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Abstract:  

Obesity is a heritable disease, but its genetic basis is incompletely understood. Canine population 

history facilitates trait mapping. We performed a canine genome-wide association study for body 

condition score, a measure of obesity, in 241 Labrador retrievers. Using a cross-species 

approach, we showed canine obesity genes are also associated with rare and common forms of 5 

obesity in humans. The lead canine association was within the gene DENN domain containing 

1B (DENND1B). Each copy of the alternate allele was associated with ~7% greater body fat. We 

demonstrate a role for this gene in regulating signaling and trafficking of melanocortin 4 

receptor, a critical controller of energy homeostasis. Thus, canine genetics identified obesity 

genes and mechanisms relevant to both dogs and humans.  10 
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Main Text: 

Obesity is a complex disease resulting from a multitude of biological and environmental 

factors and is a major threat to both human and animal health worldwide. Studies in human 

patients with severe, early onset obesity highlighted the critical role of hypothalamic leptin-

melanocortin signaling in the central control of energy balance. This homeostatic pathway 5 

integrates peripheral signals of energy status, translating them into alterations in energy 

expenditure and eating behavior (1). Large-scale population genomic studies in humans have 

identified >1000  BMI-associated loci, but moving from genetic association to mechanistic 

insight has been challenging, in part because it is hard to know which small-effect and non-

coding loci justify resource-intensive follow-up (2). 10 

Dogs are a compelling model of human obesity because they develop obesity subject to 

similar environmental influences and, notably, offer the opportunity for genetic discovery due to 

their distinctive genetic structure. Ancestral dog populations were diverse and genetically 

heterogenous but narrow population bottlenecks at breed formation mean modern breeds are 

genetically homogeneous with a relatively long-range linkage disequilibrium (LD) structure 15 

which renders even complex trait mapping remarkably tractable (3–7). This population history 

also resulted in a high frequency of genetic disease in some dog breeds (8, 9), including obesity 

(10–12). Additionally, there is greater homology between the dog and human genomes than 

between those of human and mouse (4). Despite these compelling reasons to use dogs for 

scientific discovery relevant to both canine and human biology, dogs have been underused as a 20 

model organism to date. 

About 40-60% of pet dogs are overweight or obese (13, 14), predisposing them to a range 

of health problems (15, 16). Dogs are exposed to similar environmental risk factors for obesity as 

humans; most have limited exercise and easy access to food (17). Owner management of diet and 

exercise is important in determining obesity outcomes, as are other risk factors such as sex, 25 

gonadectomy status and age (15). Inheritance of obesity in dogs is complex and its genetic basis 

is poorly understood.  

Only one small genome wide association study (GWAS) for obesity has been performed 

in dogs and it found no significant associations (18). However, a few causative mutations have 

been identified in candidate gene studies (16). One is a large effect mutation in the pro-30 

opiomelanocortin gene (POMC p.P187fs), which is found in a quarter of pet Labrador retrievers 

and is associated with increased weight, adiposity and hunger, and lower energy expenditure (19, 

20). Those canine studies corroborated the role of different POMC derived neuropeptides for 

activation of melanocortin 4 receptor in the hypothalamus, well recognized as a critical nexus of 

energy homeostasis in humans and other species (21–23). We hypothesized that other large 35 

effect genetic variants would influence obesity in the breed. 

Labrador retrievers are particularly obesity-prone and tend to be highly food motivated 

(10, 11, 24). We studied a population of British Labrador retrievers and performed a GWAS 

which revealed multiple obesity-associated loci. We developed polygenic risk scores which 

explain previously observed obesity variation in the breed and quantify gene-environment 40 

interaction. Comparative genomics identified that canine obesity genes were also associated with 

human obesity. The gene most strongly associated in dogs was DENND1B which we studied in 

vitro to reveal it has a role in regulating MC4R signaling. 
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Results 

Phenotypic characteristics and genetic data 

We studied pet and working Labrador retrievers. Only adult dogs (age 1-10 years, mean 6 

years) were included, free of known or suspected systemic illness and not being treated with 

medications likely to affect obesity status. Body fat mass was assessed using a well validated 5 

measure of adiposity, Body Condition Score (BCS) which uses a combination of haptic and 

visual cues to assign dogs to BCS categories 1-9 according to standardized descriptors (Fig. S1). 

On this scale BCS 4-5 are considered to represent optimal body fat mass and each point increase 

equates to ~8% increase in body fat mass with BCS 8-9 generally considered obese (25–27). To 

measure food motivation and owner control of diet and exercise, we used the validated, owner-10 

reported Dog Obesity Risk Assessment questionnaire (DORA) which scores responses to a series 

of statements about dog behavior related to food in the home environment and owners’ 

management of diet and exercise (Table S1 and Supplementary Methods) (24).  

For the discovery GWAS, we studied 241 pet dogs, all of which lived with their owners 

and some of which were also used as working dogs (for example, gun-dogs). Since the amount of 15 

time ‘working’ was highly variable, we quantified activity levels using the DORA questionnaire, 

rather than by owner-reported role. Most of the dogs had undergone gonadectomy (female = 82, 

male = 75) but some were sexually intact (female = 26, male = 58). BCS ranged from 3 (slightly 

underweight) to 9 (severely overweight) with mean BCS 5.7 (SD = 1.3). Weight ranged from 17 

to 59 kg (mean = 32.7kg, SD = 7.0). Further information, including summary statistics in 20 

different sub-groups of Labradors, is presented in Table S2.  

Direct genotyping was performed on the CanineHD Genotyping BeadChip (Illumina) 

array and data were then imputed to 9.4 million single nucleotide polymorphisms (SNPs) against 

a reference panel of genomes from 676 dogs of 91 breeds, including 31 Labrador retrievers. For 

the GWAS, we retained SNPs called with 70% confidence and which were called in >95% of 25 

dogs with an allele frequency > 5% and a Hardy Weinberg equilibrium test p >0.001%. There 

were 4.5 million SNPs included in the GWAS.  

Canine GWAS for body condition score 

We performed a GWAS for BCS in 241 Labrador retriever dogs applying a linear mixed 

effects model (GCTA MLMA-LOCO). Regression modelling was used to identify factors 30 

significantly affecting BCS in the population which were then included as covariates for the 

GWAS. These included sex, neuter status, and sex:neuter status interaction term (Fig. 1) (28). 

Our stringent Bonferroni corrected significance threshold (p = 8.31x10-7) was surpassed by one 

variant within the gene DENND1B, rs24430444. A more lenient nominal significance threshold 

was determined by the point at which the observed versus expected p value diverged outside the 35 

95% confidence interval on a quantile-quantile (QQ) plot, an approach previously applied in 

canine GWAS studies (29, 30) (Fig. S2). This threshold of p = 1.54x10-5 was surpassed by a 

further 109 SNPs (Fig. 1A). Heritability of BCS in this canine cohort, measured using GCTA-

LDMS GREML analysis from GCTA, was estimated at 70% (+/-22%). 

Conditional analysis identified seven independent, non-overlapping, signals surpassing 40 

the suggestive significance threshold. Haplotype mapping and LD structure was used to define 

regions of interest ranging from 4.5 kb – 2.2 Mb long (mean = 549 kb, median = 65 kb, Table 

S3), of which five contained protein coding genes (Fig. 1B-K). Further information about lead 

SNP at each locus is detailed in the Supplementary Text. Three regions contained just one 



Submitted Manuscript: Confidential 

Template revised November 2023 

5 

 

protein coding gene (CSNK1A1, SEMA3D and CDH8). At the chromosome 6 locus there were 

two genes (SDK1, CARD11) with the lead SNP positioned within an intron of CARD11. At the 

chromosome 7 locus there were seven genes (NR5A2, PTPRC, ATP6V1G3, NEK7, LHX9, 

DENND1B, CRB1) with the lead SNP positioned within an intron of DENND1B.  We 

interrogated Labrador whole genome sequences across each locus in dogs carrying both risk and 5 

non-risk alleles to search for genetic variants which might be considered candidates for 

causation. Multiple non-coding variants were identified which are listed in Table S4; no protein 

coding mutations predicted to have a deleterious consequence were identified and the canine LD 

structure meant no single causative variant could be defined. None of the genes within these loci 

were previously well characterized as having roles in obesity, although some had 10 

epidemiological or functional data to suggest a plausible role in energy homeostasis (detailed in 

Table S5). 

Canine obesity genes are implicated in human obesity 

To test if regions and genes identified on the canine GWAS were also relevant to human 

obesity, we identified regions of the human genome that were syntenic to the regions of interest 15 

defined in dogs, and examined for BMI association with all annotated genes within those human 

regions. We hypothesized that if canine candidate genes also regulate human BMI there would 

be a statistically significant association implicating the gene in one or more of the following 

analyses: a GWAS for BMI on 806,834 participants from the GIANT study (31); an exome-wide 

association study (ExWAS) of rare (MAF < 0.1%), deleterious exome variants from 454,787 20 

individuals from the UK Biobank study (UKB) (32–34); and rare variant enrichment tests in the 

Severe Childhood Onset Obesity Project (SCOOP-UK) (35) (n = 982), specifically testing for 

enrichment of very rare (MAF < 0.0026%), predicted deleterious (CADD ≥ 25) variants 

compared to reference exomes of similar ancestry (gnomAD v2.1.1, n = 56,885) (36). 

Furthermore, we investigated the Severe Obesity in Pakistani Population (SOPP) cohort which 25 

includes patients who presented with severe, early onset obesity and in whom no monogenic 

causes of obesity were identified with exome sequencing. Since SOPP patients have normal 

weight parents and come from a highly consanguineous population, they are likely enriched for 

homozygous carriers of as yet unknown genetic causes of obesity.  

Using this approach, we identified evidence of a genetic association with human obesity 30 

for all of the five top canine loci (Fig. 2, Table S6, S7). Full details, including clinical 

descriptions of the patients identified, are included in the Supplementary Text but, in brief, 

CARD11 was associated in the GIANT GWAS for BMI; CSNK1A1 was enriched for rare, 

deleterious variants in SCOOP with variants segregating with obesity in two families; CDH8 was 

enriched for rare, deleterious variants in both SCOOP and UKB; and a proband with a rare, 35 

predicted deleterious homozygous SEMA3D mutation was identified in SOPP. Multiple 

approaches showed a human DENND1B association, as expanded below.  

DENND1B is associated with canine and human obesity  

The top canine association was within the DENND1B gene which encodes DENN 

Domain Containing 1B, a guanine nucleotide exchange factor for Rab35 that binds to the adaptor 40 

protein 2 (AP2) complex, and has a critical role in clathrin-mediated endocytosis of membrane 

proteins (37). Each allele of the intronic 7:5004016:T>C variant in dogs conferred a 0.94 

increase in BCS (Fig. 1J). This association was replicated in regression modelling of its effect in 

a large population of golden retrievers (n = 1793; n = 2229) for BCS (p = 0.029) and body 

weight (p = 0.0022).  45 
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Canine DENND1B has high homology with human (89.4%) and mouse (82.7%) 

orthologues, particularly in functionally important domains (Fig. S3). In humans, GWAS on 

806,834 participants from the GIANT study (31) showed significant association with BMI within 

the human region syntenic to the canine association signal (Table S7). The lead signal rs6702421 

(0.011 kg/m2 increase per copy of the T allele, 24% frequency, p = 9.42x10-9) is intronic to 5 

DENND1B (Fig. 2F), while the secondary signal rs1009188 (0.012 kg/m2 increase per copy of T 

allele, 71% frequency, p = 7.15x10-11) is further upstream. We used activity-by-contact (ABC) 

enhancer maps (38) to identify whether these GWAS SNP or their proxies fell within regulatory 

elements for any of their proximal genes (promoters/enhancer/etc.), restricting our investigations 

to tissues where our candidate genes were actively expressed.  10 

For the DENND1B signal, rs6702421, we found that SNPs in high LD with the signal (r2 

> 0.8) lay within two regulatory elements identified by the ABC enhancer maps. One was the 

DENND1B promoter itself as identified using the HAP1 human cell line from ENCODE. The 

other was an enhancer element active in bipolar iPSC neurons from ENCODE. Colocalization 

analyses using expression QTL data showed alleles for decreased DENND1B expression in 15 

blood also associated with decreased BMI (Table S7). This corroborates the hypothesis that the 

BMI GWAS signal and its closely correlated SNPs alter the sequence of established enhancers of 

DENND1B and consequently the expression of DENND1B.  

All of those data were integrated as part of the GWAS 2 Gene (G2G) pipeline (39),and 

further information in supplementary methods) which predicted DENND1B as the most likely 20 

causal gene at this locus and in the 96th centile of likely causal prioritized genes in the BMI 

GWAS (Table S7). Furthermore, rare damaging variants in DENND1B are nominally associated 

with BMI in UKB (p = 0.0087, β = 0.35 kg/m2, Fig. 2B, Fig. S4). 

DENND1B is co-expressed with hypothalamic receptors involved in energy 

homeostasis 25 

Since DENND1B has a role in clathrin mediated endocytosis of signaling receptors (40), 

we hypothesized that variation in DENND1B activity would affect the internalization, cell 

surface expression and/or recycling of receptors involved in energy homeostasis. We focused 

initially on MC4R, mutations in which cause human obesity (23). Canine RNAseq data from 

BarkBase (41) confirmed DENND1B is expressed in the canine brain (cortex 0.26, cerebellum 30 

0.27, and pituitary 1.01 fragments per kilobase of transcript per million read pairs, other brain 

regions not available) (Table S8).  

To look at co-expression of DENND1B and MC4R in the hypothalamus, we interrogated 

HypoMap: a unified single cell gene expression atlas of the mouse hypothalamus (42), and 

HYPOMAP: A comprehensive spatio-cellular map of the human hypothalamus (43). We found 35 

high DENND1B/Dennd1b expression in hypothalamic neuronal clusters (with lower expression 

levels in non-neuronal cell types) in all regions of the hypothalamus, including in the 

paraventricular nucleus of the hypothalamus (PVH) (Fig. 3A-C, Fig. S5, S6). In mouse, Dennd1b 

was expressed in 22.2% of all Mc4r-expressing cells (Fig. 3B, C, Table S9). In humans, 

DENND1B was expressed in 79.9% of MC4R-expressing neurons and expressed in 63.3-87.5% 40 

of cells in the 5 clusters with the highest percentages of MC4R expression (Fig. S6, Table S9, 

S10). Duplex RNAscope in situ hybridization in human hypothalamic tissue sections confirmed 

DENND1B/MC4R co-expression in neurons within the PVH. (Fig. 3D). 

In addition to MC4R we examined multiple other hypothalamic receptors with known 

roles in energy homeostasis. In both the murine (Fig. S5) and human (Fig. S6) hypothalamus, 45 
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there was co-expression of DENND1B/Dennd1b with growth hormone secretagogue receptor 

(GHSR), melanocortin 3 receptor (MC3R/Mc3r), Neuropeptide Y Receptors Y1 and Y5 

(NPY1R/Npy1r, NPY5R/Npy5r), leptin receptor (LEPR/Lepr), insulin receptor (INSR/Insr), 5-

Hydroxytryptamine Receptors 1B and 2C (HTR1B/Htr1b, HTR2C/Htr2c), and glucagon like 

peptide 1 receptor (GLP1R/Glp1r). We included GHSR in functional studies to examine 5 

DENND1B activity as its orexigenic effect contrasts with the anorexigenic effect of MC4R.  

DENND1B expression affects internalization and signaling of MC4R  

To test whether DENND1B expression affects signaling or receptor internalization of 

MC4R and GHSR, receptors were overexpressed in HEK293 cells and ligand-induced cAMP 

generation and internalization were assessed under conditions of DENND1B overexpression or 10 

DENND1B knockdown and compared to control conditions (empty vector or scrambled siRNA, 

respectively). Neither condition affected basal cell surface expression of MC4R (Fig. S7). 

However, overexpression of DENND1B increased MC4R internalization after ligand activation 

and reduced cAMP signaling (Fig. 3E, F, G). Conversely, knockdown of DENND1B reduced 

MC4R internalization and increased cAMP signaling although only at maximal ligand 15 

concentrations (Fig. 3E, H, Fig. S7).  

In contrast, altering DENDD1B expression had no effect on GHSR cell surface 

expression, cAMP signaling or internalization (Fig. S8). However, DENDD1B overexpression 

did increase signaling (reduced pEC50) by the canonical IP-1 pathway downstream of GHSR 

(Fig. 3I, Fig. S7C). 20 

A human DENND1B missense variant in a morbidly obese patient affects MC4R 

expression 

A patient with severe childhood obesity was identified in the SOPP cohort as 

homozygous for a DENND1B p.R501C (Fig. S4B). This variant is extremely rare, with only a 

single heterozygous carrier found in gnomAD (MAF = 6.7 × 10-6, Table S11). No alternative 25 

genetic diagnosis for variants in established candidate obesity genes was identified by exome 

sequencing (44, 45). The proband presented at 2.4 years of age with body weight of 32 kg (BMI 

32, BMI standard deviation score, SDS, 7.01) accompanied by hyperphagia. At 7 years of age, 

she weighed 63 kg (BMI 34.5, BMI SDS 4.72). Neurodevelopmental milestones were normal. 

Both parents were heterozygous and did not have obesity. This variant has a CADD Score of 30 

23.9 and is predicted to affect a binding motif that interacts with AP2 (Fig. 3J), a key binding 

partner of DENND1B at the initiation of endocytosis (40).  

We tested the functional effect of DENND1B p.R501C in vitro as above. It caused a 

reduction in MC4R protein abundance at the cell surface, compared with both the empty vector 

(p = 0.006) and wildtype DENND1B (p = 0.013, Fig. 3K). Additionally, it caused a reduction in 35 

cAMP response to ligand activation of MC4R compared to the empty vector although to a lesser 

extent than wildtype DENND1B (p ≤ 0.0001, Fig. S7E).  

Polygenic risk score to quantify obesity risk in dogs 

Polygenic risk scores (PRS) have not previously been applied in dogs. We constructed a 

PRS comprising 16 SNPs weighted for GWAS effect size on BCS using the ‘clumping and 40 

thresholding’ technique (Fig. S9) (46). The PRS improved prediction of BCS and body weight in 

an independent set of Labrador retrievers (Fig. 4A). When we included PRS, the model predicted 

11% of the variability in BCS compared to just 4.5% when PRS is not included (Table S12).  
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We applied the PRS to determine its utility in other breeds, to test whether it explained 

known obesity risk factors in the breed and to examine how genetic risk interacted with dogs’ 

environmental exposure to food and exercise (Fig. 4B-F and Supplementary Text). The Labrador 

PRS retained a small but significant predictive value for BCS and body weight in a closely 

related breed, the golden retriever (p = 0.0078, β = 0.0041, n = 1765), in which adding PRS to 5 

the model predicted 7.4% of the variability in BCS compared to 7.1% when it was not included. 

PRS was not predictive in more distantly related breeds (Supplementary Text, Fig. 4A, Table 

S13). We also observed that in dogs with high polygenic risk, stricter owner control of diet and 

exercise significantly reduced BCS (p = 0.0077) but that it had no statistically significant impact 

on BCS in dogs with low polygenic risk (Fig. 4E).  10 

 

Discussion  

A canine GWAS for body condition score in Labrador retrievers identified multiple genes 

associated with human obesity. The genes have previously not been well studied for their effect 

on energy homeostasis because the association has not been reported or their effect size in 15 

humans is small. In dogs, large effect sizes provide orthogonal evidence these genes can strongly 

influence energy homeostasis and are worthy of more in-depth study.  

The lead canine GWAS signal was at DENND1B for which we identified a role in the 

regulation of hypothalamic melanocortin signaling. Human genomics revealed significant 

associations between DENND1B and BMI using both common (GWAS) and rare variant 20 

(ExWAS) approaches. Furthermore, we studied the molecular consequences of a mutation 

implicated in causing severe, early onset obesity in a single homozygous proband. In dogs, we 

generated a common variant PRS which provided multiple insights into known within-breed 

differences in obesity susceptibility, as well as evidence of gene-environment interaction in the 

regulation of body fat mass.    25 

DENND1B variants were associated with obesity in both dogs and humans. Previously, 

this gene has been implicated in the pathogenesis of childhood asthma and other immune 

disorders by modifying T cell receptor function (47). Based on its previously characterized role 

in clathrin-mediated endocytosis (48), we hypothesized that DENND1B may regulate the 

trafficking and consequently the signaling of MC4R and GHSR.  30 

Our data show DENND1B promotes MC4R internalization and reduces cAMP mediated 

anorexigenic signaling downstream of the receptor, suggesting that DENND1B can regulate 

MC4R trafficking and signaling, with the proposed mechanism summarized in Fig. S10. This 

finding is consistent with the human genetic evidence that the protective allele at the DENND1B 

locus is associated with reduced expression of the gene. Since even minor alterations in MC4R 35 

activation have been shown to have a clinically observable effect, this would be consistent with 

altering obesity risk (49, 50). Functionally deleterious mutations in two other regulators of 

MC4R signaling cause human obesity, the chaperone protein MRAP2 and transcription factor 

SIM1 (51, 52).  

DENND1B also caused increased IP-1 signaling by the orexigenic receptor GHSR. This 40 

remains consistent with the human genetic findings. The finding is reminiscent of how other 

regulatory proteins, notably MRAP2, regulate the signaling and trafficking of multiple G protein-

coupled receptors (GPCRs) (53) and may suggest a role for DENND1B in orchestrating a wider 

repertoire of responses in energy homeostasis.  
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In a single morbidly obese human patient, we identified a deleterious homozygous 

DENND1B missense variant. Overexpression of the variant reduced cell surface expression of 

MC4R as compared with wild type DENND1B, consistent with previous findings that most 

obesity-associated MC4R mutations reduce cell surface expression (49). The variant caused a 

lesser reduction in cAMP accumulation after ligand activation of MC4R compared to wild type 5 

DENND1B. This suggests that, in common with ~25% of obesity-associated MC4R mutations, it 

may not cause obesity by impairing the canonical Gs-cAMP pathway. Instead, such MC4R 

mutations can impact receptor homodimerization, recycling or alternative signaling pathways 

(for example, ERK1/2 phosphorylation). This DENND1B variant may have similar complex 

effects, or effects on other GPCRs which warrant further investigation.   10 

Our work advances the understanding of the genetics of obesity in dogs. The PRS 

provided a meaningful increase in predictive value of BCS in Labradors over conventional risk 

factors (6-7%), which was comparable to the predictive value of polygenic scores developed 

specifically for human BMI (54–56). Its utility was shown to be restricted to the discovery breed, 

which is expected given that LD structure varies across breeds (57). Even so, it is important to 15 

highlight this at a time when canine disease prediction is increasingly desired and discussed in 

veterinary medicine.  

Notably, the POMC p.P187fs variant was not statistically significantly associated with 

BCS in the GWAS. This may be due to variant stratification within the population (it is more 

common in assistance dogs which were not included in the discovery GWAS but were included 20 

in the original research reports of this mutation), low allele frequency (MAF 0.14), modest effect 

size, and variable penetrance in the study dogs, illustrating the complex genetic architecture of 

canine obesity. 

We showed stratification of genetic risk exists even within the breed, with previously 

recognized risk factors - chocolate coat color and being purpose bred for assistance work – being 25 

associated with higher polygenic risk which was reflected by varying degrees of genetic 

stratification. The high polygenic risk in the genetically distinct assistance dog population of 

Labradors is reminiscent of the high frequency of the POMC p.P187fs variant in the same cohort 

(19). This may be due to genetic drift but raises the possibility of inadvertent selection for 

obesity-promoting genetic variants in this population, perhaps because dogs with a high food 30 

drive are easier to train using food to positively reinforce desirable behavior, meaning they are 

more likely to be selected for breeding future generations of assistance dogs. 

Polygenic risk was shown to be mediated in part via eating behavior in dogs, as in other 

species, measured as food motivation score using a validated questionnaire (24). This means 

dogs with higher polygenic risk were more likely to seek out food in the home environment, to 35 

‘beg’ for food, and to eat any food on offer. Labradors with low polygenic risk tended to remain 

normal weight irrespective of owner control of diet and exercise, but high-risk dogs were prone 

to developing obesity if dog activity was limited and owners were permissive with food (for 

instance, by offering human food or not restraining their dogs’ intake by limiting the food 

available). These canine data provide a compelling illustration of gene-environment interaction 40 

and supports data from human populations that show individuals with high appetite are 

particularly vulnerable to developing obesity in an permissive environment and so need to 

exercise greater cognitive restraint to maintain a healthy body weight (58, 59).   

We have identified obesity-related genes in humans by studying the canine model, with 

findings relevant to preventative and therapeutic interventions in both species. The discovery of 45 
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DENND1B as a regulator of MC4R activity informs our understanding of melanocortin 

signaling, a critical pathway in hypothalamic regulation of energy homeostasis. Importantly, our 

findings show that even high polygenic risk can be mitigated. These findings demonstrate the 

benefits of studying complex disease in non-traditional animal models such as the dog and have 

practical implications for improved management of canine obesity. 5 

Materials and methods summary  

 The materials and methods are summarized here, and further detail is found in the 

supplementary materials document. 

Canine and human research was approved by the relevant local ethical review committees 

and the appropriate consent obtained. We studied pet and working adult Labrador retriever dogs 10 

(age 1-10 years), free of systemic illness, not being treated with medications likely to affect 

obesity status, and which lived with their owners. Body fat mass was assessed using a well 

validated measure of adiposity, Body Condition Score (BCS) which uses visual and haptic 

descriptors to score dogs from 1-9 where 4-5 represents optimal body fat mass and 8-9 is 

considered obese (Fig. S1) (25–27). Food motivation and owner control of diet and exercise was 15 

determined using the validated, owner-reported Dog Obesity Risk Assessment questionnaire 

(DORA) which scores responses to a series of statements about dog behavior related to food, and 

owners’ management of their dog’s diet, and dogs’ activity levels (Table S1 and Supplementary 

Methods) (24). Canine DNA samples were extracted from saliva collected using oral swabs 

(Performagene, DNA Genotek) or from residual EDTA blood samples left over after veterinary 20 

investigation (Qiagen, UK). Direct genotyping was performed on the CanineHD Genotyping 

BeadChip (Illumina) array and data were imputed to 9.4 million single nucleotide 

polymorphisms (SNPs) against a reference panel of genomes from 676 dogs of 91 breeds, 

including 31 Labrador retrievers.  

We performed a GWAS for BCS in 241 Labrador retriever dogs using the 4.5 million 25 

SNPs retained after data quality control. To identify factors significantly affecting BCS in the 

study population we performed regression modelling, using Akaike’s Information Criterion to 

identify the minimal model. Significant factors in the regression (sex, neuter status and a 

sex:neuter interaction term) were included as covariates in the GWAS which applied a linear 

mixed effects model (GCTA MLMA-LOCO) to identify variants associated with BCS (60). A 30 

stringent, conservative significance threshold (p = 8.31x10-7) was determined by Bonferroni 

correction, using the number of independent SNP in the analysis (determined by LD pruning of 

the data set using a cut-off of r2 < 0.7 in PLINK v.1.9) (61). A more lenient nominal significance 

threshold was determined (p = 1.54x10-4.81) by the point at which the observed versus expected p 

value diverged outside the 95% confidence interval on a quantile-quantile (QQ) plot, an 35 

approach previously applied in canine GWAS studies (29, 30). Heritability of BCS was 

estimated using GCTA-LDMS GREML (60, 62, 63). Stepwise conditional analysis was 

performed to identify independent signals followed by haplotype mapping and LD structure (r2 ≥ 

0.8 with the lead SNP) analysis to define regions of interest PLINK v.1.9 (61). Each locus was 

interrogated in whole genome sequences from Labrador dogs carrying both risk and non-risk 40 

alleles to search for genetic variants which might be candidates for causation.  

 Canine polygenic risk scores (PRS) were constructed using GWAS SNP weighted 

by effect size on BCS, using the ‘clumping and thresholding’ technique to include only 

independent variants from loci most strongly associated with BCS (Fig. S9) (46). A secondary 

test set of Labrador retrievers was genotyped by low-pass sequencing with imputation using 45 

skimSEEK™ technology (Neogen Europe Ltd). We tested whether PRS was a predictor of BCS, 

weight or food motivation in the test set of Labradors and dogs of other breeds (flat-coated 
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retrievers, pugs and golden retrievers), and if it was associated with known obesity risk factors 

(coat color, assistance dog status). To examine how genetic risk interacted with environmental 

exposure to food and exercise, we modelled the predictive effect of owner control of diet and 

exercise (measured using the DORA questionnaire) on BCS for dogs of contrasting PRS.  

To determine whether loci and genes identified on the canine GWAS were also relevant 5 

to human obesity, we identified human genome loci syntenic to the regions of interest defined in 

dogs. To test whether genes in those regions were associated with human obesity, we examined 

whether there was a statistically significant association with BMI in both large population based 

studies and in cohorts of patients with severe, early onset obesity. We interrogated data from a 

human GWAS for BMI in 806,834 participants from the GIANT study (31) and used the GWAS 10 

2 Gene (G2G) pipeline (39) to identify independent GWAS signals and predict causal genes for 

human GWAS associations at each locus. Additionally, in 454,787 individuals from the UK 

Biobank study (UKB) (32–34), we performed an ExWAS study, implementing BOLT-LMM 

v2.3.551(64) and using a set of dummy genotypes representing the per-gene carrier status for 

rare (MAF < 0.1%), deleterious exome variants.  15 

Focusing on patients with severe, early onset obesity, we first analyzed data from the 

Severe Childhood Onset Obesity Project (SCOOP) (n = 982), a subset of the Genetics of Obesity 

Study (GOOS) consisting of patients who presented with severe obesity in childhood, all of UK 

British origin (35). Specifically, we tested for enrichment of very rare (MAF < 0.0026%), 

predicted deleterious (CADD ≥ 25) variants compared to reference exomes of similar ancestry 20 

(gnomAD v2.1.1, n = 56,885 (36). We also investigated the Severe Obesity in Pakistani 

Population (SOPP) which is comprised of individuals for which selection criteria include having 

a BMI >35 or BMI SDS (standard deviation score/Z score compared to WHO global reference 

data (65, 66) for age) >3.5; onset of obesity prior to 5 years of age; pronounced hyperphagia; and 

having parents with either first- or second-degree consanguinity who are of normal weight or 25 

overweight (explicitly excluding parental obesity). We hypothesized that affected probands 

would be homozygous for deleterious variants in the canine genes of interest. Where variants 

were identified, we examined their frequency in ancestry diverse public comparator populations 

including gnomAD v.2.1.1, NCBI (67), TopMED (68), and NIH ClinVar (69). 

We examined the expression of genes of interest by analyzing canine RNAseq data from 30 

BarkBase (41). To test their expression in brain regions important in energy homeostasis and to 

find out if they were co-expressed receptors involved in neuroendocrine control of body weight, 

we interrogated data from HypoMap: a unified single cell gene expression atlas of the mouse 

hypothalamus (42), and HYPOMAP: A comprehensive spatio-cellular map of the human 

hypothalamus (43). RNAscope in situ hybridization in human hypothalamic tissue sections was 35 

performed as previously described (70) to confirm co-expression of DENND1B, with MC4R. 

To test the effect of DENND1B on the function of hypothalamic receptors, we performed 

molecular experiments in HEK293 cells, cultured as previously described (71). Specifically we 

tested MC4R, mutations in which cause obesity, and GHSR, a contrasting orexigenic receptor 

(23). Briefly, SNAP-tagged receptors (MC4R and GHSR) were transiently transfected using 40 

Lipofectamine 2000 (LifeTechnologies) in combination with DENND1B overexpression (WT or 

DENND1B p.R501C) or knockdown (siRNA). After forty-eight hours, endogenous surface 

expression of SNAP-647 (NEB) labelled receptor was determined by co-localization (JACoP) 

(72) with co-expressed Venus-Kras using live HILO microscopy. Subsequently, receptor 

translocation away from the membrane was measured after ligand activation using the same 45 

technique. Receptor surface expression was compared using a one-way ANOVA and receptor 

internalization using a Mann-Whitney test. Ligand-induced cAMP generation was assessed using 

the cAMP GloSensor assay (Promega) after co-expression with pGloSensor-22F. Ligand-
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induced GHSR canonical signaling was measured using the Cisbio IP-One Gq HTRF kit 

(Revvity, Codolet, France). For MC4R assays, α-MSH (Bachem AG) was added (100 μM – 10 

nM). For GHSR assays, high affinity agonist MK-0677 (Tocris, Abingdon, UK) was added 

(10μM - 10nM). For all concentration-response curve assays, pEC50 values from independent 

experiments were grouped, normalized and compared by one-way ANOVA. 5 
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Fig. 1: GWAS in Labrador retrievers identifies multiple obesity genes. (A) Manhattan plot 

for GWAS for body condition score (BCS) in Labrador retrievers (n = 241).  Suggestive 

significance shown with open dashes, Bonferroni-corrected significance p < 8.31x10-7 shown 

with closed dashes. Five independent loci which harbored protein coding genes are labelled with 

the most proximal protein coding genes (lead SNP at 4:59436382, 5:86342278, 6:14281260, 5 

7:5004016, 18:24294624). Regional Manhattan plots shown for (B) Chr. 4, (C) Chr. 5, (D) Chr. 

6, (E) Chr. 7, (F) Chr. 18 are colored by r2 measure of linkage disequilibrium. For chromosomes 

4 and 18, the plot extends +/-250kb of the lead SNP and the funnel indicates the boundaries of 

the mapped haplotype. For other regions, plots extend +/-1Mb and genes in the funnel are those 

lying +/-250kb of the lead SNP. The lead SNP for each locus is indicated by a diamond, with 10 

genes within the region annotated below. Similarity with human genome is indicated by a 

LASTZ pairwise alignment with GRCh38 shown as the pink track. Variants identified from 

WGS as segregating with the lead SNP ≥70% of the time are aligned in black below. Partial 

regression violin plots showing relationship between BCS and lead variant genotype detail large 

effect sizes at each locus on (G) Chr. 4, (H) Chr. 5, (I) Chr. 6, (J) Chr. 7, (K) Chr. 18. Chr., 15 

Chromosome. 
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Fig. 2: Canine obesity-associated genes are also associated with human obesity. (A) 

CSNK1A1 and CDH8 are enriched for rare, deleterious (gnomAD minor allele count ≤ 3, CADD 

≥ 25) variants in the SCOOP cohort of 982 children with severe, early onset obesity compared to 

56,885 controls from gnomAD (one sided Fisher’s exact test). (B) ExWAS analysis on exome 

sequences of ~500k individuals in UK Biobank showed rare protein truncating variants in CDH8 5 

were associated with BMI and damaging (protein truncating and high CADD) variants in 

DENND1B were nominally associated with BMI (Fig. S3). (C) Genotype segregated with obesity 

phenotype in pedigrees from families of probands with severe, early onset obesity for two severe, 

deleterious variants in CSNK1A1 identified in SCOOP and DENND1B p.R501C identified in 

SOPP (Fig. S3). (D) Lollipop plot shows protein truncating variants in CDH8 were associated 10 

with increased BMI in the UKB ExWAS. Regional Manhattan plots for (E) CARD11 and (F) 

DENND1B show that in a GWAS of ~800k individuals there were associations with BMI at two 

human loci orthologous to canine GWAS loci, at which these were called as the likely effector 

genes using the GWAS2Gene pipeline. Significance: p < 0.00023, ‘*’; nominal p < 0.05, ‘•’; no 

variants, -. PTV - protein truncating variants; HC – high confidence; MAF – minor allele 15 

frequency; SCOOP - Severe Childhood Onset Obesity Project. 
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Fig. 3: DENND1B is co-expressed with MC4R and regulates its signaling. (A) UMAP plots 

showing log-normalized expression of (A) Dennd1b in murine hypothalamus and (B) Mc4r in 

the subset of Dennd1b positive neurons, highlighting co-expression. (C) Dennd1b positive 

neurons colored by hypothalamic region. (D) Coronal section of human hypothalamus stained 5 

for MC4R (red) and DENND1B (green) showing dual positive neurons within PVH. (E) 

DENND1B overexpression (blue) enhances ligand-stimulated MC4R internalization, while 

DENND1B siRNA knockdown (pink) reduces it. (F) HILO images of HEK293 expressing 
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MC4R and plasma membrane marker Kras showing colocalization at baseline and increased 

MC4R internalization on ligand stimulation with DENND1B overexpression. Scale 5m. 
Ligand-induced Gs cAMP response downstream of MC4R in HEK293 cells is (G) reduced by 

DENND1B overexpression and (H) increased at maximal concentrations by DENND1B 

knockdown. (I) Overexpressing DENND1B causes increased signaling in the canonical IP-1 5 

pathway downstream of GHSR. (J) DENND1B contains both the normal DENN protein AP-2α 

ear-binding motif (FxDxF) and an AP-2β2 ear-binding motif whose sequence is shown with 

DENND1B p.R501C highlighted. (K) Cell surface expression of MC4R during expression of 

DENND1B wild type, p.R501C, and empty vector. Significance: p≤0.05 ‘*’, p≤0.01 ‘**’, 

p≤0.0001 ‘****’. MBH, mediobasal hypothalamus; 3V, third ventricle; PVH, Paraventricular 10 

hypothalamic nucleus. Figure 3J created using BioRender.com. 
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Fig. 4: Polygenic risk scores (PRS) predict obesity and provide insight into complex trait 

expression. A PRS was constructed comprising 16 SNPs weighted for GWAS effect size. (A) 

The PRS predicted BCS and weight in independent populations of Labrador retrievers. In golden 

retrievers, the PRS constructed in Labradors predicted BCS and weight, albeit less strongly. In 

more distantly related breeds, flat-coated retrievers and pugs, the PRS had no predictive value. 5 

Known risk factors for obesity in the Labrador population were explained by differences in PRS, 

with (B) higher PRS in obesity-prone assistance dogs and (C) chocolate-colored Labradors. (D) 

The PRS predicted food motivation score in Labrador retrievers (n = 298). (E) Gene-

environment interaction: dogs with low PRS were resistant to obesity irrespective of owner 

control of diet and exercise, but management of dogs with high PRS does significantly affect 10 

obesity outcome (significant in regression model, p = 0.0077).  (F) Prevalence of high PRS dogs 

increased with obesity category (healthy BCS < 6/9; overweight BCS 6-7/9; very overweight 

BCS >7/9) and there were no low-risk dogs in the extremely overweight group (PRS grouped by 

tertiles). Significance levels: p ≤ 0.05 ‘*’, p ≤ 0.01 ‘**’, p ≤ 0.001 ‘***’, p ≤ 0.0001 ‘****’. 
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Materials and Methods 

Ethics statement: Dogs 

The research was approved by the Ethical Review Committee of the Department of 

Veterinary Medicine, University of Cambridge (CR73 and CR125), with sample collection at 

other centers also approved by local ethical review committees: Animal Health Trust Research 

Ethics Committee, and the University of Liverpool Research Ethics Committee (RETH000353). 

All dog owners gave full written consent to participate in the research.  

 

Ethics statement: Humans 

Data from the UK Biobank were accessed under application 9905. The Genetics of 

Obesity Study (GOOS) work was approved by the Multi-Regional Ethics Committee and the 

Cambridge Local Research Ethics Committee (MREC 97/21 and REC number 03/103). Each 

subject (or their parent for those under 16 years) provided written informed consent; minors 

provided oral consent. An anonymized human hypothalamic tissue sample was provided by the 

Cambridge Brain Bank for RNAscope analysis. Subjects were approached in life for written 

consent for brain banking, and all tissue donations were collected and stored following legal and 

ethical guidelines (NHS reference number 20/EE/0283). All studies were conducted in 

accordance with the Declaration of Helsinki. 

 

Labrador retriever data collection 

Labrador retriever owners were recruited by disseminating invitations to participate 

through veterinary practices, social media platforms, and emails to owners of relevant breeds via 

the Kennel Club, between 2013 - 2020. Additional dogs were pets which attended a specialist 

weight management clinic at the University of Liverpool School of Veterinary Science (n = 18). 

A population of Labrador retriever assistance dogs were also obtained through collaboration with 

Guide Dogs UK. Some recruitment targeted owners to volunteer if they had healthy weight or 

particularly overweight dogs making it unsuitable for estimating obesity prevalence. 

Demographic data were collected including breed, sex, neuter status, age, and coat color. Full 

clinical veterinary histories were also obtained and assessed by a trained veterinary professional. 

 

Labrador retrievers were included if they met previously described criteria (28), outlined 

briefly here. Dogs were included if they had complete information on sex, neuter status, age and 

BCS. Clinically trained researchers reviewed their medical histories and excluded dogs affected 

by systemic disease, chronic orthopedic disease or on long-term medications known to cause 

weight gain or loss, such as corticosteroids and anti-seizure medication. Only Labrador retrievers 

over one year of age (at time of sampling) were included to avoid confounding by early life 

fluctuations in fat mass. Dogs with BCS <3 were also removed since this level of underweight 

may indicate poor underlying health. The final study population comprised 521 pet and 70 

assistance Labrador retrievers. 

 

Obesity was measured using the Body Condition Score (BCS), a validated measure of 

canine adiposity, measured using a 9-point BCS (25–27). Dogs are assigned to one of the body 

condition score categories according to how they match a set of descriptors and images and using 

a combination of visual and haptic assessment. The BCS chart used is shown in Fig. S1. Body 

weight was measured and BCS assigned by veterinary professionals who were provided with 

specific instructions about how to perform the assessment.  
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We used the Dog Obesity Risk and Appetite questionnaire to measure dogs’ food 

motivation and owner control of food and exercise in the home environment. This validated, 

owner reported measure (24) contains 31 items which are used to obtain an ‘owner control score’ 

(combining factor scores on ‘owner intervention’, ‘restriction of human food’ and ‘exercise’) and 

food motivation score (combining factor scores on ‘Interest in food’, ‘lack of fussiness’ and 

‘Responsiveness and satiety’). Each statement is on a Likert scale scored numerically as 1-4 

(‘Not at all true’ = 1, ‘Somewhat true’ = 2, ‘Mainly true’ = 3, ‘Definitely true’ = 4) or 1-5 

(‘Never’ = 1, ‘Rarely’ = 2, ‘Sometimes’ = 3, ‘Often’ = 4, ‘Always’ = 5). Before factor 

calculation, some statements’ scores are reversed. For example, for a statement like ‘my dog 

would eat anything’, stronger agreement indicates a high food motivation score but for the 

statement ‘my dog takes his/her time to eat a meal’, stronger agreement indicates lower food-

motivation and so the scores are reversed. The mean response to items within each category is 

calculated and results reported as a percentage of the total maximum score. See Table S1 for 

details of DORA Questionnaire scoring items contributing to owner control and food motivation 

scores. 

 

DNA sampling 

The majority of the canine DNA samples were extracted from saliva collected using 

Performagene (PG-100) oral sponge swab kits (DNA Genotek).  DNA was isolated according to 

the manufacturer’s instructions using the Performagene PG-AC purification protocol (DNA 

Genotek). In dogs seen for clinical treatment, residual EDTA blood samples were stored at -20oC 

until shipping for analysis, and extracted using the DNeasy Blood & Tissue Kit (Qiagen, UK, 

Cat. No. 69504) according to the manufacturer’s instructions. 

 

Genotyping and imputation overview  

Genome-level imputed data aligned to the CanFam3.1 reference assembly 

(GCA_000002285.2) were generated for the Labrador retrievers through one of two routes. The 

primary Labrador genetic dataset used for GWAS was generated via Route 1 (array genotyping 

followed by imputation) and the secondary or ‘test’ dataset used for polygenic risk score 

replication used a combination of Route 1 and Route 2 (low pass sequencing and imputation). 

 

Array genotyping with imputation (route 1) 

For 391 Labrador retriever participants DNA samples were genotyped using the 220k 

Canine HD BeadChip single nucleotide polymorphisms (SNPs) array (Illumina, San Diego, CA, 

USA). Post-QC genotypic data were imputed to genome level using an in-house pipeline which 

was made up of three wrapper scripts: generating an imputation reference panel, preparing the 

genotypic data (to be used for the GWAS) and the imputation process itself. The GitHub pipeline 

can be accessed via Zenodo (74). It was developed to run on the University of Cambridge High 

Performance Computing (HPC) system, with a SLURM workload manager so is not directly 

transferable but all the programs used within the pipeline are freely available to download and 

run. 

 

Quality control for array genotypes was implemented using PLINK v.1.9. (61). SNPs 

residing on X and Y chromosomes were removed. Subsequent filters excluded markers with 

>3% genotype calls missing (--geno 0.03), individuals with >10% genotype calls missing (--
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mind 0.1) and markers with minor allele frequency (MAF) <1% in the population (--maf 0.01). 

Ambiguous SNPs (A/T or C/G) were removed to limit strand and minor-allele confusion. 

Variants with extreme deviation from Hardy Weinberg equilibrium (HWE) were also removed (-

-hwe 0.00005). This data were also phased using SHAPEIT v2.r904 (75)  using eight threads (-T 

8) a window size of 2MB (--window 2) and effective population size of 200 (--effective-size 

200). 

 

To create a canine imputation reference panel, publicly available datasets were 

supplemented with additional genome sequence from Labrador retrievers generated locally all of 

which were aligned to CanFam3.1 genome build. Variant Call Format (VCF) files from a 

multibreed dataset were used to form most of the panel as described previously (76). The final 

imputation panel represented 676 individuals of 91 breeds, including 31 Labrador retrievers 

(BioProject accession PRJNA648123 and PRJNA726547). The panel was enriched with whole 

genome sequence from 7 Labradors extracted from the European Nucleotide Archive (ENA 

https://www.ebi.ac.uk/ena/ accession codes SRR7120183, SRR13340562, SRR13340566, 

SRR13340565, SRR13340564, SRR13340563, SRR13340570) and 5 from in-house WGS data 

(BioSample IDs SAMEA115942716, SAMEA115942718, SAMEA115942720, 

SAMEA115942723, SAMEA115942717, SAMEA115942719, SAMEA115942721, 

SAMEA115942722).  

 

The reference panel was built using a combination of BEDtools v.2.20.1 (77), BCFtools 

v.1.9 (78), and PLINK v.1.9 (61). VCF files were filtered to include only variants with quality > 

20 (QUAL > 20, equating to 99% probability) and duplicate SNPs were removed. All datasets 

were merged and matched for REF/ALT alleles; ambiguous SNPs (A/T, G/C) were removed 

from the panel. Variants which had missing data in one or two of the datasets were called as 

reference using the BCFtools v.1.9 (78) commands --force-samples --missing-to-ref. Only SNP 

variants with a read depth of >10 were used in the panel; other variant types were removed to 

improve imputation efficiency. The merged panel underwent PLINK QC excluding markers with 

>3% genotype calls missing (--geno 0.03), individuals with >10% genotype calls missing (--

mind 0.1) and markers with minor allele frequency (MAF) <1% in the population (--maf 0.01). 

Prior to imputation, the panel was phased using SHAPEIT v2.r904 (75) using 20 threads (-T 20), 

a window size of 2MB (--window 2) and effective population size of 200 (--effective-size 200). 

 

We used package IMPUTE2 v2 (79) for imputation of the genotypic data described 

above. A genomic interval was assigned from length 1 to max length of chromosome using the -

int command. Effective population size was set at 200, using command -Ne 200. Analysis of 

regions over 7Mb was permitted using the -allow_large_regions command.  

 

Following imputation, data were converted from dosage genotypes (probabilistic) to 

discrete allele calls (0/1/2) for each SNP. Although this conversion may lead to loss of 

information for more rare variants, it improves the power for the GWAS and allows for easier 

interpretation of data downstream. As IMPUTE2 generates an imputation certainty per SNP, we 

were able to filter the SNPs for those with a high imputation certainty of ≥ 0.7 (where certainty 

typically ranges from 0-1). We converted the data to PLINK format and performed QC 

excluding markers with >5% genotype calls missing (--geno 0.05), individuals with >5% 

https://www.ebi.ac.uk/ena/
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genotype calls missing (--mind 0.05) and markers with minor allele frequency (MAF) <5% in the 

population (--maf 0.05). 

 

SkimSEEKTM genotyping (route 2) 

Low-pass sequencing with imputation was performed using skimSEEK™ technology 

(Canine skimSEEK v2.0, Neogen Europe Ltd). The imputation panel consisted of the same 676 

dogs representing 91 breeds and 53 million variants that formed the majority of our in house 

imputation panel. Imputation was based on an underlying statistical model described previously 

on the basis of the ‘effective coverage’ model, described in the first report of this method (80) 

and validated elsewhere (81). Variants of interest for further study could then be extracted from 

this dataset as appropriate. This method was used for 150 Labrador retriever dogs included in the 

secondary or ‘test’ data set. 

 

Genotyping of the POMC deletion 

Dogs were genotyped for a POMC variant of interest - frameshift mutation 

(17:19431807-19431821:GCGCCGGCCCGGGA>-, p.P187fs) (19) using custom TaqMan™ 

assays (ThermoFisher Scientific, UK). Custom-designed primers and probes were generated 

(Forward primer AGGCCTTCCCCGTCGAGTTC; Reverse primer 

TACTCCAGGTCGGCCAGCG; Wild-type probe AGGGCCCGGCCGCG with VIC 

fluorophore and MGB quencher; Deletion probe TCGGCCCCGGGCGT with FAM fluorophore 

and MGB quencher). For the genotyping reaction, the TaqMan gene expression master mix 

(ThermoFisher CAT#4369016, UK) was used, with the addition of 3% DMSO (ThermoFisher 

CAT #D12345). Primers were used at a concentration of 0.4μM, probes at 0.1μM, and genomic 

DNA at 0.4ng/μl. The thermocycling process was performed on an Applied Biosystems 

(Cat#4329001) 7900HT Fast Real-Time PCR System, following this profile: an initial step of 2 

minutes at 50°C, followed by 10 minutes at 95°C, and then 40 cycles consisting of 15 seconds at 

95°C and 1 minute and 30 seconds at 65°C. For analysis purposes, a cycle threshold (Ct) of 0.04 

was set for the wild-type probe, and a Ct of 0.09 was set for the deletion probe, to account for the 

different lengths of the DNA fragments being amplified. If the difference between the Ct values 

obtained from the two probes was greater than 0.5, the genotype was confirmed through agarose 

gel separation. 

 

Data from other dog breeds 

Golden retriever data were obtained from the Morris Animal Foundation (Denver, 

Colorado, USA) having been generated as part of the Golden Retriever Lifetime Study (GRLS) 

(82). Golden retrievers were genotyped on the 1.1 million SNP Axiom Canine Genotyping Array 

Set A (ThermoFisher Scientific, Massachusetts, US). A population of pugs and flat-coated 

retrievers were recruited and phenotyped as described for the Labrador retrievers. Pugs were 

genotyped for >170k markers using the Canine HD BeadChip SNP array (Illumina, San Diego, 

CA, USA) and imputed in-house using the methods described for Labradors above with the 

modification that the imputation panel was enriched with pug whole genomes instead of 

Labradors.  

 

Flat-coated retrievers were genotyped for specific variants of interest using Matrix-

associated laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) 

assay. Assay development and genotyping was performed at Neogen Genomics (Lincoln, 
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Nebraska, USA), employing the MassARRAY platform along with iPLEX GOLD chemistry in 

accordance with the manufacturer's protocol from Agena Bioscience (San Diego, California, 

USA). To design multiplex assays, the Agena Design Suite software provided by the 

manufacturer was used. A total of 24 markers of interest were split into two separate ‘plex’ pools 

of 12 and 11 markers each. The two multiplex assays were run on customer supplied genomic 

DNA, data generated, and quality check metrics applied, following which the final genotype 

calls were obtained. 

 

Demographic data (sex, age, neuter status, breed, et cetera) and obesity-related 

phenotypic information were gathered for these additional populations. Obesity-related 

phenotypes for all datasets were measured by veterinary professionals or trained academic 

researchers. Phenotypic data underwent QC steps similar to that described above for Labradors 

(28). Dogs were removed if their age was <1 or >14 years old and if their BCS ≤3. Only 

individuals with complete information on relevant demographic data and BCS were included. 

 

Genome wide association study (GWAS) 

For the primary GWAS for BCS, inclusion criteria were more rigorous to ensure only 

dogs with the most robust phenotype data were included. Labradors were included only if they 

were 1-10 years old (to eliminate old age as a confounding variable); pets (due to difference in 

assistance dog environment and genetic divergence); had comprehensive medical histories; and 

their owners had not answered positively the question ‘My dog regularly sees the vet for health 

problems (not including check-ups/vaccinations)’ in the DORA questionnaire. Additionally, only 

dogs who underwent direct genotyping followed by in-house imputation were included to avoid 

batch effects on genotypic data. The final GWAS cohort comprised 241 Labradors. The 

remaining pet and assistance Labradors were used as a replication cohort for polygenic risk score 

development. 

 

Dogs were assessed for pairwise relatedness using Identity by Descent (IBD) pi-hat 

estimates generated by PLINK v.1.9 (61) --genome command. Where estimated pi-hat ≥ 0.5 

indicated 1st degree relative (parent/sibling), one of such a pair of dogs was removed. Using 

Genome-wide Efficient Mixed Model Analysis (GEMMA) software v0.98.1 (83), we then 

generated a relatedness matrix which was transformed to a distance matrix using R v.4.2.2 (62). 

Multidimensional scaling (MDS) was used to visualize any clustering of individuals. If distinct 

clustering was observed, indicating population stratification, only one cluster was taken forward. 

 

Regression modelling was used to determine population-specific covariates relevant to 

BCS in the GWAS dogs. Using Akaike's Information Criterion (AIC), a stepwise model 

selection method, we performed minimal model selection for BCS. In the initial model, we 

included relevant risk factors based on prior knowledge, along with interactions. These risk 

factors comprised: sex, neuter status, sex:neuter status interaction term, age:sex interaction term, 

and age:neuter status interaction term. After implementing AIC, the minimal linear model for 

BCS was: BCS ~ sex*neuter status. Three covariates were therefore used for subsequent 

analyses in this cohort: sex, neuter status and sex:neuter status interaction term. 

 

Using Genome-wide Complex Trait Analysis (GCTA) v.1.93.2 (60), we performed  

genome-based restricted maximum likelihood ratio (GREML) analysis (GREML_LDMS), 
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stratified by linkage disequilibrium (LD) and minor allele frequency (MAF). This is a method to 

estimate heritability and generates a multi-genetic relatedness matrix (multi-GRM) for imputed 

data or whole genome sequenced (WGS) data. This method is more suitable for imputed data 

compared with a standard GRM, as it corrects for the LD bias in the estimated SNP-based 

heritability (63). First, segment-based LD score was calculated using an LD-score region (--ld-

score-region) of 200 kilobases (kb) and overlap of 100kb between adjacent segments. Second, 

individual SNPs were stratified by segment-based LD scores in R v.4.2.2 (62). Third, multiple 

GRMs were generated on the stratified SNPs using GCTA v.1.93.2 (60) command --make-grm. 

These GRMs, along with the covariates, were used via --mgrm and --covar to perform restricted 

maximum likelihood (REML) analysis with --reml to get an estimate for heritability. 

 

The GWAS analysis used a mixed linear model association (MLMA) analysis from 

GCTA v.1.93.2 (60), implementing the –-mlma-loco option. This MLMA analysis excludes the 

chromosome on which the individual SNP is located when calculating the GRM. The multi-

GRM generated during the GREML_LDMS analysis was used as a random effect in the GWAS 

model using the –mgrm command, as were the identified covariates using the –covar option. 

 

For the threshold(s) of genome-wide significance we used a stringent Bonferroni 

corrected threshold of p = 8.31x10-7. Bonferroni correction was performed on LD-pruned data 

using 1000bp window size, 2 bp step size and variance inflation factor (VIF) of 3.33˙. VIF 

threshold was based upon calculation: 1/(1-r2) where r2 = 0.7. Pruning was implemented using 

PLINK v.1.9 (61) using command --indep 1000 2 3.33˙. This Bonferroni-corrected genome-wide 

significance threshold is notably conservative since ‘independent’ SNPs were defined using a 

relatively high LD cut-off (r2 < 0.7). A suggestive threshold was defined at p = 1.54x10-4.81 

where SNP associations deviated from the 95% confidence interval (CI) on the quantile-quantile 

(QQ) plot, an approach previously applied in canine GWAS studies (29, 30). 

 

For the lead SNP at each locus, the allele with a positive β effect on BCS outcome was 

identified as the ‘risk’ allele and the allele associated with a negative β effect on BCS was 

identified as the ‘non-risk’ allele. 

 

Stepwise conditional analysis was performed on the GWAS output on a per-chromosome 

basis, to identify independently associated loci. The genotype of the most highly associated SNP 

was extracted and the GWAS MLMA rerun using the genotype as a covariate. This process was 

repeated on a per-chromosome basis until no more variants on a chromosome were significant. 

SNPs which became significant during the conditional analysis process but did not pass the 

original threshold were not taken forward as candidate loci. Additionally, SNPs which lost their 

association when conducting conditional analysis on other chromosomes were regarded as 

confounded and removed. 

 

SNPs which were corroborated by multiple other proximal SNPs with above average 

significance were prioritized in further analysis. This was observed by a regional clustering of 

associated SNPs on the resulting GWAS Manhattan plots, indicating multiple variants in high 

LD and similarly associated with the trait. SNPs which passed the significance threshold but 

were not accompanied by such clustering were not taken forward as solitary SNPs may be 

indicative of a genotyping artefact. 
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To ensure that the imputation process and conversion to discrete genotype calls was not 

generating artefactual loci, the GWAS was rerun, first using only directly genotyped SNPs and, 

second, using the imputed ‘probabilistic’ genotypes (prior to converting to 0/1/2 discrete calls). 

Only loci which demonstrated significant association across all three GWAS were taken forward.  

 

Identifying genes and variants at associated loci 

Regions of interests were first defined based on pairwise r2 measure of linkage 

disequilibrium with the lead SNP (r2 ≥ 0.8). Using these inclusive regions, gene lists were 

extracted from Ensembl Biomart (Archive release 104, May 2021) (84, 85) to extract regional 

candidate genes from the CanFam3.1 genome. Due to incomplete annotation of the canine 

genome, syntenic genetic regions were identified using the UCSC liftOver tool (86) in the human 

genome (GRCh38 - hg38) and any additional annotated human protein coding genes in the 

syntenic region were added to the candidate gene list. Additionally, regions were checked in 

alternative genome builds CanFam4 (GCA_000002285.3) and CFam_1.0 (GCA_014441545.1) 

to ensure annotated genes were consistent.  

 

Since our GWAS used only common SNP and no indels or structural variants, we 

interrogated WGS data from 25 Labrador retrievers using the Integrative Genomic Viewer (IGV) 

tool (87) to identify additional candidate variants within the initial regions of interest. Dogs were 

categorized as ‘risk’ or ‘control’ based on whether they carry the GWAS SNP of interest in each 

region. WGS data were then compared between the two groups to identify additional candidate 

variants (including indels) which co-segregated at a confidence of ≥70% between the groups. For 

this, confidence was calculated as a percentage of the dog’s homozygous risk for the tagging 

SNP that were also homozygous for the variant in question, or from the heterozygous risk dogs if 

homozygous risk dogs were not available. All candidate variants were annotated using 

Ensembl’s Variant Effect Predictor (VEP) v.109.2 (88). Since there is limited annotation on the 

CanFam3.1 genome, we tested whether human genetic positions syntenic to canine variants were 

annotated as regulatory elements or epigenetic hotspots. 

 

Fine mapping  

The regions defined by being in high LD with the lead variant were further refined by 

performing haplotype mapping and variant phasing. Where possible, haplotype mapping using 

PLINK v.1.9 (60) command –blocks identified the haplotype in which the top SNP resided using 

default parameters (using the method of Gabriel et al. 2002 (89) of defining haplotype blocks, 

using 95% confidence bounds on the D prime (D’) measure of allelic association to estimate 

recombination between SNPs). Using the bounds of the inferred haplotype, regions of interest 

were refined. Variants 100% ‘in-phase’ with the top SNP were also identified and were 

encompassed into the refined region of interest in cases where they fell out of these haplotype 

regions. Protein coding genes within those refined regions were identified and further 

investigated. If refined regions did not harbor (or were not proximal to) a protein-coding gene, 

they were not explored further. 

 

Investigation of candidate genes 

Candidate genes were input into STRING v.11.5 (82) 
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  and PANTHER v.17.0 databases (91). The STRING database was used to investigate 

protein-protein interactions in the candidate genes, encompassing both direct (physical) and 

indirect (functional) associations with a confidence threshold of 0.4 (‘medium’) as the cut off. 

The PANTHER database was used for the identification of pathways with functional links to the 

candidate gene list, testing in mouse, dog and human datasets using Fishers exact test with 

Bonferroni correction for multiple testing. 

 

Publicly available cross-species databases were utilized to investigate candidate genes 

and to hypothesize mechanisms of action for the variants/genes of interest. Mouse knockout and 

targeted mutation models were investigated through the International Mouse Phenotyping 

Consortium (IMPC) (92) and the Mouse Genome informatics Database (MGD) from the Jackson 

laboratory (93). Summary statistics for previous human GWAS and phenome-wide association 

studies (PheWAS) were also explored to identify any existing association(s) with obesity and/or 

related traits. NHGRI-EBI GWAS catalog (94) was interrogated and if variants in candidate 

genes were identified as associated with traits of interest then they were explored further. GWAS 

Atlas (95) phenome wide association analysis (PheWAS) results uses GWAS catalog statistics to 

analyze several phenotypes against a single gene/variant. The p-values for PheWAS associations 

with phenotypes of interest were compared to a Bonferroni-corrected significance threshold. This 

threshold was calculated using the PheWAS significance threshold of 0.05 and correcting for the 

number of phenotypes associated with each gene. Genebass v. 0.13.0 (96) is a resource of 

exome-based association statistics from UK Biobank (UKB) in which we explored whether there 

were any associations with endocrine/metabolic traits, or physical traits of interest. The Online 

Mendelian Inheritance in Man (OMIM) catalogue was explored to check the clinical synopsis for 

candidate genes. More generally, we performed wide-scale literature searching for protein 

function and candidate gene empirical study. 

 

To investigate if these genes have previously been implicated in other complex disorders, 

we obtained gene-disease association data from the Developmental Disorders Genotype-to-

Phenotype (DDG2P) database (97), a curated resource linking genetic variants with 

developmental disorders based on evidence from clinical and genetic studies (downloaded from 

https://www.deciphergenomics.org/ddd/ddgenes on 28/10/2024). 

 

Expression analysis for genes of interest 

We evaluated tissue-specific expression of candidate genes by employing a multi-species 

approach to publicly available RNA sequencing data. We tested whether candidate genes were 

enriched in relevant tissues (brain, adipose tissue) or ubiquitously expressed across tissue types 

using the Human Protein Atlas (HPA) database v23.0 (98) and the Genotype-Tissue Expression 

(GTEx) portal v.8 (99) for human data and the MGI - Gene Expression Database (MGI-GXD) 

from the Jackson laboratory (100) for murine expression.  

 

Canine bulk RNA sequencing data obtained from the BarkBase data repository (41) were 

used to examine expression across tissues, with data from 5 individuals analyzed across all 

available tissues, of which hypothalamus was not included (adipose, adrenal gland, brain cortex 

and cerebellum, kidney, liver, pancreas, pituitary gland, skin, stomach, thyroid gland). Candidate 

genes of interest were extracted from the BarkBase files and mean expression (in FPKM - 
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Fragments per kilobase of transcript per million fragments mapped) calculated on a per tissue 

basis, combining all donors. 

 

To understand gene expression with a higher degree of resolution we interrogated single 

cell/single nucleus RNA sequencing (scRNAseq/snRNAseq) from the mouse and human brain, 

focusing on the hypothalamus because of its well characterized role in energy homeostasis. The 

scRNAseq murine HypoMap (42) represents eighteen datasets encompassing ~385,000 cells 

from 29 samples from the mouse hypothalamus. To look at hypothalamic data from the human, 

we utilised the snRNAseq dataset from human HYPOMAP (43). In both datasets, candidate 

genes were explored for brain region expression specificity (particularly nuclei implicated in 

energy homeostasis), co-expression with known obesity genes (specifically, those in the leptin-

melanocortin pathway) in R v.4.2.2 (62) and visualized using Seurat v.4.0.2 (101). Co-

expression of receptors with Dennd1b/DENND1B was visualized by taking a subset of neurons 

expressing >1 Dennd1b/DENND1B counts.  

 

RNAscope  

Simultaneous detection of Human MC4R and DENND1B mRNA was performed on 

formalin fixed paraffin embedded hypothalamic sections using Advanced Cell Diagnostics 

(ACD) RNAscope® 2.5 LS Duplex Reagent Kit, and RNAscope® probes 1239438-C1 and 

538798-C2 (ACD, Hayward, CA, USA). The assay was performed as previously described (70) 

with one modification, that the time in Amp5 time was extended from 15 to 20 minutes. Slides 

were imaged on a Slide Scanner Axio Scan.Z1 microscope (Zeiss). Images were taken in regions 

where positive cells were detected using a 40x air objective and sharpened using the Unsharp 

Masking processing in ZEN Blue (Zeiss). CZI files were read into QuPath v0.5.1 for analysis. 

MC4R and DENND1B positive cells were detected by manual inspection and color 

deconvolution. 

 

Cell culture and transfection 

Adherent HEK293 (AdHEK) cells were obtained and cultured as previously described 

(71). AdHEK were maintained in DMEM-Glutamax media (Sigma-Aldrich) with 10% fetal 

bovine serum (FBS, Sigma) at 37ºC, 5% CO2. Full-length DENND1B cDNA was PCR amplified 

(Reagents from New England Biolabs) from human cDNA and inserted into a pcDNA3.1 

expression construct by restriction enzyme cloning. Human SNAP-GHSR was purchased from 

Cisbio (UK). For the human SNAP-MC4R construct, MC4R was PCR amplified from a template 

of Tango-MC4R (Addgene #66430, from Bryan Roth (102)) using reagents from Promega and 

sequence verified by Source Bioscience. Single nucleotide polymorphisms were introduced by 

construct high-fidelity PCR amplification using primers containing the polymorphism at the 

center. Cycle conditions were: 95oC for 30 seconds, followed by 12 cycles of 95oC for 30 

seconds, 55oC for 1 minute, and 72oC for 7.5 minutes, followed by hold at 4oC. The original 

DNA in the PCR product was degraded by Dpnl digestion. Resulting expression constructs were 

sequence-verified (service provided by Department of Biochemistry, University of Cambridge). 

The pGloSensor-22F plasmid was purchased from Promega. Human DENND1B knockdown 

was achieved by transfection of 3 unique 27mer siRNA duplexes (SR316077, OriGene 

Technologies). All transfections were performed using Lipofectamine 2000 (LifeTechnologies) 

according to manufacturer’s instructions. 
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Gene expression analysis  

 Overexpression and knockdown of DENND1B was assessed using quantitative real-time 

PCR (qPCR). RNA was extracted using Tri-Reagent (Sigma-Aldrich) and purified with the 

QIAwave RNA mini kit (Qiagen). RNA was treated with the TURBO DNA-free kit (Thermo 

Fisher Scientific) and 1μg made into cDNA using the High-Capacity cDNA Reverse 

Transcription kit (Thermo). DENND1B and GAPDH specific primers were designed to achieve 

an amplicon with a melting temperature between 58oC-62oC, size of approximately 100bp and no 

secondary structure. Duplicate qPCR reactions of 2μl cDNA were performed with Fast SYBR 

Green Master Mix using pre-set quantitative PCR cycling methods on the 7500 Fast Real-Time 

PCR System (Thermo). GAPDH RNA levels were used to normalize gene expression using the 

2−∆∆Ct method (103) and visualized as a percentage of the un-transfected cells. Two technical 

replicates were combined, and an unpaired student’s t-test used to determine significant 

differences in gene expression.  

 

cAMP GloSensor Assays 

AdHEK were seeded in six-well plates and 24-hours later transfected with 100 ng 

pGloSensor-22F and 1000 ng SNAP receptor (human MC4R). When overexpressing 

DENND1B, 1000 ng pcDNA3.1 (empty vector, DENND1B WT or DENND1B R501C) were co-

transfected. For knockdown, 24-hours after DNA transfection, a combination of 3 unique siRNA 

(10 nM) were transfected. Forty-eight hours after DNA transfection, cells were re-plated in 96-

well white plates (Nunc) in FluoroBrite DMEM media (ThermoScientific), supplemented with 

10% FBS. After 6 hours, cells were incubated in 40 μL of equilibration media consisting of 

FluoroBrite DMEM media containing 10% FBS, 2% (v/v) dilution of the GloSensor cAMP 

Reagent stock solution according to manufacturer’s instructions and 0.5 mM IBMX. Cells were 

incubated for 1 hour at 37oC before basal luminescence was read on a FLUOstar® Omega 

(BMGLabtech) or a Glomax (Promega, Madison, USA) plate reader for 6 minutes before 

addition of receptor agonist. For MC4R assays, α-MSH (Bachem AG) was added (100 μM – 10 

nM). As a positive control, we used 10 μM forskolin (Sigma). For GHSR assays, MK-0677 

(Tocris, Abingdon, UK), a high affinity ghrelin receptor agonist, was added (10μM - 10nM). 

Plates were read for a further 25 minutes. Statistics were performed as for the IP-1 experiments 

below. 

 

IP-1 Gq assay 

IP-1 assays were performed with the Cisbio IP-One Gq HTRF kit (Revvity, Codolet, 

France). Cells were co-transfected with 500 µg of SNAP-tagged GHSR and either 500 µg of 

pcDNA3.1, DENND1B-WT or DENND1B-R501C variant. Forty-eight hours after transfection, 

cells were washed once in 1X PBS and resuspended in FluoroBrite DMEM (Thermo Fisher 

Scientific) supplemented with 10% FBS and 100 mM lithium chloride at 500 µL/well. The cells 

were then replated into 384-well plates at 7 µL/ well. MK-0677 (Tocris) agonist dilutions were 

made in the stimulation buffer provided with the IP-One kit. MK-0677 was added to cells at 7 

µL/well and incubated at 37°C for 1 hour. Cells were lysed according to the IP-One kit protocol. 

IP-1 signal was measured on a BMG Labtech PHERAstar microplate reader. The supplied IP-1 

standard concentration range was run in tandem with each experimental repeat. Raw values were 

interpolated from the IP-1 standard curve. Non-linear log regression fit (dose-response – 

stimulation curve; three parameters logistic equation) was fitted to the datasets using GraphPad 

Prism 9. Independent experiments were converted into a combined concentration-response graph 
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by normalizing data to the fitted maximal response of GHSR co-transfected with pcDNA3.1. 

Mean pEC50 values from at least four independent experiments before normalization were 

presented as mean ± SEM. pEC50 values from independent experiments were grouped and 

compared by one-way ANOVA. 

 

HILO imaging 

AdHEK cells were seeded on 24mm coverslips (VWR) and transfected with 500ng of 

each plasmid 48 hours prior to experiments. Venus-Kras (obtained from Nevin Lambert, Augusta 

University) was co-transfected at 500ng per well as a marker of the cell plasma membrane.  For 

knockdown, a combination of 3 unique siRNA (10 nM) were also transfected 24 hours prior to 

experiments. SNAP-Surface Alexa Fluor 647 (NEB) was diluted 1:1000 in FluoroBrite complete 

media and applied to cells for 20-minutes, before washing and imaging. Coverslips were 

mounted onto plastic imaging chambers with a rubber seal and filled with imaging medium 

(HBSS with 10mM HEPES, Sigma). HILO images were acquired on a custom-built TIRF 

microscope (Cairn Research) comprising an Eclipse Ti2 (Nikon) equipped with an EMCCD 

camera (iXon Ultra, Andor), a 488 nm diode laser, a hardware Perfect Focus System, a TIRF 

iLas2 module, and a 100× oil-immersion objective (NA 1.49, Nikon). The objective and samples 

were maintained at 37°C in a heated enclosure. Images were acquired on MetaMorph software 

(Molecular Devices) using a frame exposure of 50–200 ms with an image acquired before ligand 

stimulation and a subsequent image taken every 30s thereafter, up to 20 min. Images were 

analyzed using ImageJ. Images were stacked, regions of interest corresponding to cell outlines 

assigned for each cell, and intracellular fluorescence intensity quantified. Data were normalized 

to the cytoplasmic intensity at time 0. Colocalization between SNAP-labelled receptors and 

Venus-Kras was measured using the ImageJ plugin JACoP (72). Regions of interest were 

selected and cropped so that images contained single cells, then JACoP thresholds for each 

channel were set using the Costes’ automatic thresholding (72). Receptor surface expression was 

compared using a one-way ANOVA and receptor internalization using a Mann-Whitney test. 

 

Human comparative genomics 

Canine regions of interest (ROI) bounded by the limits of SNP with r2 ≥ 0.8 with the lead 

SNP at each locus were mapped to orthologous regions in the human genome using the UCSC 

liftOver tool (86) and integrated with human genome-wide association study (GWAS) and 

exome-wide association study (ExWAS) data for BMI and also GWAS data of other metabolic 

traits.  

 

Human GWAS gene prioritization  

We interrogated human GWAS data on body mass index (BMI) and waist-hip ratio 

(WHR) adjusted for BMI in up to 806,834 and 694,649 individuals respectively from the GIANT 

study (31, 104) and circulating high density lipoprotein (HDL) and triglyceride levels in up to 

1,253,277 European individuals from the Global Lipids Genetics Consortium (GLGC) study 

(105) (up to n = 1,253,277). 

 

To identify independent GWAS signals and prioritize causal gene candidates at the 

resulting loci, we used the “GWAS to Genes” (G2G) pipeline as described by Kentistou et al. 

2023 (39) and discussed in brief below. GWAS summary statistics were filtered to retain variants 

with a MAF>0.1%. Quasi-independent genome-wide significant (GWS, at a multiple test 
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corrected p-value threshold of 5x10-8) signals were initially selected in 1Mb windows and 

secondary signals within these loci were further selected via conditional analysis in GCTA 

v.1.93.2 (60), using an LD reference derived from the UKB study. Primary signals were then 

supplemented with unlinked (r2 < 5%) secondary signals, whose association statistics did not 

overtly change in the conditional models and signals were mapped to proximal NCBI RefSeq 

genes, within 500kb windows.  

 

Independent signals and closely linked SNPs (r2 > 0.8) within the associated loci were 

annotated if they were coding variants within the identified genes or if they mapped within 

known enhancers of the identified genes, via activity-by-contact (ABC) enhancer maps (38). 

Signals were also annotated with their physically closest gene. Gene-level associations were then 

determined via Multi-marker Analysis of GenoMic Annotation (MAGMA) (106) by collapsing 

all coding variants within a gene. Genes with FDR-corrected MAGMA p < 0.05 were considered 

associated with the GWAS outcomes. Colocalization analyses between the GWAS and 

expression- or protein- quantitative trait loci (eQTL or pQTL) data were also performed via 

SMR-HEIDI (summary data–based Mendelian randomization-heterogeneity in dependent 

instruments) method v0.68, (107) and the ABF function within the R package “coloc” v5.1.0 

(108). For the former, we considered gene expression to be influenced by the same GWAS 

outcome variants if the FDR-corrected SMR test p < 0.05 and HEIDI test p > 0.001. For the 

latter, loci exhibiting an H4 PP > 0.75 were considered to show evidence of colocalization. For 

eQTL analyses, these were applied for specifically enriched tissues (via LDSC-SEG) (109), as 

well as cross-tissue meta-analyzed GTEx eQTL data v.7 (110) and data from blood eQTL (111) 

and Brain-eMeta (112) studies. Lastly, genes residing within each locus underwent prioritization 

using the gene-level polygenic priority score (PoPS) method (113). Causal candidate genes were 

then prioritized by overlaying all of the above information and scoring the strength of evidence 

observed. For further details about the specific application of this method, see Kentistou et al. 

2023 (39). 

 

BMI GWAS signals identified as outlined above, were mapped (if present) to the human 

genomic regions syntenic to the Labrador retriever GWAS ROIs. Orthologous genes mapping 

within each ROI were also queried for the strength of G2G evidence in the two anthropometric 

(31, 104) and two lipid (105) GWAS described above. 

 

Rare exome variant association in UK Biobank (UKBB) 

We performed exome sequencing-based rare variant burden analyses, as described in 

Gardner et al. 2022 (114) and described in short below. We queried population-level VCF files 

data for 454,787 individuals from the UKBB study via the UKBB Research Access Platform 

(https://ukbiobank.dnanexus.com; application number 9905). BMI for all participants was 

obtained from the UKBB data showcase (field 21001). 

 

We excluded individuals with excess heterozygosity or autosomal variant missingness ≥ 

5%, based on the available genotyping array data, or those who were not included in the subset 

of phased samples as defined in Bycroft et al. 2018 (115). We also excluded participants who 

were not of broadly European genetic ancestry, leaving a total of 421,065 individuals (including 

related participants) for further analysis. Using BCFTools v.1.9 (78) multi-allelic variants were 

split and left-normalized, and all variants filtered using a missingness based approach. SNV 

https://ukbiobank.dnanexus.com/
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genotypes with depth < 7 and genotype quality < 20 or indel genotypes with a depth < 10 and 

genotype quality < 20 were set to missing (./.). We also tested for an expected reference and 

alternate allele balance of 50% for heterozygous SNVs using a binomial test; SNV genotypes 

with a binomial test p. value ≤ 1x10-3 were set to missing. Following genotype filtering, variants 

with > 50% missing genotypes were excluded from further analysis. Variants were then 

annotated with the Ensembl VEP v.109.2 (88) with the ‘everything’ flag and the LOFTEE plugin 

(36). For each variant we prioritized a single MANE v.0.97 or VEP canonical ENSEMBL 

transcript and most damaging consequence as defined by VEP defaults. To define Protein 

Truncating Variants (PTVs), we grouped high confidence (HC, as defined by LOFTEE) stop 

gained, splice donor/acceptor, and frameshift consequences. All variants were subsequently 

annotated using CADD v1.650 (116). After excluding individuals with missing data, 419,692 

individuals with BMI measures remained for downstream analysis. 

 

To assess the association between rare variant burden and BMI we implemented BOLT-

LMM v2.3.551 (64), using a set of dummy genotypes representing the per-gene carrier status. 

For the latter, we collapsed variants with a minor allele frequency (MAF) < 0.1% across each 

gene and defined carriers of variants as those with a qualifying high confidence PTV (HC PTV) 

as defined by VEP and LOFTEE or “Damaging” variants (DMG), including missense variants 

with a CADD score ≥25 and the aforementioned HC PTVs. Genes with fewer than ten carriers 

were excluded. BOLT-LMM was run with default settings and the ‘lmmInfOnly’ flag. All 

analyses were controlled for sex, age, age-squared, WES batch, and the first ten genetic ancestry 

principal components as calculated in Bycroft et al., 2018 (115). 

 

Gene-level BOLT association summary statistics were then extracted for genes falling 

within the identified ROIs. We identified 16 orthologous genes with at least 10 carriers of 

qualifying exome variants, setting the multiple-test corrected threshold at p ≤ 0.0031 (0.05/16). 

Any downstream sensitivity analyses (such as leave-one-out tests) were performed in the same 

individuals as the BOLT associations, but using linear models in R. 

 

Rare variant enrichment analysis in SCOOP 

A case-versus-control, rare variant enrichment analysis was performed using independent 

case and control datasets. The Severe Childhood Onset Obesity Project (SCOOP) dataset is a 

subset of the Genetics of Obesity Study (GOOS) of UK British origin. This dataset was used as 

the case dataset and tested against the control dataset obtained from the Genome Aggregation 

Database (gnomAD) resource (36). 

 

The UK10K SCOOP dataset (n = 982) was obtained from the European Genome-

Phenome Archive (EGA; https://ega-archive.org; Study ID: EGAS00001000124; Dataset ID: 

EGAD00001000432, downloaded on 02/03/2021). Exome sequencing and variant calling for this 

dataset are described previously (117, 118). Only variants that were both polymorphic in SCOOP 

and marked with a “PASS” flag from GATK (v.1.3-21) were retained. Coordinates were lifted 

over from build 37 to build 38 using the LiftoverVcf module from GATK. 

 

GnomAD exome r2.1.1 variants (GRCh38 liftOver) were downloaded from the gnomAD 

webportal (36) (downloaded on 25/10/2022). Gene annotations were based on Ensembl Release 

108 (downloaded on 25/10/2022). Again, we used BCFTools v.0.1.18-r579 (78) to subset the 

https://ega-archive.org/
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variant data to the genes of interest. Only very rare variants were retained in gnomAD v2.1.1 

non-Finnish Europeans. We used a minor allele count (MAC  3), equal to an allele frequency of 
~ 0.0026%.  

 

The syntenic ROI that were highlighted through the canine analysis were extracted from 

both case and control datasets using BCFTools v.0.1.18-r579 (78) Ensembl VEP, including the 

combined annotation dependent depletion (CADD) plugin, was used to annotate all variants. 

Genotype counts were extracted with PLINK v2.0 and a missingness filter < 0.1 at site-level, 

applied to both datasets. 

 

The final data analysis steps were run using R 4.1.1. For this analysis, we only retained 

deleterious variants, defined as moderate/high impact predicted by VEP, and/or CADD > 25. We 

generated cumulative minor allele counts for each of the genes in the regions of interest. For 

each gene, we applied a one-sided Fisher’s test to determine whether there was an excess burden 

of very rare deleterious variants in the gene of interest in the SCOOP cohort vs gnomAD v2.1.1 

non-Finnish Europeans. Alpha significance level corrected for multiple testing was set at p = 

0.01 (0.05/5) and a suggestive significance level at p = 0.05. 

 

If suggestive or significant enrichment in the case cohort was identified in any of the 

genes, we explored the specific variants and carriers further. Familial genotypes and phenotypes 

were obtained as were clinical phenotypes of the probands. Where possible, we investigated if 

the genotypes of the variants of interest segregated with obesity status within affected families. 

Obesity was assessed using the age-adjusted BMI chart relevant to each individual. 

 

Severe Obesity in Pakistani Population (SOPP) cohort 

We also investigated genes of interest in the Severe Obesity in Pakistani Population 

(SOPP) cohort. The cohort is comprised of well-characterized individuals originating from a 

distinct inbred population who reside in relatively uniform environmental conditions. The 

selection criteria encompass a BMI or BMI SDS (standard deviation score/Z score compared to 

WHO global reference data (65, 66) for age >35 or 3.5, respectively; the onset of obesity prior to 

5 years of age, coupled with pronounced hyperphagia. Additionally, it is required that the 

participants exhibit either first- or second-degree parental consanguinity, with parents being 

either of normal weight or overweight, but explicitly excluding obesity. In all the cases, 

comprehensive anthropometric measurements are systematically conducted for all participants, 

alongside the detailed documentation of patient and/or family medical histories. We 

hypothesized that affected patients would be homozygous for deleterious variants in the genes of 

interest. 

 

Ancestry diverse public datasets including gnomAD v.2.1.1, NCBI (67), TopMED (68), 

and NIH ClinVar (69) were used as comparator populations. To gain insight into mechanism of 

action for candidate variants (in addition to VEP annotation) they were examined using UniProt 

(119) and AlphaFold (120). UniProt allowed for identification of protein domains impacted by 

coding variants. 

 

Testing for Purifying Selection  
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 The two constraint metrics pLI (121) and LOUEF (36) were used to evaluate the 

intolerance of a gene to high confidence LoF mutations in the gnomAD database. We accessed 

the gnomAD v4.1 dataset (downloaded on 25/10/2024) and implemented thresholds suggested 

by the developers of each metric (<0.4 for LOUEF and >0.9 for pLI). 

 

Canine polygenic scoring 

Using the GWAS results, a polygenic score method was created using the ‘clumping and 

thresholding’ technique (46). First, an arbitrary p value significance threshold was allocated to 

the GWAS output (p < 0.0004) retaining only SNPs which passed this threshold (n = 481). 

Variants which had a pairwise r2 measure of LD ≥ 0.7 were treated as the same locus, with the 

most significant ‘lead’ SNP per locus taken forward to the PRS calculation. Using this approach, 

23 SNPs contributed to the primary PRS. Polygenic score was calculated as the sum of the 

product of each ‘risk’ allele genotype weighted by effect size from GWAS output. 

 

PRS = (Risk allele countSNP1 * β effect sizeSNP1) + (risk allele countSNP2 * β effect 

sizeSNP2) + etc… 

 

PRS was then refined in the secondary/test set of Labrador retrievers (n = 350). We 

retained only SNPs which retained a positive effect size for BCS outcome in the test set 

(significant association was not a requirement). Sixteen SNPs remained, contributing to the PRS 

method. 

 

We subsequently tested the PRS method in multiple purebred datasets for prediction of 

obesity-related phenotypes. Genotypes for the sixteen contributing SNPs were extracted from the 

multiple datasets using PLINK v.1.9 (61) command –-extract. If genetic datasets were missing 

some variants, alternative variants were identified by finding a proximal SNP in high LD (r2 > 

70%) with the original, with a similar effect size and p value in the original GWAS output. If no 

suitable replacement SNP could be identified, the PRS was calculated with only the retained 

variants. Polygenic score per individual was calculated as described above. 

 

Polygenic score predictive value 

Importantly, prediction of obesity-related traits by the PRS was tested specifically for 

each purebred population, since specific breed groups act as closed populations. The Labrador 

retriever discovery (n = 241) and test (n = 350) populations were treated separately for this 

analysis. Minimal modelling was performed with known risk factors as described in the Genome 

Wide Association Study (GWAS) section above. After implementing AIC, the remaining 

covariates in the minimal model were specific to each population. The polygenic score was then 

added to the relevant model and tested for its predictive value using the linear model command 

lm() in R v.4.2.2 (62). To test whether individual variants were associated in the different breed 

groups, analysis was conducted in a similar manner. 

 

For the GRLS, FCR and Pug populations, polygenic score was used to predict BCS and 

body weight (kg). For GRLS dogs the data were longitudinal so a single point in time was 

chosen for each participant. For the BCS phenotype, this entailed identifying the youngest age at 

which the dog had its highest BCS recorded. For body weight, the earliest weight was used.  For 

the pug and FCR populations, phenotypic data were only recorded once. 
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Of the combined cohort of Labrador retrievers (n = 591), 298 had a food motivation 

phenotype. After minimal model selection for food motivation (as above), polygenic score was 

tested for prediction of the food motivation phenotype in these dogs. A linear model was used 

via the lm() command in R v.4.2.2 (62), accounting for relevant covariates. To calculate variance 

explained by PRS and individual PRS SNPs, the R2 goodness-of-fit value from the linear 

regression model was used. 

 

Polygenic score distribution in Labrador retrievers 

To assess the distribution of polygenic score in Labrador retrievers and how it related to 

obesity status, polygenic score was binned into tertials to assign ‘low’, ‘middle’ and ‘high’ PRS 

groups. BCS was then categorized into three groups: healthy weight (BCS < 5), overweight 

(BCS 6-7), very overweight/obese (BCS >7). 

 

To test whether genetic factors underlie known risk factors for obesity in Labradors 

(chocolate coat color and being from the assistance dog group), polygenic score distribution was 

compared between different demographic groups in the combined set of Labradors (n = 591), 

incorporating covariates from minimal model selection in that group.  

 

To test whether there was a significant difference in polygenic scores between the 

categorical coat color groups, ANOVA was performed (accounting for relevant covariates in the 

minimal model). Assumptions for a parametric ANOVA test were not met, but an alternative 

non-parametric test allowing for covariates is not available. Therefore, a non-parametric 

Kruskal-Wallis test was also performed to confirm the ANOVA association. For post-hoc, 

pairwise comparisons between coat color groups, non-parametric Wilcoxon rank sum tests were 

used. To assess if there was significant difference in polygenic score between assistance dogs 

and pet dogs, a Welch’s t-test was performed. However, as above, not all assumptions for a 

parametric t-test were met so an additional analysis was performed using the non-parametric 

Wilcoxon rank sum test to confirm association. 

 

High and low risk polygenic scores 

Based on polygenic score distribution in the combined set of Labrador retrievers, 

polygenic score was re-grouped into quintiles. ‘Low risk’ and ‘high risk’ polygenic score group 

was then assigned based on lower two/upper two quintiles, respectively. Those individuals 

falling into the third/middle quintile were removed, with the aim of comparing only the ends of 

the polygenic risk distribution.  

 

The interaction between owner management of the food and exercise environment on 

obesity outcome was also compared between high and low polygenic risk groups. Owner control 

was calculated using DORA questionnaire factor scores, as described above. Stepwise minimal 

model selection was implemented with inclusion of PRS and owner control score interaction. 

The owner control score was then tested for association in a linear model for BCS in the low-risk 

vs the high-risk polygenic score groups separately. Mean owner control was also compared 

between the two data subsets to ensure this was not confounding the findings. 

 

Visualization and statistics 
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All data analysis and visualization were performed using R/R Studio v.4.2.2 (62). 

Packages tidyverse v.2.0.0 (122), data.table v.1.14.8, easystats v.0.7.0, ggplot2 v.3.4.4 were used 

for data analysis and visualization. Specifically, visualization of statistical assumptions was 

implemented using easystats. Decimal data are reported to two/three significant figures (sf) or 

two decimal places (dp) as appropriate. 

 

For visualization of phenotype-genotype association and for polygenic score analysis 

across datasets, residual phenotypes were used. This is a method to better visualize cause and 

effect for a specific variable by adjusting the phenotype for covariate effects. The command lm() 

is used to perform a linear model and summary() used to determine the effect size (β) for all 

factors. The phenotype of interest (to be plotted) can then be adjusted for the relevant covariates 

per individual based on the equation: Residual phenotype = phenotype - (β effect covariate A * 

(covariate A - mean covariate A)) - (β covariate B * (covariate B – mean covariate B).  
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Supplementary Text 

Lead SNP in canine GWAS and definition of genes of interest 

Conditional analysis and haplotype mapping identified seven independent loci, of which 

five contained protein coding genes (Fig. 1B-K, Table S3). Specifically rs850596879 lies within 

an intron of CSNK1A1, and had MAF = 0.09, p = 4.73x10-6, effect size β = 0.80 BCS; 

rs853159627 is upstream of CDH8 and had MAF = 0.25, p = 7.18x10-6, β = 0.52 BCS; 

rs8831037 is in an intron of CARD11 and had MAF = 0.16, p = 1.43x10-5, β = 0.66 BCS, with 

CNA12, BRAT1 and AMZ1 also present in the mapped region; rs24430444 is in an intron of 

DENND1B and had MAF =  0.06, p = 5.54 x 10-7, β = 0.94 BCS with LHX9 also present in the 

mapped region; rs22632455 is in an intron of SEMA3D and had MAF = 0.14, p = 1.41x10-6, β = 

0.96 BCS. 

Human genetic associations with BMI for canine candidate genes 

Human genomic regions orthologous to the fine mapped obesity associated canine loci 

were identified and interrogated for the presence of GWAS associations for BMI or related 

metabolic traits. Protein coding genes within those regions were considered as candidate genes 

and tested for their association with obesity in a GWAS for BMI on 806,834 participants from 

the GIANT study (31); an exome-wide association study (ExWAS) of rare (MAF < 0.1%) 

deleterious exome variants from 454,787 individuals from the UK Biobank study (UKB) (32–

34); the Severe Childhood Onset Obesity Project (SCOOP-UK) (35) (n = 982) in which we 

tested for enrichment of very rare (MAF < 0.0026%), predicted deleterious (CADD ≥ 25) 

variants compared to reference exomes of similar ancestry (gnomAD v2.1.1, n = 56,885); and the 

Severe Obesity in Pakistani Population (SOPP) cohort of patients with severe, early onset obesity 

from a highly consanguineous population, all with unaffected parents and no prior genetic 

diagnosis, in which we focused on homozygous, predicted deleterious variants (44, 45). 

In the GIANT GWAS there were associations with human BMI for variants in 

DENND1B (further details in main text) and CARD11 (rs7811825, MAF = 0.14, p = 9.02x10-9, 

β = -0.0146 kg/m2, Table S7). In each case, the human effect sizes were small and the statistical 

association significant but modest, meaning these associations were likely to be overlooked as 

having potential to meaningfully influence BMI at a population level. CARD11 encodes a 

signaling scaffold protein which is best understood for its role in the adaptive immune response 

(123) and it is not clear how this might link mechanistically to increased BMI.  

Rare variant enrichment was evident in the SCOOP cohort for CSNK1A1 (p = 0.006, Fig. 

2A, C) due to the presence of two variants which were absent from gnomAD (Table S11), map 

to the protein kinase domain and have high CADD scores (>27). A heterozygous variant 

CSNK1A1 p.V87G was present in a proband with a complex phenotype that included severe, 

early onset obesity, speech delay, constipation, sleep disturbance and behavioral problems. At 

presentation at 3 years 4 months old, her weight was 23.3 kg, BMI 22.13 kg/m2, BMI standard 

deviation score (SDS) 3.33. The two other family members from which DNA was available had 

the reference allele and were normal weight (mother BMI 23.6 kg/m2 and brother age 4 years 4 

months BMI 15 kg/m2, BMI SDS -0.58). A second heterozygous variant CSNK1A1 p.G80D was 

identified in a patient with severe, early onset obesity who presented aged 12 years with weight 

83.6 kg, BMI 48.13 kg/m2, BMI SDS 4.28. Her heterozygous, mother was also obese (BMI 36.2 

kg/m2) and had type 2 diabetes. The father harbored only the reference allele and was borderline 

obese (BMI 31.2 kg/m2). Further information is available in Table S14. CSNK1A1 is involved in 
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the development and function of hypothalamic POMC neurons (124) and has previously been 

implicated in regulation of the adipokine adiponectin (125), both of which provide plausible, if 

speculative, mechanistic links to energy homeostasis.  

Rare variants were enriched within CDH8 in both the UKB BMI analysis and SCOOP 

(Fig. 2B, D). In UKB the combined effect size of rare protein truncating variants (2.21 kg/m2, p 

= 0.0025, Fig. 2B) was predominantly driven by one frameshift variant of large effect 

(16:61653821:CA>C, L729X carried by three individuals, β = 12.76 ± 2.54kg/m2, p = 4.90x10-7, 

Fig. 2E) and the association was attenuated after the exclusion of this variant. In SCOOP there 

was a nominally significant enrichment for rare, predicted deleterious variants in CDH8, each in 

a single heterozygous proband (p = 0.045, Fig. 2A), specifically CDH8 p.R479* (also detected in 

a single heterozygous individual in gnomAD, Table S11), CDH8 p.R431W and p.R126W (both 

absent from gnomAD, Table S11). Pedigree analysis of affected families showed imperfect 

segregation of these variants with obesity (Table S14).  

CDH8 encodes a brain-specific cadherin which has been shown to have a role in forming 

the anatomical and functional features critical for the formation of action-outcome associations 

(126). There are also >90 GWAS associations with CDH8 in GWAS catalog (94), many of 

which are for traits related to behavior or educational attainment. Given the importance of the 

central nervous system in maintaining energy homeostasis (2), and the well described links 

between obesity and both eating behavior and educational attainment (59), the links we report 

between BCS/BMI and obesity seem credible.  

At the fifth locus, the canine association lay within SEMA3D for which we found no new 

human obesity association. The gene is a member of the Semaphorin 3 gene family previously 

implicated in causing severe, early onset human obesity and which have been shown to affect the 

development of hypothalamic neurons (127). In the same study, knockout of SEMA3D caused an 

increased body fat percentage in zebrafish. A single patient from the SOPP cohort was 

homozygous for a deleterious SEMA3D variant which was rare in control populations (SEMA3D 

p.D380H, Table S11). She had a BMI of 36 at 15 years old and her normal weight parents were 

both heterozygous for the variant.  

We considered whether the rarity of deleterious variants in the five candidate genes might 

indicate they were under purifying selection, and whether they might have been overlooked as 

obesity genes because they caused rare, complex syndromes. We used pLI  (121) and LOUEF 

(36) constraint metrics to demonstrate that three of the genes of interest (CARD11, CDH8, 

CSNK1A1) show evidence of purifying selection but the others (DENND1B and SEMA3D) do 

not (Table S15). None of the five genes are currently listed as known developmental disorder 

genes in the Developmental Disorders Genotype-to-Phenotype (DDG2P) database (97), a curated 

resource linking genetic variants with developmental disorders based on evidence from clinical 

and genetic studies. We have yet no explanation for the rarity of the DENND1B or SEMA3D 

mutations reported and further phenotypic characterization in animal models and other patient 

cohorts is needed.   

CARD11 is a known cancer causing gene, from tier 1 of the Cancer Gene Census (128). 

CSNK1A1, DENND1B and SEMA3D have all in the past been implicated in cancer pathogenesis, 

for example by being differentially regulated in certain cancer types, but are not listed in the 

Cancer Gene Census (129–133). We are not aware of any association between CDH8 and cancer, 

although other members of the cadherin family are frequently implicated in metastatic 
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progression in cancer.  In this context, it is of note that there was no history of cancer in the 

human variant carriers for any of the genes, nor any dogs included in the GWAS or follow-on 

studies (for which absence of systemic disease was an inclusion criteria). 

Canine polygenic risk score application and utility 

The Labrador PRS predicted BCS and body weight in a closely related breed, the golden 

retriever (n = 1765), although to a lesser extent. In more distantly related breeds (flat-coated 

retrievers, n = 196, pugs, n = 139), it was not predictive (Fig. 4A) (134). This reflected that in 

golden retrievers, 4 SNPs retained a significant effect on BCS, but none were significant in flat-

coated retrievers or pugs (Table S13).  

Polygenic risk score contributes to known within-breed variation 

Labrador retrievers can be registered as one of three colors, black, yellow, and chocolate, 

with chocolate dogs being the most obesity-prone and food motivated (28). Chocolate Labradors 

in the discovery GWAS had higher BCS than other colors (mean BCS = 6.2 versus 5.5, p < 0.05, 

Table S2), as has been reported previously (28, 135). We considered whether this might be 

because the owners of chocolate colored dogs managed them less strictly (for instance, because 

they are popular family dogs). Using the DORA questionnaire (24) to quantify owner control of 

diet and exercise we showed there was no significant difference in owner management of diet 

and exercise between dogs of different coat colors (ANOVA p = 0.95). However, chocolate 

colored dogs had significantly higher PRS than dogs of other colors (mean PRS: red = 5.46, 

black = 6.41, yellow = 6.66, chocolate = 7.38, Fig. 4C). MDS plots reveal subtle clustering of 

chocolate dogs within the pet population which may explain this higher PRS (Fig. S11A).  

Purpose-bred assistance Labradors had higher BCS than those kept as pets (mean BCS: 

assistance = 5.99, pet = 5.48, p <0.001). This was associated with significantly higher PRS 

(mean PRS assistance = 8.36, mean PRS pet = 6.32, p = 2x10-12, Fig. 4B). When assistance 

dogs were included in MDS plots, stratification is evident as compared to the pet Labradors (Fig. 

S11B). No assistance dogs were included in the discovery GWAS.  

PRS, food motivation and gene environment interaction  

Healthy weight Labradors were predominantly from the middle or lower tertiles of PRS. 

The majority of dogs which were obese were from the highest PRS tertile, with the remainder 

from the middle tertile (Fig. 4F). In 248 Labradors, the PRS positively predicted food motivation 

score (quantified as per materials and methods, Fig. 4D, p = 0.03) suggesting increased food-

seeking behavior drives higher food intake and BCS in genetically predisposed dogs. Using a 

validated, owner-reported questionnaire we captured information regarding dogs’ activity levels 

(during ‘walks’, whilst working, performing agility etc) and about the stringency with which 

owners controlled their dogs’ access to food (24). For dogs in the highest two quintiles of PRS, 

more assiduous management of diet and exercise mitigated the development of increased BCS (β 

= -0.020, p = 0.0077) but it had no significant effect on BCS (β = -0.007, p = 0.14) in dogs in the 

lowest two quintiles (Fig. 4E). Reflecting this, PRS and owner control of the food and exercise 

environment displayed a significant interaction within the linear model (p = 0.0028). 
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Fig. S1. 

Body condition scoring descriptors and images used for scoring adiposity in dogs. The chart in is 

part of the Global Nutrition Committee Toolkit provided courtesy of the World Small Animal 

Veterinary Association.   
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Fig. S2. 

Quintile-Quintile (QQ) plot resulting from the GWAS in Labrador retrievers for body condition 

score (BCS) in 241 individuals. Generated LMM GWAS output applying GCTA MLMA-

LOCO, using only genotypic data which were (A) directly genotyped or (B) including imputed 

genotypes. 
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Fig. S3. 

There is high homology between canine DENND1B and human and murine forms. Protein 

alignment of all three species is shown. Overall, canine has highest homology with human 

(89.4%) compared to mouse (82.7%), with near perfect homology in the functionally important 

DENN domain and within the FXDXF and clathrin box motifs.  
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Fig. S4. 

DENND1B associations with human obesity. (A) There was a nominally significant enrichment 

of damaging mutations in DENND1B with BMI in UK Biobank (p = 0.0087). Qualifying 

variants had a minor allele frequency (MAF) < 0.1% and were annotated as either high-

confidence protein truncating variants or missense variants with a high CADD score (≥25). Each 

variant association is represented by a circle and vertical line, the line length indicates the p-

value (-log10), in the direction of its effect on BMI in carriers of the rare allele, and the circle 

size indicates the number of carriers of each variant (allele count). The horizontal red lines 

indicate p-values smaller than 1.6x10-6. Exons are indicated by the blue boxes. (B) DENND1B 

p.R501C was identified in a single proband in the Severe Obesity Pakistani Population (SOPP) 

cohort whose normal weight parents were heterozygous for the variant. No alternative genetic 

diagnosis was revealed by exome sequencing. 
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Fig. S5. 

Dennd1b is widely expressed in the murine hypothalamus (HypoMap) and is co-expressed with 

multiple receptors involved in energy homeostasis. UMAP plots show co-expression of Dennd1b 

with Ghsr, Mc3r, Npy1r, Npy5r, Lepr, Insr, Htr1b, Htr2c, and Glp1r. UMAP plots show 

expression of each receptor in the subset of neurons from HypoMap that expressed Dennd1b 

transcripts. 
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Fig. S6. 

RNAseq shows DENND1B is widely expressed in the human hypothalamus and is co-expressed 

with MC4R. UMAP plots show human HYPOMAP single nucleus RNA sequencing data 

extracted from Tadross et al., 2023 (43) colored by general cell type (C1 clustering level), log-

normalized expression of DENND1B in the human hypothalamus and log-normalized expression 

of MC4R and other hypothalamic receptors in the DENND1B+ neuronal subset.  
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Fig. S7 

Additional data on DENND1B effect on MC4R. (A) Representative HILO images of HEK293 

with DENND1B knocked down (KD) using siRNA or control condition (scrambled siRNA). 

MC4R (SNAP-647) and plasma membrane marker Kras (Venus) were expressed and show 

colocalization at time point 0. Decreased ligand-induced MC4R internalization was observed in 

conditions of DENND1B knockdown (p = 0.044). Scale bar = 5 m. (B) Basal MC4R surface 

expression (via colocalization with Kras) was quantified at time point 0 in control cells (empty 

vector – EV, scrambled siRNA), cells overexpressing DENND1B and cells in which DENND1B 

was knocked down using siRNA. Control and DENND1B conditions were not significantly 

different from one another (pairwise comparisons to internal control). (C) MC4R cAMP and 

GHSR IP-1 EC50
 for dose response curves. No significant difference was observed between the 

control and either DENND1B overexpression or knockdown for MC4R. Overexpression of 

DENND1B significantly reduced the GHSR IP-1 log EC50 compared to the control (p = 

0.004**). Data from 5-6 independent experiments. Conditions compared using a student’s t test. 

(D) There was no difference in maximum internalization of MC4R after overexpression of 

DENND1B WT or p.R501C (determined by localization to cell surface Kras in HILO images 

after 20 min -MSH-stimulation). Results expressed as the percentage of the unstimulated 

receptor surface expression. (E) Ligand-induced cAMP response of MC4R in HEK293 cells after 
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overexpression of WT DENND1B or DENND1B p.R501C. Each condition was significantly 

different to the other at the highest four concentrations of ligand (two-way ANOVA with 

multiple comparisons, p <0.0001****). (F) There was no difference between the log EC50 of the 

dose response for the same experiments (4 independent experiments, one-way ANOVA multiple 

comparisons). 
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Fig. S8 

Altering DENDD1B expression had no effect on GHSR cAMP signaling internalization or cell 

surface expression. GHSR-activated decrease in cAMP production in HEK293 cells expressing 

GHSR is shown in conditions of (A) DENND1B overexpression or (b) DENND1B siRNA 

knockdown (KD), after prior stimulation with forskolin. (C) Log EC50 from 6 independent 

experiments were compared (Student’s t test, no significant differences). (D) Representative 

HILO images of HEK293 cells expressing GHSR (SNAP-647) and plasma membrane marker 

Kras (Venus) showing colocalization at time point 0, with GHSR internalisation following 

agonist stimulation. Scale bar = 5 m. There was no difference between (E) internalisation or (F) 

basal GHSR surface expression at time point 0 between control cells (empty vector – EV, 

scrambled siRNA) versus cells overexpressing DENND1B or with DENND1B knockdown using 

siRNA (pairwise comparisons).  
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Fig. S9 

Using the GWAS results, a polygenic score method was created using the ‘clumping and 

thresholding’ technique. First, an arbitrary p value significance threshold was allocated to the 

GWAS output (p < 0.0004) retaining only SNPs which passed this threshold (n = 481). Variants 

which had a pairwise r2 measure of LD ≥ 0.7 were treated as the same locus, with the most 

significant ‘lead’ SNP per locus taken forward to the PRS calculation. Using this approach, 23 

SNPs contributed to the primary PRS. Polygenic score was calculated as the sum of the product 

of each ‘risk’ allele genotype weighted by effect size from GWAS output. PRS was then refined 

in the secondary/test set of Labrador retrievers (n = 350). We retained only SNPs which retained 

a positive effect size for BCS outcome in the test set (significant association was not a 

requirement). The 16 remaining SNP retained in the final PRS are shown. 
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Fig. S10 

Proposed mechanism linking regulation of obesity risk to DENND1B to energy homeostasis by 

regulation of MC4R signaling. Hypothalamic MC4R integrate signals from POMC and AgRP 

neurons to regulate energy homeostasis, exerting an anorexigenic effect. (1) α-MSH binds 

MC4R, activating signaling via Gs protein recruitment. Signaling is inactivated by β-arrestin 

recruitment triggering recruitment of clathrin machinery (AP-2 and clathrin). (2) DENND1B 

binds AP-2 and Rab35 and DENND1B GEF activity converts GDP to GTP and activates Rab35. 

(3) This initiates Rab35-dependent (4) vesicle formation and (5) MC4R endocytosis. (6) This 

downmodulation of MC4R surface expression reduces its signaling. The internalized MC4R 

vesicle is then clathrin uncoated. Right hand side: Reduced DENND1B impairs ligand-activated 

internalization and prolongs anorexigenic signaling to decrease risk of obesity. AP-2 – AP2 

adaptor complex, GDP – guanosine diphosphate, GTP – Guanosine triphosphate, GEF – Guanine 

nucleotide exchange factors, cAMP – Cyclic adenosine monophosphate, pERK1/2 - active 

extracellular signal-regulated kinase 1/2. Figure created using BioRender.com. 
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Fig. S11 

MDS plots of Labrador population. Dimensional reduction plots presenting the genetic structure 

of the Labrador population in two dimensions. (A) The discovery GWAS set of dogs (n = 241) 

with points colored by coat color (black, chocolate, yellow). (B) Points are colored by source of 

data (GOdogs research group internal recruitment; assistance dogs collected through 

collaboration with Guide Dogs UK; UniofLiv, pet dogs through collaboration with the 

University of Liverpool). Only dogs which were identified as pets and which clustered with the 

larger pet population cluster were included in the discovery GWAS. The four pet dogs which 

clustered with assistance dogs were discovered (after owner interviews) to be retired or ‘failed’ 

guide dogs and were excluded from the discovery GWAS. MDS – multi-dimensional scaling; 

mds_dim – MDS dimension. 
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Table S1 – S15  

Table S1: Items included in the Dog Obesity Risk Assessment (DORA) Questionnaire 

which contributed to owner control and food motivation scores (24). Owners respond on a 4 

or 5 point Likert scale according to their level of agreement with each statement and responses 

are translated into a percentage. Overall food motivation score or owner control score are 

calculated as the mean response to the items within that category. For some items, the scores are 

reversed (as indicated) to ensure item scores are in the congruent direction for the overall factor 

score.   

 

Table S2: Summary statistics for phenotypes in the Labrador populations reported in the 

study. In the discovery GWAS all dogs were kept as companions. In the wider population (used 

for examining the utility of PRS) there were also assistance dogs in the population. For each 

group, the summary statistics are provided for all dogs, and subgroups by role and color. 'Red' is 

not a recognized color for this breed in the Kennel Club registration system (considered officially 

as yellow) but was reported by owners and so is listed separately where it occurred. PRS, 

polygenic risk score; SD, standard deviation; BCS, body condition score.     

     

Table S3: Regions of interest from BCS GWAS. Regions of interest tagged by lead SNP 

variant (in format chromosome:position) from GWAS for BCS via two methods: r2 measure of 

LD regions ≥ 0.8 (80%) or haplotype mapping using PLINK. The ‘refined’ region was either the 

mapped haplotype plus in-phase SNPs or, if the SNP did not map to a haploblock, the r2 ≥ 0.8 

region.     

 

Table S4: Candidate causative variants identified through analysis of high coverage whole 

genome sequencing data from 25 Labrador retrievers. Labrador WGS (>30x) BAM files 

were visualized in IGV to detect structural variants using the 'soft clip' function which identified 

multiple regions suggestive of the presence of a moderate to large insertion or deletion mutation 

which are denoted below as 'poorly defined indels'. GWAS region of interest is categorized by 

top SNP from each locus. Distance from tagging SNP is determined by position of SNP or first 

bp of insertion/deletion. Ref/Alt indicates reference or alternative base on the Canfam3.1 

genome. Control/risk label is determined based on whether the variant is inherited with the risk 

or non-risk allele for the lead GWAS SNP for BCS in the Labrador GWAS (for >70% of alleles). 

  

Table S5: Results of investigation of positional candidate genes for evidence of effects 

related to obesity. PheWAS data were interrogated in GWAS Atlas 

(https://atlas.ctglab.nl/PheWAS). To investigate the effect of gene knockout or other genetic 

manipulation in mouse, we used web portals of the International Mouse Phenotyping Consortium 

(https://www.mousephenotype.org/), the Mouse Phenome Database (https://phenome.jax.org/) 

and performed searches using PubMed. The Online Mendelian Inheritance in Man (OMIM) 

database was searched to determine whether mutations in each gene were known to cause 

Mendelian disease in humans. The GTEx portal (https://www.gtexportal.org/) and Human 

Protein Atlas (https://www.proteinatlas.org/) were interrogated to determine tissues in which 

gene expression was enriched. - indicates no phenotype of interest. N/A indicates data not 

available.   

 

Table S6: Summary of human BMI associations for genes identified on the canine GWAS.   
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Table S7: Predicted causative gene for obesity-related traits in human loci syntenic to 

canine obesity GWAS loci. We interrogated human GWAS data on body mass index (BMI) and 

waist-hip ratio (WHR) adjusted for BMI in up to 806,834 and 694,649 individuals respectively 

from the GIANT study and circulating high density lipoprotein (HDL) and triglyceride levels in 

up to 1,253,277 European individuals from the Global Lipids Genetics Consortium (GLGC) 

study (up to n = 1,253,277). G2G uses a variety of information to predict causative gene at each 

locus. G2G – GWAS to Genes; GWAS – genome wide association study; BMI – body mass 

index; HDL – high density lipoprotein; WHR – waist-hip ratio; PoPS – polygenic priority score; 

pQTL – protein quantitative trait loci; eQTL – expression quantitative trait loci; ABC – activity 

by contact; MAGMA – Multi-marker Analysis of GenoMic Annotation; LD – linkage 

disequilibrium. 

 

Table S8: Canine GWAS obesity candidate genes are expressed in a range of canine tissues. 

Data obtained from the BarkBase database (41) and expressed in fragments per kilobase of 

transcript per million read pairs (FPKM). NA not in database.  

 

Table S9: Candidate gene expression in single cell RNA sequencing from mouse and 

human hypothalamus. We interrogated HypoMap, a unified single cell gene expression atlas of 

the mouse hypothalamus (42) and snRNAseq of the human hypothalamus in data from the 

human HYPOMAP (43). Results shown for each gene of interest show expression in all cell 

types, all neurons, Pomc-expressing cells and Mc4r-expressing cells. GHSR is included since it 

was used, like MC4R, in molecular studies of DENND1B function. Presented as a percentage of 

all cells in subgroup to 2 decimal places.   

 

Table S10: Co-expression of DENND1B and other candidate genes with POMC, MC4R 

and GHSR in the human hypothalamus. In snRNAseq data from the human hypothalamus, 

cells were clustered according to gene expression patterns (42). The table shows cell type and 

gene markers defining each cluster along with the number of nuclei contributing to that data. 

Data shown: % <gene>+ (% of cells / cluster expressing gene); AverageExpression_<gene> 

(Average log-normalized expression of gene / cluster); % <gene1>+<gene2>+ (Percentage of 

cells / cluster co-expressing both genes). 

 

Table S11: Rare variants predicted to be deleterious and found to be associated with 

obesity in either SCOOP or SOPP data sets.  To test if regions and genes identified on the 

canine GWAS were also relevant to human obesity, we examined regions orthologous to those 

mapped in dogs in human data sets. Specifically, we tested for enrichment of rare (MAF 

<0.0026%), predicted deleterious (CADD ≥ 25) variants in the Severe Childhood Onset Obesity 

Project (SCOOP-UK) (35) (n = 982),  compared to reference exomes of similar ancestry 

(gnomAD v2.1.1, n = 56,885); and investigated the Severe Obesity in Pakistani Population 

(SOPP) cohort of patients with severe, early onset obesity from a highly consanguineous 

population, all with unaffected parents and no prior genetic diagnosis (44, 45), in which we 

focused on homozygous, predicted deleterious variants. The table shows variants identified using 

that approach and their frequency in different control populations including gNomad Non-

Finnish European (NFE), NCBI Allele Frequency Aggregator (ALFA), Trans-Omics for 

Precision Medicine (TOPMed) participants and the 1000 Genomes database.   
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Table S12: Predictive value of PRS demonstrated by improved goodness of fit for obesity-

related traits in Labrador retrievers when it is included in the model. The R^2 measure for 

goodness-of-fit within linear regression models is displayed for the combined Labrador retriever 

population and subgroups, for models predicting three obesity-related traits: BCS, body weight 

(kg) and food motivation. R^2 is displayed in its adjusted and unadjusted forms. All numbers 

rounded to 2sf. Food motivation on a scale of 1-100%. PRS – polygenic risk score; R^2 – linear 

regression goodness-of-fit measure; BCS – body condition score on a 9-point scale. 

 

Table S13: PRS variant associations across purebred groups. Results of linear regression for 

each PRS SNP variant that contributed to the Labrador retriever PRS in other breed and 

population-specific minimal models. Data presented for each purebred cohort and phenotype 

combination as effect size β and significance p. Phenotypes are BCS, body weight (kg) and 

DORA food motivation.       

 

Table S14: Clinical information and genotypes of probands and available family members 

from human patients with variants in CDH8 and CSNK1A1. Families delineated by 

background color. BMI SDS, body mass index standard deviation score (Z score).   

         

Table S15: Results of tests for purifying selection. Two constraint metrics were used to 

evaluate the intolerance of a gene to high confidence predicted loss of function (pLoF) mutations 

in the gnomAD database. Results beyond the thresholds suggested by the developers of each 

metric (<0.4 for LOUEF and >0.9 for pLI) are in bold text. o/e, observed/expected. 
 

 

 


