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Abstract

In the era of deep and wide-field surveys (e.g. SDSS, LSST, LOFAR, SKA), we have ac-
cess to an ever-increasing volume of multi-wavelength data for millions of galaxies both locally
and at high redshifts. However, inferring the intrinsic properties of the whole population of
galaxies requires robust statistical techniques and an understanding of observational bias.

In this thesis, I present a study of the Far-Infrared Radio Correlation (FIRC) – a relation
which is widely used to infer star-formation rates from otherwise featureless radio sources. Us-
ing LOFAR 150MHz, FIRST 1.4GHz, and Herschel infrared luminosities derived from the new
LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic (250µm)
FIRC at low and high radio frequencies. Although the average FIRC at high radio frequency is
consistent with expectations based on a standard power-law radio spectrum, the average correla-
tion at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz, and find
that the FIRC varies with stellar mass, dust temperature and specific star formation rate, whether
the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can
explain the variation, to within 1σ using a Bayesian partial correlation technique. This work
was published as Read et al. (2018) in the Monthly Notices of the Royal Astronomical Society.

Identifying an opportunity to increase in the efficiency of black-hole mass estimations, we
perform photometric reverberation mapping using the Javelin photometric damped random
walk model for the QSO SDSS J144645.44 +625304.0 at z = 0.351 and estimate the Hβ lag
of 72+5

−1 days and black hole mass of 108.28+0.12
−0.07M�. An analysis of the reliability of photometric

reverberation mapping conducted using many thousands of simulated light curves shows that we
can recover any input lag less than a third of the duration of our observing campaign to within 4
per cent on average given our target’s observed signal-to-noise of > 20 and cadence of 14 days.
We use our suite of simulated light curves to deconvolve artefacts from the QSO’s posterior lag
distribution, increasing the signal-to-noise by a factor of ∼ 3. We exceed the signal-to-noise
of the Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) campaign with a
quarter of the observing time resulting in a ∼ 310 per cent per cent increase in SNR efficiency
over SDSS-RM.

Finally, I present a study of the radio luminosity star-formation rate relation directly with
the LOFAR Two Metre Sky Survey (LoTSS) DR1, in an effort to understand the mass depen-
dency of the L150MHz−SFR slope reported by Gürkan et al. (2018). Building on our previous
study of the FIRC, we develop a fast, generalised algorithm to recover Complete And Noiseless
Distributions from Incomplete Data (CANDID). We find that the mass dependency is real and in
agreement with previous estimations in the literature when we include the effects of selection
biases present in the LoTSS DR1 sample. We also propose that type-Ia supernovae may con-
tribute to a L150MHz excess and construct a joint distribution of our LoTSS observations and the
Horizon AGN simulation to test this.
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Chapter 1

Introduction

1.1 Galaxies, Classifications, and Evolution

The question of how galaxies form and evolve has been at the centre of astronomy ever since

they were first identified by Hubble (1925, 1926) as being extragalactic in origin. Directly after

their identification, Hubble (1926, 1927) classified these extragalactic objects into a two-staged

system resembling a tuning fork based on their optical morphology, shown in Fig 1.1. Early-

type galaxies (also known as ellipticals), categorised by their smooth and featureless elliptical

surface brightness profiles, are positioned on the Hubble tuning fork in order of their observed

ellipticity. Late-type galaxies are positioned on the opposite side of the tuning fork and are

distinct from ellipticals in that they possess stellar discs with spiral arms (with or without central

stellar bars), hence their alternative name: spirals. Spiral galaxies are ordered by the prominence

of their spiral arms and the tuning fork becomes a continuous sequence with the addition of

an intermediate class of lenticular (S0) galaxies (Sandage, 1975). These galaxies possess a

disc structure but no spiral arms – a combination of both early- and late-type. Other galaxy

morphological classification systems exist (e.g. de Vaucouleurs 1959), but the simple Hubble

tuning fork is most widely recognised and the terms early- and late-type are still in use today

(Baldry, 2008; González Delgado et al., 2016; Yu and Ho, 2019).

The fact that galaxies do not all look the same and can be classified on a continuous morpholog-

ical scale suggests one of two things:

1
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FIGURE 1.1: The Hubble tuning fork galaxy classification scheme taken from Hubble et al.
(1958). Elliptical, “E”, galaxies are positioned on the left and the unbarred/barred spiral “S(b)”
galaxies are found on the two right-hand sequences. Irregular galaxies are presented off of the

sequence on the right since they tend to be highly star-forming (Kennicutt, 1998b)

1. Present-day galaxies have evolved from a progenitor class via two or more pathways. If

these evolutionary tracks give rise to two different observed galaxy morphologies, they

would have to mix in order to generate the continuous sequence we see today.

2. Galaxies broadly evolve from one end of the Hubble tuning fork to the other. This would

require one galaxy type to contain an older stellar population than the other.

Massive, bluer stars exhaust their fuel quickly (see Sparke and Gallagher 2007 and references

therein). Therefore, bluer galaxy colours imply the existence of a younger stellar population and

redder colours indicate the presence of an evolved population of stars.

When selecting galaxies in optical wavelengths, a bimodal distribution in colour and stellar

mass (as measured by optical magnitude as a proxy) appears as shown in Fig 1.2, (Baldry et al.,

2004; Bell et al., 2004; Balogh et al., 2004; Pozzetti et al., 2010; Whitaker et al., 2011; Caputi

et al., 2017). A “blue cloud”, containing galaxies readily classified as spirals with ongoing star-

formation, was identified by Strateva et al. (2001); Hogg et al. (2003); Balogh et al. (2004);
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FIGURE 1.2: The galaxy Colour-Mass diagram from Bremer et al. (2018). Highlighted are
their subsets of blue star-forming, green valley, and red quiescent galaxies. There is a distinct

bimodality in the total distribution of colour versus stellar mass, plotted in grey.

Baldry et al. (2004). In contrast, the “red sequence”, first identified by Baum (1959), contains

those galaxies with far less ongoing star-formation as inferred from their optical colours – though

the red sequence also contains a mix of galaxy types as shown by Cortese (2012), where a sample

of red disc galaxies are shown to still be forming stars at a rate comparable to blue star-forming

discs of the same stellar mass (also see Salim and Rich 2010). Furthermore, when selecting

galaxies based on their optical magnitude, there appear to be relatively few galaxies situated

between the red sequence and blue cloud (Strateva et al., 2001; Brammer et al., 2009; Trayford

et al., 2016). Using the large increase in galaxy numbers provided by the Sloan Digital Sky

Survey (SDSS; York, 2000), Strateva et al. (2001) showed that so-called “green valley” galaxies

are much rarer than either red or blue galaxies, implying that there are two physically distinct

types of galaxy, similar to those classified by morphology on the Hubble tuning fork.

Although never intended to be taken as true temporal evolution (Hubble, 1927), the Hubble

tuning fork designations early- and late-type have been mistakenly interpreted as literal, with

the elliptical early-types evolving into late-type spirals (Baldry, 2008). However, if late-type

stellar populations (generally bluer) are generally much younger than early-type populations

(generally redder) then this implies that the second option of galaxy evolution is more likely:

ellipticals evolve from spirals. Moreover, if there are few “green” galaxies, this implies that

the transition from star-forming to passive is fast: less than 2 Gyr (Martin et al., 2007; Trayford

et al., 2016; Bremer et al., 2018).



Chapter 1. Introduction 4

The standard hierarchical evolution model (Fall and Efstathiou, 1980; Bosch, 2002; Agertz et al.,

2011), shown in Fig 1.3, dictates that stable star-forming discs form from condensing gas within

a dark matter halo which go on to develop spiral arm instabilities. In addition to the secular

evolution of spiral galaxies (where star-formation is increased or decreased by the increased or

decreased inflow of halo gas, Bouché et al. 2010; Lilly et al. 2013), spiral galaxies can merge

in dense environments. If the masses of the two galaxies is roughly of the same order, a major

merger occurs, destroying the disc, removing the gas, and creating a passive elliptical (Toomre,

1977; Negroponte and White, 1983; Di Matteo et al., 2007; Hopkins et al., 2009; Ferreras et al.,

2009; Conselice et al., 2009; Taranu et al., 2013; Naab et al., 2014; Deeley et al., 2017). If

this is true we should see more early-type galaxies where there are more mergers. Indeed,

Dressler (1980) found that the prevalence of elliptical and lenticular galaxies increases sharply

with increasing cluster density whilst the number of spirals simultaneously decreases.

However, morphology becomes more difficult to classify with increasing redshift (due to the

smaller angular size of more distant galaxies) and Hubble type only correlates with average

intrinsic properties such as star-formation rates and colour (Roberts and Haynes, 1994). Indeed,

the main reason that the Hubble tuning fork classifies local galaxies by star-formation rate and

colour at all is because the merger rate in the local universe is low (3 per cent: Patton et al.,

1997) and star-formation is on the decline (Madau et al., 1998). As we look towards higher

redshifts, Hubble type classification is less useful since a large proportion of galaxies at z > 3

are irregular and do not fall into a classical morphological type (Conselice, 2001). Therefore,

we must increasingly rely on intrinsic, whole-galaxy properties such as colour and luminosity

with increasing look-back times.

Observational studies of galaxy evolution are unable to observe the evolution of a single galaxy

over cosmic time and have access only to snapshots of populations of galaxies, distributed over

redshift. Therefore, we have to rely on statistical tools applied to large numbers of galaxies

observed over wide ranges of redshifts to infer and quantify the paths of galaxies moving within

the parameter space of physical properties (such as SFR, luminosity, stellar mass). The star-

formation history, whether integrated over the whole population or for individual star-forming

galaxies, is important for characterisation of the evolution mechanisms of galaxies over cosmic

time.
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FIGURE 1.3: A schematic illustration from Abraham and van den Bergh (2001) of the forma-
tion of galaxies in the hierarchical assembly model.
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FIGURE 1.4: The colour-magnitude diagram as measured from the Gaia Data Release 2 (Prusti
et al., 2016; Brown et al., 2018), taken from Babusiaux et al. (2018). Points indicate individual
stars from 14 globular clusters. The colour of the points indicate metallicity as shown in the
colorbar. Both the main-sequence and the main-sequence turn-off are clearly visible and vary
with the metallicity of the stars. The x-axis is the colour calculated from the Gaia blue and red
photometric passbands. The y-axis is the absolute magnitude in the Gaia total passband which

spans from 330nm to 1050nm.

1.2 Measuring Star-formation Rates and Star-formation Histories

For nearby galaxies, where we can resolve individual stars, it is possible to construct a colour-

magnitude diagram (Rosenberg, 1910; Hertzsprung, 1911; Russell, 1914), shown in Fig 1.4.

The colour-magnitude diagram of an evolving stellar population contains several features whose

shape and position are indicative of stellar age. Stars burn their hydrogen gas on the main

sequence until it is exhausted, at which point a star turns off of the main sequence on to the red

giant branch (Salpeter, 1955; Kurucz, 1979; Girardi et al., 2000; Bressan et al., 2012). Since

more massive stars have bluer colours and shorter main-sequence lifetimes, the colour of the

bluest stars (and the shape of the red giant branch) can be used to derive the age of that stellar

population. Likewise, if there is another burst of star-formation triggered by infalling gas, then

this will also be reflected in the colour-magnitude diagram after a delay of approximately 108

years.
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Therefore, the position of stars on the colour-magnitude diagram can be used to infer the star-

formation history of the galaxy using many simulations of stellar evolution given different initial

conditions. The stellar birth function, SBF (the number of stars born per unit mass, time, and

metallicity), can be fit to the data given a sufficiently accurate stellar evolution model (Tosi et al.,

1989, 1991; Bertelli et al., 1992; Tolstoy and Saha, 1996; Hernandez et al., 1999; Olsen, 1999;

Hernandez et al., 2000a,b; Harris and Zaritsky, 2001; Dolphin, 2002; Dolphin et al., 2003; Yuk

and Lee, 2007; Walmswell et al., 2013; Gennaro et al., 2015; Bernard et al., 2015; Williams

et al., 2015). The initial mass function, IMF, can be recovered from the SBF by marginalising

over the metallicity at time t = 0 and is given by

ξ (m)dm ∝
(

m
M�

)−α( dm
M�

)
, (1.1)

where m is mass and α sets the slope of the IMF (which can itself be a function of mass).

For instance the Salpeter (1955) IMF sets the slope as a constant 2.3, whereas Kroupa (2001)

specifies that α has a piece-wise form that decreases in magnitude at masses below 0.5M� – see

Figure 1.5.

The IMF is integral to the inference of star-formation histories since the observed spectrum of a

galaxy is sensitive to the mass distribution of stars at every star-burst.

The instantaneous rate of star formation and its history cannot be directly observed when a

galaxy is too distant to resolve individual stars. Instead, we must rely on indirect relations that

have been calibrated to nearby galaxies based on their integrated properties. Population syn-

thesis methods form the backbone of all ongoing-star-formation rate and star-formation history

estimations. As in the resolved scenario, a grid of stellar evolution tracks can be produced for

a range of metallicities, and ages. The observed luminosity in a particular waveband or a large

portion of the stellar spectrum can be simulated from such a grid of initial values using stellar

atmosphere models and libraries of stellar spectra. Adding together the observed luminosities

over the entire population of stars, weighted by an input initial mass function (IMF), results in

the integrated luminosity for the grid of initial values and star-formation histories. The result-

ing series of templates can then be fit to observations to infer the star-formation history, galaxy

age, and metallicity for a given galaxy. Many synthesis model grids are currently used in this

way (Bruzual A. and Charlot, 1993; Bertelli et al., 1994; Leitherer and Heckman, 1995; Fioc

and Rocca-Volmerange, 1997; Leitherer et al., 1999; Bruzual and Charlot, 2003; Bruzual, 2007;
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FIGURE 1.5: The form of the IMFs described by Salpeter (1955); Miller and Scalo (1979);
Kroupa (2001); Chabrier (2003).

Leitherer et al., 2010). Models can be fit to galactic spectra or photometric data by marginal-

ising over a library of templates, thereby retrieving the best fit parameters such as stellar mass,

star-formation history, and metallicity (Reichardt et al., 2001; Panter et al., 2003; Heavens et al.,

2004; Koleva et al., 2009; da Cunha et al., 2008, 2011). Furthermore, using model grids can

provide uncertainties on these parameters.

However, it is difficult to extract these properties from observed data alone since degeneracies

exist whereby the same observation can be due to different properties. In addition, the discrete

nature of observations (i.e. broad and narrow band filters) cannot sample the entire spectrum,

and so can give rise to further degeneracies since key emission/absorption features can be miss-

ing. Indeed, the more wavelengths sampled, either by spectroscopy or photometry, the more the

characteristics of the underlying physical processes are constrained. For example, the optical

colour of galaxies is due to a combination of dust reddening, stellar metallicity, and stellar age.
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To break the metallicity-age-dust degeneracy here, infrared observations are required in addi-

tion to optical measurements. Inferring star-formation histories from finitely observed spectra

is therefore fraught with difficulties since many different histories can give rise to the same

observations.

Spectroscopic or photometric fitting of stellar templates ideally requires optical and infrared ob-

servations over a large range of wavelengths (Hayward and Smith, 2014). For a large sample

of galaxies where it is impractical to fit or where there is insufficient data (such as detections

in radio surveys with no optical counterpart), it is necessary to use star-formation relationships

based on flux measurements made at one or more wavelengths (typically calibrated at low red-

shift, where they can be validated more easily against resolved colour-magnitude diagrams).

The relations must be calibrated to stellar population synthesis models assuming some simple

star-formation history and the recovered star-formation rate will only be accurate for that star-

formation history. Therefore, the relationships can be derived from stellar population synthesis

models but will contain some significant scatter due to differing intrinsic star-formation histo-

ries, especially for merging systems (Smith and Hayward, 2015).

1.2.1 Star-formation Rate Indicators

The stellar ultraviolet continuum between 1250− 2500Å is dominated by the emission from

unobscured young OB stars given that star-formation has recently started (Walborn and Fitz-

patrick, 1990; Walborn, 1971; Massey et al., 1995; da Cunha et al., 2008). Using stellar popu-

lation synthesis methods, it is possible to relate UV luminosity to star-formation rate assuming

an IMF and that the SFR has remained steady on time-scales longer than the lifetimes of the

OB stars themselves (which stay on the main sequence for less than 108 years). However, UV

wavelengths are inaccessible from Earth and so nearby galaxies require observations to be made

above the atmosphere. Furthermore, UV emission is highly susceptible to extinction due to dust

and the relation between UV flux and star-formation rate is sensitive to the form of the IMF. For

example, using a Salpeter IMF (Salpeter, 1955) will produce a near flat UV continuum between

1500−2800Å and gives a SFR-LUV relationship that is accurate for a continuous star-formation

rate over a period of 108 years:

SFR(M�yr−1,UV )≈ 1.4×10−28Lν /ergs−1 (1.2)
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FIGURE 1.6: The schematic illustration (Charlot and Fall, 2000) of the two component model
used by the SED fitting code MAGPHYS (da Cunha et al., 2008, 2011). The emission from the
diffuse interstellar medium, heated by older stars, is shown in black. The emission from the

birth clouds is shown in orange.

The UV continuum is only a portion of the Spectral Energy Distribution (SED) of a star-forming

galaxy. The hydrogen recombination lines absorb and re-emit the massive-stellar light below

the Lyman limit and so provide a reliable tracer for star-formation for stars above 10M� which

corresponds to a lifetime (and hence SFR time-scale) of 107 years (Kennicutt, 1998b; Charlot

and Longhetti, 2001; Kennicutt et al., 2009; Hao et al., 2011; Murphy et al., 2011):

SFR(M�yr−1,Hα) = 7.9×10−42LHα/ergs−1 (1.3)

The biggest disadvantage for Hα recombination line and continuum SFR indicators is dust ex-

tinction. UV photons are easily absorbed by dust along the line of sight and so SFR estimates

based on UV measurements can significantly underestimate the true SFR when the effect of ex-

tinction has not been taken into account. OB stars are born within the dense molecular clouds

surrounded by the ISM (Charlot and Fall, 2000), as shown in Fig 1.6, and so the effect of

dust is significant. However, energy must be conserved and the UV light from these young

stars is reprocessed by the dust into the infrared, producing an infrared SED peaking at mid- to
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far-infrared wavelengths. The dust temperature increases with decreasing distance of the dust

from the young stellar population. Therefore, different components of dust emit in different

wavelength ranges, and so an infrared SED with a shorter peak wavelength indicates hotter

temperatures. The form of the SED is then a composite modified-blackbody (a black-body

with a wavelength-dependent emissivity ε = νβ , where β is the emissivity index), where each

component of hot or cool dust contributes a different modified-blackbody at a different peak

wavelength.

The stellar birth clouds typically disperse on time-scales of 107 years (Charlot and Fall, 2000;

da Cunha et al., 2008) and so light from stars older than this will be predominantly reprocessed

in the cooler ambient ISM. The total infrared output of dust can be therefore approximated by

two grey-body SEDs (da Cunha et al., 2008, 2011) shown in Fig 1.6.

Different wavelengths of stellar light probe differently aged populations of stars and show

whether they are obscured by dust. A star-formation history can be fit to an entire spectrum

and therefore an approximate star-formation history and rate can be fit using discrete photomet-

ric observations taken over a range of wavelengths. This is the essence of SED fitting. SED

fitting codes such as AGNFITTER (Calistro-Rivera et al., 2016) and CIGALE (Burgarella et al.,

2005) use a self-consistent energy balance criterion, where the total energy radiated from stars

and any central Active Galactic Nucleus (AGN) is equal to the energy observed in the UV and

infrared components. This allows linking of stellar, dust, and AGN physics in a consistent and

holistic manner. By modelling all sources of emission simultaneously, it is possible to arrive at

a deeper understanding of the intrinsic properties of galaxies than one would by modelling them

in isolation.

The star-formation rate indicators discussed above probe recent stellar birth either through dust

reprocessing or directly via UV and optical. The same massive young stars whose UV and op-

tical emission can directly trace recent star-formation end their lives in supernova explosions.

The charged cosmic rays that are accelerated in the resultant shock-fronts become trapped in the

galaxy’s magnetic field emitting radio continuum synchrotron radiation for periods of around

108 years (Blumenthal and Gould, 1970; Condon, 1992; Longair, 2011). Towards longer wave-

lengths, the thermal radiation due to dust black-bodies and HII free-free emission diminishes

and the emission due to synchrotron radiation dominates the galaxy SED at radio frequencies

(Condon, 1992). When considering only supernovae-related emission, radio synchrotron traces
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only the very massive young stars and is unaffected by the extinction that plagues UV and opti-

cal measurements. As such, observed radio luminosity can trace recent stellar death as opposed

to the recent stellar birth that is traced by emission at other wavelengths. However, a coherent

physical model for the radio synchrotron emission due to this process depends on many star-

formation parameters and magnetic field assumptions (Condon, 1992; Lacki et al., 2010; Lacki

and Thompson, 2010; Schober et al., 2017). So in order to estimate star-formation rates, it is

necessary to bootstrap from the correlations between radio luminosity and emission for which

we have star-formation models. This is most easily seen in the Far-Infrared Radio Correlation

(FIRC van der Kruit, 1971; de Jong et al., 1985; Condon et al., 1991; Yun et al., 2001; Bell,

2003; Bourne et al., 2011) where the far-infrared is already calibrated to the star-formation rate

as described above. This method has its own disadvantages, such as large variation in the slope

of the correlation with many parameters including redshift (see Chapter 2, Read et al. 2018 for

more details).

Each indicator has its own advantages, sensitivities, redshifts for which they are accessible, and

SFR time-scales. For that reason, a complete cosmic SFR density over large ranges of redshift

can best be traced with more than one indicator, each compensating for the other’s weaknesses.

The search for a perfect star-formation rate indicator is still ongoing...

1.3 Star-formation in Galaxies and Mechanisms for their Evolution

1.3.1 The Galaxy Main Sequence of Star-formation and Quenching

Deep and wide-field multi-wavelength surveys yield large samples of galaxies with which to

calibrate and then study star-formation over cosmic time. Together with the improvements seen

in stellar population synthesis models (e.g. Bruzual, 2007; Yuk and Lee, 2007; Walmswell et al.,

2013; Gennaro et al., 2015; Bernard et al., 2015; Williams et al., 2015; Leitherer et al., 2010),

they have allowed refinement of star-formation rate diagnostics (e.g. Kennicutt et al., 2009;

Murphy et al., 2011; Hao et al., 2011; Kennicutt Jr and Evans II, 2012) and estimation of stellar

masses and attenuation. With the advent of these large-scale surveys, most notably SDSS, it

became clear that the galaxies selected in the optical are bimodally distributed in a number of

properties such as star-formation rate, stellar mass, and colour (Baldry et al., 2004; Brinchmann

et al., 2004; Salim et al., 2005) as shown in Fig 1.2.
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FIGURE 1.7: Star-formation rate versus stellar mass for star-forming galaxies (black) at red-
shifts between 1.5 < z < 2.5 from Rodighiero et al. (2011). Star-bursts are shown in red. The
solid black line indicates the main sequence at z = 2 identified by Daddi et al. (2007), while the
dotted lines show the main sequence with difference normalisations. The inset axes show the

main sequence in the plane of specific star-formation rate (sSFR) versus stellar mass.

In addition, a “main sequence” of galaxies that are currently forming stars is seen in the plane of

star-formation rate and stellar mass (Fig 1.7 Guzmán et al., 1997; Brinchmann and Ellis, 2000;

Noeske et al., 2007b,a). The main sequence is consistently detected across redshift (Noeske

et al., 2007a; Speagle et al., 2014; Caputi et al., 2017) with an unchanging finite width of

≈ 0.3 dex, implying that its width and slope arise from self-regulating physical star-forming

processes.

The bulk of star-formation took place at redshifts above z = 1 (Lilly et al., 1996; Madau et al.,

1996; Hopkins and Beacom, 2006; Noeske et al., 2007c,a) and the normalisation of the main

sequence increases towards higher star-formation rates with higher redshifts. Indeed, the cur-

rent star-formation rate is approximately 1/20 of the star-formation rate at z = 2 (Daddi et al.,

2007; Hopkins and Beacom, 2006; Behroozi et al., 2013; Madau and Dickinson, 2014). The

comparison of star-formation rate density estimates, making use of indicators from infrared to

UV, paints a picture of a peak in star-formation density at z = 2 in Madau and Dickinson (2014,

Fig 1.8) and also in the normalisation of the main sequence (Speagle et al., 2014).
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FIGURE 1.8: The cosmic star-formation history (Madau and Dickinson, 2014). The star-
formation rate density over redshift as measured by UV (green, blue, and magenta points)
and infrared (red and orange points). The UV data points have been corrected for dust atten-
uation using attenuation-reddening laws applied to spectral slopes of star-forming galaxies or

from stellar population model fitting to the full optical-UV integrated SED.

The fact that there is a bimodal distribution of galaxies clearly separated in the planes of colour–

magnitude and colour–colour (Tully et al., 1982; Baldry et al., 2004; Strateva et al., 2001), size–

colour (Kelvin et al., 2014a,b), colour-structural concentration (Driver et al., 2006; Kelvin et al.,

2012), and stellar mass–star-formation rate (Smethurst et al., 2015) suggests that the transition

from late-type to early-type happens quickly, on the order of 2 Gyr (Bremer et al., 2018). We

rarely observe galaxies within the “green valley” region between the star-forming and quiescent

objects (Wetzel et al., 2012).

A plethora of mechanisms have been suggested to transform late-type galaxies into early-types.
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Mergers will disrupt the stellar velocity distribution in a disc galaxy, heating the disc, increasing

velocity dispersion and central concentration of gas, and eventually turning the galaxy into an

early-type (Toomre, 1977). The removal of gas from the host galaxy by central black hole winds

(Cicone et al., 2014) would freeze star-formation and cause the disc to fade on long time-scales.

Since star-formation rate is proportional to cold gas density1 (Schmidt, 1959; Kennicutt, 1998a;

Lilly et al., 2013), strangulation, i.e. the disruption of inflowing gas, will also reduce the star-

formation rate (Peng et al., 2015).

Faber et al. (2007) compared the luminosity functions of red and blue galaxies up to z∼ 1 using

the DEEP2 (Davis et al., 2003) and COMBO-17 (Wolf et al., 2003) surveys. They found that

the total stellar mass of blue galaxies has remained constant over this time with the number and

mass of red galaxies rising significantly. It seems then, that blue galaxies must be “quenched” of

their star-formation whereupon they transition to the red sequence and increase slowly in mass,

perhaps by a series of mergers.

Bouché et al. (2010), Lilly et al. (2013), and Tacchella et al. (2016) have suggested that the

main sequence of star-forming galaxies arises from a self-sustaining star-formation feedback

loop. The ideal gas-regulated model (Bouché et al., 2010; Lilly et al., 2013) dictates that star-

formation rate is proportional to the gas mass within the galaxy (Schmidt, 1959; Kennicutt,

1998a) and that the gas outflow rate is proportional to star-formation rate:

Ṁ∗ = γ
−1mgas, (1.4)

ṁgas = λṀ∗, (1.5)

where the efficiencies γ and λ are assumed to be constant for a given halo mass.

Fig 1.9 shows the confinement of star-forming galaxies to a narrow region in sSFR-M∗ space in

the VELA hydrodynamic simulation suite (Ceverino et al., 2014; Zolotov et al., 2015; Tacchella

et al., 2016). Galaxies travel along the main sequence, building stellar mass though accretion

of inflowing gas. When the infall of gas is more efficient than star-formation within the galaxy,

the galaxy becomes compact as gas falls to the centre triggering a star-burst. Quenching of star-

formation then begins from the inside out as the centre depletes its gas reservoir. However, if

the galaxy can be replenished with gas before it is depleted entirely, the quenching trajectory

is reversed and the process can begin again, maintaining equilibrium. When the galaxy halo

1More precisely, the star-formation rate averaged over the galaxy is well correlated with the surface density of
cold gas ΣSFR ∝ Σ∼1.4

gas /M�yr−1kpc−2 (Kennicutt, 1998a)
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FIGURE 1.9: The main sequence confinement model by Tacchella et al. (2016). The offset
from the star-forming main sequence in sSFR and stellar mass as a function of time. This
diagram depicts the evolution of a typical star-forming galaxy (in the Tacchella et al. (2016)
confinement model). The galaxy experiences a compaction phase where infall supplies gas
to the galaxy faster than star-formation feedback can remove it. The galaxy’s trajectory off
the main sequence is opposed by gas outflow and SFR becoming more efficient in the centre.
Quenching begins from the inside out after gas is depleted in the centre. The quenching can be
halted in lower mass galaxies with rapid replenishment of gas. Eventually, when the halo mass
passes the threshold for virial shock heating, long term quenching dominates and the galaxy

moves off the main sequence.

becomes too hot (at about 1011.7M�), a stable shock (Dekel and Birnboim, 2006) can block the

infall of gas and the efficiency of replenishment is substantially reduced allowing the galaxy to

fall off the main sequence and be quenched into quiescence. The scatter in the main sequence in

Tacchella et al. (comparable to the observed scatter of ∼0.3 dex 2016), therefore, is a result of

the time that a galaxy spends oscillating in this feedback loop (equating to 1 Gyr at z = 3). The

results from Tacchella et al. (2016) broadly match predictions for star-formation rate per unit

mass over redshift given by Lilly et al. (2013), Speagle et al. (2014), and Schreiber et al. (2016).
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1.3.2 A Galaxy Sequence?

However, all of these studies presume the existence of two separate classes of galaxies as ev-

idenced by optical flux-limited surveys. Colour and sSFR cuts are applied and typically two

resulting classes are compared. A body of literature is now hinting that rapid quenching is not

required in general and that galaxies — with the exception of the 14 per cent of early-types,

known as “slow-rotators”, whose rotation is dominated by dispersion (Krajnovic et al., 2013)

— form a continuous sequence instead of two distinct groups on the sSFR-M∗ diagram (Eales

et al., 2017). The dichotomy of quiescent and star-forming galaxies is brought into question

when selecting galaxies based on their sub-millimetre or infrared colours.

In a volume limited survey, designed to contain all of the mass present in the local universe

after 12 Gyr of galaxy evolution, Eales et al. (2017) present evidence for a single continuum

from late-type to early-type. When selected in the infrared with the Herschel Reference Survey

(Boselli et al., 2010), the sample forms a curved “galaxy” sequence in sSFR-M∗ rather than a

blue cloud and a red sequence. Furthermore, their morphological classifications smoothly trans-

form from spiral to elliptical along the curved galaxy sequence (Eales et al., 2017, 2018a). If the

population of galaxies is indeed unitary, then rapid quenching processes become less important.

And indeed, Schawinski et al. (2014) report that the transformation from late-type to early-type

morphology is not unimodal nor rapid. Instead, late-type galaxies maintain their disc structure

as their star-formation rate fades slowly: the green valley is not a general rapid transition phase.

Finding that the stellar metallicity is higher in quenched galaxies than in their progenitors, Peng

et al. (2015) have argued that the dominant pathway for star-formation quenching is the strangu-

lation of the gas supply and subsequent disc fading. Furthermore, fine structure such as lenses

and rings cannot be expected to survive violent quenching events. The increase in the occur-

rence of these structures in the green valley relative to their blue and red counterparts serves to

demonstrate that violent quenching pathways are less likely (Kelvin et al., 2018; Bremer et al.,

2018).

1.4 Active Galactic Nuclei

Star-formation (through supernovae generated outflows) alone cannot explain the paucity of

galaxies found at high luminosities where observationally-motivated simulations and theory

over-predict their number density as seen in Croton et al. (2006, Fig 1.11) and Schaye et al.
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show the distribution of the GAMA-selected galaxies for comparison.

(2015). A much larger source of energy is required to heat the halo and quench star-formation

by cutting off the supply of cool gas.

1.4.1 The Discovery and Unification of AGN

In 1901, Fath (1909) published the first spectroscopic detection of emission lines in the centres

of NGC 1068 and Messier 81. Further spectroscopic measurements taken by Slipher (1917);

Humason (1932); Mayall (1934, 1939) confirmed the existence of broad emission lines indicat-

ing the presence of high-velocity gas in the centres of spiral galaxies. Initially and tentatively,

the broad emission lines were thought to be due to a high pressure gradient towards the nuclei of

these galaxies. In 1943, the spectra for the original “Seyfert galaxies” NGC 1068, NGC 4151,
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FIGURE 1.11: Comparison of measured galaxy luminosity functions to models from Croton
et al. (2006). Points indicate observed data whereas the lines describe the models that include
the heating due to AGN (solid line) and do not include the heating due to AGN (dashed line).

NGC 3516, and NGC 7469 were observed by Seyfert (1943) corroborating the growing con-

sensus that there was a class of galaxies with nuclei that are physically different from normal

spirals. With the influx of observations from radio telescopes came new insights into the nature

of this emission source and the demand for its investigation. Curtis (1918) first observed an opti-

cal jet emitted from Messier 87 and the same structure was detected at 150 MHz associated with

synchrotron emission by Baade and Minkowski (1954) with other jet structures observed some

time after (e.g. Bridle and Perley, 1984; Keel, 1988; Fraix-Burnet, 1990; Liu and Xie, 1992).

Quasi-Stellar Objects (Quasars/QSOs) were classified by their rapid variability in optical wave-

lengths and their small size (Sandage, 1965). After eight years, QSOs were finally accepted to

be associated with host galaxies (Kristian, 1973) and located in the nuclei of their host.

Since then, many apparently different AGN have been identified by seemingly unrelated obser-

vations concerning emission line width, radio jet structures, optical variability, and high energy

X-ray emission. Seyfert galaxies (Seyfert, 1943) were split into two types with Seyfert-I galax-

ies mostly able to identified by their broad permitted emission lines and Seyfert-IIs being clas-

sified only by their narrow forbidden emission lines. Khachikian and Weedman (1974) realised

that the two sets of emission lines are superimposed, implying that different physical processes

produced the two sets. The continuous nature of the Seyfert classification system was later

suggested by Osterbrock (1981) where lower Seyfert numbers indicate the relative dominance

of broad permitted lines, higher Seyfert numbers represent the relatively weaker broad lines in

comparison to the narrow lines.
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Broad emission lines indicate the presence of fast moving gas in the centre of Seyfert-I galaxies

and the presence of strong forbidden narrow-lines in Seyfert-IIs requires the existence of a far

harder source of ionising photons than supernovae in order to excite them. The energy output

from young OB stars is insufficient to explain the Seyfert-II spectra, instead a heating source

with a power-law spectrum or shock-heated gas must be responsible (Baldwin et al., 1981) –

both of which imply energetic activity in the centre of these galaxies. Moreover, due to their

high redshifts and luminosities, QSOs must be some of the most energetic objects in the uni-

verse (> 1044 ergs−1 in optical wavelengths). It seems that AGN must be powered by a highly

energetic non-stellar energy source. The first attempt at unifying the different nuclear activi-

ties was suggested by Lynden-Bell (1969a) with a collapsed QSO model for explaining AGN

energies. In this now accepted model, the accretion disc around a central black-hole provides

the energy necessary to excite emission lines and produce variable continua. Furthermore, the

magneto-hydrodynamical effects in the accretion disc are thought to power the jet seen in some

radio AGN (Blandford and Znajek 1977; see also Sbarrato et al. 2014 and references therein).

In 1985, Antonucci and Miller (1985) measured the polarised spectrum from a standard Seyfert-

II galaxy, NGC1068, and found that it resembled the expected spectrum of a Seyfert-I AGN.

This was interpreted to mean that a Broad-Line Region (BLR) of fast moving gas had scattered

the ionised light while the direct view of the central continuum emission was blocked by a dusty

torus, matching the prediction of Antonucci (1984) for 3C234. The unification paradigm for

AGN posits that all active galactic nuclei consist of essentially the same components. A central

Super-Massive Black-Hole (SMBH) provides the gravitational potential to power the AGN (their

existence supported by the detection of Keplerian motion in a nuclear disc by both stars in the

Milky Way and gas e.g. Gillessen et al. 2009). The accretion disc surrounding the SMBH

generates the continuum (Koratkar and Blaes, 1999) and a hot corona up-scatters the photons

to produce high energy X-ray emission (Cao, 2009). The continuum emission is absorbed and

reprocessed by a dusty torus providing the mid-infrared bump (Pier and Krolik, 1992; Contini

et al., 2004; Fritz et al., 2006). A region of fast-travelling gas at small radii (BLR) produces

the broad emission lines in Seyfert-Is and a region of ionised gas at larger radii producing the

narrow-lines found in Seyfert-IIs.

Given this geometry, an AGN is classified as a Seyfert-II when the torus is oriented to block

emission from the central region and the BLR (Antonucci, 1993; Netzer, 2015). The orientation

unification model shown in Fig 1.12 also incorporates QSOs and blazars by jet orientation.
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Beckmann and Shrader (2013). Different types of AGN are observed based on which universal
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also included, depicted by the presence (or not) of a jet.

QSOs are observed when a jet is pointed towards the observer, simultaneously producing a flat-

spectrum (Urry and Padovani, 1995).

However, the orientation unification model cannot account for the presence (or not) of the radio

jet itself: the presence of the jet must be governed by some intrinsic physical process. Best and

Heckman (2012) summarises a description of two fundamentally different populations of AGN.

Radiative-mode AGN are defined by their electromagnetic-dominated energy output. They can

be further split into obscured and unobscured types, based on the viewing angle, producing the

Seyfert classification system as detailed above. However, the energy output of jet-mode AGN

is not dominated by electromagnetic (EM) energy and is instead mainly comprised of particle

jets produced by advection-dominated flows (Narayan and Yi, 1995; Best and Heckman, 2012).

In jet-mode AGN, the thin accretion disc found in radiative-mode AGN is replaced with a thick

structure in which inflow is much shorter than radiative cooling time-scales and is therefore

more radiatively inefficient. Radiatively-inefficient flows are capable of creating the relativistic

jets which can be seen to extend to megaparsec scales. Radiatively-efficient flows, on the other

hand, produce radiative-mode AGN, where the accretion rate is inferred to be much higher. The
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ratio of AGN bolometric luminosity Lbol to its Eddington luminosity Ledd is canonically ' 0.01

for these objects.
Lbol

Ledd
=

εṀc2

4πGmpcMBH/σT
≈ 9.1×104εṀ

MBH
, (1.6)

where Ṁ is the accretion rate and ε is the accretion efficiency (theoretically motivated to be

∼ 0.1: Best and Heckman 2012), and σT is the Thompson scattering cross-section. Radiatively-

efficient AGN have higher radio luminosities (Best and Heckman, 2012) and more strongly

ionise narrow emission lines with their higher EM output than in jet-mode AGN.

1.4.2 AGN and Star-formation: Co-evolution of AGN with their Hosts

With this much energy deposited from the AGN into the surrounding environment and host

(Dunn and Fabian, 2006), it is reasonable to investigate whether AGN can influence the develop-

ment of their hosts and neighbouring galaxies. Despite the disparity between relative masses and

sizes, the mass of a bulge correlates surprisingly tightly with the mass of the central black-hole

(e.g. Ferrarese and Merritt, 2000; Gebhardt et al., 2000; Merritt and Ferrarese, 2001; Tremaine

et al., 2002; Wyithe and Padmanabhan, 2006; Wyithe, 2006; Hu, 2008; Gültekin et al., 2009;

Woo et al., 2013).

Figure 1.13 shows the tight correlation between bulge stellar velocity dispersion and black-hole

mass as measured by different methods over a wide dynamic range of masses and Hubble type.

This shows that the central nucleus with gravitational influence over a few parsecs (Merritt,

2013) has influence on the stars on scales of kiloparsecs.

Could the central SMBH then contribute to feedback and regulation of star-formation? Upon

measuring the ratio of star-formation to black-hole growth per unit volume over the last 10 Gyr

Shankar et al. (2009); Heckman and Best (2014) find that the ratio remains roughly constant,

with both growth rates experiencing a steep decline at high redshifts. The growth of black-holes

and their hosts must therefore be linked, when averaging over volume.

There is a wealth of evidence that outflows are driven by radio-quiet AGN, based on blueshifted

absorption lines in unobscured AGN (e.g. Crenshaw et al., 2003; Fabian, 2012), infrared emis-

sion from dust outflows driven by winds (e.g. Baron and Netzer, 2019) or radiation pressure (e.g.

Ishibashi and Fabian, 2015); all implying fast outflows of gas with velocities of several tens of

thousands of kms−1.
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FIGURE 1.13: The M�-σ relation as fit by McConnell and Ma (2013) for 72 galaxies of
varying Hubble type with black-hole masses measured by a combination of Maser, gas, and
stellar dynamics. A green marker indicates that the galaxy is Brightest Cluster Galaxy (BCG),
a red marker indicates that the galaxy is designated as early-type, and a blue marker shows the
late-types. The coloured lines indicate fits to the coloured points, with the black line depicting

a fit to all data.

As for radio-loud sources, the evidence comes from the radio structures themselves. The jets

and lobes observed at radio frequencies have been shown to expand, therefore performing ther-

modynamic work on their surrounding environment (Scheuer, 1974; Blandford and Rees, 1974;

Kaiser et al., 1997; Begelman and Cioffi, 1989; Hardcastle and Worrall, 2000; Croston et al.,

2004). Furthermore, the cooling time for the gas in a cluster environment is much shorter than

the Hubble time, but cooling flows, which would provide gas for star-formation rate in excess

of 1000 M�yr−1, are not seen (only around 10 per cent is observed, Peterson 2001; David et al.

2001; Tamura et al. 2001; Peterson et al. 2003). A candidate heating source to balance the cool-

ing flow is the radio-AGN present in 70 per cent of Brightest Cluster Galaxies, BCGs, (Burns,

1990; Best et al., 2007; Best, 2007). To that effect, using a suite of simulated jet-mode AGN,

Hardcastle et al. (2018) integrate over the kinetic energy output all radio loud AGN to arrive

at a kinetic luminosity of 7× 1031 W Mpc−3. This value is comparable to the total cooling lu-

minosity, 3×1031 W Mpc−3. in local clusters (whose population is characterised by Böhringer
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et al. 2014). This result implies that radio loud AGN can offset cluster cooling enough to be

considered responsible for the continued quenched state of their massive elliptical hosts (Tad-

hunter, 2016). In addition, Seyfert galaxies are frequently positioned in the optical green valley

(Smolcic, 2009; Pierce et al., 2010), which are assumed to be in the process of quenching; the

AGN fraction peaks in the green valley (Martin et al., 2007).

AGN then undoubtedly contribute to the star-formation history of their host galaxies either by

heating the surrounding gas to halt cooling flows which feed star-formation, or blow out the gas

in a “fountain” to regulate star-formation (Croton et al., 2006; de Gouveia Dal Pino et al., 2018;

Croton et al., 2016; Wada et al., 2016; Biernacki and Teyssier, 2018).

1.4.3 The Contamination of Star-forming Relations by AGN

Since most galaxies host a SMBH, and given an average duty cycle for AGN, it is reasonable

to expect that most galaxies have or will play host to an active nucleus. If this is the case, and

AGN emission is ubiquitous, then how can we trust that the star-formation indicators and fitted

properties remain uncontaminated by non-star-forming processes?

It is hard to disentangle AGN and star-formation in an individual galaxy. Spatially fitting a

nuclear component to a photometrically observed galaxy can remove some of the influence of

the AGN (Belfiore et al., 2017; Sánchez et al., 2018; Spindler et al., 2018; Penny et al., 2018),

and tools such as AGNFITTER (Calistro-Rivera et al., 2016) and CIGALE (Burgarella et al.,

2005; Ciesla et al., 2015) are able to fit the SEDs of a star-forming component and an AGN

component simultaneously, allowing the estimation of star-formation rates uncontaminated by

AGN emission. However, spatially decomposing an individual galaxy is only successful at high

resolutions and low redshifts. In addition, AGN/host decomposition by SED fitting requires

measurements at many different wavelengths in order to properly partition the total SED.

With the aid of diagnostic diagrams such as mid-infrared diagrams (Stern et al., 2005; Jarrett

et al., 2011; Stern et al., 2012; Coziol et al., 2015) which make use of increased emission sup-

posedly from the dusty obscuring torus; emission line ratios such as BPT (Baldwin et al., 1981;

Veilleux and Osterbrock, 1987); the offset from the star-forming correlation of radio luminosity

with Hα and infrared emission; or a combination of stellar mass, radio luminosity, and Dn(4000)

strength (Best et al., 2005), it is possible to select a sample of galaxies where star-formation

emission dominates by only using a small number of statistics, as shown in Fig 1.14.
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FIGURE 1.14: The Location of star-forming sources in the LOFAR Two-Metre Sky Survey
(LoTSS, Williams et al. 2018b) DR1 taken from Sabater et al. (2018). Upper left: The ‘D4000
versus L150MHz/M∗’ method (Best et al., 2005). Upper right: The BPT emission line ratio
diagnostic diagram (Baldwin et al., 1981). Lower left: The LHα versus L150MHz relation. Lower
right: The WISE W1–W2 versus W2–W3 colour-colour diagnostic diagram (MIRDD) (Wright
et al., 2010; Jarrett et al., 2011). The radio AGN are labelled by red dots in all diagrams and

the dotted lines represent each diagnostic’s star-forming/AGN separation criteria.

However, low luminosity AGN are frequently not detectable by the diagnostics that are readily

available and so their effect on the star-formation history and evolution of galaxies is unknown

and probably conflated with that of a supposed “pure” star-forming sample (Read et al., 2018).

Thus, in order to fully understand galaxy evolution and the impact of star-formation processes, it

is of vital importance to characterise star-formation relations while accounting for the existence

of low-level AGN emission.

1.5 Motivations and the Structure of this Thesis

The relative importance of different feedback mechanisms and quenching pathways are still very

much debated. Radio star-formation rate relations are highly important to the upcoming radio

surveys but they are a highly indirect measure of star-formation involving many areas of physics

that are poorly-understood in star-forming galaxies. Indeed, it is vital that the shortcomings of

the extrapolation of low redshift scaling relations to higher redshifts are well-known in order to

understand the past evolution of galaxies.
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There is therefore a need to develop methods to probe these relations and measure the properties

of star-forming galaxies in order to understand the physics of star-formation and the evolution

of galaxies.

In the age of large-scale surveys such as SDSS, LSST, SKA, which will provide truly huge

amounts of data, it becomes possible to study and understand these complex scaling relations

in multiple dimensions through sophisticated inference techniques. This thesis is a summary of

the development, validation, and results of hierarchical models applied to scaling relations.

In the second chapter, we investigate the relation between radio luminosity at low frequency

(which in principle should be cleanly related to SF) and infrared luminosity, in order to pro-

vide information about the use of the FIRC to calibrate radio star-formation rates. We find that

the FIRC is untrustworthy as a star-formation rate indicator with large variations with mass,

redshift, and dust temperature. The third chapter explores an untested photometric method to

calibrate the black-hole mass – luminosity relation for reverberation mapping, which uses the

delay between emissions from the central engine of the AGN and the outer Broad-Line Region

to calculate the mass (Blandford and McKee, 1982). We validate the effectiveness of Javelin,

the Bayesian reverberation mapping code, and then perform photometric reverberation map-

ping for a QSO to demonstrate its effectiveness. The fourth chapter concerns an investigation

into the star-formation rate (as measured with Hα) radio luminosity relation (as measured by

LOFAR at 150 MHz). Following the detection of a mass dependency in excess to that expected

(Gurkan et al., 2018), we apply a new extreme deconvolution method to fit the joint distribution

of star-formation rate, stellar mass, and radio luminosity as a function of redshift, emission line

strength, and optical magnitude in an effort to remove selection biases from analysis. Finally,

we conclude with a summary and exploration of future work.

We assume a standard ΛCDM cosmology with H0 = 71 km s−1 Mpc−1, ΩM = 0.27 and ΩΛ =

0.73 throughout and use the AB magnitude system unless otherwise stated.
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The Far-infrared Radio Correlation at

Low frequency with LOFAR

2.1 Introduction

The far-infrared luminosities of star-forming galaxies have long been known to correlate tightly

and consistently with synchrotron radio luminosity across many orders of magnitude in infrared

and radio luminosities, independent of galaxy type and redshift (van der Kruit, 1971; de Jong

et al., 1985; Condon et al., 1991; Yun et al., 2001; Bell, 2003; Bourne et al., 2011).

The existence of some relation should not be surprising since the basic physics relating emission

in each waveband to the presence of young stars is well understood. Young stars heat the dust

within their surrounding birth clouds, which radiate in the infrared (Kennicutt, 1998b; Charlot

and Fall, 2000). The supernovae resulting from the same short-lived massive stars accelerate

cosmic rays into the galaxy’s magnetic field thereby contributing non-thermal radio continuum

emission over ≈ 108 years (Blumenthal and Gould, 1970; Condon, 1992; Longair, 2011). How-

ever, the fact that the Far-Infrared Radio Correlation (FIRC) has consistently been found to have

low scatter (Helou et al., 1985; de Jong et al., 1985; Condon, 1992; Lisenfeld et al., 1996a;

Wong et al., 2016) is surprising. Such tight linearity is consistent with a simple calorimetry

model (Voelk, 1989), whereby cosmic ray electrons lose all of their energy before escaping the

host galaxy and where all UV photons are absorbed by dust and re-radiated in the infrared. This

results in synchrotron radiation being an indirect measure of the energy of the electron popula-

tion and infrared luminosity being proportional to young stellar luminosity. Therefore, assuming

27
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calorimetry, the ratio of these two measures will remain constant as they are both dependent on

the same star formation rate. The FIRC can therefore be used to bootstrap a calibration between

a galaxy’s star formation rate and its radio luminosity (e.g. Condon, 1992; Murphy et al., 2011)

– but only if there is no additional contribution from AGN.

The physics required to model the FIRC is complex. For example, the timescale of the electron

synchrotron cooling that produces the radio emission is thought to be longer than the timescale

for the escape of those electrons (Lisenfeld et al., 1996b; Lacki et al., 2010) for normal spirals,

and starlight is only partially attenuated in the UV (Bell, 2003). Therefore, it is reasonable to

suppose that the calorimetry interpretation must be at least partially inaccurate and that there

should be some observable variation in the FIRC over the diverse population of star-forming

galaxies. In particular, due to their strong magnetic fields, we expected starburst galaxies to be

good calorimeters and therefore have a correlation with a slope that is much closer to one than

other star-forming galaxies (Lacki et al., 2010).

However, since synchrotron emission depends strongly on magnetic field strength, the assump-

tion about how this changes with galaxy luminosity is crucial to explain the correlation. Alter-

natives to the calorimetry model have also been proposed, e.g. (i) the model of Niklas and Beck

(1997), where the FIRC arises as the by-product of the mutual dependence of magnetic field

strength and star-formation rate upon the volume density of cool gas, and (ii) Schleicher and

Beck (2016), where the FIRC is based on a small-scale dynamo effect that amplifies turbulent

fields from the kinetic turbulence related to star formation. There are a number of reasons to

expect the FIRC to vary with the parameters that control synchrotron and dust emission, but

it seems that infrared and radio synchrotron must both fail as star formation rate indicators in

such a way as to maintain a tight and linear relationship over changing gas density. The model

detailed by Lacki and Thompson (2010) and Lacki et al. (2010) suggests that although normal

galaxies are indeed electron and UV calorimeters, conspiracies at high and low surface density,

Σg, contrive to maintain a linear FIRC. At low surface density, many more UV photons escape

(and therefore lower observed infrared emission) due to decreased dust mass but at the same

time, because of the lower gravitational potential, more electrons escape without radiating all

their energy, decreasing the radio emission. Meanwhile, at high surface densities, secondary

charges resulting from cosmic ray proton collisions with ISM protons become important (Tor-

res, 2004; Domingo-Santamaria and Torres, 2005). Synchrotron emission from those electrons

and positrons may dominate the emission from primary cosmic ray electrons. However, the
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FIRC is maintained due to the increased non-synchrotron losses from bremsstrahlung and in-

verse Compton scattering at higher densities.

These conspiracies rely on fine tuning of many, sometimes poorly known, parameters in order

to balance the mechanisms that control the linearity of the FIRC. If we expect variation over

star-forming galaxies due to differences in gas density, stellar mass, and redshift (to name a

few), then we should probe the FIRC over known star-forming sequences such as those found in

colour-magnitude (Bell et al., 2004) and mid-infrared colour-colour diagrams (e.g. Jarrett et al.,

2011; Coziol et al., 2015), and the star formation rate – stellar mass relation (Brinchmann et al.,

2004; Noeske et al., 2007b; Peng et al., 2010; Rodighiero et al., 2011).

Naively, we might also expect some variation of the FIRC with redshift. At the very least, radio

luminosity should decrease with respect to infrared luminosity due to inverse Compton losses

from cosmic microwave background (CMB) photons (Murphy, 2009). The CMB energy density

increases proportional to (1+ z)4 (Longair, 1994), so the ratio of infrared to radio luminosity

should noticeably increase with redshift even at relatively local distances, assuming a calorime-

try model and that CMB losses are significant.

However, this is one of the key areas of dispute between different observational studies. While

many works find no evidence for evolution (e.g. Garrett, 2002; Appleton et al., 2004; Seymour

et al., 2009; Sargent et al., 2010), there are exceptions (e.g. Seymour et al., 2009; Ivison et al.,

2010; Michałowski et al., 2010b,a; Basu et al., 2015; Calistro-Rivera et al., 2017; Delhaize

et al., 2017). Particular among those studies, Calistro-Rivera et al. (2017) find a significant

redshift trend at both 150MHz and 1.4GHz when using the Low Frequency Array (LOFAR, van

Haarlem et al., 2013) data taken over the Boötes field. The FIRC has been studied extensively

at 1.4GHz (de Jong et al., 1985; Condon et al., 1991; Bell, 2003; Jarvis et al., 2010; Bourne

et al., 2011; Smith et al., 2014) but rarely at lower frequencies. These low frequencies are

particularly important, since new radio observatories such as LOFAR are sensitive in the 15−
200MHz domain, where at some point the frequency dependence of optical depth results in

the suppression of synchrotron radiation by free-free absorption (Schober et al., 2017), causing

the radio SED to turn over. As a result, there will be some critical rest-frame frequency below

which we can expect a substantially weaker correlation between a galaxy’s radio luminosity

and its star formation rate.1 Moreover, at the higher frequencies probed by Faint Images of the

Radio Sky at Twenty centimetres (FIRST, Becker et al., 1995) (1.4GHz), there may be a thermal

1This frequency at which a galaxy’s radio SED turns over will depend heavily upon gas density and ionisation,
and so we expect it to vary from galaxy to galaxy.
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component present in the radio emission (Condon, 1992), which tends to make the correlation

between infrared and higher radio frequencies more linear. However, due to the poor sensitivity

of FIRST to star-forming galaxies with low brightness temperatures (galaxies with Tbright < 10K

will not be detected by FIRST), we cannot expect the thermal components of detected sources

to help linearise the FIRC at 1.4GHz. At low frequencies, these effects become less important

and so the perspective they provide is useful in disentangling the effect of thermal contributions

and lower luminosity galaxies on the FIRC. Given the potential ramifications for using low-

frequency radio observations as a star formation indicator, this possibility must be investigated.

Indeed, Gurkan et al. (2018) have found that a broken power-law is a better calibrator for radio

continuum luminosity to star-formation rate, implying the existence of some other additional

mechanism for the generation of radio-emitting cosmic rays.

Furthermore, lower radio frequencies probe lower-energy electrons, which take longer to radiate

away their energy than the more energetic electrons observed at 1.4 GHz, and this results in

a relationship between the age of a galaxy’s electron population and the radio spectral index

(Scheuer and Williams, 1968; Blundell and Rawlings, 2001; Schober et al., 2017). Therefore,

even if the FIRC is linear at high frequencies due to some conspiracy, this will not necessarily

be the case at low frequencies. An investigation of the FIRC at low frequency will test models

of the FIRC which rely on spectral ageing to maintain linearity (e.g. Lacki et al., 2010).

Combined with the fact that radio observations are impervious to the effects of dust obscuration,

this makes low-frequency radio observations a very appealing means of studying star formation

in distant galaxies, providing that the uneasy reliance of SFR estimates on the FIRC can be put

on a more solid footing. The nature of the FIRC conspiracies varies over the type of galaxy

and its star formation rate (Lacki and Thompson, 2010). The detection of variation in the FIRC

over those galaxy types, or lack thereof, will provide important information about the models

that have been constructed (e.g. Lacki and Thompson, 2010; Schober et al., 2017). Several

methods are used to distinguish galaxy types for the purposes of studying the FIRC, particularly

to classify these into star-forming galaxies and AGN such as BPT diagrams (Baldwin et al.,

1981), panchromatic SED-fitting with AGN components (Berta et al., 2013; Ciesla et al., 2016;

Calistro-Rivera et al., 2016), and classification based on galaxy colours. Among these, galaxy

colours provide a readily accessible method to distinguishing galaxy types or act as proxies for

properties such as star formation rate. Diagnostic colour-colour diagrams are commonplace in

galaxy classification; infrared colours in particular have been widely used to distinguish between

star-forming galaxies and AGN (Lacy et al., 2004; Stern et al., 2005; Jarrett et al., 2011; Mateos
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et al., 2012; Coziol et al., 2015). In order to investigate the potential difference in the FIRC over

normal galaxies as well as in starbursts we use the mid-infrared diagnostic diagram, (MIRDD,

Jarrett et al. 2011) . Constructed from the Wide-field Infrared Survey Explorer (WISE, Wright

et al., 2010) [4.6]− [12] and [3.4]− [4.6] colours, SWIRE templates (Polletta et al., 2006, 2007)

and GRASIL models (Silva et al., 1998) can be used to populate the MIRDD with a range of

galaxy types spanning a redshift range of 0 < z < 2. This MIRDD not only distinguishes AGN

and SFGs but also describes a sequence of normal star-forming galaxies whose star formation

rate increases to redder colours.

Past 1.4GHz surveys such as FIRST and the NRAO VLA Sky Survey (NVSS, Condon et al.,

1998) have been extremely useful in studying star formation, though there are inherent prob-

lems in using them to do this. NVSS is sensitive to extended radio emission on the scale of

arcminutes. However, its sensitivity of ∼ 0.5 mJy beam−1 and resolution of 45 ′′means that it

is difficult to identify radio counterparts to optical sources and its flux limit means that it will

preferentially detect bright or nearby sources. FIRST has both a higher resolution and a higher

sensitivity than NVSS (5 ′′ with∼ 0.15 mJy beam−1). However, due to a lack of short baselines,

FIRST resolves out the extended emission frequently present in radio-loud AGN and in local

star-forming galaxies (Jarvis et al., 2010). This makes it difficult to remove galaxies dominated

by AGN and to directly compare star-forming galaxies over different wavelengths. Meanwhile,

LOFAR offers the best of both worlds: a large field of view coupled with high sensitivity on both

small and large scales and high resolution (van Haarlem et al., 2013) at frequencies between 30

and 230 MHz. Operating at 150MHz, LOFAR contributes a complementary view to the wealth

of data gathered at higher frequencies. The sparsely examined low-frequency regime offered by

LOFAR combined with its increased sensitivity and depth relative to other low-frequency in-

struments allows us to probe the FIRC in detail, and to test predictions of its behaviour relative

to relations at higher frequencies that we measure with FIRST.

This study will analyse the nature of the FIRC at low and high frequencies and over varying

galaxy properties. How does the FIRC evolve with redshift? Does it vary as a function of

WISE mid-infrared colour? Do the specific star-formation rate (as fit by MAGPHYS) and stellar

mass impact these questions? We answer these questions for our data set and compare these

metrics with those found at higher frequencies and with literature results using different selection

criteria.

This work uses the same base dataset as Gurkan et al. (2018). The same aperture-corrected fluxes
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extracted from Herschel, LOFAR, and FIRST images are used here. Our investigation differs

from theirs in that we concentrate on the observed variation of the FIRC over dust properties

whereas Gurkan et al. (2018) focus on the direct characterisation of radio star-formation rates.

In Section 2.2, we describe our data sources and the method of sample selection. In Section 2.3

we outline our methods for calculating K-corrections, luminosities, and the methods used to

characterise the variation of the FIRC. We present and discuss the results of these procedures in

Section 2.4, and summarise our conclusions in Section 2.5. For consistency with Jarrett et al.

(2011), all magnitudes are in the Vega system.

2.2 Data Sources

The dataset we use here is the same as Gurkan et al. (2018) in that the infrared and radio aperture-

corrected fluxes are drawn from the same catalogue. However, due to two effects listed below,

our star-forming sample is selected using a different method. Firstly, a potential contamination

of AGN will have a large effect on the detected variation of infrared-to-radio luminosity ratio

over mid-infrared colours. We therefore require stronger signal-to-noise criteria (5σ detections

in the BPT optical emission lines) than the one in use in Gurkan et al. (2018) (3σ ). Secondly,

using the Gurkan et al. (2018) star-forming selection criterion but with a 5σ requirement results

in too few star-forming galaxies with reliable 5σ detections in the first three WISE bands. In

order to increase our sample size but maintain robust classification we employ the methods

detailed below.

2.2.1 Sample selection

To avoid introducing a possible bias by selecting our sample from far-infrared and/or radio cat-

alogues, our sample is drawn from the MPA-JHU catalogue (Brinchmann et al., 2004) over the

region of the North Galactic Pole (NGP) field covered by the LOFAR/H-ATLAS survey, which

is described in sections 2.2.2 and 2.2.3. The MPA-JHU catalogue uses an optimised pipeline

to re-analyse all SDSS (York, 2000) spectra, resulting in a sample with reliable spectroscopic

redshifts, improved estimates of stellar mass, and star formation rate, as well as emission line

flux measurements for each galaxy. We use their latest analysis performed on the SDSS DR7

release (Abazajian et al., 2009) to obtain optical emission line fluxes and spectroscopic redshifts

for K-corrections.
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To select our star-forming sample, we first obtain all optically selected 15,003 sources in the

MPA-JHU catalogue with reliable (ZWARNING = 0) spectroscopic redshifts z < 0.7 in the re-

gion covered by our LOFAR/H-ATLAS data. Since we are interested in studying the FIRC,

we wish to focus only on star-forming galaxies, and remove those sources with evidence for

contamination by emission from an active galactic nucleus (AGN). Our priority is to seek an

unbiased sample at the cost of such a sample not necessarily being complete. We do this using

the BPT (Baldwin et al., 1981) emission line classification method, requiring fluxes detected

at ≥ 5σ in Hα , Hβ , [OIII]λ5007, and [NII]λ6584, together with the star-forming/composite

line defined by Kewley et al. (2001). 3,082 galaxies, with redshifts z < 0.4, are identified as

star-forming in this manner.

To give us the largest possible sample of star-forming galaxies, we include those galaxies with

5σ detections in [NII]λ6584, Hα , and Hβ , provided that the upper limit on the [OIII]λ5007

flux in the MPA-JHU catalogue enables us to unambiguously classify them as star-forming.

By using this method, we can be sure that they lie below the star-forming/composite line from

Kewley et al. (2001) in Figure 2.1. We identify an additional 1,012 star-forming galaxies using

this criterion, and they are shown in purple in Figure 2.1. In addition, we remove the 12 sources

which lie within the QSO box defined in Jarrett et al. (2011). This provides us with our main

sample of 4,082 star-forming galaxies with z < 0.4 for use in comparing the FIRC at high and

low frequencies. We constructed the MIRDD (Jarrett et al., 2011) based on WISE All Sky Survey

(WISE, Cutri, 2012) fluxes (with no K-correction applied) to identify the location of our galaxies

compared to a range of sources of different types. Since we are binning across WISE colour

spaces, we construct a second sample for the mid-infrared analysis only, requiring 5σ detections

in the first three WISE bands (centred on 3.4 µm, 4.6 µm, and 12 µm). This results in a sub-

sample of 2,901 sources for use in tracing the FIRC over the mid-infrared colour space depicted

in Figure 2.2. Our sample sizes are shown in Table 2.1.

We do not use the catalogue of detected sources summarised by Table 2.1 for our analysis

here. Such a catalogue will inevitably become contaminated with noise spikes. Instead, we

employ averaging techniques described below in order to treat non-detections and detections in

the same manner. We don’t make any signal-to-noise cuts beyond those imposed on the BPT

emission lines used in the star-forming classification. In addition, our samples are drawn from

the MPA-JHU catalogue and so this imposes a strong optical prior on the location of a given

source. This allows us to conduct forced aperture photometry, in order to estimate radio fluxes
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FIGURE 2.1: Emission line ratio diagnostic diagram. The coloured points represent Seyfert
2s (in red), star-forming galaxies (blue), transition objects (green), and LINERs (yellow). The
black points are those galaxies whose 5σ upper limit on [OIII]λ5007 flux would not classify
them as purely star-forming (not included in our sample). The purple points show those ad-
ditional galaxies whose upper limits in [OIII]λ5007 still classifies them as star-forming. The
upper and lower solid black lines used to distinguish between populations are from Kewley

et al. (2001) and Kauffmann et al. (2003a) respectively.

(see Section 2.2.4), for our entire sample with a high degree of confidence that the aperture is

correctly placed.

2.2.2 Infrared data

The far-infrared data used in this study come from the H-ATLAS survey (Eales et al., 2010;

Valiante et al., 2016; Smith et al., 2017; Maddox et al., 2018; Furlanetto et al., 2018). H-ATLAS

is the largest extragalactic Herschel survey, covering a total of 510 deg2 in five infrared bands

with the Photoconductor Array Camera and Spectrometer (PACS, Ibar et al., 2010; Poglitsch
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TABLE 2.1: Number of star-forming galaxies within each sub-sample detected with Herschel
at 250 µm , LOFAR at 150MHz, and FIRST at 1.4GHz.

1. All SFGs 2. WISE detected SFGs

> 3σ Herschel 3351 2673
LOFAR 2436 2016
FIRST 1438 1098
both radio bands 1008 863

> 5σ Herschel 2616 2209
LOFAR 1876 1627
FIRST 835 640
both radio bands 533 455

total 4082 2901

et al., 2010) and Spectral and Photometric Imaging Receiver (SPIRE, Griffin et al., 2010; Pas-

cale et al., 2011; Valiante et al., 2016) instruments (sampling wavelengths of 100, 160, 250, 350,

and 500 µm). The H-ATLAS catalogues have a 5σ noise level of 33.5 mJy at 250 µm, which is

the most sensitive band (Ibar et al., 2010; Rigby et al., 2011; Smith et al., 2011, 2012b, 2017).

In this study, we focus on the H-ATLAS observations covering 142 deg2 of the NGP field.

2.2.3 LOFAR data from LOFAR/H-ATLAS

LOFAR has observed the H-ATLAS NGP field at the sensitivity and resolution of the LOFAR

Two-Metre Sky Survey (LoTSS Shimwell et al., 2017; Duncan et al., 2018; Williams et al.,

2018b). Whilst the first implementation of the LOFAR/H-ATLAS survey Hardcastle et al.

(2016) used a facet-calibration technique, this paper uses data calibrated by a significantly im-

proved method. The new direction-dependent calibration technique uses the methods of Tasse

(2014a,b). The calibrations are implemented in the software package KILLMS and imaged with

DDFACET (Tasse et al., 2018) which is built to apply these direction-dependent calibrations.

The LOFAR/H-ATLAS data were processed using the December 2016 version of the pipeline,

DDF-PIPELINE22 (Shimwell et al., 2017, and in prep.). This reprocessing yields a higher im-

age fidelity and a lower noise level than the process detailed by Hardcastle et al. (2016). It not

only increases the point-source sensitivity and removes artefacts from the data, but also allows

us to image at (slightly) higher resolution. The images used here (as in Gurkan et al. 2018) have

a restoring beam of 6 arcsec FWHM, and 50 per cent of the newly calibrated LOFAR/H-ATLAS

field has an RMS below ∼ 0.25 mJy beam−1 and 90 per cent is below ∼ 0.85 mJy beam−1.

2See http://github.com/mhardcastle/ddf-pipeline for the code.

http://github.com/mhardcastle/ddf-pipeline
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2.2.4 Photometry

Since we used optical data to select our sample, flux limited catalogues from the LOFAR,

FIRST, or H-ATLAS surveys do not contain photometry for every source in our sample, since

some of our sources are not formally detected (e.g. to≥ 5σ ). Moreover, some sources are larger

than the Herschel beam and so matched filter images are not preferred. Instead, the dataset used

here (from Gurkan et al. 2018) follows Jarvis et al. (2010), Smith et al. (2014), and Hardcastle

et al. (2016), by measuring LOFAR, FIRST, and Herschel flux densities using forced aperture

photometry.

In order to have consistent flux densities across radio and infrared bands, we use 10 arcsec radius

circular apertures, centred on each source’s optical position, finding that this size of aperture is

optimal since it is small enough to limit the influence of confusion noise, and large enough to

mean that aperture corrections are small. The uncertainties on both LOFAR and FIRST flux

densities were estimated using their respective r.m.s. maps: scaling the noise value in the image

at the pixel coordinate of each source by the square root of the number of beams in the aperture.

We do not correct for thermal contributions, whereby the thermal SED also contributes at radio

frequencies, in FIRST or LOFAR. In the Herschel bands, we add the recommended calibration

uncertainties of 5 per cent for PACS and 5.5 per cent for SPIRE, in quadrature (Valiante et al.,

2016; Smith et al., 2017).

2.3 Methods

2.3.1 Low frequency luminosities

We calculate K-corrected 150MHz luminosity densities for every source in our sample assuming

that Sν ∝ να , with a spectral index of −0.71 (Condon, 1992; Mauch et al., 2013):

Lν = 4πd2
L(z)Sν ,obs(1+ z)−α−1, (2.1)

where the additional factor of (1+ z)−1 accounts for the bandwidth correction, and dL(z) is the

luminosity distance in our adopted cosmology.
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FIGURE 2.2: The mid-infrared sub-sample (5σ WISE detections, shown as blue points) over-
laid on the Jarrett et al. (2011) MIRDD which uses the magnitudes at three WISE wavelengths
W1 at 3.4 µm, W2 at 4.6 µm, and W3 at 12 µm. The coloured regions are as published in
Wright et al. (2010), and intended to show the approximate locations of galaxies of a range
of different types. The hexagonal bins over the region centred on [4.6]− [12] ≈ 3.5, and
[3.4]− [4.6] ≈ 0.25 are used to trace q250 in later sections of this paper, and are shown here
to provide context. The QSO box defined by (Jarrett et al., 2011) is depicted as a dashed box.

Number counts over both colours are shown as blue histograms.
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There is an additional uncertainty on the K-corrected luminosity densities due to assuming a

constant spectral index; we attempt to account for this by bootstrapping based on the Mauch

et al. (2013) distribution of star-forming spectral indices. For each galaxy we draw 1000 spectral

indices from the prior distribution centred on −0.71 with an RMS of 0.38. The luminosity

densities are calculated using Equation 2.1 with uncertainties estimated based on the standard

deviation of the bootstrapped distribution, however we note that the K-corrections and their

uncertainties derived for our sample are small since all sources are below z = 0.4.

2.3.2 Far-infrared luminosities

To estimate the intrinsic far-infrared luminosity densities, we assume an optically thin greybody

for the dust emission:

Sν ∝
ν3+β

exp(hν/kT )−1
, (2.2)

where T is the dust temperature, k is the Boltzmann constant, h is the Planck constant, and β is

the emissivity index. The dust emissivity varies as a power law over frequency and its inclusion

as the constant β attempts to summarise the varying dust compositions into a single galaxy-

wide isothermal component. Taking β = 1.82 has been found to provide an acceptable fit to the

infrared SEDs of galaxies in the H-ATLAS survey (Smith et al., 2013) and so we assume the

same value for β here. We fit Equation 2.2 to the Herschel PACS/SPIRE fluxes at 100, 160, 250,

350, and 500 µm. We include the PACS wavelengths despite their reduced sensitivity since they

have been found to be important in deriving accurate temperatures (Smith et al., 2013).

We use the Python package EMCEE (Foreman-Mackey et al., 2013) which is an implementation

of the Goodman and Weare (2010) Affine Invariant MCMC Ensemble Sampler (AIMCMC).

AIMCMC is known to sample from degenerate and highly correlated posterior distributions

with an efficiency superior to traditional Metropolis techniques (Goodman and Weare, 2010).

For each galaxy, 10 walkers are placed at initial temperatures drawn from a prior normal distri-

bution centred at 30K with a standard deviation of 100K. We find that altering the width of the

temperature prior does not affect our results.

The walkers sample the probability distribution set by the least squares likelihood function. At

each temperature that the walkers sample, the resultant grey-body is redshifted to the observed
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frame and propagated through the Herschel response curves. We ran the sampler for 500 steps

with the 10 walkers and a burn-in phase3 of 200 steps. Each galaxy therefore has 3000 infor-

mative samples to contribute to the probability distributions. In addition to the temperature for

each MCMC step, we recorded the modelled intrinsic luminosity densities, modelled observed

fluxes, and K-corrections for each each infrared wavelength. This allowed us to find the proba-

bility distributions for these parameters and hence their uncertainties in a Bayesian manner.

2.3.3 Calculating the FIRC

The FIRC is traditionally parametrised by the log of the ratio of infrared to radio luminosity, q

(Helou et al., 1985; Bell, 2003; Ivison et al., 2010). However, the lack of PACS 60 µm coverage

and small number of sources (< 5 per cent) with WISE 22 µm fluxes in the H-ATLAS NGP field

prohibits an accurate estimation of q based on total dust luminosity for a statistically significant

sample. Therefore, we calculate a K-corrected monochromatic q250 in the SPIRE 250 µm band

following Jarvis et al. (2010) and Smith et al. (2014).

q250 = log10

(
L250

Lrad

)
(2.3)

The uncertainties on our monochromatic q250 estimates are found by propagating uncertainties

from the K-corrected luminosity densities in the radio and 250 µm. We note that in all of the

following sections, we calculate q250 using Lrad calculated at 150 MHz in the rest-frame.

Figures 2.3 and 2.4 show that for the galaxies for which we do have reliable dust luminosity

estimates, there is still a tight and linear correlation between the infrared and the radio luminosi-

ties. We used MAGPHYS templates normalised using all WISE and Herschel bands to calculate

the integrated dust luminosity between 8 and 1000 µ m.

In addition to the individual q250 found for each galaxy we use a stacking method to evaluate

trends across colour spaces, redshift, and temperature. Averaging q250 is fraught with prob-

lems such as underestimation caused by AGN contamination, undesirable influence by outlier

sources, and amplification of those effects by using the average of the ratio of luminosity densi-

ties rather than the ratio of the average luminosity densities (luminosity stacking). We find that

3The burn-in phase allows the chain to become independent of the user defined starting point by discarding the
first 200 steps.
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FIGURE 2.3: The FIRC using LOFAR at 150MHz for galaxies detected at 3 σ in both total
dust infrared and radio luminosities. The dust luminosity is calculated using the MAGPHYS

infrared templates and is integrated between 8 and 1000 µm.

the distribution of q becomes wider when using the average ratio rather than the ratio of the aver-

ages, our results do not qualitatively change other than broadening the distribution of q. Indeed

by using the average quotient, more low signal to noise objects are discarded before having the

chance to contribute to the stack. To make matters worse, selection in either the radio or infrared

band used to evaluate the FIRC introduces an inherent SED related bias (Sargent et al., 2010).

Here we have mitigated the effects of such biases by selecting in an independent optical band.

To mitigate the effect of outliers and AGN, the ratio of the median luminosity densities has pre-

viously been used (e.g. Bourne et al., 2011; Smith et al., 2014). Median averaging is sometimes
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FIGURE 2.4: The FIRC using FIRST transformed to 150MHz for galaxies detected at 3 σ

in both total dust infrared and radio luminosities. The dust luminosity is calculated using the
MAGPHYS infrared templates and is integrated between 8 and 1000 µm.

preferred since it is more resistant to outliers (e.g. residual low-luminosity AGN which may not

have been identified by the emission line classifications), and since the median often remains

well-defined even in the case of few individual detections (e.g. Gott et al., 2001). However,

the distributions of luminosity density even in finite-width bins of redshift are skewed. We find

that a median-stacked q250 calculated for the whole star-forming sample does not agree with

the likewise-stacked q250 in bins of redshift (in that the median of the medians is not close the

global median – this is not the case with the mean). If we use the mean-stacked q250, we arrive

at an agreement between the global and binned q250 across redshift. Due to this counter-intuitive
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disagreement between measures of q250 and the importance of being able to quantify a change

in the FIRC over redshift, we use the ratio of the mean luminosity densities (mean-stacked) to

evaluate q250. Although we may side-step issues regarding skewed distributions by using the

mean, we are now potentially more affected by outliers and AGN. We will discuss the possible

influence of AGN on our results in more detail in the coming sections.

To calculate our mean q250 values, we use a method similar to Smith et al. (2014) and take

the quotient of the mean radio and 250 µm luminosity density for each bin. Uncertainties are

estimated on each stacked q250 using the standard deviation of the distribution resulting from

re-sampling this mean 10,000 times with replacement (bootstrapping). This bootstrapped un-

certainty of q250 is representative of the distribution of the luminosity densities being stacked.

To complement the parametrisation of the FIRC with q250, we also fit the FIRC as a power-law

with finite intrinsic width 4 to the data using Equation 2.4

Lradio = kLγ

250, (2.4)

where k is the normalisation and γ is the slope of the FIRC. We take into account non-detections

by re-sampling from each data point’s uncertainty and discarding the negative-value realisations.

We use EMCEE to fit the power-law with 6000 steps and 32 walkers. Fitting a power-law allows

us to probe the physical mechanisms of radio continuum emission generation. A value of the

slope close to one indicates that the conditions required for calorimetry are satisfied and the

FIRC is linear. A super-linear slope might result from an escape-dominated scenario whereby

cosmic rays escape before emitting in the radio. At sub-linear slopes, losses from cooling pro-

cesses such as inverse-Compton dominate (Li et al., 2016).

We have discussed two methods of quantifying the FIRC (mean-stacked q250 and power-law fit).

In addition, there are three types of uncertainty in the FIRC that we discuss in this analysis:

1. The uncertainty in q250, calculated as the width of the bootstrapped distribution of stacked

q250.

2. The uncertainty in the slope of the FIRC, γ , quantified by MCMC fit.

3. The change in stacked q250, γ , and other statistical results due to the presence of misclas-

sified AGN.
4The intrinsic width of the power-law fit, log[σ ], is defined as the logged fractional width of the Gaussian over

the power-law line, which we define as: L150MHz ∼ (kLγ

250 µm)(1+ ε), where ε ∼N (0,σ). We fit the parameter σ

along with γ and k in our MCMC run.
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FIGURE 2.5: Fit diagnostics for our full star-forming sample. The Gelman-Rubin convergence
statistic histogram is shown on the left indicating that all of our fits have converged. The re-
duced χ2 distribution of the sample is shown on the right as the blue histogram. The distribution
of χ2 is also shown in the inset in blue, along with the χ2 distribution expected for 3 degrees

of freedom for comparison in orange.

We estimate the change in our results due to misclassified AGN in Section 2.4.5 where we run

our analysis again, this time including the BPT-AGN. This test will be of limited use since BPT-

AGN galaxies may not be similar in luminosity nor in temperature to those galaxies which host

a low-luminosity AGN. We resort to this method since we are investigating the FIRC itself and

so we cannot use the FIRC to distinguish low-luminosity AGN from star-forming galaxies.

2.4 Results & Discussion

2.4.1 Isothermal fits

Before proceeding to investigate the variation of the FIRC with redshift and other parameters,

we undertake several checks to ensure that our temperature estimates and K-corrections are

reliable. As a means of testing goodness-of-fit, we calculate the Gelman-Rubin R statistic for

the sampled temperature and reduced χ2 for each object. Figure 2.5 shows the distributions of

R and reduced χ2 for our full sample of star-forming galaxies.
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FIGURE 2.6: A sample isothermal fit to an SDSS star-forming galaxy at αJ2000 = 12h49m46.1s,
δJ2000 = 31◦35′30′′. The probability distribution for temperature is shown in the top right with
the 1-sigma equal-tailed credible interval as dashed lines around the median temperature of
19.8K with a reduced χ2 of 1.45. The Herschel flux measurements and their uncertainties
are shown as blue errorbars. The fit observed-frame isothermal greybody with its own 1σ

credible interval is shown as the green curve. The differences between the estimated flux and
the measurement are shown along the bottom axis. The filter transmission profiles are also

shown in blue along the bottom for each wavelength.

An R ≈ 1 signifies that all chains are sampling from the same distribution and have therefore

converged (see Gelman and Rubin, 1992, for a full description); all sources in our sample have

0.9 < R < 1.1 indicating that the fits have converged.

The χ2 distribution of our sample, which we fit by least squares regression, has 3 degrees of

freedom consistent with our 1-parameter model (normalisation is not fit and is instead optimised

with χ2 minimisation) when fitting with 5 bands of far-infrared observations. In addition, 83

per cent of our total sample have a reduced χ2 < 2. Conducting this experiment with only those

sources with reduced χ2 < 2 does not affect the conclusions presented here.

Smith et al. (2013) found that median likelihood estimators in greybody fitting are less sus-

ceptible to bias with H-ATLAS data than the best fit. Therefore, in what follows we adopt

the median likelihood value from the MCMC fits as a galaxy’s effective temperature for use in

Equation 2.2, along with uncertainties estimated according to the 16th & 84th percentiles of the

derived distribution. Figure 2.6 shows an example fit.
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FIGURE 2.7: The distribution of median temperatures for our sample of emission-line classi-
fied star-forming galaxies (blue histogram), overlaid with the sum of temperature distributions
for every galaxy obtained by MCMC (dashed line). No radio or infrared detection threshold is

applied to arrive at this sample of galaxies.

Figure 2.7 shows that our sample of emission-line classified star-forming galaxies exhibits a

dust temperature distribution centred around ∼ 23 K with a standard deviation of ∼ 10 K. The

total aggregated temperature probability distribution for all galaxies, also shown in Figure 2.7,

is slightly wider than the median likelihood temperature histogram. This is due to the fact that

the aggregated distribution includes the uncertainty from each galaxy rather than just reporting

the average median likelihood temperature.

2.4.2 The global FIRC at different radio frequencies

To compare the values of q250 obtained at 150MHz and 1.4GHz, we extrapolate the FIRST

luminosity densities to 150MHz assuming a power-law with a spectral index of −0.71. For

clarity, we label this transformed q250 as qFIRST
150MHz to distinguish it from the related quantity at

its measured frequency, qFIRST
1.4GHz. Though it isn’t especially instructive due to the large range

of redshifts included in our study, we find an average value of qFIRST
1.4GHz = 2.30± 0.04 (which

is equivalent to qFIRST
150MHz = 1.61±0.04) which is consistent with previous studies (Ivison et al.,

2010; Smith et al., 2014) to within 1σ . We find that the average FIRC is not consistent between

low and high radio frequencies, with qLOFAR
150MHz = 1.42±0.03 and qFIRST

150MHz = 1.61±0.04.
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These values of aggregate q250 are inclusive of all our star-forming-classified sources. A spectral

index calculated from detected sources will be unreliable and a bias towards flatter spectral

indices would be introduced due to the differing sensitivities and depths of LOFAR and FIRST.

Free-free absorption is also an issue at low frequency, where it flattens the radio SED, and so

may have an effect on q250, but we do not correct for its influence here. To check whether the

difference in q250 between low and high frequency is due to spectral index we find the value

of α which allows qLOFAR
150MHz−qFIRST

150MHz = 0 for sources detected at 3σ in both bands. The value

for the spectral index that we find from the mean-stacked q250 of these sources is −0.58±0.04

(Gaussian distributed) which is in agreement with Gurkan et al. (2018). We note that we do not

use this value for the spectral index in our analysis because it will be biased by only considering

the brighter sources that are 3σ detected. Instead we continue to use the value of −0.71 from

Mauch et al. (2013) as originally stated.

We fit the slope of the FIRC to our star-forming sample for LOFAR and FIRST using Equa-

tion 2.4. We find that the FIRC measured with LOFAR is described by LLOFAR
150 = 10−0.77±0.19

L0.97±0.01
250 with an intrinsic width of 0.89± 0.02 dex. This is slightly below the value of unity

quoted for pure calorimetry. The FIRC measured with FIRST is described by LFIRST
150 = 102.94±0.25

L0.83±0.01
250 with an intrinsic width of 1.04±0.03 dex. We show these fits graphically in Figure 2.8

and include supplementary fits to the FIRC over different ranges of mid-infrared colour and spe-

cific star-forming rates in Appendix A.2.

2.4.3 The evolution of the FIRC

As discussed in Section 2.1, there have been numerous studies of the redshift evolution of the

FIRC. Figure 2.9 shows the evolution of 250µm and radio luminosity densities over our redshift

range for context. To quantify the evolution of temperature and q250 with redshift we fit a straight

line using the Bayesian method detailed in Hogg et al. (2010) and implemented with PYMC3

(Salvatier et al., 2016). We show these redshift relationships in Figure 2.10.

To calculate the effective temperature in each bin, the Herschel fluxes are mean-stacked and

their uncertainties are derived from bootstrapping. Uncertainties on the mean redshift and mean

fluxes are propagated through the MCMC fit to gain an effective temperature for each bin and

its uncertainty. The uncertainty on the mean flux is small in bins with large numbers of sources,

resulting in temperature uncertainties of order 2K. Due to significance cuts made with BPT line

ratios, Figure 2.10 lacks the higher redshift galaxies present in the work of Smith et al. (2014),
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(a) The FIRC as measured with LOFAR at 150MHz
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(b) The FIRC as measured with FIRST at 1.4GHz

FIGURE 2.8: The Far-Infrared Radio Correlation for LOFAR (blue) and FIRST (green). The
points shown are > 3σ detected in radio and infrared fluxes, showing two clear but distinctly
different correlations at 1.4GHz and 150MHz. The fit lines are power-law fits to the all sources
in our star-forming sample including non-detections. For the purpose of comparison the FIRST
1.4GHz luminosity densities have been transformed to 150 MHz assuming a power law with

spectral index from Mauch et al. (2013).
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FIGURE 2.9: Distributions of Herschel SPIRE 250 µm (yellow), FIRST (green), and LOFAR
(blue) luminosity densities over redshift for our main star-forming sample. A rolling mean
(inclusive of all non-detections) with a window size of 200 points is plotted to guide the eye.

hence there is a large uncertainty above z = 0.25 (not shown). However, in the bins where the

uncertainty on the dust temperature is small (< 2K), there is no statistically significant trend with

redshift, consistent with Smith et al. (2014). With an MCMC trace of 50,000 samples for each

fit, we find strong evidence of a decrease in q250 over our low redshift range for LOFAR (gradient

= −1.0+0.2
−0.3) but no such strong evidence of such a decline with FIRST (gradient = −0.5+0.5

−0.3),

despite being consistent with LOFAR to within 1σ . It is worth noting that using the median

stacking results in gradients which are consistent with the gradients calculated using the mean

to within 1σ . We discuss the difference between the mean and median results (and lack of

impact on our results) further in Section 2.4.5. A lack of evolution seen with FIRST is in line

with the 250 µm result from Smith et al. (2014), the 70 µm result from Seymour et al. (2009),

and the 70 µm and 24 µm result from Sargent et al. (2010). Calistro-Rivera et al. (2017) detect

an evolution at both frequencies in the Boötes field and our result is consistent with theirs at

redshifts below 0.25 at both frequencies. However, it is important to note that Calistro-Rivera

et al. (2017) find curved radio SEDs, suggesting that a constant slope between 150MHz and

1.4GHz is not realistic.

At 3 GHz, Molnár et al. (2018) find no evidence for evolution in the total infrared-radio cor-

relation in disk-dominated galaxies up until z ∼ 1.5 (though Delhaize et al. 2017 find such an
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FIGURE 2.10: Top: Evolution of q250 over redshift measured with LOFAR at 150 MHz (blue)
and FIRST transformed to 150 MHz (green). The dashed horizontal line in the upper plot is the
mean-stacked q250 for all star-forming galaxies taken from Figure 2.8 for FIRST and LOFAR
at 150 MHz. The coloured lines indicate the straight line fit to all galaxies in our sample binned
in redshift for LOFAR and FIRST. The uncertainty of the relations from Calistro-Rivera et al.
(2017) are also plotted as the orange (LOFAR, 150MHz) and the purple (FIRST, 150MHz)
shaded regions. Bottom: The temperature in each bin, calculated by constructing an infrared
SED from the average K-corrected flux of each source in every band and fitting Equation 2.2
to the result. The temperature and uncertainties are overlaid with a straight line fit to the data.

The vertical dashed lines represent bin edges.



Chapter 2. The FIRC at low frequency 50

10 20 30 40
T/K

0

1

2

3

4

q 2
50

qLOFAR
150MHz

qFIRST
150MHz

qSmith+14
150MHz

FIGURE 2.11: The temperature dependence of q250 compared between high and low frequency.
The background dots are the individual q250 calculated from the LOFAR 150MHz (blue) and
FIRST (green) luminosity densities. The q250 calculated from stacked LOFAR and SPIRE lu-
minosity densities described earlier is plotted in bold points with errorbars derived from boot-
strapping the luminosity densities within the depicted dashed bins 10,000 times. The temper-
ature uncertainties in each bin are calculated from the 16th and 84th percentiles. The same

calculation from Smith et al. (2014) is shown as the black errorbars for comparison.

evolution in q using total infrared luminosity densities at redshifts ≥ 6). Together with Fig-

ure 2.10, we therefore find tentative evidence for a frequency dependence of the evolution of

q250 over redshift. However, Molnár et al. (2018) also find that an evolution in q250 over redshift

is present in spheroids and is consistent with other studies of star-forming galaxies in general.

They suggest that AGN activity not identified with traditional diagnostics is the cause. Extend-

ing their conclusion to our star-forming sample may imply that the cause of the evolution found

here is also low level AGN activity, with AGN prevalence increasing with redshift.

Figure 2.11 shows the evolution of q250 versus temperature. For comparison, qLOFAR
150MHz, qFIRST

150MHz

and the results of Smith et al. (2014) transformed to 150MHz (qSmith+14
150MHz ) are shown together.

Assuming a spectral index of −0.71, the trend of decreasing q250 with increasing temperature

is found with both LOFAR and FIRST, agreeing within uncertainties when transformed to the

same frequency at higher temperatures. Cold cirrus emission is not associated with recent star-

formation and so the ratio of infrared to radio luminosity (and hence q) will be larger for galaxies
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with colder integrated dust temperatures Smith et al. (2014). We discuss the deviation at lower

temperatures in Section 2.4.5.

The origin of the evolution of qLOFAR
250 with redshift is uncertain but we show here that the de-

pendence of luminosity density upon redshift cannot account for all of the evolution measured

in qLOFAR
250 . The bottom panel of Figure 2.10 shows that the average dust temperature does not

depend on redshift, when averaging across the whole sample. Therefore, if stacked 250 µm

luminosity density is correlated with dust temperature (and Smith et al. 2014 show that same

dependency at 250 µm) in our sample, then the dependency of stacked qLOFAR
250 upon redshift

cannot only be due to a luminosity dependence on redshift.

2.4.4 Variation over the mid-infrared colour-colour diagram

In this section we focus solely on the sample of 2,901 star-forming galaxies with 5σ WISE

detections in order to construct the MIRDD of Jarrett et al. (2011). This sample covers part of

the star-forming region defined by Wright et al. (2010) as shown in Figure 2.2. When showing

q250 variation of this sub-sample, we zoom in on this region.

We calculate the mean values of temperature and q250 as described in Section 2.3 over hexagonal

bins in the WISE colour space. We show only those bins which contain more than 50 galaxies

and have a stacked q250 with SNR > 3. When these conditions are applied, 33 and 29 contiguous

bins remain for LOFAR and FIRST respectively, all with a high SNR in binned qLOFAR
150MHz, qFIRST

150MHz

of at least 7 and 3 respectively. Figure 2.12 shows the mean isothermal temperature in each bin.

There is a clear and smooth increase in temperature towards redder [4.6]− [12] and [3.4]− [4.6]

colours. The isothermal temperature of our sample increases towards the area populated mainly

by starburst and Ultra-Luminous Infrared (ULIRG) galaxies. Our sample is positioned away

from the Jarrett et al. (2011) AGN area, shown as a dashed box in Figures 2.12 and 2.13, although

we note that radiatively inefficient radio-loud AGN may populate other regions of this plot

(Gurkan et al., 2018).

The trend in temperature over mid-infrared colour is reflected in Figures 2.12 and 2.13, where

the q250 measured using both FIRST and LOFAR decreases with redder WISE colours in a

similar fashion to temperature. The higher sensitivity of LOFAR in comparison to FIRST is

reflected in the much smoother relation between binned q250 and mid-infrared colours.
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FIGURE 2.12: Mean isothermal temperature across the Jarrett et al. (2011) MIRDD. Bins are
hexagonal and are coloured linearly between 18K and 30K described by the colour bar. All
bins have an SNR in qLOFAR

150MHz > 7 and contain more than 50 galaxies each. Also plotted are the
marginal bins summarising horizontal and vertical slices of the entire plane. These slices also
obey the two conditions set on the hexagonal bins. For reference, the box described by Jarrett

et al. (2011) to contain mostly QSOs is marked by dotted lines.

Both the q250 parameter (for both frequencies) and the temperature change smoothly across

mid-infrared colour. We interpret this smooth variation of the temperature over [4.6]− [12]

colour towards more heavily star-forming galaxies as tracing the specific star formation rate of

a population of normal star-forming galaxies.

To quantify the observed trend with mid-infrared colour we use a Bayesian method to find the

correlation coefficients of stacked q250 against both WISE colours. From Figure 2.13, q250

clearly correlates with both [3.4]− [4.6] and [4.6]− [12]. However, since redshift is also highly

correlated with [3.4]− [4.6] and q250 is independently correlated with redshift, it is necessary to

control for the effects of redshift using partial correlation (Baba et al., 2004) in order to quantify

the effect of mid-infrared colour on q250. We also control for isothermal temperature and stellar

mass to see if all of the variation in q250 over mid-infrared colour can be accounted for by

covariances with those parameters.

Our method consists of fitting a trivariate normal distribution to [4.6]− [12] (x), [3.4]− [4.6] (y),

and q250 to obtain correlation-coefficient estimates (ρx and ρy). We estimate the correlation-

coefficients for q250 without controlling for any other parameters (ρx· /0 and ρy· /0) and for the
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FIGURE 2.13: Mean-stacked q250 across the Jarrett et al. (2011) MIRDD. Bins are hexagonal
and are coloured linearly according to the scale shown on the right. All bins have an SNR
in q250 > 3 and contain more than 50 galaxies each. Also plotted are the marginal bins sum-
marising the horizontal and vertical slices of the entire plane. These slices also obey the two
conditions set on the hexagonal bins. For reference, the box described by Jarrett et al. (2011)

to contain mostly QSOs is marked by dotted lines.
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residuals in q250 obtained from fitting a linear relationship to q250 against z, Te f f , and M∗.We

fit the correlation coefficients with an LKJ prior (Lewandowski et al., 2009) using the PYMC3

(Salvatier et al., 2016) model specification along with EMCEE Ensemble sampler used above.

LKJ distributions represent uninformative priors on correlation matrices and their inclusion al-

lows us to randomly sample correlation coefficients.

To represent the correlation of q250 over the two dimensions of WISE colour space, Figure 2.14

shows the the marginalised probability distributions for each correlation coefficient. The top

panel of Figure 2.14 shows the effect of controlling for redshift, temperature, and stellar mass

independently as well as a naive fit which accounts for no other influential variables. The bottom

panel of Figure 2.14 shows the probability distribution of the correlation coefficients when con-

trolling for redshift, temperature, and stellar mass at the same time. Initially, the distribution of

q250 is highly correlated with both MIR colours (−0.5±0.1 and −0.7±0.1 for [4.6]− [12] and

[3.4]− [4.6] colours respectively). Figure 2.14 as a whole shows that the variation of q250 with

either WISE colour cannot be satisfactorily explained by a dependence on temperature, redshift,

or stellar mass individually, but by all three at once. This results in correlation coefficients of

0.1±0.2 and 0.2±0.2 for [4.6]− [12] and [3.4]− [4.6] respectively.

Using the model described above, we find that the effects of stellar mass, dust temperature, and

redshift upon q250 explain 16, 36, and 48 per cent of the total explainable correlation of q250

over the [3.4]− [4.6] and 8, 71, and 21 per cent over [4.6]− [12], respectively. However, the

effects of these parameters on the variation of q250 are not independent of each other. Indeed,

there are non-zero covariances between these parameters, e.g., the effect of stellar mass and dust

temperature upon q250 at once is not equivalent to the sum of their independent effects.

Luminosity in 250 µm and both radio bands increases towards redder WISE colours and hotter

temperatures, consistent with evidence of a luminosity-temperature relation found by Chapman

et al. (2003), Hwang et al. (2010), and in the radio by Smith et al. (2014). Given that the

temperature evolution over redshift in our sample is consistent with being flat to within the 1σ ,

we can conclude that such a luminosity-temperature relation is not simply due to redshift effects.

This is more evidence of the trend in q250 tracing the specific star formation rate.

To test our assumption that the [4.6]− [12] colour traces specific star formation rate, we use the

specific star formation rates obtained from MAGPHYS fits (Smith et al., 2012a). Figure 2.15

shows a highly significant trend (both gradients are non-zero with a significance above 3σ )

between MAGPHYS specific star formation rate and q250 for both FIRST and LOFAR (low
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FIGURE 2.14: The marginalised probability density, P(ρ|D), distributions for the correlation
coefficients (ρ) of [4.6]− [12] (blue) and [3.4]− [4.6] (green) against stacked qLOFAR

250 . ρ = (−)1
corresponds to maximal (anti-) correlation, whilst ρ = 0 corresponds to no correlation. Top
left (a): The correlation coefficient PDFs calculated assuming that qLOFAR

250 does not depend
on other variables. Top right (a): The correlation coefficient PDFs after controlling for a
linear dependence of qLOFAR

250 upon redshift. Bottom left (a): The correlation coefficient PDFs
after controlling for a linear dependence of qLOFAR

250 upon effective temperature. Bottom right
(a): The correlation coefficient PDFs after controlling for a linear dependence of qLOFAR

250 upon
stellar mass. Bottom panel (b): The correlation distribution when controlling for all three
parameters at once. The vertical lines mark the median value for the correlation coefficient
with the shaded areas marking the 16−84th percentile range. A Gaussian kernel was used to

smooth the probability distributions.
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FIGURE 2.15: q250 for LOFAR (blue) and FIRST (green) at 150 MHz against the specific
star formation rate in 8 bins of width 0.3 dex. The uncertainties on q250 are calculated via
bootstrapping within each bin. The uncertainties on sSFR are calculated from the 16th and
84th percentiles in each bin. Straight line fits are shown as coloured lines with 1σ credible
intervals shown as shaded regions. The top histogram shows the number of galaxies in each

bin.

sSFR is discussed below). The gradients of the trend at high and low frequency are consistent

to within 1σ .

Gurkan et al. (2018) have found that above a stellar mass of 1010.5M�, a strong mass depen-

dence of radio emission, inferred to be non-AGN in origin, emerges. We show here that the for

the variation of q250 over the MIRDD to be explained, the effects of stellar mass and specific

star-formation rate (for which isothermal temperature is an effective proxy) must be taken into

account since they independently explain 25 and 38 per cent of the total correlation respectively.

2.4.5 Potential AGN contamination

BPT classification identifies AGN based on emission line ratios. However, star formation and

AGN activity are not mutually exclusive (Jahnke et al., 2004; Trump et al., 2013; Rosario et al.,

2013) and one ionisation process can mask the other. Indeed, the BPT diagram shows a popu-

lation of Seyfert 2 objects seamlessly joined to the star-forming branch (Baldwin et al., 1981;

Kewley et al., 2006). Obscured AGN SEDs are bright in the mid-infrared due to the re-radiated
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emission from their obscuring structure (Antonucci, 1993; Stern et al., 2005). In particular,

radiatively efficient QSOs and obscured AGN are expected to be detected by WISE and to be

located in the reddest space on the WISE MIRDD (Jarrett et al., 2011).

2.4.5.1 Searching for hidden AGN

Whilst it may be difficult to exclude composite galaxies based purely on line ratios, spectra can

be searched for AGN features and radio images inspected for signs of jets or compact cores. The

angular resolutions of FIRST and LOFAR are too low to distinguish AGN cores from compact

starbursts, but we can rule out obvious radio loud contamination. To look for signs of physical

differences between the low and high q250 areas and to check for the impact of radio-mode AGN,

we take two samples of galaxies. The first sub-sample, named “WISE-blue”, we take from the

region of highest q250 and bluer WISE colours. This region is described by the conditions 2.5 <

[4.6]− [12] < 3.25 and 0.0 < [3.4]− [4.6] < 0.4 and so should correspond to lower-luminosity

star-forming galaxies.

The second sub-sample, named “WISE-red”, we take is described by the conditions 3.75 <

[4.6]− [12]< 4.5 and 0.2 < [3.4]− [4.6]< 0.6, and is characterised by the lowest values of q250.

This is the area most likely to be contaminated by AGN, given its proximity to the QSO box

defined in Jarrett et al. (2011) and low value of q250. We note that we have removed the 12

sources which lie within the QSO box before conducting the analysis here.

We visually inspected the FIRST and LOFAR images of 100 randomly-chosen galaxies from

the WISE-blue and WISE-red sub-samples for signs of cores and jets. However, although the

sub-samples are selected based on their position in the MIRDD, they also correspond to different

redshift ranges. The higher redshift sources are selected at redder WISE colours and therefore

the most luminous radio sources are selected in the WISE-red sub-sample and, conversely, the

WISE-blue sub-sample consists of some of the least luminous radio sources. As a result, the

WISE-red sub-sample tends to have extended and brighter radio emission at 150MHz than our

WISE-blue sub-sample. Therefore, if there is any significant AGN presence, they are more likely

to populate the WISE-red sample than in the WISE-blue sample. We find little evidence of AGN

activity due to compact cores or jet structures in either sample. However, the extended emission

due to the luminosity bias mentioned above makes it difficult to compare the two sub-samples.

Figure 2.16 shows the rest-frame spectra, median-stacked using the method found in Rowlands

et al. 2012, for the WISE-red sub-sample in red and the WISE-blue sub-sample in blue. Taking
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the difference between the spectra of the two sub-samples indicates the potential AGN (WISE-

red sub-sample) have brighter emission lines relative to their continuum and have strong Hγ and

[OIII] lines relative to the WISE-blue sub-sample. The Hγ line is found to have an equivalent

width of 1 Å which is below what would be expected for broad-line AGN (Peterson, 1997).

Given the increased infrared luminosity, this seems to indicate that the ionisation required to

excite Hγ is generated by star formation. Moreover, if we position each median spectrum on the

BPT diagram, they are both firmly within the star-forming region.

However, a significant fraction of the radio AGN population lack characteristic emission lines

(Jackson and Rawlings, 1997; Sadler et al., 1999; Best et al., 2005; Evans et al., 2006) and

hence cannot be identified using a BPT classification. Such Low Excitation Radio AGN (LER-

AGN) could explain the decrease in q250 with their additional contribution to radio luminos-

ity. LERAGN have traditionally not been reconciled with the AGN unification model proposed

by Antonucci (1993). However, there are significant differences between LERAGN and their

standard high excitation counterparts (HERAGN) such as black hole masses (e.g. McLure and

Jarvis, 2004; Smolcic, 2009), depending on sample selection (Fernandes et al., 2015). Hard-

castle et al. (2006) have suggested that LERAGN are the consequence of different accretion

mechanisms whereby LERAGN accrete in a radiatively inefficient mode. LERAGN will have

excess radio luminosity for their Hα star formation, and so lie beneath the star-forming FIRC.

The radio-loud fraction of galaxies that are LERAGN or HERAGN has been found to correlate

with stellar mass, colour, and star-formation rate (Janssen et al., 2012). However, 98 per cent of

our star-forming sample have stellar masses below 1011 M�, where Janssen et al. (2012) report

a radio-loud fraction of LERGS below 0.001.

In addition, Gurkan et al. (2015) found that radio-loud AGN tend to have lower star formation

rates than star-forming galaxies, and that radio-quiet AGN also exhibit SFRs that are offset from

the star-forming galaxies.

We use star formation rates and stellar masses fit by MAGPHYS (da Cunha et al., 2008; Smith

et al., 2012a) to test whether our sample exhibits this offset. Figure 2.17 shows our entire sample

including BPT-classified AGN. Our BPT-classified AGN, in yellow, clearly lie below the star-

forming SFR-mass relation found by Gurkan et al. (2015) whereas our star-forming sample (in

green) lie on it. Furthermore, our sub-sample drawn from the WISE-red region (red) lie above

the rest of the galaxies suggesting again that q250 decreases with increased specific star formation

rate. Figure 2.17 shows the galaxies within the WISE-red sub-sample (red) are representative



Chapter 2. The FIRC at low frequency 59

λ/Å
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FIGURE 2.16: The median-stacked rest-frame spectra of the WISE-blue (blue) and WISE-red
(red) sub-samples (left) and their locations on the MIRDD (right). The spectra were blueshifted
to their rest frame and interpolated to a common wavelength grid between 3500Å and 8000Å.
Each spectrum was normalised based on the median interpolated flux between 5450 and 5550Å.
The 1σ uncertainties in the median spectra are shown as light shaded regions around the me-
dian. The MIRDD is the same as in Figure 2.2 with the binned qLOFAR

150MHz taken from Figure 2.13
overlaid. Blue and red boxes indicate the boundaries for the WISE-blue and WISE-red sub-

samples respectively.
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FIGURE 2.17: Stellar mass versus star formation rate for our sample. Our full sample is plotted
in green. The 100 galaxies selected from both the WISE-red sub-sample (red) and the WISE-
blue sub-sample (blue) are shown as the larger points with errorbars. For comparison, AGN
classified by BPT are plotted in yellow. The straight line relation for star-forming galaxies from

Gurkan et al. (2015) is shown as the dashed green line.

of starbursts given their increased star formation rate. The fact that our BPT-classified AGN are

offset in star formation and stellar mass gives some reassurance that the effect of radio-quiet

AGN is minimised in our WISE sample. Since using the mean instead of the median may well

increase the effect of outliers/AGN, we test the effect of using the median on our results. We find

that the discrepancy between q250 measured with LOFAR and FIRST, the evolution of q250 over

redshift, and the variation of q250 over the MIRDD are not affected. In addition, we check for

obvious outliers in the luminosity distributions for LOFAR and FIRST, finding no such source.

This allows us to gain some degree of confidence that we are not plagued by outlying AGN.

However, we note that the global value of q250 is increased by 0.2 dex for both LOFAR and

FIRST when using the median.
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2.4.5.2 Testing with the inclusion of known AGN

If we include the 447 5-sigma BPT-classified AGN and rerun our analysis, we find a large

effect on both global q250 values and distributions over redshift, temperature, and specific star-

formation rate (which we show in Appendix A.1). The AGN decrease the whole-sample q250 to

1.23±0.01 and 1.25±0.10 for LOFAR and FIRST respectively. The relative increase in radio

luminosity is unsurprising and demonstrates that AGN can have a large impact on q250.

We find that the addition of BPT-AGN affect q250 calculated in low temperature bins most

severely but that the difference in q250 at high temperature is marginal and consistent with q250

calculated with our star-forming sample. The greatest effect is seen in the lowest temperature

bin where there is a drop of 1.2 dex in q250. Indeed, even when we include BPT-selected AGN

we find that q250− T trend in Figure 2.11 is still consistent with Smith et al. (2014) at high

temperatures.

The largest effect that the BPT-selected AGN have on q250 is found at very low specific star-

formation rates. These are likely to be LERAGN since low specific star-formation rates imply

that they are quenched. In fact, at log[sSFR/yr−1] > −10.5 there are very few BPT-AGN; we

find that a q250 evaluated in this regime with AGN included is in agreement with a q250 calculated

with our star-forming sample.

The evolution of q250 with redshift at high and low frequency remains qualitatively the same

(decreasing with redshift) with an average offset of ≈ 0.2. Moreover, when the problematic

low temperature and low specific star-formation rate bins are removed from the calculation, the

evolution of q250 over redshift at 150MHz and 1.4GHz is unaffected.

When BPT-AGN are included in the analysis, the variation in q250 over the WISE colour [4.6]−
[12] can be no longer be completely explained by the combined dependence on redshift, temper-

ature, and stellar mass. The direction of this new correlation is not towards the location of QSO

box at redder [3.4]− [4.6] colour and actually inverts the correlation direction from negative to

positive (see Figure A.3, for the equivalent Figure 2.14 with the addition of known AGN). This

is likely due to the fact that we require 5σ detections in the MIRDD WISE bands and so only

bright AGN are identified and positioned at bluer [4.6]− [12] colours (since the 12 µm WISE

band is less sensitive than 2.4 µm and 3.4 µm). As a result, no BPT-AGN are found towards

the reddest colours on the MIRDD (see Figure A.5). If such a small number of included BPT-

AGN can alter the correlation in the positive direction, it is unlikely that hidden AGN are the
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root cause of the negative correlation found in our star-forming sample. Since the correlation

of q250 with WISE colours in our star-forming sample is only just explained by these factors

to 1σ , this could signal either a different misclassified population of objects in our supposed

star-forming sample or a feature of star-formation itself. However, AGN which are not detected

but have a BPT classification may be positioned differently on the WISE MIRDD and have dif-

ferent emission properties (see discussion above). We therefore cannot rule out low-level AGN

contamination.

Based on the above analysis, q250 should only be marginally affected and therefore considered

relatively trustworthy in galaxies with medium to high specific star-formation rates.

2.4.6 Reconciling with star-forming models

Through the model developed by Lacki and Thompson (2010), energy loss in starbursts is mainly

due to bremsstrahlung and ionisation. This would increase q if it were not for the effect of

secondary charge radiation. Though the exact contribution of secondary charges – resulting

from cosmic ray proton collisions with ISM protons – that is needed for a consistent FIRC is

model-dependent, their addition allows the high-Σg conspiracy to be maintained (i.e. a linear

FIRC more or less unchanging over surface density, Σg). Our results show that q250 decreases

with specific star formation rate and hence high gas density. Such a decrease in q250 is at odds

with the expected behaviour that q250 should remain constant (especially at high specific star

formation rates), derived from the standard model described by Lacki and Thompson (2010).

However, there are numerous reasons why the high-Σg conspiracy could break down detailed by

Lacki and Thompson (2010).

If the magnetic field is assumed to be dependent on volume density rather than surface density,

synchrotron cooling becomes dominant and q will decrease with increasing density. The high-Σg

conspiracy also depends on the assumption that the escape time for cosmic rays is the same in all

starbursts and normal star-forming galaxies. If the vertical (with respect to the disk) cosmic ray

diffusion scale height is constant instead, then the escape time would be two orders of magnitude

smaller for starbursts than for normal star-forming galaxies. However, we expect this effect to be

much stronger than the variation in q250 we see in our result and advective transport by galactic

winds may dominate in spiral galaxies (Heesen et al., 2018). Indeed, the fact that the variation is

smooth and can be adequately explained by a combination of three parameters, for normal and
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highly star-forming galaxies, suggests that the same mass/temperature-dependent mechanism is

responsible.

This work is based on the monochromatic q250 and is therefore not sampling all of the repro-

cessed light from recent star formation. It is therefore possible that a FIRC based on integrated

infrared luminosity does not vary as the FIRC at 250 µm does. In a two-component model of the

dust SED (Charlot and Fall, 2000), a warm but low-mass stellar birth cloud will outshine a cold

but more massive ISM at 250 µm. If the warm stellar birth clouds are more dominant at higher

isothermal temperature, then the FIRC will be a less accurate calibrator of star formation rate at

lower temperatures, assuming a direct relation between synchrotron and recent star formation.

Some of the variation of q250 with star formation rate could then be attributed to the effect of not

using integrated dust luminosities.

There are many effects to consider when modelling the FIRC and the conspiracies listed in Lacki

and Thompson (2010) depend on a subset of models. We cannot say precisely which effect will

reconcile their standard model with this result.

2.5 Conclusions

We have used a catalogue of optically selected, BPT-classified star-forming galaxies from Gurkan

et al. (2018) to study variation in the far-infrared radio correlation over redshift and other pa-

rameters. We calculate the monochromatic far-infrared radio correlation, parametrised as q250,

for 150MHz and compare it to that found for 1.4GHz, using forced aperture photometry. We

obtained the photometry (fluxes were measured using 10 arcsec radius circular apertures centred

on the optical positions) for all of these sources – including those which are not formal detec-

tions at LOFAR, FIRST, and Herschel wavelengths. To avoid introducing bias to our findings,

we make no significance cuts on infrared or radio fluxes.

Knowing about possible variation in the FIRC is of great importance, since a constant FIRC

underpins the use of radio luminosity estimates as a star formation rate indicator. Our main

results are summarised as follows:

• q250 at 1.4GHz for our sample is found to be consistent with previous studies (Jarvis et al.,

2010; Ivison et al., 2010; Smith et al., 2014).
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• The FIRC for 150MHz is found not to be consistent with that for 1.4GHz assuming a

standard power law with spectral index of −0.71 (0.1 dex lower).

• We find evidence for a decreasing q250 with redshift at 150MHz (gradient of −1.0+0.2
−0.3).

By comparing to the results of Molnár et al. (2018), we also find tentative evidence that

the slope of this evolution becomes shallower with increasing frequency. An increase

in radio luminosity of star-forming galaxies with redshift will be useful for high-redshift

SFG detection, assuming that this evolution is maintained above z = 0.5, as has also

been suggested by FIRC studies conducted with LOFAR at higher redshifts (e.g. Calistro-

Rivera et al., 2017).

• We corroborate the q250-temperature variation discovered by Smith et al. (2014) at high

frequency. We find that this relation also applies at low frequency to within 1σ , but only

at temperatures above 20K.

• We find that q250 varies across a two-dimensional mid-infrared colour-colour space, at

both radio frequencies, and within the star-forming region defined by Jarrett et al. (2011).

By using a hierarchical correlation model, we find that all of the correlation between q250

with [4.6]− [12] and [3.4]− [4.6] colours can be attributed to the combined effects of the

correlations that we measure between q250 and stellar mass, redshift, and isothermal tem-

perature, to within 1σ . We note that the variation is not explained by redshift, temperature,

or stellar mass alone but by all three in conjunction.

• Using the indicative locations of different galaxy types within the WISE colour-colour

plot from Jarrett et al. (2011) – e.g. spirals etc – we see that the trend to lower q250

appears to reflect the transition from spirals to LIRGs to starbursts. q250 decreases with

redder [4.6]− [12] colour and with increasing specific star formation rate. Indeed, the

lowest values of q250 are seen in the region of the MIRDD occupied by the Polletta et al.

(2007) starburst templates. Moreover, the region where LIRGs overlap with normal spirals

(3 < [4.6]− [12] < 4) is the region where the largest gradient in q250 (relative to WISE

colour) is seen.

• To test the possible influence of AGN contamination on our results, we re-ran our analysis

but this time included the BPT-classified AGN. The only significant change in our results

was at the lowest dust temperatures, and lowest specific star formation rates; the other

regions of parameter space, and therefore our conclusions, are unchanged. We can be

confident, therefore, that our results are robust to the inclusion of detectable AGN, and it is
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tempting to attribute this variation to hitherto unknown physics of the FIRC. However, we

cannot totally rule out the possibility that widespread low-level AGN have some influence

(though we see no evidence of high ionisation and/or broad emission lines indicative of

their presence in stacked rest-frame optical spectroscopy for subsets of our BPT-classified

SFG sample). We also test for residual AGN contamination by analysing the radio images

for WISE-red and WISE-blue sub-samples, finding no clear evidence for obvious AGN

jet structure in either group. We also test that our choice of aggregate statistic (the mean)

of the parameter q250 is not affected by outliers by performing the same analysis with the

median. We find that the trends that we report of q250 over redshift, sSFR, temperature,

and mid-infrared colours remain unaffected by the choice of aggregate statistic with only

the global value of q250 changing.

Taken together, these results indicate that the monochromatic FIRC varies strongly across the

full range of BPT-classified star-forming galaxies in a manner dependent upon their mid-infrared

colours (which are widely used as an empirical probe of galaxies’ star formation properties),

even at fixed redshift.

We do not draw conclusions from our results alone about the efficacy of using the FIRC to cali-

brate radio star-formation rates, however Gurkan et al. (2018) used the same sample of galaxies,

along with a full analysis of energy-balance derived stellar mass and star formation rate esti-

mates, to investigate the low frequency radio luminosity star-formation rate relation directly.

The broken power law relation between SFR and 150 MHz luminosity found in that work –

which they suggest may indicate the presence of an additional mechanism for the generation of

radio-emitting cosmic rays – is consistent with the possibility of residual low-level AGN con-

tamination, and the FIRC behaviour we observe at low specific star formation rates. Indeed, this

suggests that calibrations such as those proposed in Brown et al. (2017) may need to be more

nuanced than they currently are.

Though our results underline the exquisite combined power of Herschel and LOFAR for study-

ing star-forming galaxies (and in particular the high quality of the maps produced by the LoTSS

pipeline), it will be of great interest to investigate the star-formation and AGN content of galax-

ies in more detail with even more sensitive, high resolution data in the coming years, as we enter

the era of the Square Kilometre Array.



Chapter 3

Efficient Photometric Reverberation

Mapping and the Efficacy of QSO

Variability Modelling

3.1 Introduction

All active galactic nuclei (AGN) are believed to be powered by an accretion disk around a central

super-massive black hole (SMBH) which is itself surrounded by a broad-line region (BLR)

(Antonucci, 1993; Urry and Padovani, 1995; Ho, 2008; Heckman and Best, 2014). The mass

of the SMBH has been observed to scale with the properties of its host galaxy (e.g. Magorrian

et al. 1998; Silk and Rees 1998; Benson et al. 2003; Haering and Rix 2004; Croton et al. 2006;

Guo et al. 2011; and Kormendy and Ho 2013 for a full review) and so it is essential that accurate

masses for the SMBH can be derived in order to investigate the effect AGN feedback has on

their host galaxies.

In the absence of a direct black-hole mass measurement, there exist scaling relations based on

emission line widths (e.g. Hβ : Wandel et al. 1999 and MgII: McLure and Jarvis 2002) and

luminosity at 5100 Å (e.g. Bentz et al. 2013). These relations are typically calibrated at low

redshift and have not been extended to high redshift (Hiner et al., 2015; Barišic et al., 2017)

despite wide-spread extrapolated use at high redshift (McLure and Dunlop, 2004; Vestergaard,

2004; Vestergaard and Peterson, 2006; Netzer et al., 2007; Runnoe et al., 2013; Feng et al., 2014;

66
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Mejía-Restrepo et al., 2016). Therefore, it is also for the purposes of validating these scaling

relations that more black-hole mass measurements at higher redshifts are needed.

Reverberation mapping (Blandford and McKee, 1982; Gebhardt et al., 2000; Ferrarese and Mer-

ritt, 2000; Peterson, 2004) is a powerful technique for estimating black hole masses. Assuming

that the broad-line region is gravitationally dominated by the SMBH, it is possible to estimate

the black hole mass from the time delay between continuum emission from the accretion disk

and the reprocessed emission from the broad-line region, also known as the “lag”, from the

Keplerian motion equation:

MBH = f
RBLRσ2

disp

G
, (3.1)

where the virial parameter f describes the structure and orientation of a broad-line region with

radius RBLR = ctlag and an emission line width of σdisp. Assuming that the virial factor, f , is fully

generated by the inclination, θ , of the disc, f = 1/4sin2
θ and so at θ = 30◦, f = 1 (McLure

and Dunlop, 2001; Liu et al., 2017). The f can be determined on a case-by-case basis by

modelling the BLR (Pancoast et al., 2011, 2014; Williams et al., 2018a), through gravitational

redshift measurements (Liu et al., 2017), or through combinations of independent black-hole

mass estimators. However, it is common to use an aggregated average for use in large data

sets. Grier et al. (2013b), Onken et al. (2004), Park et al. (2012), and Graham et al. (2011) have

measured values of 〈 f 〉 = 4.3± 1.1, 5.5± 1.8, 5.1± 1.3, and 2.8± 0.6 respectively from the

independently measured stellar velocity dispersions.

So far, about 100 black hole masses have been measured using spectroscopic reverberation map-

ping techniques (Kaspi et al., 2000; Bentz et al., 2009a,b; Denney et al., 2010; Bentz et al., 2013;

Barth et al., 2015; Grier et al., 2012; Shen et al., 2015b; Du et al., 2015, 2016a,b; Grier et al.,

2017), which require long-term spectroscopic observations to recover their lags. Since BLR

radii can span up to several hundred light days (Peterson, 2004; Bentz et al., 2014; Fausnaugh

et al., 2017; Williams et al., 2018a) light curve observations need to take place over several

months or years to match features in the continuum to the echoes from the BLR, with 3 times

the observed-frame lag being the recommended baseline (Shen et al., 2015a). Cosmological

time dilation increases the timescale of observed variability and so high-redshift QSOs require

much longer observational campaigns than low-redshift QSOs. To compound this effect, higher-

redshift QSOs are intrinsically more luminous than lower-redshift QSOs, which implies that they

have longer lag time-scales than lower-redshift QSOs.
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Fine et al. (2013) and then Brewer and Elliott (2014) have developed methods to recover lags

from the stacked cross-correlations of photometric and spectroscopic observations to be used

when individual lags are poorly constrained but there is a large sample of AGN. This method

allows for the detection of emission-line lags for a population of AGN at very high redshift (Fine

et al. 2013 use a sample of AGN with redshifts z . 4.5) and provides convincing evidence for

the decreasing BLR radius for emission-lines with higher excitation energies. However, stacked

reverberation mapping is a statistical technique and cannot provide more signal-to-noise for

individual objects.

An extra source of inefficiency for spectroscopic campaigns is the need to disperse the light and

subsequent decreased signal-to-noise especially at high redshift. In addition, there is an added

difficulty of accurately flux-calibrating spectroscopic observations, especially as photometric

RM requires the precise measurement of the ratio between continuum and emission line flux.

Therefore, observing emission lines spectroscopically for reverberation mapping is expensive

due to the required overhead, and restricted to bright or low redshift sources and so accurate

photometric methods for reverberation mapping are highly sought after.

The variability of the BLR emission line can be captured within a redshifted narrow-band (or

broad-band) photometric filter through the careful separation of the underlying, driving con-

tinuum (Haas et al., 2011; Chelouche and Daniel, 2012; Pozo Nuñez et al., 2012; Zu et al.,

2016). This can be done either by modelling the variability as a damped random walk (DRW)

(Zu et al., 2011, 2013, 2016) or by more empirical measures such as cross-correlation analysis,

which are model-independent (White and Peterson, 1994; Rybicki and Kleyna, 1994; Peterson,

2004; Chelouche and Daniel, 2012; Shen et al., 2015a; Fausnaugh et al., 2017).

Javelin (Zu et al., 2013, 2011, 2016) is a parametric Bayesian tool which models the vari-

ability of the QSO itself rather than extracting peaks from empirical cross-correlation functions.

Modelling the continuum emission as a DRW has some advantages over cross-correlation in

that it allows for natural inclusion of Bayesian inference techniques for noisy data from which

parameter values and uncertainties can be estimated (Zu et al., 2011, 2013). Stochastic DRW

models of the accretion disk continuum emission are based on physical assumptions that can

be tested by observations. The physical mechanism supporting the use of DRW models is the

stochastic heating of the accretion disk by the central source and its subsequent variability due

to thermal fluctuations (Kelly et al., 2009).
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Although the sample of reverberation mapped QSOs is becoming more representative (in terms

of luminosity and redshift) with time, the current sample is biased to low redshift QSOs which

have very broad emission lines (Shen et al., 2015a). If photometric reverberation mapping can

recover precise lag estimates for SMBHs, then fewer resources would have to be spent on spec-

troscopic campaigns in order to fill in the parameter space of black-hole mass, luminosity and

redshift.

Photometric reverberation mapping has been performed on both individual targets below z =

0.04 (Haas et al., 2011; Edri et al., 2012; Pozo Nuñez et al., 2012; Ramolla et al., 2014;

Pozo Nuñez et al., 2014; Carroll and Joner, 2015; Hood et al., 2015; Pozo Nuñez et al., 2015)

and for a sub-sample of the SDSS-RM (Shen et al., 2015a) catalogue (Hernitschek et al., 2015;

Zhang et al., 2017). However, the estimated uncertainties for these SDSS-RM sub-samples are

typically larger than 100 per cent. Photometric reverberation mapping has also been applied to

the continuum to measure the properties of the accretion disk (Mudd et al., 2017; Cackett et al.,

2018), though not to estimate black hole masses.

This work sets out to demonstrate the efficacy and reliability of photometric reverberation map-

ping even for higher redshift targets. We aim to produce the first robust photometric reverbera-

tion mapped black-hole mass with a redshift above z = 0.04.

In Section 3.2, we carefully pre-select targets to give us the best possible chance of recovering

precise lags. We specify that candidates must have redshifts that allow the use of a redshifted

Hα photometric filter and have expected observed lags (from the lag-luminosity relation Bentz

et al. 2013) such that they can be observed for 3tlag days over multiple semesters. We then

detail our observations and the methods used to produce photometric light-curves for use with

Javelin. Before fitting QSO variability models to our observations, we produce a suite of

simulated light-curves in order to test how well Javelin can recover known lags for QSOs with

the same cadence and signal-to-noise as our target observations. In Section 3.3 we present the

fitted BLR lag and black-hole mass distributions for our observations. In order to test whether

the slope is significantly affected by non-Gaussian errors, we also apply rigorous statistical

analysis to the fitting of the Hβ lag-luminosity relation by not assuming Gaussian uncertainties

for either our targets or for the Grier et al. (2017) catalogue. In Section 3.4 we compare the

efficiencies of the SDSS-RM campaign (Shen et al., 2015a; Grier et al., 2017) and our own,

in terms of signal-to-noise of the fitted lag. We also discuss future potential applications of
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photometric reverberation mapping in upcoming surveys where such techniques can easily be

applied. Finally, we summarise our conclusions and outlook in Section 3.5.

3.2 Methods

Our intermittent requirements make RM observations of small samples of high redshift targets

unsuited to continuous observing campaigns. We observed our QSOs robotically with the Liv-

erpool Telescope since it can accommodate our discontinuous observation campaign. We make

use of the optical components of the infrared-optical (IO:O) suite of instruments available on

the Liverpool Telescope since a range of Hα filters are available in addition to the SDSS ugriz

filters. This allows us to observe the Hβ emission lines of a wide range of high redshift QSOs,

since their observed emission line will fall within the sensitivity of one of the available Hα

filters.

3.2.1 Target selection

We select our targets to have iAB < 18, spectroscopically-confirmed in the SDSS DR12 (York,

2000; Eisenstein et al., 2011) or BOSS (Dawson et al., 2013), and have Hβ emission lines with

equivalent widths > 50 Å. We only select those QSOs whose redshifted Hβ line will fall into

one of the IO:O (Steele et al., 2004) Hα photometric filters. Additionally, using the 5100 Å

luminosities from Shen et al. (2011) and the R− L5100 relation from Bentz et al. (2013), we

pre-select targets that are likely to have observed lags tlag(1+ z) < 95 days. In order to derive

the most reliable lag measurement, observed light curves should span 3 times the length the

observed lag, as seen in the extensive simulations conducted by Shen et al. (2015a). We therefore

imposed an additional criterion that the QSOs be observable for at least 3 times the length of their

expected lag between the 14 months of the Liverpool Telescope (Steele et al., 2004) extended

2015B and 2016A semesters. Applying these constraints yields 10 targets which we submitted

for observation.

Our targets, shown in Fig 3.1 as green points, are positioned between the redshift-luminosity

locations of the high-redshift spectroscopic sample from Grier et al. (2017) and the low-redshift

sample from Bentz et al. (2013).
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FIGURE 3.1: The distribution of luminosity versus redshift for the Bentz et al. (2013) sample,
shown in blue, and the Grier et al. (2017) sample, shown in orange. Our dataset is shown in

green with Target-10, highlighted with red lines, between the two datasets.

3.2.2 Observations

Since the expected continuum variability of QSOs is of order 10-70 per cent (Kaspi et al., 2007),

we conservatively derive i-band exposure times, assuming an SNR > 20 (e.g. Bentz et al., 2013;

Shen et al., 2015a) and seeing < 2 arcseconds, of 88s. This exposure time was calculated for our

faintest target and so the SNR for the rest of our targets will be larger. Using the SDSS BOSS

(Dawson et al., 2013) spectral observations of our targets (shown in Fig 3.2) we detect no bright

spectral features that would interfere with our ability to measure the continuum accurately. We

use the region between 6820 Å and 6960 Å to determine the median rest-frame L5100 in order

to compare with other QSOs on the L− tHβ diagram. This region is located in the wings of
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the SDSS i-band filter that we used to measure the continuum variability. We do not expect

any biases to arise from the difference between the luminosity used to measure the continuum

variability and that used to measure the mean brightness of the QSO since the continuum is

relatively flat between the regions in question. Accounting for the large equivalent widths of the

Hβ lines and our experience of narrow-band imaging with the Isaac Newton Telescope (Smith

and Jarvis, 2007), we use a 600s integration time for broad-line (i.e. narrow-band) observations

to achieve SNR > 20 for all sources.

Our targets span a range of redshifts between 0.350 and 0.398. Therefore, for each source,

we use the appropriate Hα photometric filter for which the redshifted Hβ line dominates. For

Target-10, we use the Hα-6566Å narrow-band filter.

As seen in Table 3.1, we obtain the largest number of acceptable exposures with SDSS J144645.

44 +625304.0 (referred to as Target-10 hereafter). Indeed, Target-10 is the only QSO for which

we have obtained a baseline of observations longer than the recommended 3tHβ (1+ z) needed

to recover a lag. Thus, in what follows, we only discuss the analysis of Target-10 and defer the

rest to a future work.

3.2.3 Ensemble Photometry and Flux Calibration

In order to estimate lags between the broad-line region and the continuum-emitting region of

the QSO, we must first calibrate the i-band and Hα photometric magnitudes to a common mag-

nitude system. We are then required to calibrate our i-band photometry using the known SDSS

DR12 AB magnitudes of sources in the observed field. We calibrate Hα photometry by prop-

agating available SDSS spectra through the transmission curve for the same narrow-band Hα

filter (6566 Å) used to observe the Hβ line in Target-10, accounting for the fibre aperture.

We perform aperture photometry using Source Extractor (Bertin and Arnouts, 1996) to es-

timate Petrosian magnitudes (Petrosian, 1976; Graham et al., 2005) for each detected source

in the field for both i-band and Hα exposures. We use Petrosian magnitudes in order to cal-

ibrate each exposure to the SDSS catalogue and to easily avoid the effects of differing seeing

between our observations without modelling the PSF. We consider only those sources which

have SDSS CLEAN=TRUE and Source Extractor FLAGS= 0 for use as reference sources.

We can then apply a similar ensemble photometry method to that detailed by Honeycutt (1992),



Chapter 3. Efficient Photometric RM and QSO Variability Modelling Efficacy 74

4000 5000 6000 7000 8000 90000
10
20
30
40
50
60
70
80

flu
x 

/ 1
×

10
17

er
g

As
cm

2

6400 6500 6600 6700 6800 6900 7000
/Å

0
10
20
30
40
50
60
70
80

flu
x 

/ 1
×

10
17

er
g

As
cm

2

FIGURE 3.2: The SDSS-BOSS spectrum for Target-10. The transmission curve for the Hα

filter used to measure the flux contained within the Hβ line is shown in orange and the SDSS
i-band filter is shown in green. The region between 6820 Å and 6960 Å used to determine the
median rest-frame L5100 for the SDSS spectrum is shown in grey. Top: The whole spectrum.
Bottom: The region between 6400 and 7000 Å which contains both the broad Hβ line and the

region used to measure the rest-frame L5100

on the i-band exposures and calibrate those instrumental magnitudes to the SDSS absolute AB

magnitude system.

To further improve our set of reference sources, we perform a number of checks. First, we

perform the same aperture photometry extraction using Source Extractor that we used on

our own i-band exposures on the SDSS i-band exposures that contain the candidate reference

sources. If the Petrosian magnitude extracted from SDSS exposures by Source Extractor

does not agree with the Petrosian magnitude quoted in the SDSS DR12 catalogue to within 0.05

mag, then we discard the source. This leaves the sources depicted in green in Fig 3.3. Ideally, we
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FIGURE 3.3: The selection of acceptable reference sources for Target-10 in the i-band. Top
left: The derivative of the splines that were fit to the difference between SDSS AB Petrosian
magnitude, mAB, and Source Extractor instrumental Petrosian magnitude, ms, for each ex-
posure. Other quadrants: a sample of 3 exposures are shown in the other 3 quadrants of this
figure. The region where the gradient of all splines is less than 0.05 mag, where acceptable
sources can be found, is bounded by two vertical lines. All sources plotted here have SDSS
CLEAN=TRUE & Source Extractor FLAGS= 0. Those sources whose extracted Petrosian
magnitude extracted from the SDSS calibrated images is the same (not the same) as that ex-
tracted from the same image using Source Extractor, to within 0.05 mag, are shown in
black (red). Those sources which are accepted for use as reference sources by spline fitting

(see section 3.2.3) are shown in green. Target-10 is shown in blue.

would fit a single value of mAB
s −ms across all instrumental magnitudes ms to measure the i-band

zeropoint. However, as shown for the three example exposures in Fig 3.3, the IO:O CCD can be-

come saturated for many bright sources and faint sources are noisy. This results in non-linearity

at both high and low magnitudes. We therefore employ a spline-based technique to select a con-

tiguous range of Source Extractor magnitudes containing “well-behaved” sources, where

we can fit a single flat i-band zeropoint. We fit a spline to mAB
s −ms against ms and find the

range in which the gradient of the spline is 0±0.05 mag. This range corresponds to the region

where aperture photometry is the least affected by saturation and noise, and is shown in the first

quadrant of Fig 3.3. We then select those candidate reference sources which have instrumental
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FIGURE 3.4: Stacked i-band exposures for Target-10. The QSO is circled in red and its ac-
cepted references are circled in blue.

magnitudes within that range. These sources, along with Target-10, are highlighted in Fig 3.4

and Fig 3.5.

In order to estimate the exposure zeropoints and their uncertainties to the greatest accuracy, we

employ an ensemble photometry technique similar to Honeycutt (1992). We start out by fitting

the instrumental magnitudes to SDSS AB magnitudes whilst also fitting a mean instrumental

magnitude, m̂r, assuming that our reference sources are non-variable. This results in a log-

likelihood given by

lnL ∝
Ne

∑
e=1

Nr

∑
r=1

(mer + ẑe− m̂r)
2wer +

Nr

∑
r=1

(
m̂r−mAB

r

σAB
r

)2

(3.2)

where mer is the instrumental magnitude for reference source r in exposure e with weighting

wer, m̂r is the magnitude of reference source r assuming that it does not vary over the course of

observations, ẑe is the zeropoint for exposure e, and mAB
r is the AB magnitude of reference source

r as measured by SDSS with its associated uncertainty σAB
r . We begin the fitting procedure by
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FIGURE 3.5: Stacked Hα exposures for Target-10. The QSO is circled in red and its accepted
references are circled in blue.

setting the weight wer for each reference source at each exposure to the instrumental magnitude

uncertainty given by Source Extractor, 1/σ2
er. We then fit the quantities m̂r and ẑe using

EMCEE (Foreman-Mackey et al., 2013) with 20 walkers until chain convergence is observed.

Some reference sources may indeed vary over the course of our observations. In addition, the

instrumental uncertainty from Source Extractor may be underestimated by some factor. In

order to reduce the offset to the zeropoint caused by the inclusion of varying sources, we scale

the initial weighting by its probability in a fit Student-T distribution:

wer→
per

σ2
er
,

per = T (mer− m̂r|µ̂ = 0, λ̂ , ν̂) (3.3)

where the inverse scale parameter, λ̂ , and number of degrees of freedom, ν̂ , are both fit to

the distribution of mer − m̂r assuming a mean of µ̂ = 0. The Student-T distribution fit to the

distribution of deviations of the instrumental magnitudes from their estimated mean (i.e. the
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FIGURE 3.6: Top: The light curve for Target-10 is shown in red with its calibrated i-band AB
magnitudes labelled on the right axis. The deviation from the mean magnitude for each of the
reference sources for Target-10 i-band are also shown on the left axis. Bottom: The i-band AB

zeropoint for each exposure calibrated to SDSS magnitudes using the Petrosian aperture.

distribution of the values of the black points in Fig 3.6), will update the weighting of each

magnitude in each exposure and therefore assign very low weighting to sources which have

larger variability over the course of our observations than others. We iteratively run this re-

weighting procedure until each flux measurement in the light curve of the target QSO no longer

changes within a tolerance of 0.001 mag. This typically takes 3-5 runs of MCMC inference,

updating the weighting each time.
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3.2.4 Light-curve Calibration

Fig 3.6 shows the resultant light curve for Target-10 in the i-band along with the deviation from

the mean magnitude for its reference sources. The average uncertainty for the AB magnitudes

for Target-10 is about 0.015 mag with the largest being 0.200 mag. The i-band magnitudes

for Target-10 therefore have signal-to-noise ratio of between 25 and 120, exceeding than the

necessary SNR> 20 recommended by Bentz et al. (2013) and Shen et al. (2015a) to achieve

reliable lags.

The SDSS DR12 catalogue lacks Hα photometry and our observed fields contain few sources for

which SDSS has spectra (only one of which is not a QSO). Therefore, it is necessary to calibrate

our Hα exposures to the magnitudes obtained from propagating SDSS spectra through IO:O

Hα photometric filters. We derive zeropoints, relative to the “best” exposure (i.e. the exposure

with the highest mean SNR for spectroscopic reference sources), for each of the Hα exposures

by using the same ensemble photometry method detailed above. We make use of the SDSS

spectroscopic catalogue to identify potential reference sources but find only one such source

(αJ2000 = 14h46m37s,δJ2000 = +62◦57′36′′) observed by the Baryon Oscillation Spectroscopic

Survey (BOSS) spectrograph (Dawson et al., 2013).

Our calibration depends upon the accurate measurement of the reference’s flux within the Hα

filter. Given that we find that the source is resolved into two components as shown in Fig 3.7,

the effect of seeing and aperture corrections cannot be neglected. We first fit a model consist-

ing of two Gaussians to our best Hα exposure, then transform the model to the same seeing

as the BOSS observation, and finally extract the flux contained within the BOSS 2 arcsecond

aperture. The difference between the ensemble calibrated instrumental magnitude we obtain for

our best exposure and the propagated BOSS spectrum is taken as our zeropoint, accounting for

uncertainties in both magnitudes.

Fig 3.8 shows the the resultant light curve for Target-10 in the Hα waveband along with the

deviation from the mean magnitude for its references sources. Due to the necessary interme-

diate step of calibrating differential magnitudes to the AB magnitude system via the spectral

reference source at αJ2000 = 14h46m37s,δJ2000 = +62◦57′36′′, the signal-to-noise ratio of the

Hα magnitudes is unsurprisingly smaller than those in the i-band. We measure signal-to-noise

ratios for the Hα fluxes of Target-10 range between 19.5 and 80.0.
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FIGURE 3.7: Modelling the spectral reference source at αJ2000 = 14h46m37s,δJ2000 =
+62◦57′36′′in Hα photometry. Top left: Our original exposure of the spectral reference source
in Hα . Top right: The model of the spectral reference source using two Gaussian components
and a background. Bottom left: The residuals from our two component model. Bottom right:
The model convolved to the SDSS seeing for the spectrum observation using a difference-
of-two-Gaussians kernel. Overplotted in red crosshairs is the location of the centre of the 2

arcsecond BOSS aperture and the aperture is shown in the bottom right panel.

The zeropoint for both i-band and Hα exposures can change by about 0.4 mag and the exposures

where this occurs are the ones the highest uncertainty for the QSO magnitude. Upon inspection,

it is clear that these exposures have increased cloud cover or worse-than-normal seeing. Our

ensemble calibration method above takes into account the instantaneous deviation of reference

sources from their inferred mean magnitudes and updates their weightings accordingly. We

therefore do not exclude these exposures from further analysis.
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FIGURE 3.8: Top: The light curve for Target-10 is shown in red with its calibrated Hα AB
magnitudes labelled on the right axis. The deviation from the mean magnitude for each of the
reference sources for Target-10 Hα are also shown on the left axis. Bottom: The Hα AB

zeropoint for each exposure calibrated to SDSS magnitudes using the Petrosian aperture.

3.2.5 Javelin reliability simulations

Javelin (Zu et al., 2013) can be used to model quasar variability with either spectroscopic (Zu

et al., 2011) or purely photometric measurements (Zu et al., 2016). Javelin models the QSO

continuum variability as a damped random walk (DRW). A random walk is defined such that

the value of a data point in a time-series is only dependent on the previous state (i.e. a Markov

chain). A damped random walk is the only “memory-less” Gaussian process and each step is

generated by sampling from a Gaussian distribution, whose variance depends on the distance
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between the previous state and the next state:

fi = α fi−1 + εi, (3.4)

α = e−|ti−ti−1|/τ , (3.5)

ε ∼N (µ = 0,Σ = σ
2[1−2|ti− ti−1|/τ]), (3.6)

where fi is the next flux to be generated at time ti, τ is the time scale of the variability and σ is its

amplitude. The damped random walk is therefore characterised by the exponential covariance

kernel S(∆t) = σ2e−|∆t/τ| and so on average, the light-curve of a pure DRW will always vary

around a mean value.

Javelin supports a number of random walk covariance kernels which control the strength of

the correlation between any two flux observations given the time between them. Zu et al. (2013)

finds that the exponential covariance kernel is appropriate on time scales, τ , between months

and years, and we therefore adopt their recommendation. Below a time scale of a few months,

the correlation becomes stronger than can be accounted for by the exponential covariance kernel

(Mushotzky et al., 2011; Zu et al., 2013). Since we have selected our targets to have expected

lags – inferred from the lag-luminosity relation (Bentz et al., 2013) – in excess of 40 days, we

deem the exponential covariance kernel appropriate for our targets.

Before modelling the QSO variablility of Target-10, we run a suite of simulations to ensure that

Javelin can reliably recover lags given the noise properties of the Target-10 light curves and

their cadence. This allows us to estimate the degree to which we can trust Javelin parameter

estimations for a given QSO target and will reveal the nature of any artefacts which can occur

due to the cadence of the input light curve. We perform such analysis with 151 200 simulated

light curves constructed by varying the DRW parameters and noise level, for a given target’s

cadence.

The DRW model generates a continuum light curve from the random walk amplitude, σ and

time-scale, τ , as shown in the upper panel of Fig 3.9. The resultant light curve is then smoothed

with a top hat window of width w and scaled by line scale s to produce an emission line light

curve, shown in the middle panel of Fig 3.9. To generate the mixture of line and continuum

emission seen through a photometric filter, Javelin scales the continuum light curve by a con-

tinuum scale α and adds the resultant continuum to the emission line, as shown in the lower

panel of Fig 3.9. The observations are then taken at the same cadence as that of Target-10 and
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FIGURE 3.9: One of the 151 200 light curves generated from a grid of Javelin parameters
based on Target-10. The continuum, pure line, and line with continuum light curves are shown
in blue, red, and green respectively. The lines depict the intrinsic light curve generated by the
simulated QSO using the damped random walk covariance kernel. The noisy observations,
with the same signal-to-noise ratio as the calibrated Target-10 light curves are shown as points.

The mean flux of each of the light curves is shown as a horizontal line.

assuming the same signal-to-noise (shown as dots in Fig 3.9). In order to test how dependent the

lag estimate is upon the zeropoint obtained from the spectral reference calibration source, we

also scale the resultant continuum+line light curve by a zeropoint offset between -0.4 and +0.4

mag, bringing the total number of parameters in our grid of simulations to 7. For Target-10,

we use the ranges of parameters, guided by the posterior distribution for the Javelin fit to the

Target-10 continuum, detailed in Table 3.2.

For each of these light curves, we run the following analysis to derive the best estimate for

the lag. First, we infer the DRW parameters (amplitude, σ , and time-scale τ) of the i-band
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parameter lower value upper value N
log(tlag) 1 2.5 10
logσ -2 -1.8 3
logτ 0.75 1.75 3
w 0.5 13 4
s 0.1 1.5 5
α 0.8 1.4 3
σz -0.4 0.4 7
random seed – – 4

TABLE 3.2: The parameter ranges, on a linearly spaced grid, that create the simulated light
curves for Target10. Each set of parameters was run 4 times with a different, pre-selected,

random seed from which to generate the noisy light curves.

continuum with 200 walkers. We use the output probability distributions as a prior for the lag

estimation using both i-band and Hβ light curves. We run Javelin with the default settings

of a logarithmic prior which begins to penalise lag values larger than a third of the observa-

tion baseline, and a hard limit on lags longer than the baseline itself. MCMC chains must have

converged before any reliable parameter estimation can be performed. The model is run until

convergence is achieved, whereby MCMC is halted when the autocorrelation time for all param-

eters changes less than 1 per cent and the number of iterations is larger than 50 times the largest

autocorrelation time estimate, as recommended by Foreman-Mackey et al. (2013)1.

This analysis results in a large hyper-volume of probability distributions which we can marginalise

over to give us the accuracy of lag estimates as a function of known input lags.

Due to the presence of more than one strong peak in the lag probability distributions, taking

the median of an MCMC chain array may result in the parameter estimate being located in an

area of low probability, between peaks, and not near a region of high probability. Therefore,

any quoted estimate and its uncertainty could be misleading. We choose not to identify the

primary peak by eye, but use a mode-finding method to identify the most probable solution

within the highest-posterior-density (HPD) credible interval. The HPD interval is the narrowest

interval that is guaranteed to contain the mode of the distribution. We fit a kernel-density-

estimate (KDE) using the FastKDE (O’Brien et al., 2014, 2016) algorithm which calculates the

kernel’s parameters objectively (i.e. the hyper-parameters are informed entirely by the data and

therefore it does not require user specification of bin width or kernel bandwidth), and choose the

maximum value of that resultant KDE to be our best estimate for the Javelin parameters.

1http://emcee.readthedocs.io/en/latest/user/autocorr/

http://emcee.readthedocs.io/en/latest/user/autocorr/
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FIGURE 3.10: The comparison of input and output time lags for the simulated light curves.
The violins at each input lag depict the distribution of Javelin best estimate lags, with their
width indicating number density. These best estimates are determined by the KDE procedure
described in Section 3.3.1. The 1:1 relation indicating perfect recovery of input lags is shown

as the dashed line.

Fig 3.10 shows the distributions of the KDE best estimate of the Hβ lag based on the output

Javelin probability distributions. The first observation we can make is that we can recover the

lag to within 4 per cent as long as the input lag is below 145 days, given our observing campaign

(of duration 330 days). Given that Javelin starts to penalise lag values larger than a third of

the observation baseline it is perhaps not surprising that lags starting to approach the total length

of the baseline itself are not as reliably recovered as those below a third of that length. We

also observe that there are a number of hyperparameter combinations whose recovered lags are

incorrect by > 100 days. This occurs for combinations at all input lags and so we should not

be surprised by spurious peaks in the probability distribution for Target-10 at higher lags. At all
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FIGURE 3.11: The median stacked lag probability distributions of all simulated light curves of
lags between 10 and 316 days. The median stack shows only the spurious output values from
the Javelin. The large peak particularly around 0-14 days can be attributed to the effects of

cadence.

input lags, we find artificial (i.e. incorrect) peaks at negative lags and so we can be justified in

disregarding the peaks below -100 days.

We find that there is always a large peak at around 0-14 days, which coincides with the average

cadence of observations (14 days). This can be seen in Fig 3.11, where the distribution of arte-

facts resulting from fitting with Javelin contains a substantial peak at 0-14 days. We therefore

attribute any peak seen at around this region to the artificial effect of cadence upon the Javelin

fitting procedure.

The KDE method allows us to assess the most likely peak without referring to the unstable
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maximum likelihood point, but it also implies a large uncertainty on the lag given that there are

other regions of high probability which cannot be ruled out a priori. We can address the issue in

three ways:

1. Use the output lag distribution for our reliability simulations to mitigate the effect of non-

linear artefacts that arise from the Javelin fitting process.

2. Apply a prior to the lag distribution based on previous lag and luminosity measurements,

and established relations i.e. (Bentz et al., 2013).

3. Limit analysis to the range of lags bounded by the minima surrounding the tallest peak.

We perform the only the first and the last steps detailed above since we want our lag measure-

ment to inform the trest−L5100 relation, which cannot be done independently if our measurement

is a result of an application of a prior based on the same relation.

3.3 Results

3.3.1 Lag estimation for Target-10

We perform the same Javelin fitting procedure for Target-10 as we did for our simulated light

curves. Fig 3.12 shows the posterior predictive distribution for the observed light curves of

Target-10 based on the burnt-in chain (i.e. with the first 1000 steps for the MCMC chain re-

moved). The Hα predictive posterior light curve is the linear combination of continuum and

emission line light curves where the emission line flux is only a fraction of the continuum.

Manually identifying the time delay between them will be difficult.

In addition, the distribution of Hβ lags contains more than one convincing (SNR > 3) peak.

However, since we have constructed a large suite of simulated light curves over a large range

of DRW parameters, we can estimate the distribution of lag artefacts that results only from the

Javelin fitting process and the properties of our data. We can then use the distribution to inform

us as to which peak is the “real” one. First, we generate a set of simulated light curves (see

Section 3.2.5) whose true lags fall within the dashed region shown in Fig 3.13 between 40 - 125

days and run Javelin to return the posterior lag distribution. This creates a distribution of lags

without a peak corresponding to the true input lag, since the median at any point will suppress
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FIGURE 3.12: The posterior predictive light curves for Target-10 in mJy. Top: The redshifted
Hα band light curve containing a mixture of Hβ line emission and continuum emission. Bot-
tom: The i-band continuum emission. The shaded regions correspond to the 68 per cent den-
sity region covered by random draws from the Javelin posterior probability distribution. The

black error bars denote the calibrated observations for each waveband.

such a peak. We scale the artefact distribution, an approximation of 1− P(tHβ ), so that its

median probability matches the median probability of the distribution of Target-10, P(tHβ |D).

Then we divide the Target-10 lag distribution by this artefact distribution, which has the effect

of suppressing spurious peaks. The result is shown in Fig 3.13. There are some features of the

artefact distribution that correspond to those found in the distribution for Target-10. In particular,

the artefact peak at 63 days almost completely resolves the ambiguity of the double peak at 63

and 72 days for Target-10 by dramatically favouring the longer lag.

We partially follow the method of Grier et al. (2017) whereby we select the region bounded by

the minima of the tallest peak (dashed lines in Fig 3.13) in the distribution that still contains

artefacts. We then estimate the region of 68 per cent probability in the cases of artefact inclusion

and deconvolution as shown in Fig 3.13. We recover an Hβ lag for Target-10 of 73+4
−13 days

without taking into account any artefacts and an Hβ lag of 72+5
−1 days when we apply artefact

deconvolution. Using a prior based on the fit t−L5100 relation (Bentz et al., 2013) alone does not

significantly favour either peak, at 63 and 72 days, over the other despite suppressing the PDF

at very low and high lags. The best KDE estimate of the lag of Target-10 is consistent between

both distributions but the uncertainty shrinks by a third when we use the artefact deconvolution

method to simplify the posterior.
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FIGURE 3.13: The probability distribution from Javelin for rest-frame lag of Target-10 be-
fore and after artefact deconvolution. Top: The full probability distribution for rest-frame lag
as the blue histogram along with the artefact distribution in black derived from simulated light
curves with rest-frame lags of 72 days. Bottom: The cleaned distribution of rest-frame lags for
Target-10, where the artefact distribution is deconvolved from the output Javelin rest-frame
lag distribution. The region marked by dashed lines indicates the region where we estimate the
68 per cent HPD interval (shaded red area), along with the mode (red line), which is determined
by the position of the minima around the highest peak in the top panel (following the method

performed by Grier et al. 2017).
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3.3.2 Fits to the tHβ −L5100 Relation

Using our derived time lag, we fit a power-law, with scatter, to the lag versus luminosity in linear

space:

t ′rest/1day = 10K [λLλ/1044ergs−1]α (3.7)

trest ∼N (µ = t ′rest,σ = t ′restε) (3.8)

where trest is the lag that would be observed without the effects of intrinsic scatter in the relation

and t ′rest is the observed lag including that intrinsic scatter. The normal distribution is indicated

as N . Our fitting priors for the slope α̂ , intercept K̂, and scatter scale ε̂ are:

α̂ ∼N (µ = 0.5,σ = 0.75), (3.9)

K̂ ∼ Trunc.N (µ = 1.5,σ = 1.0,a = 0,b = ∞), (3.10)

log[ε̂]∼N (µ =−2,σ = 1) (3.11)

We do not fit a straight line in log space since the uncertainties in lag and luminosity along with

the scatter are not strictly Gaussian in linear space and definitely not in log space. This subtlety

may have a significant impact on the slope of the fit relation and therefore on its interpreta-

tion. We use this opportunity to test whether the correct treatment of non-Gaussian uncertainties

makes a difference to resultant fit. We resample the uncertainty distributions of the lag estima-

tions 1000 times per data point in order to fit the power law. In this way, we incorporate the

probability distribution from Javelin naturally whilst also treating values from the literature

correctly. We do not fit the power-law to the Grier et al. (2017) dataset since they reason that

large selection effects due to limited monitoring cadence and duration may bias their lag mea-

surements to lower values more so than the Bentz et al. (2013) sample. Instead, we use the

Clean2+ExtCorr dataset from Bentz et al. (2013), which excludes two AGN due to potentially

biased time lags and corrects the influence of internal extinction of one other. We recover the

parameters listed in Table 3.3.

Fig 3.14 shows the fit lag-luminosity relation to the Bentz et al. (2013) Clean2+ExtCorr sample.

There is no significant difference between the fits with and without Target-10 included. How-

ever, fitting in linear space produces a shallower relation (by ∼ 0.013) than that of Bentz et al.
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FIGURE 3.14: The rest-frame lag-luminosity relation shown for data from Bentz et al. (2013)
(circles), Grier et al. (2017) (triangles), and Target-10. All points are coloured by redshift.
The best estimate for the lag of Target-10 is shown as a bold green circle with and without the
artefact deconvolution. The best fit line in log space to the Clean2+ExtCorr dataset by (Bentz
et al., 2013) is shown in grey, the best fit line in linear space to the same data is shown in red.
The best fit in linear space to the Clean2+ExtCorr dataset as well as Target-10 is shown in blue.

The scatter estimated by MCMC in all best fit lines is indicated by dashed lines.

K̂ α̂ log[ε̂]

Clean2+ExtCorr+
Target10 1.542+0.001

−0.002 0.493+0.001
−0.001 −0.542+0.005

−0.005

Clean2+ExtCorr 1.539+0.001
−0.002 0.480+0.001

−0.001 −0.623+0.004
−0.005

Clean2+ExtCorr
(Bentz+13) 1.559±0.024 0.549+0.028

−0.027 ∼−1.016+0.169
−0.187

TABLE 3.3: Lag fit parameters for datasets with and without Target-10. The fit results from
Bentz et al. (2013) are included but the scatter has been approximately converted to the power

law model using ε ≈ 10σ −1 for comparison.
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K̂ α̂ log[ε̂]

Clean2+ExtCorr+
Target10 8.048+0.002

−0.002 0.535+0.001
−0.002 −0.017+0.006

−0.004

TABLE 3.4: Mass fit parameters for datasets with Target-10.

(2013) and so, at extremes of luminosities, where there is a dearth of data, we find that our fit is

significantly (2σ at 41.5 dex) different to the log-log straight line. Additionally, the uncertainty

in our fit parameters is much reduced when compared to Bentz et al. (2013) and the scatter is

larger (by about 0.5 dex). Our fit is compatible with that found in Bentz et al. (2013) in the well

sampled regions. We also note that the impact of selection effects upon this and any fit of a t-L

relation will be dependent on the cadence and duration of observations. This may go some way

to explaining the seemingly excessive number of QSOs populating the space below the Bentz

et al. (2013) data points. Furthermore, there may be an accretion rate dependency whereby the

more fundamental relation is the plane of rest-frame lag, luminosity and accretion rate, as out-

lined by Du et al. (2016a). However, the explanatory power of this model is small for sources

with the low accretion rates seen in the Grier et al. (2017) sample.

Propagating the posterior lag distribution for Target-10 through Equation 3.1, using the virial

factor from Grier et al. (2013b) with a Gaussian distribution of 〈 f 〉 ∼N (µ = 4.3,σ = 1.1), we

arrive at the distribution for black hole mass shown in Fig 3.15. The best estimates, with and

without deconvolution of artefacts, for black hole mass are only separated by 0.01 dex.

Fig 3.16 shows the black-hole mass-luminosity relation for the Bentz et al. (2013) Hβ lags with

line widths from the AGN Mass Catalogue (Bentz and Katz, 2015). The parameter fits for the

mass-luminosity relation are detailed in Table 3.4. We find that Target-10 is in good agreement

with the Bentz et al. (2013) Clean2+ExtCorr dataset.

We find that the scatter of the mass-luminosity relation (0.5 dex) is much larger than that of the

lag-luminosity relation in log space. This is unsurprising since the former combines uncertainty

from the virial factor 〈 f 〉 as well as the scatter in line widths shown in Fig 3.17, which shows

the black hole mass against broad line velocity dispersion.

However, it is still useful to note that a black-hole mass predicted from the t−L5100 relation can

be wrong by more than 0.3 dex 50 per cent of the time2.

2Calculated from the fit line in log-space (Figure 3.16) with a 1σ width of ∼ 0.5 dex. 1−P(−0.3 < t ≤+0.3) =
0.5
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FIGURE 3.15: The probability distribution for black hole mass before and after deconvolution
of the Javelin artefact distribution. Top: The probability distribution for the black-hole mass
of Target-10 given the raw output from Javelin. Bottom: The probability distribution for
the black-hole mass of Target-10 given the deconvolved lag distribution. Both distirbutions
incorporate uncertainties on velocity dispersion and the virial factor. The 68 per cent HPD

region is shown in red in both cases with the best estimate indicated by the solid line.

3.4 Discussion

3.4.1 Efficiency

This observing campaign totalled 17.4 hours (15.2 for Hα and 2.2 for i-band) in total, with

5.9 hours dedicated to Target-10. This is far shorter than the large majority of spectroscopic

observing campaigns such as Shen et al. (2015a) where the typical epoch consists of at least eight

15 minute sub-exposures rather than our one 10 minute exposure with the Liverpool Telescope
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FIGURE 3.16: The black hole mass-luminosity relation shown for the sample from Bentz
et al. (2013) (cirlces), Grier et al. (2017) (triangles), and Target-10. The black hole masses for
the Bentz et al. (2013) sample are drawn from the AGN Mass Catalogue where possible and
calculated using f = 4.3±1.1 (Grier et al., 2013a). The Grier et al. (2017) masses are scaled
from f = 4.47 to f = 4.3. All points are coloured by redshift. The best estimate for the mass of
Target-10 is shown in green with and without the artefact deconvolution. The best fit in linear
space to the Clean2+ExtCorr dataset as well as Target-10 is shown in red. The scatter estimated

by MCMC in all best fit lines is indicated by dashed lines.
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FIGURE 3.17: Estimated black hole mass versus the Hβ velocity dispersion. The Bentz et al.
(2013) sample is shown in blue, Grier et al. (2017) sample is shown in orange, and Target-10
is shown in green with and without the Bentz et al. (2013) prior applied. The line widths for
the Bentz et al. (2013) sample are retrieved from the AGN Mass Catalogue (Bentz and Katz,

2015).

per epoch. Grier et al. (2017) achieved an average uncertainty of 3± 2 days and a maximum

SNR of 23.1 whereas Target-10 has an uncertainty of +5/− 1 days (SNR= 24.3), with much

of the uncertainty attributed to artificial peaks having been mitigated using our simulations (see

Section 3.3.1).

We define efficiency as the mean SNRlag achieved for a given observing campaign divided by

the total time required.

ε =
∑i=n

i=0 SNRlag

nttotalπ(D/2)2 , (3.12)
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Selection εSDSS−RM×10−3 εThiswork×10−3 εThiswork
εSDSS−RM

This work SDSS-RM

iAB < 18 all objects 4.4 18.1 4.1
iAB < 18 3.1 5.8

Target-10 min[ f obs
5100− f obs

5100,Target10] 1.3 460.2 363.7
max[SNRlag] 17.7 26.0

TABLE 3.5: The efficiencies, calculated with different selection criteria, for SDSS-RM (Shen
et al., 2015b; Grier et al., 2017) and this work. The efficiencies are calculated using Equa-
tion 3.12. We compare the efficiencies on a per object basis as well as over the whole campaign.
We compare our Target-10 to the most similar QSO in the Grier et al. (2017) catalogue (based
on f5100) and to their most precise lag estimation (in terms of SNRlag). In all cases, photometric

reverberation mapping is more efficient than spectroscopic reverberation mapping.
.

where n is the number of observed targets (detection or not), ttotal is the total observing campaign

observing time, and D is the primary mirror diameter. The mirror diameters are 2.5 m for SDSS-

RM and 2 m for this work, which uses the Liverpool Telescope. This gives us the expected

signal-to-noise for a given QSO per hour of observation per collecting area. In order to make a

fair comparison, we include the SDSS spectrum integration time required to estimate velocity

dispersions for each of our targets in the total time required to observe our targets as well.

We have achieved an efficiency of ε = 18.1×10−3hr−1m−2, whereas with spectroscopic rever-

beration mapping, SDSS-RM achieved ε = 4.4× 10−3hr−1m−2, where our fraction of sources

with detected lags (0.2) is the same as that of Grier et al. (2017). This is a 310 per cent increase in

efficiency over the multiplexed SDSS-RM campaign. If we instead calculate the signal-to-noise

per hour per square metre per object, SNR/tob j, we find that on average we achieve 16 times

more signal-to-noise per hour than Grier et al. (2017). Since the SNRs of the Grier et al. (2017)

lags do not depend strongly on redshift, observed flux or luminosity, this is a fair comparison.

The efficiencies described above include targets that we have observed but not analysed and

consider the whole observing campaign at once. If we only consider Target-10 compared to

the most precise lag measured by Grier et al. (2017), for SDSS J142103.53+515819.5, our

efficiency rises to 26 times more signal-to-noise per hour per square metre than Grier et al.

(2017) Furthermore, if we consider the most similar target to our Target-10 in terms of observed

flux (SDSS J140759.07+534759.8), their efficiency drops to ε = 1.3×10−3hr−1m−2.
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3.4.2 Future Applications

Having shown that reverberation mapping using photometric methods with minimal spectroscopy,

can be an effective means with which to measure black-hole masses, we can foresee a number

of exciting applications for long term studies, which would require little extra effort to instigate.

The Liverpool Telescope (Steele et al., 2004) will soon be superseded by a new robotic suc-

cessor, the Liverpool Telescope 2 (Copperwheat et al., 2014), with first light after 2020. The

Liverpool Telescope 2 will benefit from a 4 metre diameter as opposed to the current Liverpool

Telescope’s 2 metres. Given the efficiency of photometric reverberation mapping with the cur-

rent Liverpool Telescope, the application of these methods to its successor would be an effective

use of time when applied robotically and make higher redshift measurements possible.

Photometric reverberation mapping lends itself well to large surveys, which often require that

the instrument make repeated visits to the same field for calibration to standard stars. Selecting

calibration fields to contain known QSOs would generate light curves with baselines as long as

the survey’s duration with a regular high-frequency cadence for little extra effort. The upcoming

photometric surveys of the Javalambre Physics of the Accelerating Universe Astrophysical Sur-

vey (J-PAS, Benitez et al., 2014) and its companion calibration survey Javalambre-Photometric

Local Universe Survey (J-PLUS) promise an opportunity for sustained long-term photometric

reverberation mapping campaigns. Designed to accurately measure photometric redshifts for

galaxies up to z = 1, with its unprecedented 56 narrow band filters, J-PLUS could easily ob-

serve the continuum and a wide range of emission lines for a sample of QSOs observed during

calibration exposures. In addition, instruments such as the PAUCam (Castander et al., 2012;

Padilla et al., 2016), providing 40 narrow-band filters in addition to the u,g,r,i,z, and y photo-

metric filters, could also detect lags with higher SNR and a larger range of redshifts than IO:O.

These observations could provide a far more detailed map of the broad-line region as inferred

by Williams et al. (2018a), and also provide a large enough dataset to perform continuum rever-

beration mapping (Mudd et al., 2017) to estimate accretion disk sizes.

The Large Synoptic Survey Telescope (LSST, Marshall et al., 2017) will run a 10 year survey

over 30 000 square degrees of sky with 6 broad-band photometric filters. LSST will observe

the same regions of sky with a high frequency and 3 day cadence, making pure photometric

reverberation (Zu et al., 2016) with large numbers of QSOs a realistic possibility. A QSO light

curve dataset from LSST would probe the extremes of timescales where the damped random
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walk model for QSO variability is thought to break down (Zu et al., 2013) whilst also providing

opportunities for continuum mapping (Mudd et al., 2017).

Given that we can measure lags with 6 days uncertainty with current instrumentation, for base-

lines longer than 3trest(1+z), these survey’s long campaigns and high cadences, along with high

precision photometry, will likely provide more than enough signal-to-noise for lag estimation

for hundreds of QSOs/AGN covering a large range of lags and luminosities. Indeed, strategic

application of photometric continuum mapping and multiple narrow band filters probing mul-

tiple broad-line region radii will yield much information regarding the geometry and mass of

SMBHs.

3.5 Conclusions

We demonstrate an efficient method for purely photometric QSO reverberation mapping at high

redshift (z = 0.351) using Javelin (Zu et al., 2016, 2013).

1. We observe 10 targets selected for their estimated signal-to-noise, observable time, and

inferred Hβ emission line lag (according to the tlag−L5100 relation fit in Bentz et al. 2013).

2. Observing conditions ruled out the observation of 5 of our selected targets and 4 observed

targets did not have the required baseline, recommended by Shen et al. (2015a), to ob-

serve their expected lag given their luminosity. We therefore proceed to discuss only

SDSS J144645.44 +625304.0 (referred to as Target-10).

3. We calibrate the Hα and i-band light curves, using an ensemble photometry method, to

SDSS AB magnitudes. In order to achieve as accurate an Hα relative calibration zeropoint

as possible, we use the only available SDSS-BOSS spectrum. This spectrum is observed

to be resolved into two components in both our i-band and Hα exposures, and the SDSS

i-band exposures. Therefore, we fit a two-component Gaussian model to the source in

order to transform to the same seeing as the BOSS observation before fitting a zeropoint.

4. We find that the output lag probability distribution from Javelin is frequently affected by

multiple peaks, some at negative lag values. By generating 151 200 simulated light curves



Chapter 3. Efficient Photometric RM and QSO Variability Modelling Efficacy 99

over a wide damped random walk parameter space (in the Zu et al. 2013 damped random

walk model) using the same cadence and signal-to-noise measured in our calibrated light

curves for Target-10, we identify artefacts in the lag probability distribution which occur

due to cadence effects or the Javelin fitting procedure. We find that median estimate

of the lag from the Javelin probability distributions often reports inaccurate values and

large uncertainties for lags. We therefore use an HPD kernel method (Section 3.3.1) to

automatically identify the most probable peak objectively. Using the HPD kernel method,

we report the reliability of Javelin lag over 10 to 316 days. We are able to reliably re-

cover the original input lag over all other nuisance parameter ranges for the simulated light

curves with an average of 4 per cent deviation when the input lag is less than 145 days.

When simulating light curves based on the signal-to-noise and cadence of Target-10, we

find that an error of no more than 0.4 mag in Hα narrow-band zeropoint calibration is still

able to recover the given input lag to within an average of 4 per cent.

5. Using simulated light curves with true lags around the suspected lag of Target-10, we

compile a distribution of artefacts in the lag distribution produced by the Javelin fitting

procedure. We deconvolve the artefact distribution from the lag distribution of Target-10

and measure Hβ lags and black hole masses with smaller uncertainties than without arte-

fact deconvolution. We find that that the best estimate of the Hβ lag and black hole mass

do not change beyond the 68 per cent HPD credible interval when the artefact deconvolu-

tion is applied. We recover an Hβ lag for Target-10 of 73+4
−13 days and an Hβ lag of 72+5

−1

days when we apply artefact deconvolution. Assuming an 〈 f 〉 = 4.3± 1.1, we measure

a black hole mass for Target-10 of 108.27+0.13
−0.15M� and a black hole mass of 108.28+0.12

−0.07M�

when we apply artefact deconvolution.

In conclusion, we find that by analysing the resulting probability distribution with more in-depth

techniques, we can approach the precision demonstrated by spectroscopic reverberation map-

ping using photometric techniques. Furthermore, we can achieve this precision with a quarter of

the total exposure time that the SDSS-RM programme required to achieve a higher average SNR

with a smaller telescope. This results in a 310 per cent increase in efficiency over SDSS-RM.

These simple yet powerful photometric methods can be readily applied to large surveys which

require regular calibration in order to build a large baseline of known QSO observations.



Chapter 4

Characterising the Mass Dependency

of the L150MHz-SFR Relation with

LoTSS Using a New Generalised

Method to Retrieve Complete

Distributions from Incomplete Data

4.1 Introduction

An important part of testing and constructing models of galaxy evolution is reconstructing their

star-formation histories and instantaneous star-formation rates over cosmic history. However,

star-formation rate, whether instantaneous or averaged over time, is not an observable variable.

Instead, it is only possible to estimate star-formation rates, for example using spectral template

fitting (Reichardt et al., 2001; Panter et al., 2003; Bruzual and Charlot, 2003; Heavens et al.,

2004; da Cunha et al., 2008; Koleva et al., 2009; da Cunha et al., 2011; Smith et al., 2014; Read

et al., 2018) which rely on the star-formation histories of template SEDs being plausible and

representative (other methods exist). More commonly, SFR is estimated by the use of indica-

tors whose relation to SFR is either calibrated using template fitting or from simple physical

models (e.g. Lacki and Thompson 2010; Schober et al. 2017) and then by empirical scaling

100
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relations based on those calibrations such as the Far-infrared Radio Correlation (e.g. Condon,

1992; Murphy et al., 2011; Lacki et al., 2010), in the case of radio emission.

As discussed in Chapter 2, using radio emission as a star-formation rate tracer has many prac-

tical advantages over shorter wavelengths (improved resolution, dust is transparent, and huge

surveys are easier to perform). Radio wavelengths are unaffected by dust extinction and hence

would report the full unobscured star-formation rate given a sufficiently advanced model of its

production in a given galaxy. Non-thermal radio emission is thought to be produced from the

synchrotron losses of highly energetic cosmic rays as they travel through a galaxy’s magnetic

field.

In the absence of an AGN, the main source of non-thermal-producing cosmic rays is assumed

to be in the shock fronts surrounding supernovae remnants where the charged particles are ac-

celerated to cosmic ray velocities (Lynden-Bell, 1969a,b; Blumenthal and Gould, 1970; Drury,

1983; Condon, 1992; Schlickeiser, 2002; Longair, 2011). Since the rate at which type-II su-

pernovae occur is proportional to the star-formation rate, albeit with a ∼ 1-100 Myr delay due

to the lifetime of massive OB stars which end in supernovae, synchrotron emission should also

be proportional to star-formation rate given no other sources of emission. However, the cosmic

rays are thought to contribute to the synchrotron emission (whose intensity over time is fre-

quency dependent) for 100 Myr after their acceleration, as the particles which did not achieve

the escape velocity of the galaxy persist within the galaxy’s magnetic field until their energy

is lost (Blumenthal and Gould, 1970; Condon, 1992; Longair, 2011). Therefore, synchrotron

emission reflects the integrated star-formation that occurred less than 100 Myr before the galaxy

was observed, given no contamination from an AGN.

Variations in this time-scale due to differences in magnetic field strength or halo mass have

the effect of dispersing the star-formation rate relation over star-forming galaxies even further.

Indeed, the steeper the potential well, the longer the synchrotron-emitting particles can remain in

the galaxy, preserving the calorimetry approximation (where the energy injected into the cosmic

ray particles is all eventually emitted as synchrotron radiation from within the galaxy) more

accurately than at low mass. The exact relation between synchrotron emission luminosity and

star-formation rate is also co-dependent upon losses from ionisation, bremsstrahlung, inverse

Compton scattering and galactic winds (Lacki et al., 2010; Schober et al., 2017). Thus, the slope

and scatter of their relation depends upon the physical properties of magnetic field strength, gas

density, interstellar radiation field, wind velocity, and ionisation degree to name a few. These
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physical properties vary by orders of magnitude between normal star-forming galaxies and those

which have experienced a recent starburst (Lacki et al., 2010).

In addition, AGN can dramatically contribute to the radio luminosity of a galaxy resulting in

radio-loud sources in galaxies dominated by such central emission. The distribution of AGN

radio luminosity spans several orders of magnitude (Sabater et al., 2018) and this implies that

emission from low-luminosity AGN can contaminate the radio star-formation rate relations with-

out being immediately detectable (Gurkan et al., 2018). Clearly, it is not practical to measure

these components/properties for all galaxies and indeed it is not possible to do so for galaxies

which lack an identified optical component, as will be the case for large numbers of galaxies

observed with the SKA and its pathfinders such as LOFAR.

Therefore, it is important to produce a pragmatic radio star-formation rate tracer and quantify

the inevitable deviations from it before applying it to radio sources without optically inferred

star-formation rates.

Gurkan et al. (2018) investigated the 150 MHz luminosity – star-formation rate relation for SFGs

in order to harness the potential of low radio frequency luminosity as a dust free star formation

rate indicator (see Figure 4.1). They revealed that stellar mass appears to play a significant

role in the slope and scatter of the relation between luminosity and SFR. Figure 4.2 shows

the break in 150 MHz luminosity – star-formation rate relation over stellar mass. Since the

calorimetry approximation breaks down in small low-mass systems due to shorter escape times,

the radio luminosity of these star-forming objects should be smaller than that extrapolated from

the higher-mass galaxies. In contrast, Gurkan et al. (2018) see more than an order of magnitude

excess in radio luminosity at low star-formation rates. The slope of the L150MHz−SFR relation

also appears to flatten out at low star-formation rates (especially at higher stellar masses) which

could indicate a different cosmic ray generation pathway such as type-Ia supernovae, pulsars, or

an amplification of galactic magnetic fields (Gurkan et al., 2018).

However, investigating the existence of a mass dependency in the star-formation rate radio lumi-

nosity relation requires knowledge of the covariation of stellar mass, luminosity, star-formation

rate, and redshift together. To complicate matters further, these relations also depend on the

galaxy’s classification as star-forming or AGN or indeed, as in realistic cases, a mixture of the

two (e.g. Cid Fernandes et al., 2004; Santini et al., 2012; Kirkpatrick et al., 2015; Delvecchio

et al., 2017). Binning in star-formation rate over a relation that depends on two covariates, along

with the inherent biases in the optically selected dataset, would result in heavily biased results
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FIGURE 4.1: The radio luminosity stellar mass relation found by Gurkan et al. (2015). Top:
The distribution of LOFAR 150MHz luminosities of SFGs detected at 150MHz as a function
of their SFRs. The best fits obtained using all SFGs and LOFAR 150MHz luminosities and
errors on the best fit are shown as red shaded region and the blue shaded region shows the best
fit to all data points of SFG obtained using 1.4GHz and scaled to 150MHz assuming α = 0.8.
The dashed lines around the best fits show the dispersion around the best-fit line implied by the
best-fitting dispersion parameter σ . The results of the stacking analysis for two stellar mass
bins are also shown for L150 as large cyan and maroon crosses. Open circles indicate the bins in
which sources were not detected significantly. Bottom:: The L150−SFR ratios for two stellar
mass bins are shown as cyan and maroon crosses, and the best fit divided by the SFR (red line)

are shown.

(Towers, 2012). The degree to which the mass-dependency result of Gurkan et al. (2018) is

affected by selection biases is unknown and is not easily corrected for post hoc. In practice,

constructing an unbiased test for the mass dependency requires modelling the evolution of the

luminosity and mass functions along with their star-formation rates whilst also accounting for

optical selection effects.

Gaussian mixture models are adept at describing high-dimensional relations in astronomy which

consist of more than one population or are heavily non-linear (Rasmussen, 2000; Hogg et al.,

2010; Bovy et al., 2011; Melchior and Goulding, 2018). Their flexibility allows the use of Gaus-

sian mixture models in semi-parametric or non-parametric models where the “true” functional
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FIGURE 4.2: . Distribution of 150MHz of SFGs as a function of their SFRs taken from
Gurkan et al. (2018). Upper limits are indicated with purple triangles. The best fit obtained
using all SFGs, and the uncertainties, are visualized by overplotting the lines corresponding
to a large number of samples from the MCMC output. The dashed black lines show the 1σ

intrinsic dispersion around the best-fit line implied by the best-fitting dispersion parameter σ .
The same relation derived using high frequency observations is shown as the blue line, with

fitting uncertainties displayed in the same way.

form is unknown or poorly defined (Rasmussen, 2000; Bovy et al., 2011; Lee and Scott, 2012).

Modelling the entire parameter space non-parametrically allows for fast and unbiased condi-

tioning (slicing at a certain value) and marginalisation (integrating over whole parameters) to

estimate distributions for any number of lower dimensional models.

In the case of the L150MHz− SFR relation’s mass dependency, it is vital to take into account

redshift evolution. The main sequence is observed to evolve (Noeske et al., 2007a,b; Dutton

et al., 2010; Schreiber et al., 2016) and so any test regarding the mass dependence will need to be

performed by including redshift effects. Binning in this complicated scenario quickly devolves

into low signal-to-noise estimations and the choice of bins in a high-dimensional parameter

space can affect the result dramatically (Towers, 2012; Krislock and Krislock, 2014), and so we

need to model the distribution holistically.
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However, as with any astronomical sample, we cannot always representatively sample the en-

tire distribution, due to limited survey volumes and limits on sensitivity. Luminosity functions

are typically inferred by methods like the 1/Vmax method (Kafka, 1967) with the incomplete-

ness effects of a flux-limited survey usually corrected for with incompleteness weights (John-

ston, 2011). Kelly et al. (2008) have proposed a non-parametric method of inferring complete

luminosity functions from magnitude-limited survey data using Gaussian mixture models and

MCMC inference techniques. This technique can, in theory, be extended to model other types of

incompleteness such as an independent optical magnitude cut, by including an extra dimension

into the fit (that of optical magnitude). However, Gaussian mixtures suffer from the “curse of

dimensionality” in that the number of parameters needed to fit the distribution explodes as the

number of measurement dimensions increases. The parameter space that an MCMC algorithm

has to traverse becomes exponentially larger until independent and ensemble MCMC walkers

can no longer efficiently sample the posterior (Foreman-Mackey et al., 2013). In addition, the

uncertainties of the measurements are not taken into account in the method of Kelly et al. (2008)

leading to a broader distribution than is justified by uncertain data.

The technique of Extreme Deconvolution (Bovy et al., 2011) provides an efficient way to in-

fer the maximum likelihood parameters for multiple Gaussian components, modelling uncer-

tain heteroscedastic measurements, and therefore infer complete distributions from noisy data.

Building upon Extreme Deconvolution, Melchior and Goulding (2018) have devised a simple

yet powerful extension, PyGMMIS, whereby they “impute” (or fill in) the missing data at every

step using the current iteration of the maximum likelihood model. This allows the fitting of the

complete distribution assuming that the unobserved part is not significantly different from an ex-

trapolation of the observed model. However, measurement errors are frequently non-Gaussian,

observations are nearly always incomplete, and the effect of data selection from other latent

parameters (such as the effect of a optical magnitude limit in a a radio/optical catalogue) con-

trive to detract from the simplistic Gaussianity of the problem. Furthermore, with the volume

of data used in this work, it becomes prohibitively expensive to run a PyGMMIS model at dimen-

sions above 4, since it relies on rejection sampling to impute the missing dataset. There is not

currently any method that incorporates solutions to all of these problems in one model fitting

technique.

The goal of this work is to provide a test for the mass-dependency of the L150MHz−SFR relation

whilst taking into account selection effects from optical photometric and spectroscopic selec-

tion, BPT classification, redshift trends, and modelling the effect of low SNR radio sources.
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In order to achieve this it is necessary to combine the solutions to the problems of modelling

multi-dimensional, missing, incomplete, non-Gaussian heteroscedastic data into one efficient

algorithm.

We make use of the LOFAR Two-Metre Sky Survey (LoTSS DR1; Shimwell et al., 2017,

2018; Williams et al., 2018b) catalogue which includes an unprecedented ' 300,000 detections

and radio sensitivity at 150MHz. A description of the available data from LOFAR, SDSS, and

the resultant data products that we use is given in Section 4.2. In Section 4.3, we describe

the methodology of our new PYTHON package, Complete And Noiseless Distributions from

Incomplete Data, CANDID1, which aims to fit the 9-dimensional distribution of local star-forming

galaxies as well as any other N-dimensional incomplete dataset. We then verify our method

by comparing the resultant total luminosity function with the literature in Section 4.4.1. In

Section 4.4.2 we present the results of the mass dependency test. We then demonstrate that we

can construct a joint model of star-forming galaxies between the Horizon AGN (Dubois et al.,

2014) simulation and our LoTSS observations using our new method. We show that the effect

of type-Ia supernovae on the L150MHz− SFR relation remains uncertain and warrants further

investigation. Finally, we summarise our conclusions and future work in Section 4.5.

4.2 Data sources

The LOFAR Two-Metre Sky Survey, (LoTSS; Shimwell et al., 2017), is an ongoing high-

resolution low frequency (120-168MHz) survey that will cover the whole northern sky. This

work utilises the LoTSS DR1 catalogue (Shimwell et al., 2018; Williams et al., 2018b), which

covers 424 square degrees centred on the Hobby-Eberly Telescope Dark Energy Experiment

(HETDEX; Hill et al., 2008) Spring Field region (αJ2000 =10h45m00s to 15h30m00s and δJ2000 =

45◦00′00′′ to 57◦00′00′′). The region contains over 300,000 5σ LOFAR-detected sources.

The median RMS noise is 71 µJybeam−1 at 150MHz with 95 per cent of the area below

150 µJybeam−1. The angular resolution is 6 arcseconds and cross-matching radio sources with

detections in Pan-STARRS (Kaiser et al., 2002, 2010) and WISE (Wright et al., 2010), through

the use of the likelihood ratio method (Sutherland and Saunders, 1992; Smith et al., 2011) and

visual classification methods (Williams et al., 2018b), has yielded optical counterparts with a

reliability of ≈ 99 per cent.

1to be made available at https://github.com/philastrophist/candid

https://github.com/philastrophist/candid
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FIGURE 4.3: Source density of the optically identified radio sources over the sky showing the
HETDEX region. Colour indicates the density of sources in arcminute−2.
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FIGURE 4.4: Our star-forming sample over the sky showing the HETDEX region. Each blue
point represents an (r-band) optically identified source which meets our selection criteria.

We use a subset of this catalogue based on SDSS DR7 (York, 2000; Abazajian et al., 2009).

The MPA-JHU value-added catalogue (Brinchmann et al., 2004) uses an optimised pipeline

to re-analyse all SDSS (York, 2000) spectra, resulting in a sample with reliable spectroscopic

redshifts, improved estimates of stellar mass, and star formation rate (Kauffmann et al., 2003b),

as well as emission line flux measurements for each galaxy (Tremonti et al., 2004). We use their

latest analysis performed on the SDSS DR7 release (Abazajian et al., 2009) to obtain optical

emission line fluxes for classifications of SFG and AGN-dominated sources plus spectroscopic

redshifts for K-corrections. There are roughly 43,000 galaxies with MPA-JHU information in

the LoTSS–HETDEX area.

In order to probe star-formation rate relations at low radio luminosities, we perform forced

aperture photometry on the SDSS optical positions of the cross-matched (Williams et al., 2018b)

radio sources. We use the flux extracted from a 10 arcsecond radius aperture for all sources in

our cross-matched catalogue. With this aperture radius, the aperture correction is negligible.

We then convert the extracted 150 MHz flux to a luminosity using a spectral index of −0.71
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(Hardcastle et al., 2016), defined in the sense that Sν ∝ να . Any analysis we perform later

incorporates non-detections, with their large uncertainties, in the same way as detected sources.

We make no distinction between non-detections and detections in radio flux.

To select our star-forming sample, we first obtain all 37,825 optically selected sources in the

MPA-JHU catalogue with reliable (ZWARNING = 0) spectroscopic redshifts. Since we wish to

focus only on star-forming galaxies, we remove those sources with spectroscopy and photomet-

ric evidence for contamination by emission from an active galactic nucleus (AGN). As noted by

Gurkan et al. (2018), many sources that are not detected to within 3σ do not follow the star-

forming luminosity-SFR relation. In addition, the offset of these source from the luminosity-

SFR relation shows a strong mass-dependency with the radio-loud AGN classified by Best and

Heckman (2012) positioned at the high mass end of the non-star-forming branch of the mass-

luminosity diagram. Gurkan et al. (2018) reason that since the non-star-forming sources form a

continuous sequence that reaches a much higher radio luminosity for a given mass than expected

for SFGs, the intermediate sources in this diagram play host to low-luminosity AGN. Since we

wish to probe the claim of a mass-dependency (and one that is non-linear) in star-forming galax-

ies, we take steps to reduce the contamination of low-luminosity AGN as much as possible. We

construct a BPT diagram using the emission line fluxes in the MPA-JHU catalogue (Figure 4.5).

We specify a strong 5σ significance cut for each BPT emission line flux and then select star-

forming galaxies based on the Kauffmann et al. (2003a) SFG selection criteria, not including

transition objects (shown in Figure 4.5). We select only those galaxies whose detected emission

line ratios are classified as SFG to within 3σ .

Hardcastle et al. (2016) find that the r-band magnitude distribution of optically selected galaxies

identified as AGN exhibits a sharp drop off, relative to SFGs, below r = 17. These galaxies were

classified by their offset from the Far-Infrared Radio Correlation (FIRC) and so is independent

from emission line classification. We therefore make a magnitude cut at 17 mag in the SDSS

r-band.

We later incorporate the effects of selecting SFGs in this way into our model in order to offset

any biases introduced by such a strong selection (see Section 4.3.4). We also remove those galax-

ies for which stellar masses or star-formation rates have not been estimated by the Brinchmann

et al. (2004) MPA-JHU catalogue. In addition, we select only those galaxies whose redshifts are

above 0.005, following (Brinchmann et al., 2004) in order to mitigate the effect of cosmic vari-

ance. This leaves 2575 galaxies which we call our main star-forming sample. The 2046 galaxies
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FIGURE 4.5: Emission line ratio diagnostic diagram for our star-forming sample. The upper
and lower solid black lines used to distinguish between transition/AGN and SFG/transition

populations are from Kewley et al. (2001) and Kauffmann et al. (2003a) respectively.

within our star-forming sample which also have 3σ detections in 150 MHz flux are shown in

Figures 4.6 and 4.7.

4.3 Methods

4.3.1 The Hierarchical model

We follow the Gaussian Mixture Model (GMM) prescription of Kelly et al. (2008) for deter-

mining luminosity functions in the logarithmic space of luminosity and redshift. Evaluating the

luminosity function in log-space allows us to recover the curve of the luminosity distribution

with many fewer components. We extend the model of Kelly et al. (2008) to four dimensions
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FIGURE 4.6: The luminosity distribution over redshift of the 2046 3σ LOFAR-detected
sources in our star-forming sample.

Variable Name Measurement Quantity Fitting Quantity

Redshift z log[z]
150 MHz S150MHz/Jy log[4πdL(z)2Sν(1+ z)0.71−1/WHz−1]

Stellar Mass log[M∗/M�] log[M∗/M�]
SFR log[SFR/M�yr−1] log[SFR/M�yr−1]

r-band mr Mr = m−µ(z)
4 × optical emission lines S/ergs−1cm−1 log[4πdL(z)2S/W]

TABLE 4.1: The transformations used to propagate our data measurements to the fitting regime.
dL(z) is the luminosity distance and µ(z) is the associated distance modulus. The four BPT

emission lines are grouped under one heading since they use the same transformation.

whereby we include the stellar mass and Hα star-formation rate estimates from MPA-JHU. In

order to incorporate selection effects from r-band selection and BPT selection, we must model

the complete distribution of each of these measured quantities. This requirement adds Hα , Hβ ,

[OIII]λ5007, [NII]λ6584 emission line fluxes from the MPA-JHU catalogue along with the

r-band CMODEL magnitude. These additions bring the total number of physical quantities to 9

detailed in Table 4.1.
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FIGURE 4.7: The r-band absolute magnitude distribution over redshift of the 2046 3σ LOFAR-
detected sources in our star-forming sample.

In order to use all data available from the low radio luminosity sources, we resample each

data point’s (~x = [S150MHz,mr, logM∗, logSFR,SHα ,SHβ ,S[OIII]λ5007,S[NII]λ6584]) uncertainties

15,000 times with the restriction that the flux quantities be positive. This allows us to trans-

form our data points to the fitting regime without assuming Gaussianity.

Any fits to the data without taking optical selection criteria into account will produce incorrect

results. We adopt an approach informed by the models of Kelly et al. (2008); Patel et al. (2013);

Hinton et al. (2017); Melchior and Goulding (2018) whereby we add a new “selection proba-

bility” term, P(S | θ), to our likelihood. The unnormalised likelihood for a data point, i, with

resamples, r, is then defined as

li(xi | ~θ) ∝ ∑
k

πk ∏
r

N (T (~xir) | ~θk) (4.1)

Li(~xi | ~θ) ∝
li(xi | ~θ)
P(S | ~θ)

, (4.2)

P(S | ~θ) =
∫ ∞

−∞
P(S | ~D,~θ)l(~D | ~θ)d~D, (4.3)
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where N represents the normal distribution, T (...) is the transformation from measured data

to the fitting regime, P(S | ~D,~θ) denotes the probability of the resampled data point xir being

observed and selected given some data ~D, πk is the weight of the kth component, and ~θ rep-

resents the rest of the Gaussian model parameters. Thus the probability of selection requires

integrating the mixture model over all possible data. Calculating this probability with selection

effects cannot be done analytically and so must be approximated. Monte Carlo integration is

the quickest way to estimate such an analytically intractable integral, whereby the integrand is

sampled at random and the value of the integral is estimated from the mean of the samples:

∫
f (x)dx = lim

N→∞

1
N

i=N

∑
i=0

f (xi), (4.4)

P(S | ~θ) = lim
N→∞

1
N

i=N

∑
i=0

P(S | ~Di,~θ)L (~Di | ~θ), (4.5)

when the samples D are drawn from an N-dimensional uniform distribution. However, the se-

lection probability integral must be evaluated at each step in the inference chain. Sampling

every time is prohibitively expensive, so we pre-compute the samples beforehand and transform

them to the current form of the model as part of a likelihood evaluation. Our Gaussian mix-

ture model lends itself to pre-computation since a single multivariate Gaussian can trivially be

transformed into a mixture of Gaussians with different means and covariances. In addition, we

further the efficiency of the likelihood evaluation by sampling using a Halton sequence (Hal-

ton, 1964). A Halton sequence is a quasi-random deterministic sequence based on co-prime

numbers and drawing from an N-dimensional Halton sequence is to sample the N-dimensional

x∼Uniform(0,1) while evenly spacing those draws. Halton sequences significantly increase the

efficiency of Monte Carlo integration (Kocis and Whiten, 1997). To summarise, the integration

method at each inference step is as follows:

1. Pre-compute samples:

(a) Sample from the N-dimensional Uniform distribution using a Halton sequence.

x∼ ~U(0,1) (4.6)
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(b) Transform samples to standard normal distribution using a multivariate cumulative

distribution estimator:

y =
∫ x

−∞
~N (z | 0,1)d~z (4.7)

y∼ ~N (0,1), (4.8)

where y are now samples from the standard normal distribution, having integrated

over all space with z.

2. Transform the uniform samples to samples from the model.

Given a model with n multivariate Gaussians with Cholesky lower diagonal matrices ~L

(where the covariance matrix Σ = L · LT ), transform the precomputed samples, y, into

samples from the model, m:

~m =~L · yT (4.9)

~m∼∑
k

πkN (θk) (4.10)

3. Compute selection probability

Using the transformed pre-computed samples in the Monte Carlo integrations allows us

to simplify Equation 4.5 to:

P(S | ~θ) = lim
N→∞

1
N

i=N

∑
i=0

P(S | ~mi,~θ) (4.11)

where we only to need to evaluate the selection criteria and not the whole likelihood for

each point (Hinton et al., 2017).

4.3.1.1 Priors

The prior for our model consists of 3 parts: the component weights, covariances, and means.

We use the priors that Bovy et al. (2011) has set out. These priors are the standard conjugate

priors of each variable, whereby the prior is from the same family as the likelihood and hence

the posterior. We use a Wishart prior (conjugate to an inverse covariance matrix of multivariate

normally distributed vector) on the covariance of each Gaussian.

W (Σ−1
k | ω,W ) = c(ω,W ) | Σ−1

k |ω−(d+1)/2 exp[−Trace[WΣ−1
k ]], (4.12)



Chapter 4. L-SFR Mass dependency 114

where ω is the number of degrees of freedom, W is the scaling matrix hyperparameter for the

prior, Σk is the covariance of the kth component, d is the number of dimensions, and c(ω,W )

normalises the distribution. We also apply a Dirichlet prior to the weights given by

D(~π |~γ) = b∏
k

π
γk−1
k , (4.13)

where γk is the hyperparameter that sets the prior weights of the components, πk, and b nor-

malises the distribution. In reality, we need only specify k− 1 weights since all weights must

sum to 1.

The prior on the means of each component is based on their distance from the mean of the data

N (µk | m̂,η−1Vk), (4.14)

where µk is the mean of component k, m̂ is the mean of the data, and η−1 is the scale applied

to the covariance of the component in order to get the covariance of the prior on the mean. A

stronger prior (increasing η) would mean a more compact, continuous distribution.

We assume a weakly-informative prior with γk = 1, ω = (d+1)/2, and η = 0. This amounts to

just penalising singular covariance matrices by restricting the minimum size of a component’s

covariance matrix.

4.3.2 Bayesian Parameter Estimation Tools

The hierarchical model described above is complicated, comprising Nl = kd(d + 1)/2+ kd +

(k− 1) parameters just for the likelihood and an additional Np = d + d(d + 1)/2 for any prior

on the mean, covariance and weights that apply to all components. This rapidly becomes large

(Nl +Np = 548 with d = 9 dimensions and k = 9 components). In addition, we need to set

Nh = d(d +1)/2+d +(k−1) hyper-parameters for the Wishart covariances, prior means, and

Dirichlet weightings. Even though we only need to fit Nl parameters (i.e. we don’t fit the

prior), simple single chain Metropolis-Hastings (Hastings, 1970) will not suffice here. Even

ensemble walker MCMC (such as emcee, Foreman-Mackey et al. 2013) will begin to devolve

into a random walk with models of 100s of dimensions2, and No-U-Turn samplers will struggle

2https://statmodeling.stat.columbia.edu/2017/03/15/ensemble-methods-doomed-fail-high-
dimensions/

https://statmodeling.stat.columbia.edu/2017/03/15/ensemble-methods-doomed-fail-high-dimensions/
https://statmodeling.stat.columbia.edu/2017/03/15/ensemble-methods-doomed-fail-high-dimensions/
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to move if the test point is not close enough to the peak of the distribution in such a high-

dimensional space (Salvatier et al., 2016).

Instead we must consider Hamiltonian/Hybrid Monte Carlo (HMC, Duane et al., 1987), Gibbs

sampling (Geman and Geman, 1984), or nested sampling (Skilling, 2004) if we want to sample

large portions of the parameter space. HMC uses the gradient of the model to evolve its Hamil-

tonian and subsequently achieve higher acceptance ratios and faster convergence in very high

dimensions. The gradient of the model can easily be estimated using autograd tools available

for numerical analysis. Theano (Theano Collaboration Team 2016) derives gradients for our

PyMC3 (Salvatier et al., 2016) models. The disadvantage of this method is the computational

intensity: gradient calculations as well as likelihood evaluations will add up.

Nested sampling is not MCMC. Instead of sampling the posterior like many of MCMC meth-

ods including HMC, Metropolis, and associated ensemble techniques, nested sampling initially

samples from the prior. This allows nested sampling to generate samples from the entire pos-

terior distribution3. In addition, nested samplers such as PolyChord (Handley et al., 2015)

evaluate the Bayesian evidence and so with these samplers, we can compare models directly.

However, nested samplers typically have a few hyperparameters governing the sampler itself

which need to be tuned by the user. In addition, the analysis of the output of nested samplers is

not as straight-forward as in other methods since weightings need to be applied to the generated

samples (see Higson et al., 2019).

A much simpler approach, widely adopted, tried, and tested is the family of Expectation-

Maximisation (EM) algorithms (Dempster et al., 1977).

EM assumes the existence of latent variables, i.e. hidden variables which generate observable

ones. In the case of Gaussian mixtures, the latent variables are the labels, zi for each data point i

to its originating component. For example, data point xi is said to be generated from component

k if zi = k.

The log-likelihood of a model, specified by parameters θ , with latent variables zi generating

observations xi is as follows:

l(θ) = ∑
i

log p(xi|θ) = ∑
i

log∑
zi

p(xi,zi|θ) (4.15)

3In reality, the prior must be bounded, so frequently models which use improper priors cannot be sampled from
unless the prior (and hence posterior) volume is restricted
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We wish to infer information about the latent variables (in our case, these would be the posi-

tion and shape of each component of our mixture model). However, Equation 4.15 is hard to

optimise, since the labels zi are not directly observable.

The EM algorithm guarantees the increase in the likelihood with each iteration by calculating

the expectation value of “complete data log-likelihood”, lc, given a previous parameter set which

attempts to fit the model (E-step, Equation 4.16), and then maximising its value by changing that

parameter set (M-step, Equation 4.19). We follow Murphy (2012) in the derivation of the EM

algorithm and derive the generalisation to resampled data in Appendix B. Here we only show

the derivation of the general EM algorithm for explanatory purposes.

lc(θ) = ∑
i=1

log p(xi,zi|θ) (4.16a)

= ∑
i=1

log[p(zi|θ)p(xi|zi,θ)] (4.16b)

The complete data likelihood lc cannot be computed since it is defined in terms of the hidden

variables zi (Equation 4.16), which cannot be observed. Instead, we can take the expectation

of the complete data likelihood given our data and the previous parameter set, E[lc(θ)|D ,θ t−1],

also known as the auxiliary function, Q(θ ,θ t−1). Assuming the latent labels are discrete (i.e.

each data point originates from a single component), we may use the indicator function

I(zi,k) =


1 if zi = k

0 if zi 6= k
(4.17)

to filter the products in the likelihood for each component. Simplifying the log-likelihood in

Equation 4.18, it becomes clear that we only need to calculate the responsibilities rik of the kth

component for the ith data point and the likelihood of the data given each component individu-

ally, πk p(xi|θ).
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Q(θ ,θ t−1) = E[lc(θ)|D ,θ t−1] (4.18a)

= ∑
i
E

[
log

[
∏

k
(πk p(xi|θ))I(zi,k)

]]
(4.18b)

= ∑
i

∑
k
E[I(zi,k)] log[πk p(xi|θ)] (4.18c)

= ∑
i

∑
k

p(zi = k|xi,θ
t−1) log[πk p(xi|θ)] (4.18d)

= ∑
i

∑
k

rik log[πk p(xi|θ)] (4.18e)

where we define responsibilities rik as the probability that data point xi was drawn from compo-

nent k.

The optimisation problem now becomes much easier to solve since maximising Q guarantees

that lc and hence Li are also maximised (Dempster et al. 1977; Wu 1983; see also Murphy 2012

and references therein). Therefore, we iterate the procedure by first calculating rik given a set

of mixture model parameters θ t−1 and then maximising Q(θ ,θ t−1) with respect to a new set of

parameters θ

θ
t = argmaxθ Q(θ ,θ t−1), (4.19)

where θ t is the next parameter set in the iterative procedure. For a more detailed description

of the derivation of the EM algorithm and the proof of likelihood increase, see Chapter 11.4 of

Murphy (2012).

4.3.3 Expectation-Maximisation Iteration for Gaussian Mixture Models

For Gaussian mixture models, EM is a simple iterative procedure. The weights πk, means µk,

and covariances Σk for each component, k, are updated with the following simple recipe. First,

the E-step consists of calculating the responsibilities, rik, of each Gaussian for each data point

xi. This is simply the probability that data point xi belongs to component number k and is given
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by:

rik = p(zi = k|xi,θ) =
p(xi|zi = k,θ) · p(zi = k)

∑K
j=1 p(xi|zi = j,θ) · p(zi = j)

(4.20)

=
N (xi|µk,Σk) ·πk

∑K
j=1 N (xi|µ j,Σ j) ·π j

(4.21)

The parameters for the Gaussian mixture model can then be updated in the M-step with the

following:

πk→
1
N ∑

i
rik (4.22)

µk→ ∑i rikxi

∑i rik
(4.23)

Σk→ ∑i rik(xi−µk)(xi−µk)
T

∑i rik
(4.24)

where i is the data point index, k is the component index, πk are the component weights, µk

are the component means, and Σk are the component covariance matrices. These updates were

derived by setting the derivative of Q with respect to each parameter to zero.

Since the likelihood is guaranteed not to decrease, EM can be theoretically be run until machine

precision is reached. However, singularities can occur with covariance matrix updates and so

it is useful to introduce a regularisation on the covariance matrices to penalise moving towards

a singularity. In Bayesian formalism, this amounts to a broad prior on the shape of each of

the Gaussian components. The EM algorithm can be adapted to include the prior described in

Section 4.3.1.1 by modifying the M-step by adding a regularising covariance matrix:

Σk→ ∑i rik(xi−µk)(xi−µk)
T +2W

1+2(ω− (d +1)/2)+∑i rik
, (4.25)

where ω and W are the number of degrees of freedom and the scaling matrix for a Wishart

density distribution, W (Σ−1 | ω,W ) (Bovy et al., 2011).

4.3.3.1 Split-and-Merge

The problem of singularities can be generalised: a guarantee of likelihood increase is not a guar-

antee of reaching the global maximum (Wu, 1983). We therefore adopt the recommendations of

Ueda et al. (2000); Bovy et al. (2011); Melchior and Goulding (2018) to include the “split and

merge” algorithm. When the EM iterations seem to converge, we merge the components whose
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data responsibilities/labels are the most similar. We sort the component pairs by:

Jmerge(k, l) =~rT
ik~ril, (4.26)

where~rT
ik is the vector of responsibilities for each data point for component k. After choosing

which components to merge, we then find the component which least resembles the data.

In theory, the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951; Ueda et al., 2000),

will inform us as to which component to split, since KL divergence describes the similarity

between the data and the model. However, we follow the recommendations of Zhang et al.

(2003) and sort by the largest eigenvalue, λ , of each component since KL divergence becomes

badly affected by outliers as the number of dimensions increases (Zhang et al., 2003; Melchior

and Goulding, 2018). Sorting by size works in practice, since the component most likely to be

better described by two components is typically the largest one in the mixture (Melchior and

Goulding, 2018). We sort the split candidates by the largest weighted eigenvalue

Jsplit(k) = αkλk, (4.27)

and derive new means and covariances for each component along the axis of the eigenvector of

the progenitor component:

µnew,k = µk±
1
2
~v(Σk) (4.28)

Σnew,k =| Σk |1/d ·~I, (4.29)

where ~v(Σk) is the largest eigenvector of component k, | Σk | is the determinant of that compo-

nent’s covariance matrix, d is the number of dimensions, and~I is the identity matrix.

After we split-and-merge the optimal components as discussed above, we freeze the other un-

touched components and fit the altered ones. When convergence is achieved for those com-

ponents, we then continue to fit the whole mixture model. If this new configuration does not

converge to a more favourable likelihood, we then revert back to the original configuration and

end the process.
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4.3.3.2 Imputing the missing data

Our hierarchical model contains the effect of selection in optical wavelengths, in P(S | xi), and

we must also take that into account in our EM algorithm. We adopt the imputation method

of Melchior and Goulding (2018) to include a correction term in the updates to each of our

Gaussian components. At each step in the EM algorithm, unobserved samples are “imputed”

(or filled in) from the observed model. Using our transform technique to alter one pre-computed

Gaussian into an arbitrary mixture of Gaussians, we then weight by the selection probability,

P(S | xi), to arrive at the unobserved samples. We set the number of samples to a constant

1,000,000, and weight each sample by the scaling ratio s = Ndata/Nmodel,obs in order to replicate

sampling of the model enough times as to observe Ndata sources. In this way we can achieve

accurate likelihoods and responsibilities for each component even if they are far away from

observable regions. PyGMMIS (Melchior and Goulding, 2018) relies on rejection sampling to

impute their missing values and so PyGMMIS becomes inefficient to the point of unsuitability at

9 dimensions.

Accordingly, Equations 4.22, 4.23, and 4.24 become

πk→
1

Ntotal

{
∑

i∈T (D)

rik +∑
i∈I

s[1−P(S|xi)]rik

}
≡ 1

Ntotal
rk (4.30)

µk→
1
rk

{
∑

i∈T (D)

xirik +∑
i∈I

s[1−P(S|xi)]xirik

}
(4.31)

Σk→
1
rk

{
∑

i∈T (D)

rik(xi−µk)(xi−µk)
T +∑

i∈I
s[1−P(S|xi)]rik(xi−µk)(xi−µk)

T

}
(4.32)

where Ntotal is the total number of sources predicted by the current model iteration, I is the set

of 1,000,000 imputed samples drawn from that model and T (D) is the set of data transformed

to the fitting regime.
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4.3.4 The Selection and Dispersion Functions

By weighting by the selection probability, P(S|xi), directly instead of just filtering out data points

below a given limit, we can deal with selection effects that are not discrete (e.g. the SNR cut on

emission line fluxes results in a fuzzy boundary in flux). To deal with fuzzy boundaries due to

signal-to-noise cuts in emission line ratio, it is necessary to estimate the expected signal-to-noise

of a given flux, SNR(Sν). Since we only want to estimate the mean SNR for a given flux, we fit

to a binned dataset. For each emission line, we use the entire MPA-JHU dataset to fit a double

sigmoid curve to the SNR and flux of the binned data. Our method is as follows:

1. Sort all sources into bins of emission line flux.

2. Estimate the distribution of emission line SNR in each bin using a normal distribution fit.

3. Estimate the proportion of sources in that bin with signal-to-noise above our emission line

significance cut, P(SNR > 5).

4. Fit a double sigmoid to P(SNR > 5 | Sν) in each bin:

P(SNR > 5 | Sν) =
1

a+ e−b(Sν+c)
+

1
f + e−g(Sν+h)

(4.33)

where a,b,c, f ,g,h are the parameters to fit.

We use 500 bins in flux between the 1st and 99th percentiles of each emission line flux distribu-

tion.

The functional form of P(SNR > 5 | Sν) is unimportant so long as it estimates the probability

that a given flux can be observed. Figure 4.8 shows that there is a good fit to the data for a

double sigmoid relation between SNR and flux.

We also impose the same magnitude limit, redshift limits, and BPT selection that we used to

select the data in our selection function as discrete cuts.

Since we are imputing our missing dataset in order to account of selection biases, the imputation

must be as realistic as possible. Our observed data have uncertainties which are heteroscedas-

tic (their variances are not constant) across our parameter space. Therefore, our imputed data

samples must also exhibit the same scattering of intrinsic values as our observed measurements

do. Without such a dispersion, the imputed dataset would have more weight than the observed



Chapter 4. L-SFR Mass dependency 122

0 20 40 60 80
Flux / 10−17ergs−1cm−2

0.0

0.2

0.4

0.6

0.8

1.0
P

(S
N
R
>

5)

Hβ

0 100 200 300
Flux / 10−17ergs−1cm−2

0.0

0.2

0.4

0.6

0.8

1.0

P
(S
N
R
>

5)

Hα

0 20 40 60
Flux / 10−17ergs−1cm−2

0.0

0.2

0.4

0.6

0.8

1.0

P
(S
N
R
>

5)

OIII5007

0 50 100
Flux / 10−17ergs−1cm−2

0.0

0.2

0.4

0.6

0.8

1.0
P

(S
N
R
>

5)

NII6584

FIGURE 4.8: The fit detection curves for each emission line we use constructed using the entire
MPA-JHU dataset. The blue line is the interpolated curve of the mean of the P(SNR > 5|xi) in
each of the 500 flux bins. The orange line is the double sigmoid fit to the mean and standard
deviations of the flux bins. Given our 5σ detection limit for each of the emission lines, the y

axis represents the probability of being selected given no other selection criteria.

data in the EM algorithm and the resulting distribution would be too broad and shifted too far

into the region of unobservability (Melchior and Goulding, 2018). The uncertainties of the data

points only enter in the sums of the M-step and so we only need to estimate the average covari-

ance for each imputed data point (Melchior and Goulding, 2018). Furthermore, we expect and

assume that the uncertainties for each of our parameters is independent from that of the other

parameters4.

4This assumption does not need to be made since we can introduce correlated uncertainties when we resample
the data points but we use it here since it simplifies the likelihood for now.
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Parameter Fit Curve

redshift σz = const.
radio flux logSNR150MHz = a+b logS150MHz

stellar mass σlogM∗ = a+b logM∗
SFR σlogSFR∗ = a+b logSFR∗

optical magnitude log[σmr ] = a+bmr

emission line flux logSNR = a+b logS

TABLE 4.2: The uncertainty interpolators for each parameter that will approximate the ex-
pected uncertainty σ(x) for a given value x.

To estimate the expected uncertainty for a given parameter we fit a curve to the relation between

the measurement and its error. We then have a functional form for expected error given a mea-

surement value that we can interpolate over. After we have imputed the missing dataset in the

fitting regime, we transform them to the measurement regime, where we disperse those values

using a covariance matrix constructed from interpolating the data uncertainties. We then trans-

form the resulting dispersed values back to the fitting regime, resulting in a distribution which

resembles what would have been observed.

The interpolators for each parameter’s expected uncertainty are given in Table 4.2 and the fits

for those distributions are shown in Appendix C.

4.3.5 Convergence and Initial Conditions

Regular non-imputed Expectation-Maximisation procedures always converge monotonically to

a local maximum. When imputing missing samples, the likelihood is not computed analytically

and so there is the possibility for the likelihood to not increase monotonically.

Analytically calculated EM (such as that found in Bovy et al. 2011) can be run indefinitely

and convergence can be detected by the difference between likelihoods at each step. However,

since we are using estimated responsibilities and likelihoods, the EM steps will develop into

a random walk when they converge and so d log(L) convergence tests cannot be applied. We

therefore attempt to detect convergence every 100 steps by performing a student-T test for a

straight line with increasing gradient, if the gradient ever becomes non-significant, we halt the

EM procedure. When we detect convergence in this way, we also increase the number of samples

in our imputed dataset by a factor of 5 and run for another 100 steps. This ensures the maximum-

likelihood estimate is stable to our resolution (number of imputed samples) choice. Figure 4.9

shows the difference between the steps taken by an approximated EM algorithm versus the ones
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FIGURE 4.9: A demonstration of EM convergence. The curves represent the log-posterior
(i.e. the log-likelihood plus the log-prior) of the Gaussian mixture model. Blue shows the
iterations from an analytical model which does not attempt to estimate selection effects and
the log-likelihood is calculated analytically. Orange shows the iterations from an imputed &
approximated model where selection effects are estimated as well as the log-likelihood. The
vertical lines show where a split-and-merge attempt has been successful in finding a taller peak
in the distribution. The analytical model has converged within a set tolerance and convergence
in the imputed model has been detected by the gradient test discussed in the text. The orange

shaded region shows the area which was used to test the gradient before convergence.

taken by an analytical EM algorithm. The analytical algorithm converges faster since we do not

need to wait to build up enough samples in order to test for convergence.

We perform the split-and-merge technique whenever convergence is detected and we proceed

with this routine until split-and-merge no longer produces a significantly increased log-posterior.

A significant increase, for an imputed EM algorithm, is when the distribution of likelihoods

(extracted from the iterations deemed to be converged) exhibits a 1σ difference from the old
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distribution. Figure 4.9 shows example runs for an imputed and non-imputed model along with

the effect of the split-and-merge.

Using imputed samples also allows for the possibility of equally likely distributions of compo-

nents that are not observable. For example, a component may have the same likelihood for the

data if its mean is close to the observed data and covariance small as when its mean is far from

the data and its covariance is large. Indeed, EM may force components outside of observable

regions. We can detect this happening by adding a prior on the total number of galaxies given a

known number of observations, from Kelly et al. (2008).

P(M|D,S) =CM+D−1
D−1 P(S | θ)D[1−P(S | θ)]M, (4.34)

where M is the number of missing galaxies in our model, D is the number of observed data

points and C is the binomial coefficient for total number M +D with D observations. This is

equivalent to a negative binomial distribution given a logarithmic prior on the total number of

galaxies, P(log[D+M]) ∝ 1 (Kelly et al., 2008). When EM moves towards a local minimum

in which components can become evermore unobserved, the prior probability of the number of

galaxies decreases and we can detect, halt, and reset if necessary.

In order to counter the problem of this type of local minima, we initialise each run of our EM at

different starting point and build up a suite of models (see Section 4.3.6 below).

To assign initial starting positions for each component, we first fit a single multivariate Gaussian

to the data and draw means from that distribution. Given those means and equal weights, we

then assign a random covariance matrix drawn from the prior Wishart distribution. We then

scale the covariance by a scalar factor until the selection probability is at least 0.8. In this way

we can generate random starting positions whose components are mostly observed. We find

that this is more effective than the methods proposed by Melchior and Goulding (2018) or Bovy

et al. (2011), since it guarantees that the starting position for a given component will be at least

80 per cent observed.

In order to estimate the density distribution for a given dataset with a finite Gaussian mixture

model, it is necessary to specify the number of components that comprise the mixture. Using the

Bayesian Information Criterion (BIC= (Np+Nl) lnD−2lnLmax; Schwarz, 1978), it is possible

to compare Bayesian models without computing their evidences. We fit models with different

numbers of components to our data without specifying selection effects. After comparing the



Chapter 4. L-SFR Mass dependency 126

BIC of our models fit to the observed data only, we determine that K = 9 is the best fit to the

observed data, where K is the number of components.

4.3.6 Bootstrapping

In order to compute the full posterior distribution for data with uncertainties we bootstrap the

fitting procedure. For 15,000 realisations of the dataset we draw once from each data point’s

nine-dimensional uncertainty distribution and seed the initial placement of the model Gaussians

as described above in Section 4.3.5 using a different random seed. Once the iterative EM pro-

cedure has converged for each realisation we have a set of models whose variance reflects the

variance of posterior given uncertain input data. We can then apply any function that we would

apply to the maximum likelihood model to all models in our bootstrapped set. This enables us

to retrieve the posterior predictive distribution given the uncertainty in the data points.

4.3.7 Summary

To summarise, CANDID aims to tackle the outstanding problem in astronomy of complete distri-

bution approximation with imperfect data. In order to complete our objective we must deal with

the following issues.

1. Heteroscedasticity

It is common for each data point to have its own uncertainty distribution. Moreover, the

size of the uncertainty distribution frequently changes across the parameter space. In the

fitting of simple models, heteroscedasticity is incorporated naturally with the addition of

a χ2-like term into the likelihood. CANDID currently incorporates unequal uncertainties

easily by bootstrapping the models with resampled measurements. In future work, we

will use the resampled measurements within the EM-step rather than by bootstrapping.

2. Non-Gaussianity

Assuming a Gaussian error distribution dramatically simplifies the posterior and hence

the analysis. However, the Gaussian assumption is frequently incorrect and may lead to

dramatically misleading results. For example, the uncertainty distribution of a flux mea-

surement is easily approximated as Gaussian but given that the intrinsic value is strictly
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positive, this assumption breaks down at low signal-to-noise. CANDID resamples the un-

certainty distribution of each data point consistently such that flux variables remain strictly

positive. The Gaussian mixture EM algorithm can readily be extended to incorporate re-

sampled data points instead of directly solving for the convolution of the data uncertainty

and model components (see Appendix B for a derivation of the EM algorithm for resam-

pled data).

3. Incompleteness

It is not possible to rerun the universe nor observe the entirety of a population in astron-

omy. Typically, incompleteness is addressed by methods such as 1/Vmax or Monte Carlo

simulations of point sources given an error map (Long and de Souza, 2017). However,

when the number of dimensions grows, what is applicable to each variable individually

becomes complicated when considering their covariation. CANDID aims to deal with in-

completeness naturally by “imputing” the missing values from the approximated observed

model given known selection criteria, following Melchior and Goulding (2018).

4. High dimensionality

The “curse of dimensionality” firmly applies to Gaussian mixture models since each Gaus-

sian component contributes d(d +1)/2+d +1 dimensions to the likelihood from its co-

variance matrix, mean vector and weight relative to the other components. Rejection

sampling MCMC techniques start to fail at tens of parameters and interpolating ensemble

MCMC (such as emcee) fails at hundreds of parameters. The EM algorithm is well suited

to finding the peak of the posterior distribution. By dropping the need to sample the en-

tire posterior distribution, we can iterate towards the maximum likelihood peak and then

bootstrap, if need be, to sample its width.

4.4 Results and Discussion

Having fit a complete multi-dimensional model for the local star-forming galaxy population,

we can extract distributions for parameters of interest such as luminosity functions. In order to

extract these distributions, we average the models of our bootstrapped model suite with equal

weight given to each model density. To compute posterior predictive distributions over our

model (such as the L150MHz− SFR relation), it is necessary to sample the bootstrapped suite

and estimate the 1σ credible interval from the variance between the models relative to their



Chapter 4. L-SFR Mass dependency 128

median. Each model predicts a different total number galaxies, Ntotal , and so when sampling

from the bootstrapped suite we sample each model proportionally to the total number of galaxies

it predicts.

4.4.1 Model Validation

We perform a series of checks to ensure that our model reflects the data and that the model

remains physically motivated in the unobservable volumes of the parameter space. We have

applied the selection criteria discussed above to our model to produce an “observed model”.

This is the model an observer would see if our “total model” is correct, given our selection

function. The fraction of galaxies that each bootstrapped model predicts is observable is shown

in Figure 4.10. The median fraction of observed galaxies is 20± 3 per cent, so that the total

number of galaxies (given the 2515 observed star-forming galaxies) is (12±2)×103.

Figure 4.11 shows the averaged model from the bootstrapped suite. The total model, without

selection effects applied, extends into regions of 0 probability of selection, where there are no

data, and appears to be a reasonable extrapolation of the observed model. For example, the joint

distribution of Mr and z is cut nearly in half by our apparent magnitude limit. The total model

has filled in the missing region symmetrically to the observed data. The observed model should

and does resemble the data over each parameter, when marginalising over all other parameters,

except redshift.

The redshift distribution of the observed model, shown in Figure 4.12, succeeds in reproducing

the sharp rise and then smooth decline in numbers with increasing redshift. Over all redshifts,

the fraction of unobserved galaxies is high but increases towards higher redshifts as expected. In

Figure 4.13, we compare the apparent r-band magnitude distribution of our model with the data.

The total model has a peak at ∼ 17.7 mag, which is also found by Brinchmann et al. (2004),

which is shown by the line in Figure 4.13. The MPA-JHU catalogue is roughly complete in

magnitude up until mr = 17.77. Our observed model shadows their magnitude distribution and

fills in the unobserved galaxies beyond mr = 17.77. Since our model is not aware of a population

above mr = 17.77 directly, it has failed to incorporate the existence of the population of quiescent

galaxies peaking at ∼ 18.5 mag.

It is important that the model can reconstruct complex joint distributions of parameters such

as the BPT diagram, where two ratios of luminosities are used to create a two-dimensional
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FIGURE 4.10: The bootstrapped distribution for fraction of galaxies that can be observed given
the effects of our selection criteria described above. The histogram is constructed from the
predicted total galaxy number from each bootstrapped model and the median fraction f along

with its 1σ uncertainty are shown as black dashed lines.

classification for SFGs and AGN. Figure 4.14 shows that our observed model can reproduce

the star-forming distribution in the BPT diagram. However, our model remains unaware of

populations of star-forming galaxies beyond the Kauffmann et al. (2003a) SFG classification

line and so it cannot reproduce it. By not selecting by BPT classification, we could, in principle,

build a model which describes the whole SFG+AGN population. It would then be a simple task

to classify the model after the fitting in order to estimate star-forming/AGN proportions across

the parameter space. We defer this to a future work.

Finally, we compare the recovered luminosity function for our star-forming sample in Fig-

ure 4.15. The luminosity function we estimated using the 1/Vmax method is in agreement with
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FIGURE 4.11: The complete distribution of the data (blue), total model (orange), and model
with selection effects applied (green).

the luminosity of our observed model. The total model contains more galaxies per given lumi-

nosity than the observed model and so the luminosity function for a complete dataset should

always be above or equal to that for a incomplete dataset. If the dataset were incomplete at

random (i.e. no enforced selection criteria), we would expect the total model to have a constant

density offset above the observed model. In our star-forming sample, no selection criteria were

placed on the 150MHz luminosities. Therefore, any variable offset in number between the total

and observed luminosity functions will be due to indirect effects from the selection in the r-

band or the emission lines. Since the model infers from observed data, any offset will be seen at

low-luminosity where the apparent magnitude and emission line cuts remove the most galaxies.
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FIGURE 4.12: The redshift distribution for the data (blue), total unobscured model (orange),
and model with selection effects applied (green).

Indeed, this is what we see at low radio luminosity, the observed luminosity function is consis-

tently 0.1 dex below the total luminosity function until around 1020.5 WHz−1, below which there

is a hint of more unobserved galaxies. However, the width of the posterior predictive distribution

of the luminosity function maintains that the difference between total and observed densities is

consistent with a constant 0.1 dex to within 1σ until 1019.5 WHz−1.

Our technique currently relies on bootstrapping to include low signal-to-noise low radio lumi-

nosities and build an uncertainty distribution for the whole model. However, bootstrapping will

have the effect of broadening the posterior density where the signal-to-noise of our data is the

smallest (at low radio luminosity). Bootstrapping will reconstruct a reliable posterior distribu-

tion whose width includes the posterior distribution that we would get by running EM on the
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FIGURE 4.13: The apparent magnitude distribution for the data (blue), total unobscured model
(orange), and model with selection effects applied (green). The magnitude distribution for all
sources from the MPA-JHU catalogue, without any selection criteria applied, is shown as the

blue line. The black line shows the magnitude limit in this work.

convolved likelihood (i.e. with measurement uncertainty incorporated at every EM step like in

Extreme Deconvolution). Therefore, we may still perform statistical tests on our bootstrapped

suite of models. Adding resampled measurements into CANDID will prevent such broadening and

the subsequent posterior predictive distribution for the luminosity function will have a smaller

width. This is the subject of future work.

We also observe that the slope of total and observed radio luminosity functions are consistent

with that estimated from the LOFAR/H-ATLAS survey (Hardcastle et al., 2016) at high lumi-

nosities. However, the luminosity distribution is offset from Hardcastle et al. (2016) by∼0.2 dex

above 1023.5 WHz−1. For the moment, we attribute this offset to a greater redshift range in the

Hardcastle et al. (2016) sample and a less stringent optical magnitude cut (they use r < 19
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model with selection effects applied (green). The black lines from Kauffmann et al. (2003a)

represent the boundaries between star-forming galaxies, transition objects, AGN.

whereas we use r < 17). Hardcastle et al. (2016) also find a steep (∝ (1+ z)5) redshift evolution

in the luminosity function of SFGs and so the effect of a larger redshift range likely enhances

this issue.

Above a luminosity of 1024 WHz−1 and below 1020 WHz−1 our model becomes very uncertain,

with a posterior predictive width of ∼ 0.5 dex.

4.4.2 The Mass Dependency of the SFR-150 MHz Luminosity Relation

Gurkan et al. (2018) found that the relation between 150MHz luminosity and star-formation



Chapter 4. L-SFR Mass dependency 134

19 20 21 22 23 24 25
log[L150 MHz/WHz−1]

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g[
φ

(L
15

0
M

H
z)
/d

ex
−

1
M

p
c−

3
]

total model

uncorrected model

data 1/vmax

Hardcastle+16

0

100

200

N

FIGURE 4.15: The luminosity function for our star-forming galaxies. The blue error bars
are the 1/Vmax estimations for the 150 MHz luminosity function given our star-forming sam-
ple. The orange lines show the total estimated luminosity function for our bootstrapped model
suite, with the thick orange line representing their mean luminosity function. The green lines
represent the model with our selection effects applied (the uncorrected model). The luminosity

function, corrected for incompleteness from Hardcastle et al. (2016) is shown in black.

rate exhibits a mass dependency. High stellar mass galaxies are positioned above the L150MHz−
SFR relation for all galaxies whereas low stellar mass galaxies are found below. Furthermore,

the slope of the L150MHz− SFR relation exhibits an upturn at low star-formation rates for all

masses. Here, we investigate whether these observed derivations from a single L150MHz−SFR

relation persist once selection effects have been taken into account. Figure 4.16 shows the

L150MHz−SFR relation for the Gurkan et al. (2018) dataset (as points) and our model (shown as

continuous curves). We find that the slope of the L150MHz−SFR relation is in agreement with

the fit performed by Gurkan et al. (2018) to within 1σ , for the whole star-forming sample at

every star-formation rate. Despite the fact that our model is offset in radio luminosity due to
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FIGURE 4.16: The L150-SFR Mass dependency. The coloured curves show mean L150-SFR re-
lation for both the low (blue) and high (orange) mass galaxies calculated from the bootstrapped
suite of models. The shaded areas represent the 1σ confidence region calculated from the boot-
strapped suite of models. The hatched SFR regions mark the low and high SFR regions used
to test for a decrease in slope in the L150-SFR relation, as found by Gurkan et al. (2018). The
fit to all data in Gurkan et al. (2018) is shown as a black line with the 1σ uncertainty region

represented by dashed lines.

the reasons discussed above, we detect a systematic offset of 0.5+0.3
−0.2 dex between low and high

mass galaxies in luminosity over all star-formation rates, shown in Figure 4.17, to 2.9σ .

Our inferred posterior predictive distributions have a large width (still within 1σ of Gurkan

et al. 2018) and so the gradient of these lines, shown in Figure 4.18, is poorly defined at low

star-formation rates.

Therefore, we perform a statistical test, comparing the slopes of the models in regions of low

and high star-formation rates. We follow Gurkan et al. (2018) who divide their sample into
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FIGURE 4.17: The distribution of offsets, ∆, between low and high stellar masses over all star-
formation rates, from our suite of bootstrapped model. The significance of the offset is indicated
in the top right and the 68 per cent highest-posterior-density (HPD) region is bounded by dotted
lines with the peak of the distribution shown as the dashed line. The HPD was calculated using

the method detailed in Section 3.3.1.

two mass bins: low (6.0 ≤ log[M∗/M�] ≤ 9.5) and high (9.5 ≤ log[M∗/M�] ≤ 13.0). In order

to test for a lower slope at lower star-formation rates, we also divide our model into bins of

low (−3.0 ≤ log[SFR/M�yr−1] ≤ 0.0) and high (0.0 ≤ log[SFR/M�yr−1] ≤ 2.0) SFR, shown

in Figures 4.16 and 4.18 as hatched regions. This division corresponds to the position of the

break in the L150MHz−SFR relation detected by Gürkan et al. (2018). The region we use for the

low-SFR designation contains few galaxies but it is within this region that Gurkan et al. (2018)

detect the excess in radio luminosity.

For each bootstrapped model, we calculate the mean difference between the high and low SFR
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FIGURE 4.18: The gradient of L-SFR-Mass dependency. The lines show the mean gradient
of the L150-SFR relation for both the low (blue) and high (orange) mass galaxies calculated
from the bootstrapped suite of models. The shaded areas represent the 1σ confidence region
calculated from the bootstrapped suite of models. The hatched SFR regions mark the low and
high SFR regions used to test for a decrease in slope in the L150-SFR relation, as found by

Gurkan et al. (2018).

regions. We then take the distribution of the differences (from all bootstrapped models) and

calculate the significance of the slope difference.

Figure 4.19 shows the distribution of the gradient at each SFR given our suite of bootstrapped

models and the cumulative probability distribution for the difference in slope. At both high and

low masses, we find no strong evidence (σ < 1) that the difference in slope between SFR regions

is larger at high than at low mass. The broadening of our posterior due to bootstrapping, will

likely interfere with this test, and so we intend to investigate further, as detailed in Chapter 5.
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FIGURE 4.19: The probability density distribution of the gradient (left column) at high (dark
colours) and low SFR (light colours) for both low (top panels, blue) and high (bottom panels,
orange) mass galaxies, given the full bootstrapped suite of models. The dotted vertical lines
indicate the median of each distribution. The hatching for each SFR region matches that found
in Figures 4.16 and 4.18. The right column shows the cumulative probability distribution for
the difference in slopes, ∆, at high and low SFR. The shaded regions in the right column show

the probability mass for a slope difference between high and low SFR of less than zero.

4.4.2.1 Implications

An excess of radio luminosity at low star-formation rates indicates a deviation from the calorime-

try approximation (Voelk, 1989), whereby all accelerated cosmic rays remain in the galaxy’s

magnetic field, emitting synchrotron radiation. The deviation is expected in that star-burst

galaxies approximate calorimetry well (Lacki et al., 2010) with galaxies that are forming fewer

stars emitting less synchrotron radiation for their star-formation rate. However, this is not what

Gurkan et al. (2018) see. In contrast, they see an excess of 150MHz luminosity regardless of
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the mass of the galaxy. Assuming that this is a real phenomenon, either sources of synchrotron

emission other than supernovae-accelerated cosmic rays are present to boost the emission at low

star-formation rates or the galaxy’s magnetic field is boosted. Gurkan et al. (2018) show that

many of the BPT-unclassified high mass objects have much more radio luminosity for their mass

with considerable overlap with the star-forming locus. The most luminous BPT-unclassified

galaxies are classified as AGN by Best and Heckman (2012) indicating that low-luminosity con-

tamination could be another source of the excess radio emission (if the AGN branch continues

to overlap with SFGs at lower masses).

Another source of excess radio luminosity could be attributed to the large 10 arcsecond aperture

they used to estimate total source flux. Gurkan et al. (2018) used this aperture in order to capture

all dispersed flux from star-formation and hence reduce the aperture correction that would be

required. However, confusion with nearby sources is possible and so other sources could be

contributing to the flattening of the L150MHz−SFR slope. Since Gurkan et al. (2018) and this

work both used the same aperture, this cannot be the source of the discrepancy.

However, our bootstrapping method likely broadens the posterior to a width where a change

in slope is unlikely to be detected. We therefore cannot distinguish between the cases where

selection effects play a role in increasing the average luminosity at low star-formation rates or

that we simply cannot detect those effects with the present configuration of CANDID. We intend

to improve our method by incorporating the uncertainties at each EM iteration rather than by

bootstrapping the model.

4.4.2.2 Supernovae Contributions with Horizon AGN

At very low star-formation rates the energy injected into cosmic rays by type-II supernovae is

reduced since these supernovae occur at the end of the lifetime of giant short-lived OB stars. In

this case, energy injection from type-Ia supernovae will become more important, as their rate

depends less on star-formation rate since they occur by chance in binary systems. Therefore, the

rate of type-Ia supernovae depends more on the stellar mass of the galaxy with more massive

galaxies having a greater frequency of both types of supernovae. The relative contributions of

type-Ia and type-II change over stellar mass and star-formation rate. Horizon AGN (Dubois

et al., 2014) provides us with an opportunity to estimate the luminosity excess due to type-Ia

supernovae.
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Here we conduct a simple experiment to be expanded upon in a future work. We employ the

cosmological-volume hydrodynamical simulation, Horizon AGN (Dubois et al., 2014) based

on the RAMSES (Teyssier, 2002) adaptive mesh refinement code. Horizon AGN simulates a

volume with length 100h−1 cMpc with initial conditions set from the WMAP ΛCDM cosmology

(Komatsu et al., 2011) using 10243 dark matter particles with a mass resolution of 8×107M�.

By incorporating AGN feedback, Horizon AGN is in good agreement with observed stellar

mass and luminosity functions as well as the colour-magnitude diagram and colours of merging

galaxies (Kaviraj et al., 2015, 2017). Horizon AGN provides the energy output from supernovae

types Ia and II over the last 10 Myr (denoted here as ESN) given a binary fraction. We adopt the

binary fraction 0.55 from the Large Sky Area Multi-Object Spectroscopic Telescope (LAMOST

Tian et al., 2018), though scope remains for running this analysis over a range of binary fractions

(which we postpone to a future work).

This simple look at Horizon AGN supernovae energies is intended as a brief investigation into

the fractional responsibility of supernovae type-Ia for the mass-dependency of the L150MHz−
SFR relation, in order to lay the groundwork for a future joint model of simulation and observa-

tion. As such, we fit only a simplistic model (1 Gaussian component) here and will investigate

more complex (such as those detailed above) in the future. We fit a single component model

independently to our data and to the Horizon AGN dataset using the same methods as described

in 4.3, except that we confine our fit to the observed data without imputation. We defer complex

imputed fitting to a future work.

Following Lamastra et al. (2013); Sparre et al. (2015) we renormalise the Horizon AGN star-

formation rates to our observed star-formation rates by transforming the fit stellar-mass/star-

formation rate distribution for Horizon AGN to our distribution for our data. Given that both are

modelled by a single Gaussian component, this amounts to an assumption that our star-formation

rate and stellar mass distributions are the same for the rest of the analysis. We can calculate the

conditional distribution of the supernovae energy given some observation by generating samples

from the the Horizon AGN model given a sample from our LoTSS model. By doing this for a

large number of samples, we can build up a conditional distribution for the observed variable.

Figure 4.20 shows the relation between injected energy from type-Ia and type-II supernovae.

For type-II supernovae, the star-formation rate traces the injected energy tightly, whereas for

type-Ia supernovae the relation becomes dispersed. This is expected since type-II supernovae

occur shortly after bursts of star-formation (100 Myr).
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FIGURE 4.20: The energy injected by type-Ia (top row) and type-II (bottom row) supernovae
over the last 10 Myr (as estimated in the Horizon AGN simulation) as a function of the 150 MHz
radio luminosity of the HETDEX star-forming sample (left column) and as a function of the
star-formation rate of the HETDEX star-forming sample (right column). The colour bar indi-
cates the stellar mass of each galaxy. This plot assumes that the star-formation rate distribution

of Horizon AGN and our dataset are the same as discussed in the text.

The energy-luminosity relations in both types of supernovae exhibit a strong mass dependence

which varies across the width of the relation. This is a constrained simple model with limited

applicability and with no selection effect incorporation. However, we show here that there

is a more complex relationship between supernovae injected energy and luminosity/SFR than

supernovae type-II can account for alone. Fitting a more complex model (as done above) would

estimate the amount of mass-dependency that can be attributed to supernovae type-Ia & type-II

and has the potential to explain our results from Section 4.4.2.

4.5 Conclusions

Using a star-forming sample, classified by BPT and observed by LoTSS DR1 in the HETDEX

region, we have tested the existence of a stellar-mass dependency in the L150MHZ−SFR relation.

To do this we have created the PYTHON package CANDID which, building upon the work of

Kelly et al. (2008); Bovy et al. (2011); Hinton et al. (2017); Melchior and Goulding (2018) that
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incorporates the treatment of individual non-Gaussian measurement error, along with the “im-

putation” of missing/incomplete data into a technique that reconstructs complete distributions

of galaxy properties.

1. Using the 150 MHz aperture flux measurements from the LoTSS first data release (Shimwell

et al., 2018) together with the MPA-JHU catalogue (Brinchmann et al., 2004), we con-

struct a sample of star-forming galaxies based on the BPT classification scheme.

2. Whilst there are methods that exist to deal with missing and uncertain data (Kelly et al.,

2008; Bovy et al., 2011; Hinton et al., 2017; Melchior and Goulding, 2018), we find

that current methods do not incorporate the number of parameters needed, do not easily

extend to high dimensions and cannot deal with non-Gaussian uncertainties. Most of all,

however, they do not incorporate solutions to fit missing, uncertain, and non-Gaussian

data in one technique.

3. Whilst building our hierarchical model, we find that traditional MCMC samplers such as

Metropolis or affine ensemble (e.g. emcee; Foreman-Mackey et al. 2013) become inef-

ficient to the point of being misleading at the dimensionality that we consider here. Our

model requires the use of other sampling techniques such as Gibbs, nested, or slice sam-

pling for full posterior sampling. We simplify the task by using Expectation-Maximisation

(EM) whereby the posterior is maximised instead of sampled.

4. We bootstrap our method across our data, whose uncertainties have been resampled and

the starting positions for the EM randomised 15,000 times. From our suite of bootstrapped

models, we can estimate the posterior distribution (albeit one with a width larger than if

we had performed resampling at each EM step) and hence the posterior predictive distri-

butions for a number of related quantities (such as luminosity functions).

5. We find that when we apply the selection effects present in our star-forming dataset, our

model resembles the input dataset. However, we find a deviation from the Hardcastle et al.

(2016) 150MHz luminosity function that we attribute to their larger redshift, their higher

apparent r-band magnitude limit and the broadening of our posterior due to bootstrapping.

6. We find that the luminosity-SFR relation at 150MHz depends on mass (2.9σ offset be-

tween high and low stellar masses of 0.5+0.3
−0.2 dex). This is in agreement with Gürkan et al.

(2018). However, we do not find evidence for a difference in the slope of the relation at

low star-formation rates.
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7. We also perform a simple comparison with the Horizon AGN simulation, constructing an

L150MHz−ESNe−M∗ relation for both Type-Ia and Type-II supernovae. Whilst we find a

strong mass dependency in the relation between injected energy and observed luminosities

and star-formation rates, we leave detailed investigation of their differing responsibilities

to a future work.

We conclude by stating that more work is needed to quantify the mass dependency of the

luminosity-SFR relation at 150 MHz further. In particular, including the resampled measure-

ment uncertainties within the EM algorithm will act as to shrink the width of the posterior

predictive distribution and may also give less weight to low signal-to-noise galaxies.

However, we find that fitting the complete distribution of astrophysical quantities is both prac-

tical and desirable. It enables detailed and fast analysis of marginal and joint distributions of

parameters whilst adjusting for selection effects in the dataset. We intend to improve the algo-

rithm further and use it to assess the nature of the redshift evolution of the main sequence of

galaxies and the L150MHz−SFR relation. There is also scope for its use in the joint modelling

of AGN and star-forming galaxies in the above parameter space at the same time. In addition,

we have shown that it becomes very easy to construct a joint model between simulations and

observations through the use of Gaussian mixture models.



Chapter 5

Summary and Future Work

5.1 Summary

In this work, we have discussed the reliability of current scaling relations and their applicability

to large, previously unobserved, regions of parameter space. We have highlighted and quan-

tified deviations from the assumptions that are regularly used to estimate star-formation rates

and black-hole masses. We have showed that whilst selection effects, sample biases, and instru-

mental sensitivity limits contrive to interfere with the estimations of such relations, it is both

possible and desirable to quantify these effects simultaneously with their estimation. Indeed, in

the current era of large-scale surveys in radio (e.g. with the SKA and LOFAR), infrared (e.g.

with JWST), and optical (e.g. with LSST) wavelengths, the production rate of observational data

will be large enough to make techniques, such as those described in this thesis, both statistically

powerful and desperately required.

5.1.1 The FIRC

First, we discussed the existence of the Far-Infrared Radio Correlation (FIRC) at low frequency

and its variability over galaxy properties. Frequently used to bootstrap radio star-formation rates

from known infrared scaling relations, the stability and predictability of the FIRC is vital to the

estimation of star-formation rates using radio luminosity.

We show that the correlation, readily seen with high frequency observations, persists at low

frequency when observed with LOFAR. However, we find that both the slope of the FIRC and

144
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the ratio q = LIR
Lrad

are different at 150MHz, implying that simply extrapolating high frequency

relations will result in incorrect estimations of star-formation rates. Furthermore, we found that

the FIRC, varies dramatically as a function of mid-infrared colour. Using the WISE mid-infrared

colours and the Wright et al. (2010) star-burst classification, it appears that star-forming galaxies

exhibit more radio luminosity for a given infrared luminosity at higher SFR.

Upon further investigation, we find that the slope of the FIRC depends on redshift, stellar mass,

and dust temperature. We attempt to quantify the responsibility of each of these factors for the

variation observed across the mid-infrared diagram, showing that 16, 36, and 48 per cent of

variation is due stellar mass, dust temperature, and redshift respectively (if we assume a linear

dependence for each variable).

In conclusion, we find complex behaviour of the FIRC over normal star-forming galaxies (as

a function of redshift, stellar-mass, and star-formation rate). This variation needs to be under-

stood in order to use radio luminosity as a star-formation rate indicator. In the era of large radio

surveys by the upcoming SKA and its pathfinders (such as LOFAR), the opportunities for a dust-

impervious radio star-formation rate indicator are numerous. Indeed, this advantage becomes

evermore important with higher redshift and deeper surveys where other photometric informa-

tion becomes more sparsely available. We hope that the work done here lays the foundation for

a more sophisticated radio star-formation rate indicator in the future.

5.1.2 Photometric Reverberation Mapping

In Chapter 3, we discuss a new technique for the reduction and analysis of reverberation mapping

(RM) and the efficiency of photometric RM.

Established estimates of black-hole masses are distinctly biased to low-redshift objects. The

vast majority of catalogued black hole masses were estimated using spectroscopic techniques.

Past long-term spectroscopic observations have targeted the brightest QSOs in order to max-

imise signal-to-noise. Furthermore, when targeting higher redshift QSOs, their inherent optical

variability becomes increasingly affected by cosmological time dilation, increasing both the

required frequency of observations and total duration of the campaign. Therefore, the most reli-

able lag measurements that we do have, thanks to reverberation mapping (RM) campaigns, are

also biased to shorter time-scales, for a given L5100.
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In Chapter 3, we propose and implement a campaign of photometric RM observations, whereby

we achieve the same signal-to-noise, per target QSO, as the SDSS spectroscopic RM campaign

(Grier et al., 2017) but with a quarter of the observation time. Using the robotic capabilities

of the Liverpool Telescope, we observe 10 QSOs (at redshifts which align one of the available

redshifted Hα photometric filters to the Hβ emission line of the QSOs) with only the broad i-

band and narrow Hα photometric filters. For the target with best time-scale coverage, we create

a suite of light-curve simulations based on the damped random walk model of QSO variability

and based on the signal-to-noise and cadence of our observations for that target.

We test the efficacy of the Javelin (Zu et al., 2013, 2016) fitting procedure with those simulated

light-curves of known lag. We find that Javelin can recover lags that are less than a third of

the duration of the observing campaign. Characterising the distribution of artefacts in the lag

distribution retrieved by Javelin, we increase the signal-to-noise of our lag detection by a

factor of 3.

After mitigating the effects of artefacts and aliasing in the probability distributions that Javelin

produces using a suite of simulated light-curves, we estimate a lag of 72+5
−1 days which is equiv-

alent to a black hole mass of 108.28+0.12
−0.07M� for the QSO SDSS J144645.44 +625304.0.

Finally, we estimate that the photometric RM methodology increases efficiency over the spectro-

scopic SDSS-RM campaign (Shen et al., 2015a; Grier et al., 2017) by 310 per cent. We propose

that this efficient means of estimating black hole masses can be applied with future large-scale

surveys such as JPAS and LSST.

5.1.3 The L150MHz−SFR relation quantified using CANDID

The previous two projects highlighted the problem of deriving complete distributions from

noisy, biased, and codependent data in astronomy. For example, estimating the variation of

the FIRC required quantifying the contribution of three other parameters, and current rever-

beration mapped black-hole masses are biased to lower lags due to the length of observational

campaigns.

In Chapter 4 we construct a Gaussian mixture model fitting process called CANDID which can

tackle the issues of multi-dimensional, noisy, incomplete, and non-Gaussian data in general.

We incorporated the different approaches taken by Kelly et al. (2008); Bovy et al. (2011); Hin-

ton et al. (2017); and Melchior and Goulding (2018) into our method so that we can infer the
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complete distribution of galaxies from the observed data. Given a quantified analytical selec-

tion function, we can reconstruct the full distribution that would be seen in the absence of such

obscuration. It can accomplish this even when the data are noisy and possess non-Gaussian

uncertainties. We can reconstruct the full distribution of 150MHz luminosity, stellar mass, star-

formation rate, optical magnitude, and BPT emission lines over redshift for the new LoTSS DR1

dataset. This enables us to better account for incompleteness as well as known correlations in

the data, such as Malmquist bias.

Having inferred the intrinsic distribution of galaxies in the absence of selection effects, we

confirm the existence of a mass dependency in the L150MHz−SFR relation as found by Gürkan

et al. (2018). However, we find no evidence for an upturn in the L150MHz−SFR relation at low

luminosities. The upturn detected by Gürkan et al. (2018) is unexpected in the sense that the

calorimetry model for radio synchrotron generation breaks down at low luminosity, reducing

synchrotron luminosity. We find, however, that at low star-formation rates, galaxies do not

exhibit any significant excess of radio luminosity for a given star-formation rate (extrapolating

from higher star-formation rates). However, our model posterior distribution may have become

broadened by our use of bootstrapping rather than incorporating the data uncertainties into each

iterative step. This likely masks any effect that may be present at low star-formation rates and

we plan to remedy this as discussed in Section 5.2.

If there is such an upturn, we propose that type-Ia supernovae may contribute to the excess of

synchrotron emission seen by Gürkan et al. (2018) given that their frequency does not have as

strong a dependence upon instantaneous star-formation rate as type-II supernovae have.

Given that we can construct very complicated models using a generalised Gaussian specification,

it becomes trivial to join simulations and observations together, assuming that they attempt to

describe the same distribution of real objects. We attempt to show that there exists a more com-

plicated covariation with injected supernovae energy using a simplified joint distribution with

the Horizon AGN simulation. We conclude that there is much promise in the application of this

type of method in estimating incomplete distributions and joining observations to simulations.
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5.2 Future Work

5.2.1 The Mass Dependency of the L150MHz−SFR relation using CANDID

Although we have been able to test for a mass dependency in the L150MHz-SFR relation, much

work remains to done in order to decidedly retrieve the form of the mass dependence: Chapter 4

remains a preliminary work.

The next step in improving our technique is to include the resampled data in the Expectation-

Maximisation (EM) iteration directly. Doing so would shrink the width of the posterior and

would help to further pin down the characteristics of the low signal-to-noise regime. We outline

the modified E and M steps in Appendix B and plan to adapt our method immediately.

There are a number of avenues that we wish to explore regarding the mass dependency of the

L150MHz−SFR relation and using the large LoTSS DR1 dataset in general. They are as follows:

The size of the aperture we have used to extract LOFAR 150MHz fluxes is large and so confu-

sion with neighbouring sources could have an effect on the low luminosity end of the L150MHz−
SFR relation. It is vital that we perform our analysis again with a smaller aperture size to see if

and how the L150MHz−SFR relation changes.

Our selection criteria in Chapter 4 were strong in order to avoid low-luminosity AGN contami-

nation, yet we relied only on the BPT emission line information. Sabater et al. (2018) derived a

composite classification method whereby BPT emission line ratios, D4000 strength, radio lumi-

nosity, and WISE colours are used to classify galaxies more robustly than with any one of those

methods alone. Relaxing our signal-to-noise constraint on the BPT emission lines and adopting

the Sabater et al. (2018) classification scheme would allow more sources to be used in the infer-

ence. Furthermore, by its component nature, our method is highly suited to modelling more than

one distinct population at once. Indeed, without any modification, we are able to fit our model

to both AGN and SFGs at the same time and classify the model after the fitting. This would

allow detailed classification and the assignment of an AGN proportion over the entire model.

Having access to such a bimodal model of local galaxies would allow us to probe the regions

between the traditional discrete classifications. This method would be vital to understanding

the distribution of low-luminosity AGN, if they are a continuation of the radio loud branch or a

disjoint set within the parameter space. Indeed, using a multi-wavelength dataset, it is possible

to isolate the AGN distribution from the SFGs using this method.
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It is also worth noting that our method facilitates the extraction of luminosity and mass functions

over redshift without further effort. Indeed, any marginal distribution can be extracted given that

the parameter of interest was included in the model along with important covariates. We foresee

using this technique to probe the luminosity distribution of low luminosity AGN across the

whole parameter space.

Our method also allows the inclusion of non-detections in any parameter. We have already

included such non-detections in LoTSS radio flux in our sample, but we could extend support to

optical emission lines. Our significance cut in the BPT emission lines removes the most sources

from our catalogue. Dealing with the noisiest data in a self-consistent way instead of removing

them, may increase our sensitivity at low luminosity.

The forthcoming LoTSS DR2 includes many more sources (& 1,000,000) with an increased

sensitivity and wider area. Testing for the existence of the flattening of the L150MHz− SFR

relation at low star-formation rates would be made easier with the inclusion of data from DR2.

We cannot extrapolate unobserved distributions that have no significantly observed components.

However, in a future work, we could compare the recovered distribution we inferred in Chap-

ter 4 to one inferred from deeper observations (i.e. from LoTSS DR2) in order to see if the

reconstruction and imputation is accurate.

In Chapter 4 we produced a joint distribution between the Horizon AGN simulation and LoTSS

observational data. This was a simple model, which we used to demonstrate the existence of

a more complex relation between supernovae energy injection and radio luminosity. We will

now seek to use our more advanced, imputed model to produce the joint distribution. This will

provide us with a much more robust connection between observations and simulations. Indeed,

we can apply this technique to any simulation and observational dataset that share the same

output observables.

5.2.2 AGN in Dwarf Galaxies using CANDID

Imputed Gaussian mixture models are ideally suited to inferring total distributions from poorly

sampled observational data. The Hyper-Suprime-Cam SSP survey (HSC-SSP, Aihara et al.,

2018) surveyed 1400 deg2 with a 5σ point source r-band depth of 26 mag, much deeper than

SDSS (22 mag). This would make the HSC-SSP ideally suited to study the dwarf galaxy AGN
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FIGURE 5.1: The HSC galaxy population coloured by redshift with the local group dwarfs
represented by the thick red line (Woo et al., 2008). The limiting magnitudes for SDSS and

HSC at z = 0.1,0.3 are shown as grey lines.

fraction as a function of their stellar mass: a distribution that is sparsely investigated. Us-

ing cross-matched detections from WISE photometry together with optical r-band data from

HSC-SSP, we can classify dwarf galaxies as AGN or star-forming using the Jarrett et al. (2011)

classification seen in Chapter 2 and estimate the AGN fraction over stellar mass.

However, despite its superior optical depth, HSC-SSP rapidly becomes incomplete for stellar

masses below 109 M�, as shown in Figure 5.1. For given mass, only the brighter dwarfs will

be detected, meaning that we would be biased to objects that are unusually bright for the dwarf

regime. This could mean preferentially selecting galaxies who host a bright AGN or possess a

high star-formation rate.

This is a very similar problem to that faced in Chapter 4. However, the use of WISE detections

imparts a new bias towards bright mid-infrared galaxies. This multivariate covariation between

different biases is precisely the domain of imputed Gaussian mixture models. Inferring the

complete distribution in the space of Mr, log[M∗], [4.6]− [12], and [3.4]− [4.6] using the method

detailed in Chapter 4 would enable us to mitigate the effects of being biased to brighter objects.

The more variables we have available about the observed population, the easier the imputation

of missing data becomes. With HSC-SSP, we also have access to star-formation rates and spec-

troscopic redshifts. This would allow us to characterise a selection function which varies over

those variables as well.



Chapter 5. Summary and Future Work 151

5.2.3 The covariation of the FIRC with intrinsic star-forming quantities

In Chapter 2, we described the variation of the Far-Infrared Radio Correlation (FIRC) over a few

star-forming properties, namely dust temperature and stellar mass. If the mass dependency of the

L150MHz−SFR relation is real, then the FIRC may exhibit a similar non-linearity. Not only do

we now have the tools to probe such low-luminosity regions, but we are also able to disentangle

covariances from multiple confounding variables. Building upon the analysis in Chapter 2,

we can quantify the correlation of q250 with stellar mass, dust temperature, and redshift more

accurately because CANDID does not assume a linear relation between them.

5.2.4 Reverberation Mapping

In Chapter 3 we estimated the black hole mass for SDSS J144645.44 +625304.0 (one QSO

out of ten observed). Having developed a methodology to reduce the impact of artefacts in the

Javelin Gaussian process lag estimation, we can attempt to apply the same technique with

other targets. However, these targets were not processed due to their low optical signal-to-noise.

We can infer lags for these targets, not necessarily in order to estimate precise black-hole masses,

but to model the t−L5100 relation across the whole sample. We plan to submit Chapter 3 as soon

as possible and then proceed with the analysis of the low signal-to-noise targets for which we

already have data.

We also plan to submit another proposal to use the robotic Liverpool Telescope to observe more

high redshift QSO targets, now that we have a greater understanding of how Javelin behaves

as a function of Gaussian process parameters and light-curve signal-to-noise.

As previously discussed, photometric RM is ideally suited to upcoming large scale surveys. It

seems desirable to select calibration fields based on the observability of suitable QSOs as well

as other concerns. In this way we can build a large dataset of high redshift black hole masses

for little extra effort using the latest upcoming large-scale surveys. The J-PAS and J-PLUS

surveys are especially suited to this method since their instrument possesses 56 narrow-band

filters, which are ideal for targeting a large range of high redshift QSOs.

In Chapter 3 we fit the t−L5100 relation to QSO lags and optical luminosities. We discussed

a bias in observability of lags that acts to reduce the number of observed lags with long time-

scales. Based on an understanding of the artefacts produced by Javelin, cross-correlation
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functions, and other tools such as CREAM (Starkey et al., 2016), we can build a selection function

in the parameter space of lag and optical luminosity. Therefore, for each lag measurement in

the literature, we could produce an individual selection probability for all known lag measure-

ments and fit the t−L5100 relation, accounting for biases. This type of approach is necessary to

understand if the over-abundance of QSOs (offset below from the t−L5100 as reported in Grier

et al. 2017) is due to observational biases or an intrinsic accretion rate dependence (Du et al.,

2016a). Indeed, about 20 per cent of QSOs that have been observed for RM campaigns do not

possess a lag estimation (Grier et al., 2017). Including the non-detections and their prior selec-

tion probabilities will inform us as to whether there is a severe bias in the current distribution of

black-hole masses and BLR lags.

5.3 Concluding Remarks

To conclude, I believe that the next few decades in the era of large-scale surveys will be filled

with opportunities for the application of robust statistic methods. This thesis represents exam-

ples of such statistical techniques applied to relatively large datasets. The work described here

is always ongoing but hopefully sets a foundation upon which future work can be based.
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FIRC

A.1 FIRC relations with BPT-AGN

Further to the discussion in Section 2.4.5, we present versions of Figures 2.10, 2.11, and 2.14

which are generated from a sample of 4,541 sources formed by merging our star-forming sample

with 447 BPT-classified AGN detected at 5σ in BPT emission lines. This material can be found

online.

A.2 Supplementary figures
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FIGURE A.1: Top: Evolution of q250 over redshift measured with LOFAR at 150 MHz (blue)
and FIRST transformed to 150 MHz (green). This plot uses our star-forming sample merged
with BPT-AGN whose emission lines are detected at 5σ . The dashed horizontal line in the
upper plot is the mean-stacked q250 taken from Figure 2.8 for FIRST and LOFAR at 150 MHz.
The coloured lines indicate the straight line fit to all galaxies in our sample binned in redshift
for LOFAR and FIRST. Bottom: The temperature in each bin, calculated by constructing
an infrared SED from the average K-corrected flux of each source in every band and fitting
Equation 2.2 to the result. The temperature and uncertainties are overlaid with a straight line

fit to the data. The vertical dashed lines represent bin edges.
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FIGURE A.2: The temperature dependence of q250 compared between high and low frequency
using our star-forming sample merged with BPT-AGN whose emission lines are detected at
5σ . The background dots are the individual q250 calculated from the LOFAR 150MHz (blue)
and FIRST (green) luminosity densities. The q250 calculated from stacked LOFAR and SPIRE
luminosity densities described earlier is plotted in bold points with errorbars derived from boot-
strapping the luminosity densities within the depicted dashed bins 10,000 times. The temper-
ature uncertainties in each bin are calculated from the 16th and 84th percentiles. The same

calculation from Smith et al. (2014) is shown as the black errorbars for comparison.
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FIGURE A.3: The marginalised probability density, P(ρ|D), distributions for the correlation
coefficients of [4.6]− [12] (blue) and [3.4]− [4.6] (green) against stacked qLOFAR

250 (using our
star-forming sample merged with BPT-AGN whose emission lines are detected at 5σ ). Top
left (a): The correlation coefficient PDFs calculated assuming that qLOFAR

250 does not depend
on other variables. Top right (a): The correlation coefficient PDFs after controlling for a
linear dependence of qLOFAR

250 upon redshift. Bottom left (a): The correlation coefficient PDFs
after controlling for a linear dependence of qLOFAR

250 upon effective temperature. Bottom right
(a): The correlation coefficient PDFs after controlling for a linear dependence of qLOFAR

250 upon
stellar mass. Bottom panel (b): The correlation distribution when controlling for all three
parameters at once. The vertical lines mark the median value for the correlation coefficient
with the shaded areas marking the 16−84th percentile range. A Gaussian kernel was used to

smooth the probability distributions.
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FIGURE A.4: q250 for LOFAR (blue) and FIRST (green) at 150 MHz against the specific star
formation rate in 8 bins of width 0.3 dex. This plot uses our star-forming sample merged with
BPT-AGN whose emission lines are detected at 5σ . The uncertainties on q250 are calculated
via bootstrapping within each bin. The uncertainties on sSFR are calculated from the 16th and
84th percentiles in each bin. Straight line fits are shown as coloured lines with 1σ credible
intervals shown as shaded regions. The top histogram shows the number of galaxies in each

bin.
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FIGURE A.5: Mean fraction of BPT-AGN across the Jarrett et al. (2011) MIRDD using our
star-forming sample merged with BPT-AGN whose emission lines are detected at 5σ . Bins are
hexagonal and are coloured linearly according to the scale shown on the right. All bins have
an SNR in qLOFAR

250 µm > 3 and contain more than 50 galaxies each. Also plotted are the marginal
bins summarising the horizontal and vertical slices of the entire plane. These slices also obey
the two conditions set on the hexagonal bins. For reference, the box described by Jarrett et al.

(2011) to contain mostly QSOs is marked by dotted lines.



Appendix A. FIRC 159

2.5 3.0 3.5 4.0
[4.6] - [12] (mag)

−0.25

0.00

0.25

0.50

0.75

1.00

[3
.4

]-
[4

.6
](

m
ag

)

21.25

21.50

21.75

22.00

22.25

22.50

22.75

23.00

23.25

lo
g[

L 1
50

M
H

z/
W

H
z−

1 ]

(a) LOFAR at 150MHz
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(b) FIRST at 1.4GHz
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FIGURE A.6: Mean luminosity density across the Jarrett et al. (2011) MIRDD. Bins are hexag-
onal and are coloured linearly according to the scale shown on the right. All bins have an SNR
in qLOFAR

250 µm > 3 and contain more than 50 galaxies each. Also plotted are the marginal bins sum-
marising the horizontal and vertical slices of the entire plane. These slices also obey the two
conditions set on the hexagonal bins. For reference, the box described by Jarrett et al. (2011)

to contain mostly QSOs is marked by dotted lines.
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FIGURE A.7: Evolution of q250 over redshift for the high-sSFR (light points, dashed lines),
low-sSFR (darker points, solid lines), and all star-forming galaxies (dotted line) measured with
LOFAR at 150 MHz (blue) and FIRST transformed to 150 MHz (green). The coloured lines
indicate the straight line fit to all galaxies in our sample binned in redshift for LOFAR and

FIRST.
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FIGURE A.8: Evolution of q250 over redshift for the WISE-red (light points, dashed lines),
WISE-blue (darker points, solid lines), and all star-forming galaxies (dotted line) measured
with LOFAR at 150 MHz (blue) and FIRST transformed to 150 MHz (green). The coloured
lines indicate the straight line fit to all galaxies in our sample binned in redshift for LOFAR and

FIRST.
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FIGURE A.9: Fits to the FIRC measured by LOFAR and FIRST for the WISE-red and WISE-
blue sub-samples. 3σ detections are shown as black points. 3σ upper limits for sources for
which there is not formal 3σ detection are shown as black triangles The fit lines are power-law
fits to the all sources in our star-forming sample including non-detections. For the purpose
of comparison the FIRST 1.4GHz luminosity densities have been transformed to 150MHz

assuming a power law with spectral index from Mauch et al. (2013).
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FIGURE A.10: Fits to the FIRC measured by LOFAR and FIRST for galaxies in our star-
forming sample with MAGPHYS fit specific star-formation rates above−9.75yr−1 (high-sSFR)
and below −9.75yr−1 (low-sSFR). 3σ detections are shown as black points. 3σ upper limits
for sources for which there is not formal 3σ detection are shown as black triangles The fit lines
are power-law fits to the all sources in each sample including non-detections. For the purpose
of comparison the FIRST 1.4GHz luminosity densities have been transformed to 150MHz

assuming a power law with spectral index from Mauch et al. (2013).



Appendix B

CANDID generalised to resampled

non-Gaussian uncertainties

Following from Equation 4.18, we define the auxillary function Q(θ ,θ t−1) in terms of resam-

pled data xir

Q(θ ,θ t−1) = E[lc(θ)|D ,θ t−1] (B.1)

=
N

∑
i=1

K

∑
k=1

[
rik log p(zi = k|θ)+ rik log p(xi|zi = k,θ)

]
(B.2)

=
N

∑
i=1

K

∑
k=1

[
rik logπk + rik

R

∑
r=1

logN (xir|µk,Σk)
]

(B.3)

rik = p(zi = k|xi,θ) =
p(xi|zi = k,θ) · p(zi = k)

∑K
j=1 p(xi|zi = j,θ) · p(zi = j)

(B.4)

=
N (xi|µk,Σk) ·πk

∑K
j=1 N (xi|µ j,Σ j) ·π j

(B.5)

=
∏R

r=1 N (xir|µk,Σk) ·πk

∑K
j=1 ∏R

r=1 N (xir|µ j,Σ j) ·π j
(B.6)

where N is the number of data points, K is the number of components, and R is the number of

resamples. Now taking the derivatives with respect to each Gaussian parameter, we can derive

the M step updates.
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Maximise Q for the means µk of the components:

∂Q
∂ µk

= 0 (B.7a)

=
N

∑
i=1

rik
1
R

R

∑
r=1

[
∂

∂ µk
logN (xir|µk,Σk)

]
= 0 (B.7b)

=
N

∑
i=1

rik
1
R
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∂

∂ µk

[
−1

2
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T Σ−1
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]
= 0 (B.7c)

Using
∂

∂ µk

[
−1

2
(xir−µk)

T Σ−1
k (xir−µk)

]
= Σ−1

k (xir−µk) (B.8)

we can derive the update for the mean:

�
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k (xir−µk)

]
= 0 (B.9a)

∑N
i=1 ∑R

r=1 xikrik

∑N
i=1 ∑R

r=1 rik
= µk (B.9b)

Maximise Q for the covariances Σk of the components:
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∂ ln |Σk|
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and
∂

∂Σk
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T Σ−1
k (xir−µk) =−Σ−1

k (xir−µk)(xir−µk)
T Σ−1

k (B.12)
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we can derive the update for the covariances:
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The update for the weights, πk remains the same, but now using the rik derived above.

πk =
∑N

i=1 rik

N
(B.15)
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Uncertainty expectation estimators for

CANDID
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FIGURE C.1: The expected uncertainty model for a given redshift. The blue points are our
star-forming sample, the blue line is the fit to the data, and its residuals are shown in the
bottom panel. The inset axis shows the histogram for the data (blue) and the histogram for the

predictions estimated from the model (orange).
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FIGURE C.2: The expected uncertainty model for a given radio flux. The blue points are
our star-forming sample, the blue line is the fit to the data, and its residuals are shown in the
bottom panel. The inset axis shows the histogram for the data (blue) and the histogram for the

predictions estimated from the model (orange).
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FIGURE C.3: The expected uncertainty model for a given stellar mass. The blue points are
our star-forming sample, the blue line is the fit to the data, and its residuals are shown in the
bottom panel. The inset axis shows the histogram for the data (blue) and the histogram for the

predictions estimated from the model (orange).
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FIGURE C.4: The expected uncertainty model for a given star-formation rate. The blue points
are our star-forming sample, the blue line is the fit to the data, and its residuals are shown in
the bottom panel. The inset axis shows the histogram for the data (blue) and the histogram for

the predictions estimated from the model (orange).
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FIGURE C.5: The expected uncertainty model for a given apparent r-band magnitude. The
blue points are our star-forming sample, the blue line is the fit to the data, and its residuals
are shown in the bottom panel. The inset axis shows the histogram for the data (blue) and the

histogram for the predictions estimated from the model (orange).
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FIGURE C.6: The expected uncertainty model for a given Hα emission line flux. The blue
points are our star-forming sample, the blue line is the fit to the data, and its residuals are
shown in the bottom panel. The inset axis shows the histogram for the data (blue) and the

histogram for the predictions estimated from the model (orange).
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FIGURE C.7: The expected uncertainty model for a given Hβ emission line flux. The blue
points are our star-forming sample, the blue line is the fit to the data, and its residuals are
shown in the bottom panel. The inset axis shows the histogram for the data (blue) and the

histogram for the predictions estimated from the model (orange).
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