These early, hot stages where the gas is being shock
heated are traced by strong X-ray emission (Reynolds, 2008, Figure 3).

• As the expansion of the supernova remnant stalls, it is picked up by the
fast radiative expansion of the hot gas interior, which leaves a cool, thin
gas shell on the outside of the blast wave sweeping up material. This
stage has strong optical emission, through the recombination of ionized
hydrogen and oxygen atoms. This new phase is the snow plough phase,
with typical shock speeds of 150km/s.

• Beyond the snow plough phase, a supernova remnant fades away as it
gradually slows and its pressure declines. When the shock wave slows
to the effective sound speed, it becomes a sound wave in its last state
before it fades slowly away into the ISM. This phase is best observed
through emission from the neutral hydrogen atoms seen in the radio.

1.3.3 Imaging and studying supernova remnants

SNRs are typically studied in the X-ray, radio and optical, with each playing
an important role as the wavelengths of the peak brightness of a SNR varies
over time, with its evolution. Early on in the lifetime of a SNR, while it is
still a hot, dense ball of freely expanding gas, they are best viewed through
high-energy X-rays. In fact, throughout the majority of a SNRs evolution,
its very hot phases (∼ 10000K) are most visible in the X-ray, the cool shell of
swept-up ISM material in front of the shock front is most visible in the radio,
while the hot, shock-ionized ISM material forming filamentary structure is
most visible in the optical and, more specifically, Hα.

Wide field surveys allow us to identify new supernova remnants so we
can better study their properties e.g. Sabin et al. (2013). They allow us to
look at both the large scale structure of SNRs, how they have evolved, their
morphology etc, as well as the very small scales of their structure, to see how
they are interacting with the ISM. A current feature of interest in the area of
SNRs in the literature is self-sealing shells. Self-sealing shells, or ’blowouts’
(Figure 4), are described in Pittard (2013) as occurring on the surfaces of
SNRs when the dense, cool shell at the blastwave confining the hot ejecta
inside ruptures and the hot material is able to rapidly leak out into the ISM.
This escaping ejecta sweeps up cool ISM material of its own at its outer
edge and self-seals, forming a ’blister’ at the surface of the SNR. Pittard
(2013) suggests that ruptures can only occur while the SNR is expanding
fast enough that the decelerating shell can become unstable. This initial fast
expansion should affect the observed velocity structure of the shell while the
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Figure 4: An example blow-out candidate as seen in the supernova remnant Simeis
147. IPHAS Hα data.

blow-out exists. There may also be links between the size of the blow-out
and the size of the overall SNR shell.

Other SNR structures of interest in the literature include secondary shells
(Lozinskaya, 1992). These shells exist separately from the primary blast-wave
associated with an SNR and appear much fainter, found in different cases to
exist both inside and outside SNRs. These secondary blast-waves could be
the remains of a second supernova from the host, or potentially from a binary
system. They may also be associated with the primary SNR, possibly the
remains of the return shock that propagates back through the ejecta in the
free-expansion phase. For these secondary shocks to be better understood,
they must first be found around current SNR in high-resolution imagery.
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1.3.4 Simeis 147

Producing clean, high-resolution images is the goal of this work, and Simeis
147 is chosen as the ideal candidate to test the method because of its location
on the sky, its large area and highly evolved morphology, its faintness (its
structure is sensitive to changes of even a couple of counts in an image) and
because of the relatively large amount of lower-quality data in its area.

Simeis 147 (figure 5) - otherwise known as G180.0-01.7, Shajn 147, Sharp-
less 2-240 or S147 - is a late-stage supernova remnant towards the galactic
anti-centre and on the galactic mid plane. Discovered in 1952 and at a dis-
tance of 0.8-1.6 kpc (Gvaramadze, 2006), S147 is a large, faint shell-type
SNR on the near side of the Perseus arm that consists of numerous filaments
embedded in large-scale diffuse emission. The energy released in the explo-
sion resulting in S147 is believed to have been ∼ 11× 1050n0 ergs (Silk and
Wallerstein, 1973), where n0 is the number density of the pre-shock ISM,
which is typically ∼1 particle/cm3.

Figure 5: An amateur image of S147 covering ∼6×4.5 degrees. Image taken from:
Rogelio Bernal Andreo, http : //apod.nasa.gov/apod/ap121009.html.

Anderson et al. (1996) discovered a pulsar in S147, called PSR J0538+2817,
40 arcmin west of the centre of the SNR with an age upper limit of 6× 105

years, consistent with the age of the remnant at 8 × 104 to 2 × 105 years.
A second, runaway B0.5V star within S147 that is consistent with having
been at the same position as the central pulsar approximately 30 kyr ago
was found by Kramer et al. (2003), possibly part of an old binary system
between it and the pulsar. The pulsar has a dispersion measured distance
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of 1.8 kpc, consistent again with that of S147 at 0.8-1.6 kpc. There is an
offset between the pulsar’s observed characteristic age (6 × 105 years) and
its kinematic age (3× 104 years, Dinçel et al., 2015) suggested to be due to
there having been two supernovae (Gvaramadze, 2006), one that gave rise to
the pulsar and the other responsible for the visible SNR. This would imply
that the SNR has expanded into a region of space already partly cleared by
the first SN.

There is some indication that the northern half of S147 expands faster
than the southern half (figure 2 of Lozinskaya, 1976), with a sharp bound-
ary still evident in the south while being less regular in the north. The
east and west edges of S147 show signs of blow-outs (see figure 5). The ex-
pansion velocity of 80-120km/s implies that the SNR has entered the final,
momentum-conserving, snow plough phase of its evolution. The same con-
clusion can be reached from the good positional agreement between several
optical and radio filaments (Sofue et al., 1980; Fuerst and Reich, 1986) and
from the non-detection of X-ray emission from the SNR’s shell (Sauvageot
et al., 1990) .

There is seen to be high velocity gas behind S147 in Silk and Waller-
stein (1973), who also shows a sequence between the SNRs Vela XYZ, the
Cygnus loop and S147 in increasing size, age, expansion velocity and radio
surface brightness. High electron densities in the gas in one sightline sug-
gest a shocked interstellar cloud that has not been completely recombined
(Phillips and Gondhalekar, 1983). Less depletion in the high-velocity inter-
stellar gas than in the low-velocity gas (Phillips et al., 1981) suggests the
sputtering of grains: where the high energy of the SN blast-wave has broken
apart dust.

SNR become more and more unstable as they age. To properly under-
stand the physical processes that go on inside SNRs and how SNRs affect
their surroundings, they can be studied using hydrodynamic simulations that
can be compared with the structure of observed SNRs.

1.4 Hα imaging surveys

Hα surveys are of a high interest in astrophysics due to the abundance of
Hα light which is emitted by many stars and ionized emission nebulae (both
planetary nebulae and Hii regions), allowing for a better understanding of
these objects. Hα is created when an electron in a hydrogen atom falls from
its third to its second energy level, and has a wavelength of 656nm, which
falls in the red part of the electromagnetic spectrum.

Emission nebulae are of particular interest in the eyes of this project.
These regions are ionized by one or more nearby hot stars that emit a signif-
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icant fraction of high-energy photons capable of ionizing hydrogen (Draine,
2011). The emission of Hα comes from the excitation of an electron in the
hydrogen atom up to the third energy level in the Bohr model of the atom,
before is cascades back down the energy levels, releasing photons of light.
The transition from the 3rd to the 2nd energy level is responsible for Hα
light, releasing a photon at its specific wavelength (656nm). The energy re-
quired to excite an electron to the 3rd energy level (hν ∼12eV) is around the
same as that required to ionise hydrogen (hν ≥13.6eV). Therefore, around
half of the Hα emission comes from the ionization, and the recombination of
hydrogen. During recombination, the electron typically falls from a higher
initial energy level and, when it cascades down from the 3rd to the 2nd levels,
releases Hα .

Most of the short-lived phases of star formation and stellar evolution, as
well as the phases of the ISM, can be investigated using Hα surveys since
they invariably lead to enhanced Hα emission. Feedback in molecular clouds
coming from various processes can also be investigated to indirectly explore
stellar evolution features, such as stellar winds, the removal of circumstel-
lar accretion disks, and the effects of supernovae on the local environment.
Currently, we are lacking large samples of objects in all the phases discussed
here. Hα surveys allow us to identify large numbers of objects which will
help us understand how stars evolve through these phases and which can
then be followed up with spectroscopy.

Figure 6: The Finkbeiner Composite Hα map of the Galactic plane with the area
covered by IPHAS marked out by the solid red line. This image covers a galactic
latitude range of −40◦ < b < 40◦ and the entire Galactic Plane with the galactic
centre in the middle. Image taken from www.skymaps.info.

1.5 IPHAS

The main focus of this report is on techniques to better prepare IPHAS Hα
data for scientific exploitation.

The INT (Isaac Newton Telescope, La Palma) Photometric Hα Survey of
the Northern Galactic Plane (IPHAS, Drew et al., 2005) is a 1800deg2 survey
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Figure 7: Transmission profiles for the 3 filters used by IPHAS. The solid lines
represent the Sloan r (left) and i (right) bands, whilst Hα is plotted as the dashed
line. Figure taken from Drew et al. 2005.

started in 2003, imaging in the galactic longitude range of l = 30◦ − 215◦

with a latitude of −5◦ < b < 5◦ (figure 6) using the Sloan r and i broad-
band, and the Hα narrow-band filters (Figure 7). It has a median seeing
of 1.1” and an r-band 5 σ depth of 21.2 mag. IPHAS was designed to
identify objects in short phases of stellar evolution, i.e. supernova remnants,
planetary nebula, T-Tauri stars, and Wolf-Rayet stars (all objects that can
be efficiently identified from their excess Hα emission), as well as resolve the
overall nebulosity of the ISM.

IPHAS makes use of the Wide Field Camera (WFC) on the 2.5-m INT

Figure 8: The Isaac Newton Telescope at its current site in La Palma, photo
courtesy of the IAC.
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(figure 8). The exposure time for images in the Hα filter are 120sec, but 30sec
and 10sec for r and i respectively. The WFC comprises of 4 anti-reflection-
coated, thinned 4096 x 2048 CCDs in an L-shape arrangement, with a total
field of view of 0.29deg2 (Figure 9). Each pixel has a width of 13.5µm which
corresponds to an on-sky pixel dimension of 0.333 x 0.333 arcsec2.

1.5.1 Observing strategy

Since there are not insignificant gaps between the 4 CCDs (seen in Figure
9), each pointing has a corresponding offset pointing which is displaced by
5’ west and south in order to fill in the gaps between CCDs. The 2 fields
that make up the footprint are called the ’on’ and ’off’ pointings and both
together make a ’field pair’ or a ’set of exposures’ (Figure 10), consisting of
8 CCD frames. Each field pair is observed in all 3 filters within 10 minutes
to minimize any variability between on- and off-frames and between different
filters.

Figure 9: The setup and relative positions of the 4 CCDs making up the WFC.
North is up, East is Left.

1.5.2 Data processing

IPHAS observational data are first sent to the Cambridge Astronomical Sur-
vey Unit (CASU) for initial pipeline processing. The pipeline was originally
prepared for the INT Wide Field imaging survey (WFS, McMahon et al.,
2001), a 200 deg2 extragalactic survey that ran between 1998 and 2003.

IPHAS uses the same telescope and camera as the WFS and so can benefit
from the same pipeline. In short, this works in 2 major steps, described in
more detail in Irwin and Lewis (2001). The first is the image processing,
which completes bias subtraction, initial flat fielding to take off internal gain
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correction, and de-fringing of the i-band images. The second step is for object
detection, which works to estimate the background counts and improve the
ability to detect faint objects. A detection is when 4 or more neighbouring
pixels have more counts than the number of background counts by at least
1.25σ.

1.5.3 Data releases

IPHAS has had 2 major data releases to date detailed in González-Solares
et al. (2008) and Barentsen et al. (2014). The initial data release (IDR)
contained 200 million unique objects found in 1600deg2 of the footprint,
whilst the second data release, in 2014, contained photometry for 219 million
sources from 92% of the IPHAS footprint. The data included in this second
data release (DR2) came from observations carried out from the start of
the survey in 2003 up until 2012. The data contained in DR2 is not only
uniformally calibrated, but contains further quality control measures than in
the pipeline or the IDR.

Figure 10: A field pair in the IPHAS survey, displaying the overlap of the ’on’ and
’off’ observations. This image comes from Barentsen et al. (2014)

More recent observations have taken place, up to the present day, as a
means to replace ’bad’ data. The ’bad’ data is defined in Section 1.6. Some of
the images within the data set known to be of particularly poor quality have
been re-observed since DR2. This data, though not published, is available
for use in this work and, where appropriate, has been used as replacement for
particularly problematic fields. The final survey database will contain 15270
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Figure 11: The coverage of the IPHAS survey at the time of DR2. Each semi-
transparent point is a quality-approved pointing included in DR2, with small over-
laps at the edges of each. Any white gaps are regions where no data has passed the
quality control, and the few that are light grey have one offset of the on-off pointing
missing. The black strip in the top panel is a side-effect of the tilting pattern which
begins at RA = 0h. This figure comes from Barentsen et al. (2014)

.

quality-controlled sets of exposures coming very close to a complete coverage
of the northern galactic plane at > 99% completeness. The majority of the
15270 sets of exposures, around 80% , can benefit from some level of sky
correction.

1.6 Data quality

Data released in DR2 (figure 11) was subjected to rigorous photometric tests
which set limits on various quality criteria which, if they weren’t met, led to
data being excluded from the data release and marked as ’bad’ data. These
criteria are as follows:

• Any data where the 5 σ limiting magnitude is brighter than 20th magni-
tude in the r-band and 19th magnitude in the i-band and Hα is deemed
bad data. The 5 σ limiting magnitude is defined in Barentsen et al.
(2014) as the magnitude a point source would have if its flux were equal
to five times the level of noise in the sky background.

• The measure of the elongation of the point spread function (PSF) of a
point source is its ellipticity and is zero in a perfect noise free environ-
ment (where zero means a circular PSF). In DR2, any data exceeding
an ellipticity of e=0.3 is excluded.
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• Data is accepted in DR2 up to a seeing of 2.5” to maximise the sky
area included in the data release. Any images with a seeing greater
than 2.5” were excluded from DR2.

• The field pairs of each set of exposures are analysed to check for con-
sistency across the overlapping regions. Any field pairs where more
than 2% of the stars had inconsistent measurements of their magni-
tudes at or above 0.2 mag or where 25% were inconsistent at 0.1 mag
were excluded from DR2.

• Every image was visually inspected by a team of 20 members of the
IPHAS collaboration looking for extreme effects of clouds and scattered
light.

• Source density maps were created which showed the number density
of the detectable sources down to 20th mag to check the health of the
data across all three bands.

• Only images that contained data across all three filters always taken
within 5 minutes of one another were included.

Tests like these are vital in controlling the data since telescope time for
IPHAS was allocated for specific dates and not for specific conditions, so a
control has to be put in place to limit the flow of poor data into the public
domain. In many cases, gaps in the survey were preferred over data of a very
poor quality. In the case of this project however, much more of the data is of
use since the criteria for imaging data are different to that for photometric
data. On average, there are 1.5 observations for each of the 15270 fields,
so for the purposes required here, it is almost always better to have some
data, than no data and gaps in the mosaics. For 15262 of the fields the ’best’
data has been selected and is used in the mosaicking process. Here ’best’
data is, in a case where there is more than 1 observation for a field, the data
that has the lowest background count levels, which originate primarily from
the moon and cloud cover. Only 8 fields of the survey have data where the
interference of clouds is so high that they would have a serious detrimental
effect on the local region of a mosaic should they be included, and where a
replacement observation has not yet been made. For any other fields where
only 1 observation has been taken, either because it is of a high enough quality
or because they have not yet been repeated, these observations constitute the
’best’ data available to us.

Although some of the data not included in DR2 is used for the purposes
of this project, we still define ’good’ and ’bad’ data photometrically, in the
same way as Barentsen et al. (2014).
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2 The Problem

The background of images taken with ground-based telescopes would, ideally,
have zero signal. However, in reality the background of each image varies
due to different sources that each contribute varying levels of unwanted light.
Understanding each source and its contribution to an image is key to ensuring
that accurate readings are taken for any scientific work, as well as for better
understanding of the data themselves.

In the IPHAS dataset, a number of fields contain a significant and varying
amount of background light, originating from the moon and other dark-sky
sources. Here we look at the contributions to the background of the IPHAS
data, and the steps taken to understand and account for each.

2.1 ’Dark-Sky’ sources of background

Airglow is the brightest contributor of light to the dark sky, contributing
the main spectral features in the spectrum (figure 12). It originates from
emission by atoms and molecules in the upper atmosphere that have been
excited by solar UV radiation.

Figure 12: The typical spectrum of the La Palma moonless night sky. The three
filters used in IPHAS are marked. The main contributors to airglow in the data are
the OI and Na doublet lines (NaD) in r, the O2 lines in i, and the OH lines across
all three. There is a very small contribution from Mercury (Hg) at the shorter
end of the r-band. There are also much smaller contributions from other sources,
primarily street-light which mostly appears as NaD line emission. Image taken
from: www.ing.iac.es/Astronomy/observing/conditions/skybr/skybr.html
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The key contributors to the airglow seen in the IPHAS images are lines
from hydroxyl (OH, Meinel, 1950b,a), OI seen at 5577, 6300 and 6364 Angstroms
(Å ), and the sodium doublet (NaD) seen at 5890 and 5895Å coming from
nearby street-light on La Palma (Benn and Ellison, 2007). These sources of
airglow sit in defined layers in the atmosphere with OH, NaD and the 5577Å
OI line at ∼90km, and with the OI 6300Å and 6364Å lines originating from
∼300km.

Figure 13: The dependence of sky brightness on airmass at La
Palma. Stars represent measurements with ecliptic latitude of >30
degrees, while circles represent <30 degrees. The dashed line rep-
resents a typical solar-minimum sky brightness. Image taken from:
www.ing.iac.es/Astronomy/observing/conditions/skybr/skybr.html

Airglow varies by 0.03 +- 0.07 mag from the beginning to the end of a
night at La Palma (Benn and Ellison, 2007), which is consistent with weak
or no variation. However sky brightness is observed to vary with ecliptic
latitude by ∼ 0.4 mag between 0 and 90 degrees. Some variation of sky
brightness occurs with changing airmass. Airmass is a relative indicator of
how much atmosphere the line of sight of an observation passes through. An
airmass of 1 means the telescope is pointing straight up. For most IPHAS
observations the airmass is between 1-1.5, though very occasionally data were
obtained up to an airmass of 2. Unsurprisingly, the sky brightness increases
with increasing airmass (so with an increasing atmospheric contribution) as
in figure 13.

There is a small (∼<0.1 mag) contribution to the night sky brightness
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from light pollution from residents of La Palma itself, as well as the sur-
rounding islands. The majority of contaminating light from human sources
is the contribution from the ∼14000 street lamps on La Palma, with a total
contribution of ∼0.03 mag in all bands to the zenith continuum of the night
sky brightness.

2.2 i-band Fringing

Fringing in the i-band originates from the airglow OH lines seen in Section
2.1 interfering as a result of internal reflections in the CCD chips. It appears
as a wave-like structure in the i-band data (figure 14) and contributes ∼2%
(Irwin and Lewis, 2001) of the total counts in the images. It is almost entirely
removed in the pipeline by CASU, who use a library of i-band fringe frames
from other observing runs using the INT WFC to reduce the fringing by
at least a factor of 10, though some will remain since it varies significantly
on a nightly basis. When i-band data is mosaicked, overlapping fringing is
exaggerated in particularly strong cases, and can be visible in a final mosaic
as in figure 14. In Fourier space (Section 4), fringing is represented as a
quasi-periodic signal, meaning it is not defined as one feature or frequency in
Fourier space and as such cannot be removed, without potentially removing
astronomical signal as well.

Figure 14: A section of an i-band mosaic with IPHAS data. The wave-like ripples
of the fringe pattern are clearly visible through the centre of the image, even after
all cleaning and data processing has taken place. There is a satellite trail in this
image in the top left.

2.3 Moonlight

The contribution that moonlight makes to IPHAS images is both complex
and time variable, and is the main focus of this project. At the beginning of
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Figure 15: The variation of night glow and moonlight across the spectrum
as a function of lunar phase, with the three IPHAS filters marked. The
dependence of the strength of the moonlight on lunar phase at the typi-
cal wavelengths observed by IPHAS is clear. Image taken from: http :
//www.photonics.com/Article.aspx?AID = 50540

data collection in IPHAS, observations were completed at any level of moon
brightness throughout the year. Observations during brighter time were, as
the analysis went on, seen to have varying levels of background counts in
a slope across each CCD. As this factor in the quality of the data became
apparent, data collection obeyed tighter rules regarding moon altitude and
phase, as well as an increased moon separation (the distance on the sky be-
tween the moon’s position and the direction the telescope is facing). However
the early bright-time data is still the best available for ∼8% of the IPHAS
region (at the time of DR2). It is these data, that account for the patches
in figure 6. This scattered moonlight must be cleaned up, to allow for future
calibration and scientific exploitation of all the data.

The moonlight affecting the IPHAS data is complex in origin. Part of it
is straightforwardly-imaged scattered light pervading the night sky. Part of
it can also be due to reflection off the inside of the telescope dome and across
the CCD array. The result of this is an illumination that is not necessarily
uniform across all four CCDs in one observation, and so a fix that works
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Figure 16: A particularly bad example of scattered moonlight in the background of
an IPHAS image.

on a CCD-by-CCD basis is required. It is also noted that cloud cover has
an effect on the moonlight present in an image: in a case where the moon
is bright yet highly separated from the observed region, any clouds present
at the time of observation will alter the scattering of the moonlight across
the sky, and may produce a localised gradient of scattered moonlight on the
image.

The brightness of the scattered moonlight on the images accordingly
varies depending on many factors: the phase of the moon (figure 15), its
altitude above the horizon, its separation from the direction the telescope is
pointing, as well as the extent (and position) of cloud cover across the sky.
Figure 16 shows a particularly strong case of scattered moonlight, which adds
anywhere from only a couple of counts to an image, up to the order of ∼2000
counts in the worst-case scenarios (these are very rare, and in most cases
have been replaced in the winter of 2015).

In order for large scale, fully calibrated and high resolution mosaics to be
produced and fully utilised by a survey such as IPHAS, all contributions to
the background must be fully understood and accounted for. In the case of
IPHAS, the biggest contributor delaying a complete and fully isotropic and
homogeneous data set is the moonlight, and understanding and accounting
for it in the data set is the focus of this project.
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2.4 i or r to clean Hα

The Hα data cannot be directly cleaned of scattered moonlight since this
narrowband also contains the diffuse nebulous structure that is of key inter-
est, and it is impossible to separate out the two. Instead, we can make use
of the two broad band filters, r and i, and the knowledge of their relative
widths to fit a model in one of the broad bands before scaling it to the Hα ,
thus avoiding removing the counts of interest.

The i-band data has the major advantage of containing no nebulous emis-
sion, making it ideal for finding and removing the moonlight background. It
does however, as in figures 12 and 15, contain a much brighter dark-time
component, predominantly from the OH airglow, leading to fringing.

The r-band data however, while being ’contaminated’ by the Hα nebulous
emission, has a much weaker and simpler dark-time component that more
closely resembles the dark-time component in the Hα narrowband. The r-
band data is obtained directly after the Hα , minimising any variation.

The fringing component of the i-band is a complex issue in the cleaning
process, but the issue of the nebulous structure in the r-band can be overcome
using its matching Hα data, as explored further in Section 5. This, along
with the simpler dark-sky component make using the r-band the more ideal
path to producing clean Hα data.

Figure 17: The same figure as figure 11 but with the location of S147 marked as
the black square. S147 falls very near the galactic equator at b=-1.6, so has a large
amount of surrounding data, as well as falling in a region with a relatively large
number of problematic fields- the focus of this project.

Throughout the cleaning process, we use the region around S147 as the
test of our method. As well as the details listed in Section 1.3.4, the size
and location (figure 17) of S147 make it ideal. Covering ∼ 3◦ × 3◦ on the
sky at the galactic anti-centre, the images in this region contain a good mix
of filamentary structure, high quality data, troublesome fields with a mix of
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the problems discussed above, and cover a large region ideal for testing the
ability of the method to produce clean, large-scale mosaics.
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3 Model Fitting the Background

In order to effectively remove the moonlight (Section 2) and arrive at a flat
and dark background, we must, after removing the airglow as accurately
as can be expected, have a method to remove the remaining counts in an
accurate and adaptable way. A couple of methods are explored in this work.
The first, fitting a model to the background for removal, is explored in this
chapter.

3.1 Initial data cleaning

Before any model fitting or mosaicking can be attempted on the data, it must
first go through some initial data processing. Bad pixels on the CCDs can
contribute unwanted counts to the data which must be accounted for, as well
as fringing seen in the i-band (Section 2.2) and counts that are associated
with the airglow (Section 2.1).

The steps taken are outlined, to account for these issues.

3.1.1 Airglow

Airglow is a significant part of the contribution to the background that must
be accounted for before any other processing takes place. To remove airglow
from our images, we create dark-time frames as follows:

• A table of dark time frames is formed from the IPHAS catalogue. The
images are chosen from good weather nights (seeing < 1.5”, no cloud,
humidity < 60% and stable) and occur when the moon is below the
horizon.

• The data within this table that is going in to the dark-sky templates
is then binned in the same way as the model fitting code (Section 3.2);
taking the median of each 100x100 pixel square.

• The median values are collected for each CCD in each filter and the
airglow frames are made up of these.

• A model (Section 3.2) is fit to these images in order to produce a smooth
template.

These dark-sky templates (figure 18), one for each CCD in each filter (12
in total), are subtracted from the raw data before any other cleaning takes
place. Due to the manner by which they are created, they do not contain just
airglow, but include other dark-time features, such as fringing in the i-band
and background light coming from street lights and nearby settlements.
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Figure 18: An example dark-sky template. Note that even though it appears there
is a gradient across the image, the counts from one end to the other vary by less
than 1. This example applies to CCD 1 in the i-band.

3.1.2 Confidence-map cleaning

We must account for standard issues in imaging data that include any known
bad pixels on the CCDs, and flat fields which correct the images for errors
in the CCD response when there should be no signal. ’Confidence maps’ are
applied to the data early on in the cleaning process to account for any such
camera-based problems.

Twilight flat field exposures are collected every night during observing
runs and stacked to form master calibration flats. Providing no instrumental
changes, creating the master flats in this way has been found to be stable
(Drew et al., 2005). Flat fields contain two components; the gain of an image
and its dark-sky response. The dark-sky response is stored as an observation
for which there is no input signal entering the telescope. In a perfect world,
this would result in a flat and zero response in the resulting image. In the
actual case though, the flat field stores whatever the response of the CCDs
is when there are no counts to be collected. The gain of the data is the
ratio of how the signal given by the CCD varies by how much light there
is. The gain should be linear, so as the amount of light coming in to the
CCD varies, the response given varies equally. In the IPHAS data collection,
the gain differences between each CCD in each filter are found and removed
by normalising the average sky in each to CCD 1, something completed by
CASU in the pipeline processing.
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Figure 19: An example confidence map applied to CCD 3 data. The light pixels
are high confidence while the dark pixels are low, including the large corner area.

Figure 20: An image from CCD 3 after the confidence map shown in figure 19
have been applied. Note the large area missing in the corner, due to the bad corner
on CCD 3.

By combining the master flats; fringe frames for the i-band; and previ-
ously known bad pixel maps, an inverse variance weight is calculated for each
pixel. The weights make up the confidence maps for each image. These con-
fidence maps give each pixel a ’confidence level’, in which the worst pixels
have values ∼ zero, and the pixels with the highest confidence have values
∼ 100. For this work, unless otherwise stated, we have used a confidence
level of 90. This means that in a CCD in any given observation, the pixels
marked in its confidence map as having a confidence less than 90 are reval-
ued as NaN, while any pixels with a confidence above 90 remain as they are.
We have chosen a confidence threshold of 90 in order to remove as much of
the unreliable data as possible, without leaving gaps in our mosaics when it
comes to stitching all the data together. If the confidence threshold is set
too high (e.g. ∼ 95) then too much data is masked (particularly in the bad
corner of CCD 3) for overlapping data to cover up the gaps, and significant
regions of NaN values in the mosaicked images appear.

32



Figure 21: The custom filter used to mask any last bad pixels in CCD 4 once the
confidence cleaning process is complete. This filter has the same dimensions as the
CCD images, and the white region is the line of pixels being masked. Black in this
image identifies good-quality pixels.

An example confidence map for CCD 3 is displayed in figure 19, with
an example image which has been confidence cleaned in figure 20. This
figure looks at CCD 3 in particular because it is known to contain the largest
region of low confidence data, in its top left corner. The issue of the corner in
this CCD is consistent throughout the survey data, however there is enough
overlapping data for it not to be a problem.

There is some bad data that the standard confidence maps don’t remove,
so we constructed our own custom masks to remove, in the same way, any
last artefacts found throughout the data. With an example shown in figure
21, these custom masks allow us to tweak the effect of the confidence cleaning
step without having to interfere with the confidence masks themselves.

3.1.3 Bright star correction

In some cases when the model is being fit to an image, it is influenced by
bright stars and their surrounding scattered light in the image. Especially in
cases where the background gradient being removed is subtle (in some cases
of the order of a couple of counts) bright stars have a profound influence on
what the model fits and later subtracts from the data.

When a bright star falls in one of the CCD images (figure 22), the star not
only contributes a high number of counts to the image, but the surrounding
sky is much brighter also, due to atmospheric effects and saturation of the
CCD. The saturation limit of IPHAS is around the 11th magnitude, so the
effect of saturation will play a role for any stars as bright or brighter than
this level. When the model (Section 3.2) is fit to the image, it will try to fit
all of these extra counts, influencing both the steepness of the slope being fit
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Figure 22: An example image containing a bright star (V-band magnitude of 6.26).
The saturation of the star on the CCD is clearly visible, along with its effect of
increasing the counts in the nearby pixels, particularly where lens effects come into
play. A binned version of this image showing the bright star’s effect on the model
fit can be found at panel (b) of figure 23.

and its orientation on the image (figure 23).
In order to account for this problem, we begin by finding all cases where

a bright star falls on or near an image. For a list of bright stars, we use the
Tycho-2 catalogue (Høg et al., 2000) of the 2.5-million brightest stars in our
galaxy, 71,307 of which fall within the IPHAS region. The catalogue is 99%
complete at V-band magnitude ranges of 0-11. The full magnitude range
is used in the cleaning process: stars near the 11th magnitude end of the
list have an influence on the model fit when a few are grouped within close
proximity of each other on an image.

Listed here are the steps taken to account for bright stars during the
cleaning process. The code can flag up any cases where stars fall on or near
enough to images that they can have a negative effect on the model fit, and
remove the data around them:

• We specify a radius, Rcut that is proportional to the magnitude of the
star (larger radius for brighter stars and smaller radius for the dimmer
stars), and create a list of images which stores any case where a star
falls on an image, or where the image edge falls within a distance, Rcut

of the star.

• We cut out of the images all counts in the pixels within a circle of
radius Rcut from bright stars, and replace them with NaN values.

• Next, we fit the model via the model-fitting code as in Section 3.2 on
the data which now has its brightest stars masked out and, lastly, we
subtract the model from the data before bright star removal.
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Figure 23: The same star as in figure 22. Here, inadequate masking of the bright
star has taken place (panel 1), and the effect it has on the surrounding pixels is
clearly visible in the median-binned image in panel 2. In panel 3, the model fit (see
Section 3.2) to the data has been affected by the star, resulting in a new gradient
appearing in the residuals in panel 4 when the model is subtracted from the image.

The value of Rcut is calculated using an equation derived through trial on
a broad range of magnitudes of stars across the IPHAS catalogue and is as
follows:

Rcut =
8192

mag2
+

1000

mag
+ 100 (1)

where mag is the magnitude of the star being masked.
This method of masking means we are able to model fit and subtract the

moon light background, without the accuracy of our method being influenced
by any bright stars.

3.2 Background model fitting

With our images at a point where all confidence cleaning has taken place, the
next step is to remove the remaining gradient left by scattered moonlight.
We apply our model fitting process throughout this section and Section 4 on
the i-band.

The first step is to bin the images in a way that removes the remaining
stars in the images and allows us to measure the underlying background
levels. If the bin sizes are too large, we will not be sampling the background
in enough detail to pick up the subtlest moonlight gradients, and if they’re
too small, the remaining stars in the images will impact the values of the
bins.
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Figure 24: Panel (a), the cumulative distribution of count values (V0) in each bin
in an example image, using a bin size of 400×400 pixels. Panel (b) contains the
same for a bin size of 200×200 pixels, while panel (c) uses a bin size of 100×100
pixels. The median count for this image is 219.

The images are split into bins 100 x 100 pixels in size, in a grid pattern
with strip of ∼ 100 pixels width around the edge to ensure low-quality edge
pixels are not included. In each of these 100 x 100 pixel bins, the median
value is taken, which leaves a new image containing only background, and
no stars (figure 23, panel 2). A bin size of 100x100 pixels is chosen as a
compromise between sampling the background in as much detail as possible
while not allowing stars to influence the medians in each bin. In the example
image used to create these cumulative distributions in figure 24, the typical
count levels of the stars are over ∼300. Panel (a) uses a bin size of 400x400
(giving a total of 50 bins), and with a median (in this case) of ∼219 counts,
the median value is not influenced by the stars, which fall in only ∼3% of the
pixels in the image. In panel (b), with a bin size of 200x200 (giving a total
of 200 bins), stars are beginning to have an influence on some bins, though
the median, at the 50th percentile, is still a good representation of the non-
stellar counts. By panel (c) and a bin size of 100x100 pixels (giving 800 bins),
a small number of bins are heavily influenced by the brightest stars in the
image and the median in these cases becomes less reliable as representing
the background. However, this issue is solved when the brightest stars in
the data are masked before the image is binned for model fitting, described
in Section 3.1.3. Using a bin size smaller than 100x100 though risks much
dimmer stars that are not later masked having an influence on the median
as a strong indicator of background counts. The number of stars in an image
is not seen to influence the measured sky value in this way.

3.2.1 Fitting the model

Once the images are binned, a representation of only the background remains,
leaving us in a position to fit a model to the data. The model we fit is a
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linear, two-dimensional gradient of:

Z = Ax+By + C (2)

where A, B, and C are the free parameters with A describing how the gra-
dient varies in the x direction; B describing how the gradient varies in the y
direction; and C being a constant. Z is the counts value in each bin.

Our initial method of fitting equation 2 to the images followed a brute-
force Monte Carlo approach, sampling every position in a pre-defined param-
eter grid for A, B and C until the best fit to the observed values (in this case,
Z) was found. Since every value within pre-defined ranges is analysed - for
example, between -1 to 1 in steps of 0.1 for A and B, and between 0 to 1000
in steps of 1 for C - the process involves analysing 400,000 different combi-
nations. The starting range of -1 to 1 was selected for A and B because the
the variation of the background across either axis never exceeds more that
approximately 5% of the constant background level (C). For example if the
variation were 5% of C in the x direction, then A would have a value of 0.05.
Therefore, setting a starting range of -1 to 1 for A and B means that the best
fit will always lie somewhere in the pre-defined parameter space. Next, with
a best fit for each parameter found at this level, a new range of values are
defined for each at a higher level of detail, usually to another decimal place.
In this example case, smaller ranges around the best fit values for A, B and
C would be set, and would be analysed in steps of 0.01 for A and B, and 0.1
for C until best fit values for all three are found at a satisfactory sensitivity.

A major problem with this method was the time it took to run, and the
tendency of the fitting method to fixate on local minima. Even increasing the
detail in one variable, for example steps of 0.01 in A, increased the number
of combinations being analysed by a factor of 10. The second problem, the
finding of local minima becomes a problem since the method began by looking
at the parameter space broken up into course steps, before focussing in on
good fit values in more detail. In the case of our model, the values found as
best fitting A, B and C at this point may not necessarily be the best fit to
the data, but instead may be a local minimum in the parameter space, where
the model fits somewhat, but is not the global minimum that is the best fit
to the background gradient.

3.2.2 Markov Chain Monte Carlo fitting process

To combat these problems of local minima and slow-processing times, we
instead use a Markov Chain Monte Carlo (MCMC) fitting method. MCMC
model fitting still fits the same linear gradient model in equation 2 but does
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not explore the parameter space in a fixed way, rather in a randomised way
that prioritises areas of the parameter space that provide a good fit.

An MCMC code begins by picking a random point within the parameter
space and calculating the quality of the fit at that point. A second random
point is then chosen, and the fit at this second point is compared to the
first to see if it is better or worse. The third point is then chosen, which is
weighted towards the best fit by what the code has learned from the first two
points. This continues for a pre-defined number of ’burn runs’ - runs that
help the MCMC code locate the general area of the best fit. The movement
of the code from one point to the next is called a ’walker’.
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Figure 25: The triangle plot produced by the MCMC model fitting showing the
explored parameter space for each variable (A, B and C). The three histograms
show the distribution of likelihoods resulting from the MCMC code, along with the
median value as well as the 16th and 84th percentiles marked as the dashed lines.
The three density plots show the likelihood distribution in two dimensions for each
available combination.
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Figure 26: An example image that has passed through the MCMC model fitting
process. In panels 1, 2 and 4 the areas where bright stars have been masked (Section
3.1.3) appear as white circles. Panel 2 shows a gradient when the image in panel 1
is binned, which is modelled well in panel 3. The residuals after model subtraction
in panel 4 show a much flatter background, with counts ' 0.

After the ’burn runs’ are complete, the walker continues exploring the
parameter space around the now-localised best fit for another set of pre-
determined runs. For all of these runs, the values of A, B and C trialled by
the walker are stored in a table (the ’burn runs’ having been discarded or
’burnt’). Since the MCMC code has already honed in on the general area of
the best fit in the parameter space, the points that the code trials a fit on once
the burn runs are complete are the same as the distribution of likelihoods
of the best fit. These distributions of likelihood are plotted up as ’triangle
plots’, an example is seen in figure 25.

We use an ’ensemble’ sampler code written in Python, called emcee
(Foreman-Mackey et al., 2013). An ’ensemble’ sampler code uses a speci-
fied number of ’walkers’ to explore the parameter space multiple times at
once, with a random starting value for each. The walkers communicate this
information with each other at each step, making this method very efficient.

In the case of this work, I have used 100 walkers completing 200 burn
runs, followed by a further 1000 runs. This number of burn runs is enough
that the parameter space has been sufficiently sampled and the general region
of the best fit found. Using 100 walkers for 1000 further runs allows the code
to be quick yet accurate by essentially computing 100,000 runs, but by 100
walkers simultaneously.

The distribution of likelihoods of the best fit are shown in figure 25. The
median value for each parameter from these distributions is taken as the best
fit.
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Uncertainties on A, B and C are taken from the 16th and 84th percentiles
of the distribution of values in each parameter that the MCMC code has
explored. Our uncertainties then become the 84th− 50th percentiles for the
upper bound and the 50th − 16th percentiles for the lower (since the 50th
percentile is the median which we take as our final value). Since, as we see
in figure 25, the distribution of the model fits inside the parameter space
appears symmetric, we simplify our uncertainties to one value, of:

σ = (84th− 16th)/2 (3)

Figure 27: The model that is fit in figure 26. Once A, B and C are known, the
model can be reproduced in the same dimensions as the original image, before being
subtracted off.

Once the best fit values of A, B and C for each image are found, we are
able to recreate the model at the scale of the original image using equation 2.
As seen in figure 26, this model (figure 27) is directly subtracted away from
the image (after confidence cleaning, but before any bright star masking)
leaving a flat residual background with a median of ∼ 0.

To judge the quality of the model fit on the data, the root mean square
(RMS) residuals after the model has been subtracted from the image are
calculated and compared with the residuals if a flat (no gradient) model was
used. The RMS tells us how much of the large-scale background gradient
remains unfit and so gives an indication of how well the model has fit the
moonlight. The RMS residual for an image is given by:

RMS =

√∑n
i=1(image−model)2i

n
(4)

where n is the number of bins in the image and image−model is the value
of each bin in the image with the model subtracted.
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Figure 28: (Left) the RMS values of each image in a patch of sky in S147 (con-
taining 150 CCD images) with a flat model removal and (right) the same images
with the linear model removed.

In figure 28 there is a shift of the RMS values towards zero from the
results of a flat model removal in the left-hand panel (where no images have
an RMS less than 1.5) to the results of a linear model removal on the same
data in the right-hand panel. A gradient model is a much-improved fit where,
in most cases, the majority of scattered light is removed, with some outliers
remaining.

3.2.3 Alternative models

As well as the linear two-dimensional model, other models were trialled to
see whether a more complex fit would have an impact on the quality of the
clean on the images. Figure 29 displays the results of such testing. The first
alternative model trialled was a radial gradient given by:

A.r +B = Z (5)

where A is the variation with increasing radius, r, and B is constant. The
radial model includes two other parameters, (C,D), where C and D are the
pixel coordinates where the centre of the radial function lies. We see that for
a radial image, in figure 29 panel (c), the RMS values of the resultant images
have only little variation from those of a linear model (panel a).

The other alternative model applied was a quadratic:

A.x2 +B.x+ C.y2 +D.y + E = Z (6)

where A.x2 + B.x is the quadratic function fit to the x component of the
background gradient, C.y2 + D.y is the quadratic function fit to the y com-
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Figure 29: The results of applying different models to the same patch of sky used in
figure 28. Panel (a) contains the RMS values for the linear model for 150 images.
Panel (b) contains the RMS values for the same 150 images using a quadratic
model, and panel (c) using a radial model.

ponent of the background gradient, and E is the constant. This model was
applied in the same way as the linear model. Since the MCMC code had to
find the best fit to 5 parameters compared to the 3 of the linear model, this
model took longer to compute. In figure 29 panel (b) we see that, although
there appears to be some improvement with this model, there is not a large
enough improvement to say for sure that the more complex model, with its
much longer processing times is a better option over the linear model.

Figure 30: The spread of the A, B and C parameters found for each image in a
selected patch of sky. Both A and B peak at around zero, which is expected as a
perfectly flat background would have A and B of zero, and the majority of cases of
moonlight have subtle gradients. C describes the overall brightness of the moonlight
in the image backgrounds, which is generally quite small, but includes some cases
where the moonlight is considerably bright (high moon phase, high moon altitude).

A comprehensive and simple linear model has been shown to fit and
remove almost all scattered background light in the images, though fringing
will still remain. The data has been cleaned of bad pixels and dark-sky
counts, before being binned up to remove the stars and create an image
representative of only the remaining background levels. The best fit for the
model is found for these binned values, before being subtracted straight out
of the data to produce a cleaned image. A linear fit is chosen since more
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complex models take a longer processing time and become unnecessary as
there is no significant change in the resultant images and their RMS values.
This model fit (with example results in figure 30) provides the core of the final
cleaning method to produce clean Hα mosaics, though in the final process the
i-band is not used. Due to a number of factors including the variable fringing
in the i-band, and that we have the Hα data to account for nebulosity, the
r-band data is used to reach our eventual goal, with the process described in
detail in Section 5.

3.2.4 Iterative approach

In the final version of the code, an iterative method was implemented. In this
approach, the model fitting is completed as normal, the difference coming
when the model is applied. When the fitted model is removed from its
corresponding image, the residual ’cleaned’ image is then binned to reveal
only the residuals in the background, and passed through the model fitting
process again.

Figure 31: The convergence of A and B in the iterative model fit of an example
image. Over iterations, the model converges close to zero.

The convergence of A and B in the model fit over multiple iterations
is plotted in figure 31. If A and B converged to zero, there would be no
background gradient of any kind in the image (the ideal case) however it is
impossible to remove absolutely everything. Running multiple iterations on
each image though has a significant increase on the quality of the fit.
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In the final model fitting code, we use three iterations of model fitting
and removing from each image. Three iterations is chosen as a strong mid-
dle ground between a more accurate and comprehensive background cleaning
avoiding more complex models, without drastically increasing the computa-
tion time of the code to a point where it becomes impractical to run on large
areas of sky.
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4 Fourier Fitting

In this chapter I present my exploration of Fourier Transform (FT) methods
to remove the scattered light gradient from the IPHAS i-band images, includ-
ing an introduction to the Fourier Transform process and a discussion of its
limitations when applied to our data. The principal idea behind trying this
method was to be able to isolate a single feature or set of features in Fourier
space - by Fourier transforming the IPHAS data - that corresponded to the
scattered moonlight. Once identified, it would then be a case of masking
those features within Fourier space before translating the data back to the
spatial domain. The resultant image would then no longer contain its scat-
tered moonlight component, and would therefore remove the need for heavy
processing and could, potentially, be highly accurate.

Joseph Fourier laid the foundations to the concept of splitting a function
of a variable into a series of sine waves of multiples of the variable. Developed
from this concept, and dedicated to Joseph Fourier, Fourier transforms split
a signal into its various frequency components, an idea which can be applied
to imaging data. The Fourier transform of an image decomposes the image
into the spatial frequencies that it is made up of. Since a background gradient
in an image will be associated with a specific set of frequencies, in principle
it may be possible to use the Fourier transform of IPHAS image data to
identify and remove this gradient in Fourier space.

When an image is Fourier transformed it moves from being represented
in the spatial domain, to its equivalent representation in the Fourier domain,
otherwise known as the ’frequency domain’. In the frequency domain, each
individual pixel represents a frequency contained in the whole spatial domain
image.

4.1 Practical implementation of Fourier image analysis

When applying Fourier transforms to images, as in the case of this work,
not all of the frequencies that form the image in the spatial domain are
contained in the equivalent Fourier domain image. Instead a sample set of
frequencies is used, equal to the size of the spatial domain image, that is
large enough to completely describe it. This is known as a ’Discrete Fourier
Transform’ (DFT, Bracewell, 1999) and results in the Fourier domain image
being of the same size as the spatial domain image. A Fast Fourier Transform
(FFT) (Bracewell, 1999) (Brigham, 1988), as used in this work, is the name
of one of a set of algorithms that compute the DFT, but require much less
computation to achieve the same result. An FFT method then computes the
DFT much faster than computing the DFT directly. A DFT has to compute
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Figure 32: A Discrete Fourier Transform (DFT) takes a com-
plex signal, like an pixel in the spatial domain, and splits that sig-
nal into sinusoidal waves of various frequencies, like a spectrum (as
shown here) or an image in the Fourier domain. Image taken from:
www.revisemri.com/questions/creating an image/fourier transform

N2 computations, where N is the number of points (or ’signals’). An FFT
splits that signal into smaller components, for example into two signals of
length N/2. Computing the DFT then on one of these two smaller signals
will take (N/2)2 computations, meaning 2 × (N/2)2 computations for both
signals. This simplifies to (N2)/2 which is half as many computations as in
the DFT. A FFT actually splits the signals into even smaller components,
such that the number of computations needed to create the Fourier domain
image is N × logN .

Figure 33: In this plot, N, along the x-axis, is the spatial frequency, and the am-
plitude of each frequency is plotted in the y-axis. The signal here contains only
one spatial frequency, f. The zero-point frequency (or ’DC term’) is the sum
of all the frequencies making up an image. Since the DC term here is zero,
the image has an average brightness of zero, which implies that f alternated be-
tween equal positive and negative values in the spatial image. Figure taken from:
cns− alumni.bu.edu/ slehar/fourier/fourier.html

The DFT takes an image in the spatial domain and splits it into the

46



separate sinusoids that describe the signal seen in the image. By the time the
image in Fourier space is produced, the two dimensional Fourier transform
has completed a one dimensional Fourier transform (figure 32) on every row
of the image in the spatial domain, and again on every column, giving a full 2-
D Fourier transform with the same size as the original image. The resulting
Fourier domain image stores the frequency, amplitude and phase of each
sinusoidal wave, ranging from the zero-point frequency (ZPF), which stores
the average brightness in the image, to the N-1th frequency, decided by the
number of pixels in the original, spatial image. Each pixel in Fourier space
represents one spatial frequency, while the signal of each pixel represents the
amplitude of the frequency represented at that point. The ZPF is otherwise
referred to as the ’DC term’, after its equivalent in an electrical context, in
which the DC (Direct Current) is the 0Hz term (our ZPF) while the AC
(Alternating Current) components are equivalent to the non-zero bits in our
Fourier domain image (all frequencies except the ZPF).

Figure 34: (left) The raw image in the spatial domain with a flat background used
in the example case, (centre) the Fourier transform (frequency domain image) of
the raw image and (right) the sorted Fourier transform.

In a spatial domain image with a range of positive and negative counts,
the ZPF will give the sum of the frequencies in the Fourier transform. There-
fore, in an image where the signal (total number of counts) below zero is equal
to the signal above zero, the ZPF will have a value of 0 (figure 33). In real
images however, it is impossible to have a count that is negative. This means
that in the case of the IPHAS data, this ZPF value will be the sum of only
positive values, and so will give the sum of all the frequencies in the Fourier
transform of an image.

The function for the 2-D DFT for each point in a Fourier domain image
(F (u, v)) is as follows:

F (u, v) =
∑

f(x, y)e
(−2πi

(ux+vy)
Nx,y

)
(7)
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Figure 35: When the Fourier domain image is sorted, quadrant 1 swaps with 3 and
quadrant 2 swaps with 4 moving the ZPF to the centre of the image and sorting
the high frequencies to the centre and the low frequencies to the edge. Image taken
from: uk.mathworks.com/help/matlab/ref/fftshift.html

f(x, y) =
∑

F (u, v)e
(+2πi

(ux+vy)
Nx,y

)
(8)

where f(x, y) is the image in the spatial domain, i =
√
−1, and the expo-

nential is the base function that corresponds to each point in Fourier space.
N(x,y) is the length of the x and y axes. During the Fourier transform, the
sum is first run on each row in the image data, treating it as a 1-D Fourier
transform and splitting it into its component sinusoidal waves of varying fre-
quencies, as in figure 32. The process is then repeated for every column in the
image with each frequency fitted and stored in the Fourier domain image-
with lowest frequency at the centre and highest at the edge. The reverse
Fourier transform equation (equation 8) is also given, and simply reverses
the process to convert from the Fourier domain back to the spatial domain.

We can see from equation 7 then, at the ZPF:

F (0, 0) =
∑

f(x, y) (9)

i.e. the zeroth frequency is the sum of the spatial domain image.
Once an image has been converted from the spatial domain into the

Fourier domain (figure 34, panels 1 and 2), it is useful to rearrange the Fourier
image to have the ZPF at the centre for visualisation and manipulation. The
result of this sorting (figure 35) leaves the high-frequency components near
the centre of the Fourier image, and the low frequency components at the
edge. Sorting the Fourier domain image leaves it radially symmetric and
allows us to both plot its power spectrum as a function of radius from the
centre, and create simple filters to mask the data. Small objects and defined
edges in an image are described by the high frequencies now found at the
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Figure 36: The image here (a) and its Fourier domain counterpart (b) contains a
single off-centre star with a Gaussian profile.

centre of the image in Fourier space, while large-scale, diffuse objects (e.g.
nebulosity, sky background) are represented by the low frequencies located
at the edges.

4.1.1 Features in Fourier space

In order to know which data in Fourier space should be masked in order to
remove the scattered light background, we must first explore how features in
the spatial domain translate into a Fourier domain image.

The first image, figure 36, is the FFT of an image with a background of 0,
containing one star with a Gaussian profile off the centre of the image. The
result of this image in Fourier space bears strong similarity to that of many
stars in figure 37, except the ’bright’ central region contains much smaller
values and doesn’t extend as far. This suggests that the values in Fourier
space stack for each feature in an image, and that stars are described by a
whole range of frequencies.

The second image, in figure 37, shows the transform of an image con-
taining only stars and background of zero. The result is an FFT that, when
sorted, contains the majority of its information at the centre of the image.
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Figure 37: The image displayed here (left, an IPHAS image) and its Fourier trans-
form contain many stars. The Fourier domain image structurally looks similar to
the case of one star in figure 36.

The transform shows a profile that is brightest at the centre, and decreases
in brightness with increasing radius.

Figure 38: The image here contains only a gradient across its axes (a) which,
when Fourier transformed (b), is translated into a one pixel-wide cross (c) running
through the centre of the Fourier domain image.
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The third example, figure 38, contains an image containing only a back-
ground gradient, with no other features. The gradient translates into Fourier
space as a line with a width of 1 pixel passing through the centre of the image.
In fact the background forms a cross pattern, with the x and y components
of the cross each representing the x and y components of the gradient. In
this case only that component is represented in Fourier space. The power
spectrum of one direction of this cross shows the strong peak at the centre
of the transform, but also that the cross extends all the way to the edges of
the image, albeit at a relatively small magnitude. Therefore the gradient in
the image is represented by a large range of frequencies, peaking highest at
the centre with the ZPF, but with some small component visible at the low
frequency end. Herein lies the problem (discussed in Section 4.2.1)- gentle,
even slopes are ’broad band spectrum’ in Fourier space, making them hard
to filter using low- or high-pass filter techniques.

Figure 39: An example of an image from the IPHAS catalogue that is known to
have a background gradient and its FFT. This image contains features seen in both
figures 37 and 38 with a mixture of stars and background gradient, features which
are seen also in the Fourier domain image with the bright centre and cross pattern.

Figure 39 contains the Fourier transform of an IPHAS image known to
contain a strong background gradient due to moonlight. As this image is
taken in the i-band, it contains only the scattered moonlight gradient, with-
out extended emission in Hα . In its Fourier transform, there are elements
that have appeared in the example cases so far, with the bright region corre-
sponding to the stars in the images, and the cross shape through the middle
of the right panel of figure 39 representing the unwanted background slope.
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This cross contains the information that is responsible for the background
gradient we are aiming to remove, so it is this area in Fourier space that must
be focused on.

4.1.2 Masking in Fourier space

Here we discuss efforts to mask this cross pattern in the FFT with the end
result of having an image free from scattered light, using an example case
kindly provided by J. Geach.

• Beginning with a raw image of 512x512 pixels containing galaxies of
various sizes and a flat background, seen in figure 34, along with the
unsorted and sorted Fourier transforms of the image.

• A linear 1-D ramp is then artificially added to this image along one
of the axes, with the resulting image seen in figure 40 panel (a). The
image, now with a gradient applied, is then Fourier transformed, seen in
figure 40 panel (b). The Fourier transform of the ramp that is applied
to the image in panel (a) can be seen in panel (c).

• The gradient that we wish to mask is described by the one pixel wide
cross passing through the exact centre of the sorted FFT which peaks
in the centre, as seen in Section 4.1.1. Therefore, the mask will only
edit data in these few pixels. The mask, seen in figure 40 panel (d), is
directly subtracted from the sorted FFT of the raw image.

• The resulting FFT is then inverse Fourier transformed, returning it to
a spatial domain image and with the unwanted background gradient
now completely removed (figure 40) panel (e).

4.2 Application to IPHAS data

We know, from the previous two sections, that the information relating to
the unwanted moonlight gradients lies in the bright cross seen falling on the
centre of the reorganised image in Fourier space (figure 27) and peaking with
the ZPF at the centre. Since all of the information for the gradient lies here,
this is the area to mask. An example where the original model fitting method
has produced a good, clean image can be used to get an idea of the shape of
the mask required. Shown in figure 41 is the power spectrum of one such case
where the model fitting code produced a good fit (figure 27). As is expected,
the model of the scattered light background is represented in the cross-like
pattern through the centre of the image in Fourier space.
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Figure 40: The image (a) with an artificial linear gradient (ramp) applied along
the y-axis and its Fourier transform (b), as well as the FT of just the ramp (c).
The mask applied to the image is in panel (d) (the same as the FT of the artificial
ramp in panel (c), in this case), and the data after having been masked in Fourier
space, inverse Fourier transformed to the spatial domain (e). The image in panel
(e) contains no residual background gradient (this returns the image back to its
original state in figure 34).

In order to remove the scattered light in Fourier space without prior
knowledge of its parameters, a Hanning profile is chosen as our filter (Harris,
1978). The Hanning profile seen in figure 42, named after Julius von Hann
and otherwise known as the ’Cosine Bell’, allows us to account for the scat-
tered light by masking most heavily towards the bright centre of the Fourier
transformed image and less heavily towards the edges, according to the shape
of the power spectrum of the Fourier transform for a background gradient in
figure 41. The Hanning window is defined as:

w(n) = 0.5− 0.5 cos
(

2πn

M − 1

)
0 ≤ n ≤M − 1 (10)

where M is the width of the window function (Harris, F.J., 1978).
Using this profile, a 2-D filter the same size as the IPHAS images is created

(figure 43). The mask applied used the inverse of the Hanning profile, as the
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Figure 41: The power spectrum of figure 38 panel (b), displaying the bright peak
at the centre.

Figure 42: The shape of the Hanning profile of ’cosine bell’. Its key features are its
peak at 1, tapering off to 0 at either end. This example extends the y-axis length
of an IPHAS image, 4096 pixels.

intended result was to mask most heavily the values towards the centre of
the Fourier transformed images. Values inside the mask range from 0-1, with
the most heavily masked pixels at the centre having a value nearing 0, and
those outside of the Hanning window having a value of 1. To apply the mask,
we multiplied it by the Fourier transform of an IPHAS image, then reverse
Fourier transform to produce the now masked data in real space, seen in
figure 44.

4.2.1 Artefacts

Once the masked data had been inverse Fourier transformed, there existed a
large number of bright streaks, or ’artefacts’ (figure 44). The cross was only
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Figure 43: The 2-D Hanning image used to mask the data. Before application, the
values in the mask were first inverted, before multiplying the image data by it.

one pixel wide and the strongest masking happened in the central, brightest
pixels in the Fourier space image. Since the cross was very narrow the mask
did not apply a smooth ramp between masked and unmasked values. The
result of this type of ’simple masking’, where heavily masked and unmasked
pixels neighbour one another, gave a number of artefacts in the newly masked
image.

In an attempt to combat this, a new style of mask was created where the
counts in the surrounding pixels were reduced by half as much as the central
masked pixels. The key difference between this and the previous masking
attempt is that streaks across the resulting images are shortened, although
not entirely removed.

It is inferred that with a smooth enough taper from the masked pixels
to the surrounding pixels these artefacts might disappear. An example of
the mask including the buffer zone is displayed in figure 45. This new mask,
while still applying a Hanning profile to the cross through the centre of the
image in Fourier space, also applies the same Hanning profile in the directions
perpendicular to the cross at each masked pixel. So each masked pixel in the
central cross has a buffer zone around it in the shape of a Hanning profile
whose peak lies on the cross.

The result of these new adaptive buffering masks is displayed in figure 45.
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Figure 44: (Right) The resulting image after the mask in figure 43 has been applied
in Fourier space and (left) the original image with no masking. After masking,
large streaks remain in the resulting spatial domain image.

In this example again, while the artefacts left behind have reduced in magni-
tude, they are still present. By masking the data to remove the background
gradient without knowing the parameters of that background beforehand,
we are creating artefacts in the image. In order to remove these artefacts,
the pixels around the cross containing the gradient’s information in Fourier
space must also be masked. As seen in figures 36 and 37, this central region
in Fourier space contains the information relating to the stars in the image,
and by extending our mask to mask not only those describing the background
gradient but these pixels also, the mask has changed the amplitudes of the
frequencies describing the stars. These alterations translate into artefacts on
the images with, as is visible in the reduced case in figure 45 panel (d), the
brightest stars in the image at their centres.

4.3 Critique

We explored converting our images with a background of scattered moonlight
into Fourier space as a way of isolating and removing the component associ-
ated with the scattered light background. While this method works in theory,

56



Figure 45: The final iteration of the filter (a) used to mask the cross through
the centre of the Fourier domain images to remove the background gradients and a
zoom in on the centre of the filter (b). The strongest masking happens at the centre,
where pixels are darkest, and reduces with increasing distance from the centre and
with increasing distance from the one-pixel-wide cross through the middle of the
mask. The original image with background gradient before masking in the Fourier
domain is in panel (c) and the same image after applying the mask in figure 45
is in panel (d). The streaks seen in figure 44 are seen to be strongly reduced by
smoothing the masking between the target pixels and the rest of the Fourier domain
image, but they still largely remain.

in the end a much more complex solution is needed that can distinguish be-
tween the contribution to the frequencies associated with the background
from contributions to the same frequencies that arise in the true astronomi-
cal image. In particular, the edges of stars, since they are better represented
by a Gaussian than a box function, prove problematic as they cover a large
range of frequencies in the Fourier space image, from the high frequencies of
the point source star, to the lower values associated with the extended scat-
tered light around the star in an image. A simple masking method, though
possible, requires us to know the parameters of the background we are trying
to account for in the first place, bringing us back to the original problem of
tackling the scattered light using a direct fitting approach.
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5 Production of Cleaned Hα Images and Mo-

saicking

To reach the goal of producing clean and smoothHα mosaics from the IPHAS
data, the background model fitting method described in Section 3 (which was
trialled and tested on i band data, free of diffuse nebulosity) must be adapted
to work on Hα images. Here, we present the work needed to achieve this goal,
describing the hurdles faced and overcome. The overall algorithm arrived at
is summarised in the flow chart in figure 46.

Raw Hα image

Hα image
median less
than dark-
sky frame

median plus 4.0.
Section 5.3.1

Raw Hα
image minus

dark sky
frame.

Section 5.2.1

Raw Hα and
r images

minus dark
sky frames.

Section 5.2.1

Hα and r-
band images

scaled to
common
exposure

time.
Section 5.2.1

Hα image
subtracted

from r-band
image, giving
r-Hα image.
Section 5.2.1

Model fit via
MCMC to

r-Hα image.
Section 3.2

Model scaled
to Hα band.

Sections 5.2.1
and 5.3.2

Scaled model
subtracted
from Hα
image.

Section 5.2.1

Hα image
ready to mosaic

YesNo

Figure 46: A flow chart detailing the methodology used in the final version of the
background sky correction code.
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5.1 How Hα images have been cleaned

We cannot directly fit a model to the Hα background because the diffuse
nebulosity that we want to preserve in these data is indistinguishable from
other sources of background in the re-binned mapping. While small angu-
lar scale nebulous features, like much of that found in supernova remnants
like Simeis 147, won’t affect the background modelling, there will be circum-
stances in which very extended diffuse Hα emission could contribute to the
background gradient. Since the Hα filter falls entirely within the r band
wavelength range (figure 7), the Hα (and [NII] 6548, 6584 emission) can
be removed from any given r band image by simply subtracting from it its
partner Hα image. A background model can then be constructed to fit the
’r − Hα’ result. This in turn can be scaled appropriately to yield a model
for the background suitable for subtraction from the Hα image, under the
assumption that the spatial variation across the four CCDs will be the same
in both the r and Hα exposures taken one after the other.

5.2 The sources of non-stellar counts in r and Hα band
images

To remove the unwanted components of diffuse light in an Hα image, accu-
rately, we need to understand how the pixel values in a typical image are
built up.

The total count, r(x, y) in pixel (x, y) in an r band image is made up as
follows:

r(x, y)

tr
= d(x, y)r + c(x, y)m + c(x, y)Hα (11)

where tr is the exposure time, and the terms on the right hand side are (in
order) the count rates for dark-sky, scattered moonlight, and astronomical
line emission. In the interests of simplicity, we leave out of consideration the
continuum starlight found in point sources. In the r band, tr is either 10
or 30 seconds (after the start of 2004, the exposure time was raised to the
higher number).

The total count, Hα(x, y), in a narrowband image is described by the
analogous relation:

Hα(x, y)

tHα
= d(x, y)Hα +

1

k
.c(x, y)m + c(x, y)Hα (12)

where tHα is always 120 sec. The constant k multiplying the scattered moon-
light count rate is the factor needed to scale down the rate passing through
the r filter to that appropriate to the narrowband. In principle this can be
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computed from a knowledge of the spectrum of scattered moonlight and the
filter bandpasses. Treating scattered moonlight as having the same spectrum
as direct moonlight (Krisciunas and Schaefer, 1991) (as given by Jones et al.
(2013)), the value of this constant is 12.84 (Cramer et al., 2013)- a number
not very different from the ratio of the filter FWHM values.

Typical dark sky count rates (d(x, y)) in the two filters can be determined
from merging r and Hα images, free of nebular emission, that were obtained
on moonless nights. The goal here is to recover c(x, y)Hα. In the two equa-
tions above, this amounts to one unknown while the other is the scattered
moonlight ’image’, c(x, y)m. This is a system that can be solved, given that
all other quantities in the equations are known or knowable.

The method used to clean the Hα images is a series of image manipula-
tions incorporating background fitting of the kind described in chapter 3.2
in order to reduce noise in the final outcome. The next section traces this in
more detail.

5.2.1 Cleaning r and Ha images and removing nebulosity

Before any further data processing takes place, the images in r and Hα :
first are confidence cleaned as in Section 3.1.2; masked for bright stars as
described in Section 3.1.3; have their dark sky templates subtracted as in
Section 3.1.1. This last step of removing dark sky accounts for dr(x, y) and
dHα(x, y) in equations 11 and 12.

It is not possible to fit a model directly to the background of images in
r or Hα because of the nebulous structure represented by cHα. This can be
overcome by removal of the Hα pixel counts from their partner r-band image.
Before subtracting one from the other, both the r and Hα images must be
scaled to the same exposure time. To simplify things, all images are scaled
to 1s exposures. Once both an r-band and an Ha image are scaled to the
same exposure time, the Hα image is subtracted from an r-band image which
leaves and r-Hα residual image where:

r(x, y)

tr
− dr(x, y)− Hα(x, y)

tHα
+ dHα(x, y) = (1− 1

k
)c(x, y)m (13)

A model is then fit to this r-Hα residual image in the same way as in
Section 3.2. The factor of 1 − 1

k
accounts for the r-band moonlight count

rate lost thanks to the subtraction of the narrowband image from the r-band
image. A correction for this can be made to the model fit of the r-Hα residual
image by dividing by 1 − 1

k
. The model is scaled back to the narrow-band

filter width in this way, before being scaled up to an equivalent 120sec Hα
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exposure time. At this point, the model is subtracted straight off its partner
(confidence cleaned and dark-sky subtracted) Hα image. The result should
have a flat background at a counts level close to zero, retaining all of its
original stellar counts and nebulous features, ready for mosaicking.

5.3 Issues faced

When applying the method in Section 5.1 to the 580 IPHAS images around
S147, initial results came out with a range of residual background levels after
model subtraction, as shown in figure 47. There are two key features in this
plot that point to issues with the model fitting process.

Figure 47: The median of the residual counts for each of the 580 background-
corrected Hα image in the S147 region at first attempt. The spread is large, and
there is a skew towards negative values.

5.3.1 Negative skew in the corrected Hα residual counts

The first issue faced, the negative skew of the residual medians, is considered
here, along with its cause and a fix that avoids over-processing already clean
data unnecessarily.

When the dark sky templates are subtracted from frames obtained in dark
time, there can be over-subtraction. If this happens, a substantial number
of pixel count rates become negative. Any negative counts created this way
in an Hα image turn into added counts at the point where the Hα image is
subtracted from its matching r-band image. Therefore, when the background
model is fit to the r-Ha image, it is set too high. At the next step, when
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subtracting this model from the Hα image, a significant over-subtraction of
the background can occur. The median of the residual background in such
cases is then negative. This seems to be behind the negative skew in figure
47.

Figure 48: The empirical scale factor, ke (see text), for each r and Hα pair of
images plotted against the raw Hα image median count for each of the 580 S147
images. In cases where the raw median is approximately the same as the median of
the dark sky templates, ke becomes unreliable as the remaining counts after dark-
frame subtraction are close to zero. The blue line shows the median dark-sky value
and the green line represents the cut-off background count value of 4.0 counts above
the dark-sky median.

To overcome the negative skew in the final corrected background levels,
any raw Hα images that have an Hα median background (or sky) value within
4.0 counts of the median of the relevant dark-sky template, the cleaning
process ends after dark-sky subtraction, and there is no background model
fitting step. A limit of 4.0 is used since cases where the median of the raw
image is within 4.0 counts of the median of the dark-sky template begin to
yield anomalous empirical estimates for k, as seen in figure 48. We remind
the reader that k is the expected ratio between the r-band and Hα band
moonlight count rates. Its empirical counterpart, ke, is estimated as the
ratio between the median count rates of the dark-sky subtracted r and Hα
frames. The spread in empirical scale factor seen for images where the Hα
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median background value is within 4.0 counts of the dark-sky median ( 31,
in this case) in figure 48 is due to the residual counts in r and Hα both
approaching zero. In the 47 such cases in this example, this signals that
there is little or no moonlight to remove.

By stopping the cleaning process when the sky background is evidently
dark, we avoid any unnecessary processing. In such cases, the dark-sky frame
is scaled to the raw image by using the ratio of the background median pixel
count to the corresponding dark-sky frame median pixel count. This scaling
is necessary to ensure the final image in r and Hα has a zero background
since, as described in Section 2.1, the airglow in these frames can vary by up
to ∼ 10%. In figure 48, images with ke outside the range of 0 to 20 are all
cases that have been over-processed unnecessarily.

5.3.2 The scaling, k, of r-band to narrowband moonlight levels

The second issue to be faced was the difference between the expected ratio, k,
and the empirical values, ke. The distribution of empirical values is presented
in figure 49.

Figure 49: The empirical scale factor distribution for 580 images in the S147
region. The expected value is 12.84, while the empirical data favour ∼15.

This range in ke also contributes to the spread of residuals seen earlier in
figure 47. The scalefactor used to convert the r band moonlight levels to Hα
levels varies because the direct moon spectrum (that we used to determine
k = 12.84) is not identical with the scattered moon spectrum, and because
in unsteady sky conditions the images will not sit in a constant ratio, even
though they are observed consecutively. More often than not k = 12.84
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is an underestimate causing the subtraction of the background model off
Hα to overshoot. Rayleigh scattering in the atmosphere is more efficient at
shorter/bluer wavelengths, implying that a scattered moonlight background
would be expected to be bluer and that there will be some variation in the
SED change according to the geometry of the scattering (see Jones et al.
(2013)). As the narrow-band filter sits toward the red end of the r bandpass,
this effect would indeed cause the value of k to rise, rather than fall. The
scale of effect seen is in the region of a 10-15 percent increase. Unfortunately
there is not a library of flux-calibrated scattered moonlight spectra that we
can access to confirm the validity of this interpretation. To deal with this we
use ke in the algorithm instead.

Figure 50: The median residual count in each of the 580 S147 region images
after cleaning, implementing both scaling for the dark-time frames, and using the
empirical moonlight scaling, ke for each image. There is huge improvement from
figure 47, in which there is a large sprread of values and a negative skew. Now,
the residuals peak at 0 by design, and vary very little (±1 count).

Implementing an empirical ke, and scaling the dark-sky frames while
avoiding over processing clean data, the residuals of the resulting data in
the S147 region come out as in figure 50. These residuals now vary by tiny
amounts, and are within the range of -1 and 1 without skew. To gauge the
success of this procedure, we turn to appraisal of the cleaned and mosaicked
images in the S147 region.
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5.4 Montage

Throughout this project, we use Montage to mosaic IPHAS images together
into a complete mosaic, re-projecting the images onto a common coordinate
system and adjusting the background levels to produce a smooth image.
Montage is a piece of freely available software that allows control over a
number of parameters throughout the mosaicking process. The steps in which
to use Montage to go from a collection of images to a complete mosaic are
as follows:

Figure 51: An example mosaic in Hα using IPHAS data of the Rosette nebulae.
North is up and East is left, covering 2◦ × 2◦.

• Step 1 - Creates a list of the images that require mosaicking.

• Step 2 - Creates the FITS header template file for mosaic using the
image list created in step 1. At this point it is possible to specify to
Montage to align all images with North up. The header template
defines the final mosaic in terms of its projection method, images size,
orientation, and pixel scale. The header template can be created by
hand to produce an image with a desired specification, or it can be
created automatically by Montage.

• Step 3 - Each image is then re-projected to the size and scale defined
in the header template. As well as producing the re-projected image,
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this step creates an ’area’ image which consists of the fraction input
pixel sky area that went into each output pixel.

• Step 4 - These files are then used to create an image metadata table
which contains the geometry information for each image being mo-
saicked and is used in several other steps. At this point a FITS mosaic
becomes an optional output as a means to check the progress of the
process and that no initial errors have occurred. These images, how-
ever, are created before any internal background correction has been
done, and so they provide guidance only.

• Step 5 - Montage compiles a list of all the overlapping pairs of images
by comparing the area of each image to every other image.

• Step 6 - The ’difference’ between the overlapping regions is calculated
and stored in individual images, one for each pair of overlapping images.

• Step 7 - Montage uses the difference images produced in the previ-
ous step to fit planes for each image that will allow it to smooth out
the overlapping areas of the mosaic. These are stored in a table. It
can be specified here as to whether Montage is to match the slopes
between two overlapping images, or whether it should only calculate
level adjustments between the two.

• Step 8 - Uses the table of difference parameters from step 7 to determine
the set of corrections that need to be applied to the background of each
image to achieve the smoothest fit across the final mosaic.

• Step 9 - These background corrections are then applied and a new set
of (corrected) images is produced.

• Step 10 - With these final, corrected images produced, the image meta-
data file created in step 4 is adjusted to remove any images that didn’t
make it to this point (typically only 1 or 2, due to not having any
overlap).

• Step 11 - The images are then co-added to form the final output FITS
mosaic, with an example mosaic in figure 51.

5.5 Zero Point correction

The final step before mosaicking the cleaned data is to adjust for their zero
points (ZPs). The ZP is the magnitude of an object in an image that will
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produce one count per second such that the magnitude of an arbitrary object
in the image is:

mag = −2.5 log(pixelvalue) + ZP (14)

The light has to pass through the entire atmosphere before forming the
image, and so is subject to transparency variations due to clouds, and extinc-
tion due to dust and aerosols. The pipeline processing of the IPHAS data
uses standard fields to make a routine correction for airmass and provides a
ZP that, in principle, accounts for these variations. For those exposures that
were adopted in IPHAS DR2, the zero point has been calibrated as described
in Barentsen et al. (2014). Fields obtained more recently have so far only
been calibrated on a nightly basis, within the CASU pipeline.

Figure 52: The distribution of CCD zero points taking up the 4◦ × 4◦ area around
Simeis 147.

Once the cleaning process is complete, what will remain will be these
transparency variations that the ZPs track. It is important to bring the
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images onto a common ZP before mosaicking because, since magnitudes are
logarithmic, a change of e.g. 0.75 in ZP across two images would correspond
to a factor of 2 change in counts according to:

SFZP = 10−0.4(ZP−ZPref ) (15)

where SFZP is the scale factor bringing the image onto the common zero
point ZPref . ZPref is taken as the median of the ZPs in the region from
figure 52.

We use equation 15 to bring the counts in all images on to the same
common zero point of 26.58, which corresponds to an equivalent ZP for a
1sec exposure of 21.38.

In some of the worst cases of bad data in the catalogue, replacement
observations (as mentioned in section 1.5.3) have been collected in December
2015 which have not yet been subject to global calibration. These images
share a zero point of 21.65.
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5.6 Final mosaic

The final version of the mosaic of S147 is displayed in figure 53. The image
covers 4◦ × 4◦ on the sky. Before mosaicking, the images were binned by a
factor of 4, reducing the processing time. A comparison in figure 54 shows the
extent of the cleaning that has taken place, with bright scattered moonlight
in the original data causing much of the structure of S147 to no longer be
visible.

Figures 55 and 56 shows four zoomed-in sections of figure 53, illustrating
the level of detail visible once the scattered light is removed. Images like this
can give great insight into the morphology of SNRs and the history of their
evolution. The data here is binned by a factor of 4, so the potential of the
un-binned data is even greater. Lens affects can be seen around the saturated
brightest stars - unfortunately these are almost impossible to remove.

Finally, in figure 57 we see a before-and-after case where the same cleaning
method is applied to another patch of sky. In this case, the Heart nebula
(NGC 896) shows the ability of the cleaning process to be applied across
the sky. The most notable improvements in this image is the appearance
of structure in the south, which appears without having to over-stretch the
image and saturate the brightest structure in the north.

69



F
ig

u
re

5
3
:

T
h
e

fi
n

a
l

m
o
sa

ic
o
f

S
1
4
7
,

a
ft

er
a
ll

d
a
ta

h
a
s

be
en

th
ro

u
gh

th
e

cl
ea

n
in

g
p
ro

ce
ss

,
re

p
la

ce
m

en
t

d
a
ta

h
a
s

be
en

a
d
d
ed

,
a
n

d
th

e
im

a
ge

s
h
a
ve

be
en

m
o
ve

d
o
n

to
a

co
m

m
o
n

ze
ro

po
in

t.
T

h
e

im
a

ge
co

ve
rs

4◦
×

4◦
,

N
o
rt

h
is

u
p

a
n

d
E

a
st

is
le

ft
.

70



F
ig

u
re

5
4
:

S
1
4
7

a
ft

er
(l

ef
t)

a
n

d
be

fo
re

(r
ig

h
t)

cl
ea

n
in

g.
T

h
e

im
a
ge

s
co

ve
r
4
◦
×
4
◦ ,

N
o
rt

h
is

u
p

a
n

d
E

a
st

is
le

ft
.

B
o
th

im
a
ge

s
a
re

sc
a
le

d
to

th
e

sa
m

e
co

lo
u

r
ba

r.
T

h
e

ri
gh

t-
h
a
n

d
im

a
ge

h
a
s

be
en

r-
ba

n
d

co
n

ti
n

u
u

m
su

bt
ra

ct
ed

a
s

th
e

fi
rs

t
a
tt

em
p
t

to
p
ro

d
u

ce
m

o
sa

ic
s

fr
o
m

h
ig

h
m

oo
n

il
lu

m
in

a
ti

o
n

a
re

a
s

d
u

ri
n

g
th

e
ea

rl
y

d
a
ys

o
f

IP
H

A
S

.
T

h
e

le
ft

h
a
n

d
im

a
ge

d
oe

s
n

o
t

su
ff

er
fr

o
m

th
e

po
o
r

sm
oo

th
in

g
o
f

th
e

ba
ck

gr
o
u

n
d

se
en

in
th

e
ri

gh
t-

h
a
n

d
im

a
ge

,
a
n

d
d
oe

s
n

o
t

su
ff

er
fr

o
m

lo
ss

es
o
f

st
a
rs

a
n

d
d
iff

u
se

m
a
te

ri
a
l

th
a
t

co
m

es
w

it
h

co
n

ti
n

u
u

m
su

bt
ra

ct
io

n
.

71



Figure 55: Two sections of the final mosaic (figure 53), with their locations marked
in figure 54, to highlight the detail available in the cleaned images. North is up
and East is left in all.
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Figure 56: Two sections of the final mosaic (figure 53), with their locations marked
in figure 54, to highlight the detail available in the cleaned images. North is up
and East is left in all.
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Figure 57: (Left) the Heart nebula without cleaning and (right) after passing
through the cleaning process. North is up, east is left. Though the quality of
the raw data in this region is generally good, cleaning has made it possible to see
structure in the south of the region that was otherwise invisible when scattered
moonlight was present in the mosaic. The greyscales are the same for both images.
The images cover 1.5◦ × 2◦, North is up and East is left.
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6 Conclusions

The study of Hα allows us to better understand the formation, evolution
and morphology of many structures and energetic processes within the ISM.
Crucial to the scientific study of wide-area Hα emission are large-scale, high-
resolution mosaics clean of all unwanted sources of non-astronomical light.

We set out with the goal of being able to produce large-scale mosaics of
IPHAS data cleaned of unwanted contributions to the background, particu-
larly the large-scale gradients introduced by scattered moonlight. The final
algorithm adopted uses Hα and r-band frames to achieve this. The first step
in the scheme was to create dark-time image templates that could be sub-
tracted from the images to remove the contribution of dark-sky sources, such
as airglow. The Hα data is subtracted from the r-band to remove nebulosity
from the broadband which permitted a model to be fit to the r background
without influence from large-scale Hα structure. The brightest stars are also
cut out of the images, before a linear, 2-dimensional model is fit to the re-
maining background via Markov Chain Monte Carlo fitting. This model,
originally tested on the i-band data that is free of nebulosity, is scaled to the
Hα filter width first using a scale factor of 1/12.84, originating from the rela-
tive ratio of the predicted in-band fluxes due to moonlight. This scale factor
is replaced by an empirical scale factor, ke (section 5.3.1) as this was found to
give results of the desired quality. Next, the scaled model is subtracted out
of the Hα data leaving us with a cleaned image. Finally, the cleaned images
are shifted onto a common zero point to account for transparency variations,
before finally being mosaicked together.

We have shown that the cleaning method incorporating 2-D background
fits, greatly improves the quality of the outcome: the RMS values describing
the quality of the fits found by the MCMC code fall from 3-4 to less than
1. Later in the process we find the median of the residual background in
the cleaned images generally lies between -1 to 1, to be compared with the
peak counts of ∼30 in the case of S147. The final assessments came in the
form of visual analysis of the final mosaic, looking for regions that were
not completely flat and comparing the features now visible in the data with
that before the cleaning process. The residual backgrounds in the resulting
images - and therefore mosaics - are approximately flat. Mosaicking the
data together in the region around the supernova remnant S147 shows the
ability of this method to produce large-scale and clean mosaics, without
being influenced by bright stars or nebulosity. The method is also seen to
work well when applied to other regions without any specific preparation.
Our method allows us to retain the smallest detail in the data and, since we
avoid removing any nebulosity, we expose and resolve some of the faintest
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and most intricate morphology seen from the ground.
Perhaps the key weakness of the process as applied so far is seen in images

that are awash with nebulosity. In such cases, the empirical scale factor that
converts between r and Hα counts is likely to be smaller than it should be,
resulting in an ’over-subtraction’ when it is removed from the Hα data. Since
S147 is a late-stage SNR, and therefore is made up of dense, thin filamentary
structure, this doesn’t pose an issue to our example area. A possible fix for
this problem could be to set a lower limit on ke of 12.84, on the basis that
ratios below this would be implausibly red for scattered moonlight.
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