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Maximal supergravities in ten and eleven dimensions admit consistent truncations on particular spheres
to maximal supergravities in lower dimensions. Concurrently, the truncation to singlets under any subgroup
of the sphere isometry group leads to consistent truncations with less or no supersymmetry. We review the
relation between these truncations in the framework of exceptional field theory. As an application, we
derive three new G2-invariant solutions of D ¼ 11 supergravity. Their geometry is of the form AdS4 × Σ7

where Σ7 is a deformed seven-sphere, preserving SO(7) isometries.

DOI: 10.1103/PhysRevD.111.066007

I. INTRODUCTION

Generalized geometry and exceptional field theory
(ExFT) have proven to be invaluable tools in the construc-
tion of consistent truncations of type II and 11-dimensional
supergravity [1–3]. In particular, the language of general-
ized G-structures reduces the problem of constructing a
truncation Ansatz, to that of understanding the generalized
intrinsic torsion of a particular generalized G-structure [3].
An interesting example are maximally supersymmetric
truncations on spheres or products thereof, which arise
from the generalized Leibniz parallelisability of spheres
Sn [1,2]. These truncations are powerful because they
always contain a large number of scalar fields, which is
a promising starting point when one is looking for new
AdSd solutions. Specifically, the scalars in maximal super-
gravity in D ¼ 11 − d dimensions parametrize the target
space

Mscalar ¼
EdðdÞ
Kd

; ð1:1Þ

where Kd denotes the maximal compact subgroup of
the exceptional group EdðdÞ. More recently, exceptional
field theory has also been adopted as a universal tool to
compute the full Kaluza-Klein (KK) spectra around any
solution which fits within a maximally supersymmetric
truncation [4–6].
The key advantage of using ExFT for the computation of

KKmasses, is that it allows one to express all fluctuations in
terms of only the scalar harmonics on the internal manifold,
without having to resort to any tensorial or spinorial
harmonics. This is because all the nontrivial tensor structure
is encoded in the generalized frame that defines the
parallelization. This feature is retained whenever the internal
space is generalized parallelisable, i.e. crucially the back-
grounds that one considers do not necessarily have to fit
within a maximal truncation. This observation was used in
[7,8] to compute the spectra around the supersymmetric
AdS4 × S7squashed background, which is not contained within
maximal N ¼ 8 supergravity.
A complementary approach to consistent truncations

which has been exploited since the early years of super-
gravity [9] makes use of the fact that the truncation of a
higher-dimensional theory to all fields invariant under a
subgroup K of the isometry group SOðnþ 1Þ of the internal
spaceMint ¼ Sn is automatically consistent. This is because
the retained K-singlet fields cannot source the truncated
nonsinglet fields. Consequently, consistency in general
requires to retain all the K-singlet fields. In general, such
a truncation will contain an infinite number of fields
(including in particular an infinite number of massive
spin-2 fluctuations), unless the group K acts transitively
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on Mint [9]. A consistent truncation to a finite number of
fields thus requires that the internal manifold can be
represented as a coset space

Mint ¼ Sn ¼ SOðnþ 1Þ
SOðnÞ ¼ K

L
; ð1:2Þ

with L the isotropy subgroup of K. The field content of the
associated consistent truncation is given by the L-singlets
within the field content of the maximal supergravity.
In particular, the scalar target space of the truncation is
given by

Mscalar ¼
ComLðEdðdÞÞ
ComLðKdÞ

; ð1:3Þ

where ComLðGÞ denotes the commutant of L within G. In
the notation of [3], L is the reduced structure group of the
exceptional generalized geometry and the intrinsic torsion
is a constant L-singlet, reflecting the consistency of the
truncation. When the action of K is not transitive, the
truncation to K-singlets contains an infinite number of
fields and the internal space is not of the form (1.2), but
rather becomes a foliation of K=L over another space X
with the coordinates on X parametrizing the family of
singlets kept in the truncation [10].
In general, the consistent truncation to K-singlets

around a sphere is not a subtruncation of the maximal
supergravity. From the perspective of the maximal super-
gravity, they contain higher KK modes. However, the coset
structure of (1.2) can be combined with the twist matrix of
the maximally supersymmetric truncation in order to
construct the generalized frame of exceptional field theory.
This leads to fairly compact formulas for the resulting
Kaluza-Klein mass matrices. In particular, the mass spec-
trum can still be computed in a convenient basis of scalar
harmonics organized under SOðnþ 1Þ, even though the
actual vacuum breaks this group to the smaller group K.
This structure was exploited in [7,8] to compute the full
KK spectrum around the squashed seven-sphere [11,12]
represented as

Mint ¼ S7squashed ¼
Spð2Þ
Spð1Þ : ð1:4Þ

Another well known example is the N ¼ 4 truncation of
type IIB that comes from viewing S5 as a Sasaki-Einstein
space [13–15]. The SUð2Þ structure group in this case,
corresponds to the SUð2Þ denominator in the coset S5 ¼
SUð3Þ=SUð2Þ.
In this paper, we review the relation between truncations

to K-singlets and exceptional field theory and exploit the
structure in order to construct new G2-invariant AdS4
solutions ofD ¼ 11 supergravity compactified on squashed
seven-spheres. Specifically, we consider the truncation of

D ¼ 11 supergravity to singlets under the G2 subgroup of
the SOð8Þ isometry group of the round S7. Since G2 does
not act transitively on S7, the induced consistent truncation
contains an infinite number of fields. For the description
within exceptional field theory, we represent the seven
sphere as a foliation of S6 ¼ G2=SUð3Þ over an interval I

Mint ¼ Σ7 ¼ I ×
G2

SUð3Þ : ð1:5Þ

The resulting truncation then takes the form of an N ¼ 2
four-dimensional supergravity with all fields depending on
an additional internal coordinate w∈ I , parametrizing the
infinite families of KK states. In particular, the spin-2 and
spin-1 towers are described by a metric gμνðx; wÞ, and two
vector fields Aa

μðx; wÞ, a ¼ 1, 2, with x denoting the AdS4
coordinates. The scalar fields parametrize the coset space

Mscalar ¼
SUð2; 1Þ
Uð2Þ ×

SUð1; 1Þ
Uð1Þ ; ð1:6Þ

while still depending on the extra coordinate w. We show
that this truncation is in fact a rewriting of D ¼ 5 minimal
gauged supergravity coupled to one hypermultiplet. In turn,
this is the theory obtained by consistent truncation of
D ¼ 11 supergravity to the (finitely many) G2-singlets
on an internal S6.
Searching for AdS4 solutions within this truncation, we

set gμνðx; wÞ ¼ gAdS4μν ðxÞ, Aa
μ ¼ 0, and restrict to scalar fields

independent of the AdS coordinates x. We provide explicit
uplift formulas for these fields to D ¼ 11 dimensions which
produces the most general G2-invariant AdS4 Ansatz in
D ¼ 11 supergravity.1 The field equations result in a
system of second order ordinary differential equations for
the w-dependent scalar fields. The system is singular at
the endpoints of the interval I , and we find that imposing
regularity reduces its solutions to a finite discrete set.
Among them, we recover the known analytic solutions
[17–20] which all live within the consistent truncation to
N ¼ 8 supergravity [21] and correspond to the four
G2-invariant extremal points of its scalar potential [22].
On top of these solutions, we identify three new regular
numerical solutions of the system. Their uplift yields
geometries of the form AdS4 × Σ7 where Σ7 is a deformed
seven-sphere, preserving SO(7) isometries, together with
a nonvanishing three-form flux which preserves G2 ⊂
SOð7Þ symmetry. The analysis suggests that this is the
complete set of G2-invariant AdS4 solutions of D ¼ 11
supergravity. The description of these solutions within
ExFT paves the way for a future analysis of their stability,
mass spectra, supersymmetry, etc., which we leave for
future work.

1Earlier constructions [16,17] were restricted to solutions
living within the consistent truncation to N ¼ 8 supergravity.
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The rest of the paper is organized as follows. In Sec. II we
revisit the maximal consistent truncations and the trunca-
tions to K-singlets in the ExFT framework. In Sec. III, we
apply the construction to the truncation of D ¼ 11 super-
gravity to singlets under the G2 subgroup of the SOð8Þ
isometry group of the round S7. We recover the four known
G2-invariant solutions and present three new numerical
solutions. We close in Sec. IV with some concluding
remarks and outlook.

II. CONSISTENT TRUNCATIONS
TO K-SINGLETS IN EXFT

In this section, we review the construction of max-
imal consistent truncations and consistent truncations to
K-singlets in the framework of ExFT.

A. ExFT and maximal consistent truncations

Exceptional field theory provides a reformulation of
D ¼ 11 and IIB supergravity in terms of new variables
that mimic the field content of the lower-dimensional
maximal supergravity. As such, it offers a natural descrip-
tion of the consistent truncation of D ¼ 11 supergravity to
the lower-dimensional maximal supergravity. For the pur-
pose of this paper, and in particular the construction of AdS4
solutions, we will focus on the E7ð7Þ ExFT, constructed in
[23,24] to which we refer for details. Its bosonic field
content comprises a 4 × 4metric gμν, μ; ν ¼ 0;…; 3, a set of
56 vector fields Aμ

M, M ¼ 1;…; 56, and scalar fields
parametrizing a coset representative V of E7ð7Þ=SUð8Þ.
The latter encodes the D ¼ 11 fields according to

V ≡ exp ½Aklmnpqt
klmnpq
ðþ4Þ � exp ½Akmntkmn

ðþ2Þ�VGLð7Þ; ð2:1Þ

where VGLð7Þ ∈GLð7Þ ⊂ E7ð7Þ is proportional to the internal
block of the 11D vielbein, and Akmn and Aklmnpq are the
internal components of theD ¼ 11 three-form and dual six-
form, respectively, with indices k; l; m ¼ 1;…; 7. The tðþnÞ
are the E7ð7Þ generators of positive gradingþn in the algebra
decomposition

e7ð7Þ ⟶ 70−4 ⊕ 35−2 ⊕ glð7Þ0 ⊕ 350þ2 ⊕ 7þ4: ð2:2Þ

The remaining fields of D ¼ 11 supergravity parametrize
the 56 vector fields Aμ

M and the external metric gμν. For
later use, we state the relevant parts of the ExFT Lagrangian

g−1=2Lkin ¼
1

48
gμνDμMMNDνMMN;

g−1=2Lpot ¼
1

48
MMN

∂MMKL
∂NMKL

−
1

2
MMN

∂MMKL
∂LMNK þ 1

2
g−1∂Mg∂NMMN

þ 1

4
MMNg−2∂Mg∂Ngþ

1

4
MMN

∂Mgμν∂Ngμν;

ð2:3Þ

in terms of the external metric gμν, its determinant
g ¼ det gμν, and the internal metric M ¼ VVT .
The E7ð7Þ ExFT formulation of D ¼ 11 supergravity

allows for a natural description of the consistent truncation
on the round S7 to D ¼ 4 maximal gauged supergravity
[21,25]. In particular, the embedding into D ¼ 11 super-
gravity of the 70 scalar fields of D ¼ 4, N ¼ 8 super-
gravity, parametrizing an E7ð7Þ=SUð8Þ coset representative
V is given by

Vðx; yÞ ¼ ŮðyÞVðxÞ; ð2:4Þ

in terms of the variables (2.1). Here, x and y denotes the
four-dimensional coordinates, and the coordinates of the
seven-sphere, respectively. The SLð8Þ ⊂ E7ð7Þ valued twist

matrix ŮðyÞ which encodes the embedding (2.4) is explic-
itly given by [1,2]

Ům
aðYÞ ¼

 
ω̊3=4ðYa − 6ζn∂nYaÞ

ω̊−1=4
∂mYa

!
∈SLð8Þ;

m ¼ f0; mg; a ¼ f1;…; 8g; ð2:5Þ

in terms of the geometric data of the round S7, specifically
the fundamental sphere harmonics YaYa ¼ 1, the vector

field ζk satisfying ∇̊kζ
k ¼ 1, and ω̊ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ̊gS7mn

q
. After

embedding this matrix Ů into the 56-dimensional funda-
mental representation of E7ð7Þ, its algebra valued currents

ΓMN
K ¼ ρ−1ðU−1ÞMPðU−1ÞNL

∂PUL
K; ρ¼ ω̊−1=2; ð2:6Þ

define the constant intrinsic torsion

XMN
K ¼ −7½ΓMN

K�
912

; ð2:7Þ

after projection onto the irreducible 912 representation.
As an interesting consequence of the ExFT formulation,

the embedding (2.4) ofD ¼ 4maximal supergravity can be
extended to the higher Kaluza-Klein scalar modes around
the round S7 as

Vðx; yÞ ¼ ŮðyÞVðxÞ exp ½PIjI;ΣðxÞYΣðyÞ�; ð2:8Þ
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where the index Σ labels the scalar harmonics YΣðyÞ on S7,
and the 70 noncompact generators of E7ð7Þ are denoted by
PI . In terms of SOð8Þ representations, these correspond to

Σ∶⨁
n
½n; 0; 0; 0�; I∶½2; 0; 0; 0� ⊕ ½0; 0; 2; 0� ð2:9Þ

The scalar fluctuations (including the Goldstone modes)
thus fill the tensor product of these representations. In
particular, the fluctuation Ansatz (2.8) allows to straight-
forwardly derive universal and compact mass formulas for
the full KK spectrum of scalar fluctuations and higher point
couplings [4–6,26].

B. Consistent truncations to K-singlets

We have reviewed in the above subsection, how the
maximal consistent truncations on round spheres are nat-
urally described within the ExFT formulation of higher-
dimensional supergravity. Their consistency is based on the
underlying exceptional geometry together with the constant
intrinsic torsion (2.7). As discussed in the introduction,
there is a different class of consistent truncations to singlets
under some subgroup K of the isometry group of the round
sphere whose consistency is ensured by a simple symmetry
argument [9]. Let us briefly review how these truncations fit
into the above framework.
Within the scalar sector, a truncation to the K-singlets in

the spectrum can be described by restricting the fluctuation
Ansatz (2.8) according to

Vðx; yÞ ¼ ŮðyÞΦðx; yÞ; ð2:10Þ

with Φðx; yÞ given by

Φðx; yÞ ¼ exp

� X
K�singlets

ϕσðxÞsI;Σσ PIYΣðyÞ
�
: ð2:11Þ

The index σ here labels the K-singlets found in the tensor
product of the SO(8) representations (2.9), thereby defining
the constant tensor sI;Σσ . The statement that ϕσðxÞsI;Σσ be
K-singlet fields corresponds to

ϕσðxÞsI;Σσ ðk−1ÞIJ ¼ ϕσðxÞsJ;Λσ kΛΣ; ð2:12Þ

where k∈K. Upon contracting with the harmonics YΣ,
(2.12) corresponds to the following equivariance condition
for Φ

kΦðx; yÞk−1 ¼ Φðx; k · yÞ; ð2:13Þ

where “k·” is the action of K on Mint. I.e., the relevant
K-invariant fields correspond to K-equivariant functions on
the internal space Mint.
In case the group K acts transitively on the internal

manifold S7, the number of singlets is finite, and the

truncation (2.10) can be explicitly represented in terms of a
coset representative SðyÞ of the internal space (1.2)

Mint ¼
K
L
; ð2:14Þ

where L is the isotropy subgroup of K. This is best
understood through the language of G-structures as one
typically does in generalized geometry [3].

C. Consistent truncation via the L-structure

The truncation to K-singlets, as described in the previous
section is consistent by the usual argument of singlets not
sourcing nonsinglets in the equations of motion [9]. Despite
its simplicity, this picture has some drawbacks. It is non-
trivial to identify the field content of the truncated theory
from the K-singlets point of view. This applies in particular
to the scalar target space and the gauging of the lower-
dimensional supergravity. On the other hand, both the
gauging and the scalar coset space can be computed
systematically using the G-structure and intrinsic torsion
data of generalized geometry [3]. In this section, we will
review how the truncation to K-singlets corresponds to
an “ordinary” truncation arising from an appropriate
L-structure in generalized geometry. Let us first consider
the case of finite truncations, i.e. the case, when the K-action
on the internal space Mint ¼ K=L is transitive.
Crucially, we always work on internal spaces which also

admit maximal truncations, associated to a generalized
frame denoted by

ŮM̄
M ¼ ρ−1ðŮ−1ÞM̄M: ð2:15Þ

The truncation consists of all KK modes in the maximal
theory which are invariant under K. Since (2.15) defines a
generalized parallelization, the generalized tangent bundle
E, its dual E�, and all their tensor powers are trivial. So we
can view the space of sections ΓðEÞ as

ΓðEÞ ≅ C∞ðMÞ × R1; ð2:16Þ

where R1 is the relevant EdðdÞ representation. Analogous
statements hold for the various tensor powers by replacing
R1 with other EdðdÞ representations. In this sense, sections
can be defined by simply prescribing a set of well-defined
functions, valued in the relevant EdðdÞ representation.
The K-invariant modes in the truncation Ansatz corre-

spond to K-equivariant functions multiplying Ů, as seen
explicitly for the scalar sector in (2.10), (2.13). The
remaining fields obey analogous equivariance conditions.
As anticipated above, it is natural to introduce a local coset
representative S∶ K

L → K, which obeys the fundamental
property
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Sðk · yÞ ¼ kSðyÞlðk; yÞ; ð2:17Þ

where k∈K and lðk; yÞ∈L. The local frame

UM̄
M ¼ ðS−1ÞM̄N̄ŮN̄

M; ð2:18Þ

then defines an L-structure on Mint and allows to read off
the change of basis between the global frame, and the local
L-frame. Namely, if V are the components of a section in
the K-basis, the corresponding global function V̊ in the
parallelization basis is

V̊ ¼ S · V; ð2:19Þ

where “·” acts in the relevant EdðdÞ representation of V. We

can then show that V̊ is K-equivariant if and only if V is a
constant L-singlet.
First, notice that S is constructed by picking a fixed point

n̂∈ K
L, and building a K-valued local function S∶ K

L → K
such that

SðyÞ · n̂ ¼ y; ð2:20Þ

where y∈ K
L.

2 Taking V to be a constant L-singlet,3 a quick

calculation shows that V̊ in (2.19) is K-equivariant. For the
converse, assume V̊ to be K-equivariant, i.e.

k · V̊ðyÞ ¼ V̊ðk · yÞ: ð2:21Þ

Then by definition V ¼ S−1 · V̊, and it follows that V is
constant,

VðyÞ ¼ SðyÞ−1 · V̊ðyÞ
¼ V̊ðSðyÞ−1 · yÞ ¼ V̊ðn̂Þ: ð2:22Þ

It is then straightforward to show that V is also an L-singlet.
Let l∈L, then

l · V̊ðn̂Þ ¼ V̊ðl · n̂Þ ¼ V̊ðn̂Þ: ð2:23Þ

We have thus shown the equivalence

fKequivariant functions multiplying Ůg
↔ fConstant L-singlets multiplyingUg: ð2:24Þ

Evaluating (2.19) on the scalar sector straightforwardly
reproduces the truncation Ansatz of [8]

Vðx; yÞ ¼ ŮðyÞSðyÞWðxÞS−1ðyÞ; ð2:25Þ

where

WðxÞ∈ ComLðEdðdÞÞ
ComLðKdÞ

; ð2:26Þ

in agreement with (1.3). Analogous expressions hold for
the Ansätze of all remaining ExFT fields.
As discussed, the consistent truncation to finitely many

K-singlets in the spectrum of a round sphere Sn ¼
SOðnþ 1Þ=SOðnÞ, requires an alternative representation
of the sphere as a coset space K=L [9]. Such representa-
tions exist for a number of spheres [27] and Table I lists
the examples relevant for supergravity. In the general
framework of [3], L is the reduced structure group of the
exceptional generalized geometry. In all cases, the scalar
coset space is given by (2.26), and likewise the remaining
supersymmetry of the truncation is given by the number of
L-singlets among the gravitini of the maximal theory.
The embedding of the scalar target space into the ExFT
formulation of the higher-dimensional supergravity is

TABLE I. Spheres as coset spaces and the corresponding consistent truncations.

AdS × sphere Coset K
L SUSY Scalar target space Truncation

AdS4 × S7 USpð4Þ
SUð2Þ N ¼ 4 SOð6;3Þ

SOð6Þ×SOð3Þ ×
SLð2Þ
SOð2Þ [28]

AdS4 × S7 SUð4Þ
SUð3Þ N ¼ 2 SLð2Þ

SOð2Þ ×
SUð2;1Þ
Uð2Þ [29]

AdS4 × S7 USpð4Þ×SUð2Þ
SUð2Þ×SUð2Þ N ¼ 1 SLð2Þ

SOð2Þ ×
SLð2Þ
SOð2Þ [28,30]

AdS4 × S7 SOð7Þ
G2

N ¼ 1 SLð2Þ
SOð2Þ [29]

AdS4 × S6 G2

SUð3Þ N ¼ 2 SLð2Þ
SOð2Þ ×

SUð2;1Þ
Uð2Þ [31,32]

AdS5 × S5 SUð3Þ
SUð2Þ N ¼ 2 SOð5;2Þ

SOð5Þ×SOð2Þ × Rþ [13–15]

AdS7 × S3 SU(2) N ¼ 1 SOð3;3Þ
SOð3Þ×SOð3Þ × Rþ [1]

2Note that this definition automatically implies (2.17), where L
is the subgroup of K that fixes n̂.

3In this context, constant means independent of Mint. V can
still depend on the external space.
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given by (2.25). For USpð4Þ=SUð2Þ and ðUSpð4Þ ×
SUð2ÞÞ=ðSUð2Þ × SUð2ÞÞ this was exploited in [7,8] to
compute the full KK spectrum around the squashed seven-
sphere [11,12]. The SUð4Þ=SUð3Þ example has been
discussed in detail in [10].
Finally, let us consider a nontransitively acting K. In

this case Mint is foliated into K-orbits, and a transverse
space T [10]. We denote coordinates on the orbits by y, and
the transverse ones by w. It is straightforward to see that
an argument identical to the transitive case still holds.
However, the L-singlets in (2.25) will no longer be
constant, but w-dependent, namely

WðxÞ ⟶ Wðx; wÞ: ð2:27Þ

D. Intrinsic torsion

The gauging associated to the lower-dimensional trun-
cated theory is encoded in the embedding tensor, which
contains all the information about couplings between
scalars and vectors. For truncations that arise from an
L-structure, the embedding tensor is contained in the
intrinsic torsion, as discussed in [3]. The above construc-
tion ensures that the intrinsic torsion of the L-structure is a
constant L-singlet as we shall now sketch. Let us begin with
the case of finite trunctions. We will ignore trombone
contributions, thus restricting to EdðdÞ-valued generalized
connections, as opposed to EdðdÞ ×Rþ. It is useful to start
with some general remarks.
A generalized connection AMN̄

P̄ is L-compatible when-
ever the AM are valued in the Lie algebra l of L. Note that
barred indices are flattened withU, not with Ů. A covariant
derivative DM is defined by

DM ¼ ∂M þ ðAM·Þ; ð2:28Þ

where ðAM·Þ acts in the appropriate l representation. One
can compute the torsion τðDÞ of D [33]4

τðDÞ ¼ ρ−1ðPR3
ÞM̄ ᾱ

β̄
N̄ðAN̄

β̄ − ΓN̄
β̄Þ; ð2:29Þ

where R3 is the EdðdÞ representation of the embedding
tensor. The greek indices in (2.29) span the adjoint of EdðdÞ.
We denote by Γ the standard “current” (2.6) associated to
U. One can further expand Γ in terms of Ů and S

ΓMN
P̄ ¼ ðS−1ÞM̄R̄ðS−1ÞN̄ S̄Γ̊RS

T̄ST̄
P̄

þ ðS−1ÞM̄Q̄ðS−1ÞN̄ S̄ ̊∂Q̄SS̄P̄; ð2:30Þ

where ̊∂Q̄ ¼ ðŮ−1ÞQ̄M
∂M, and Γ̊ is the Ů current.

In order to compute the intrinsic torsion, it is convenient
to pick an origin in the affine space of generalized
connections. One can choose

S−1∂Sjl; ð2:31Þ

where the l projection is taken in order to get an
L-connection. Let us denote the intrinsic torsion by τint.
We then deduce that the R3 component of τint is

τint ¼ ρ−1ðPR3
Þð−Γ̊ − S−1∂Sjk⊖lÞ; ð2:32Þ

where all indices are suppressed. Let us make a couple of
observations about (2.32)
(1) The current Γ̊ is contracted with S as in (2.30).
(2) The derivative in S−1∂Sjk⊖l is really ðS−1ÞM̄N̄ ̊∂N̄.

The Γ̊ term in (2.32) gives the constant embedding tensor X̊
of the maximal truncation associated to the global frame Ů.
It is crucial to note that S∈K belongs to some subgroup
of the gauging, thus X̊ is also a K-singlet. Hence, the S
dressing leaves X̊ invariant. We can now focus on the
S−1∂S term.

1. Finite case

We will specialise to the situation of interest, i.e., when
the internal space is Sn, and Ů is its usual parallelization of
[1,2]. S should be viewed as a local function on the sphere.
Furthermore, derivatives obey the section condition. Hence,
we can write the action of ̊∂ as

ρ−1 ̊∂M̄ ¼ KM̄
i
∂i; ð2:33Þ

where KM̄
i are the SOðnþ 1Þ Killing vectors of the round

n-sphere. From now on, let us introduce SOðnþ 1Þ
fundamental indices ā ¼ 1;…; nþ 1, and denote the non-
trivial Killing vectors by Kab. It is also convenient to
introduce SOðnþ 1Þ generators

ðTabÞc̄d̄ ¼ 2δc̄½āδb̄�d̄: ð2:34Þ

The action of Kab on a scalar function f reduces to

Kab
i
∂ifðyÞ ¼

d
dt

jt¼0fðetTabyÞ: ð2:35Þ

More specifically, in order to match (2.30), ̊∂ must be
contracted with S−1. Hence, (2.35) becomes

ðS−1ÞabcdKcd
i
∂ifðyÞ¼

d
dt

����
t¼0

fðSðyÞetTabS−1ðyÞyÞ; ð2:36Þ
4Note that again we are ignoring trombone contributions.

DUBOEUF, GALLI, MALEK, and SAMTLEBEN PHYS. REV. D 111, 066007 (2025)

066007-6



where we used that Tab are K-singlets. Applying (2.36) to
our situation, leaves us with the following expression

S−1ðyÞ d
dt

����
t¼0

SðSðyÞetTabS−1ðyÞyÞ: ð2:37Þ

By definition the coset representative satisfies S−1ðyÞy ¼ n̂.
Hence, (2.37) vanishes whenever Tab is an element of the
Lie subalgebra soðnÞ. Therefore, the only nontrivial con-
tribution comes when Tab ∈ soðnþ 1Þ⊖ soðnÞ ¼ k⊖ l.5

One can then take Tab to lie in k⊖ l, without loss of
generality. Let us label generators of k⊖ l by indices
Ī; J̄;…. Crucially, TĪ ∈ k, so we can use the fundamental
property of S to pull out the exponential

SðSðyÞetTĪS−1ðyÞyÞ ¼ SðyÞetTĪ eχðt;yÞ; ð2:38Þ

where χðt; yÞ is a curve in l with χð0; yÞ ¼ 0. It is then
straightforward to see that (2.37) reduces to

S−1ðyÞ d
dt

����
t¼0

SðSðyÞetTābS−1ðyÞyÞ ¼ d
dt

����
t¼0

etTĪ eχðt;yÞ

¼ TĪ þ χ̇ð0; yÞ; ð2:39Þ

where χ̇ is the t derivative of χ. To conclude, substituting
(2.39) into (2.32), shows that the remaining component of
τint corresponds to the ðk⊖lÞ ⊗ ðk⊖lÞ block of the Cartan-
Killing form κ of SOðnþ 1Þ, appropriately embedded in
EdðdÞ, and projected onto R3. Crucially, κIJ is a constant
L-singlet.

2. Infinite case

The infinite case is more involved. In this paper, we will
restrict to the case where the transverse space T is one-
dimensional, such that the fields of the truncation (2.27)
depend on one transverse coordinate w only. Specifically,
we view the internal space Mint ¼ Sn as a fibration of Sn−1

over the interval I ¼ ½−1; 1�. We take Sn−1 ≅ K=L, where
K acts transitively on Sn−1. More concretely, we write the
Sn embedding coordinates as

Y ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p

y; w
�
; ð2:40Þ

where y ¼ ðy1;…; ynÞ are embedding coordinates of Sn−1,
and ω parametrizes I . The coset representative S is then
only a function of y, while n̂ is replaced with a copy of I .
More specifically, we introduce

n̂ðwÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p

; 0;…; 0; w
�
; ð2:41Þ

if we then view S and n̂ as (local) functions on Sn, the
defining property (2.20) becomes6

SðYÞn̂ðYÞ ¼ Y: ð2:42Þ

Crucially, the isotropy group L does not stabilize a single
point anymore, but a copy of I . Namely, it is defined by

ln̂ðYÞ ¼ n̂ðYÞ; with n̂ðYÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p

; 0;…; 0; w
�
:

ð2:43Þ

Since K acts on Sn−1, the modification (2.42) still implies
the universal property (2.17). Much of the finite case
analysis still applies. In particular, the nontrivial term we
should compute is still (2.37). However, there are two
significant differences
(1) S−1ðyÞy ¼ n̂ is not a constant: it corresponds to n̂ðwÞ

of (2.41).
(2) In the infinite case, (2.37) is nontrivial also for some

generators outside of k⊖l. For example, in our case,
the T’s transforming in the vector representation of
SOðnÞ give nonvanishing contributions.

Because of point 2 above, we cannot use the fundamental
property of S to pull out SetTS−1, as we did for the finite
case. We instead write

SðSðzÞetTābS−1ðzÞzÞ ¼ SðzÞSðetTab n̂ðwÞÞlðt; zÞ: ð2:44Þ

Note that here we denote the n local coordinates on Sn by z,
which in turn correspond to w along with the Sn−1 local
coordinates. From now on, let us assume that Sðn̂ðwÞÞ ¼ 1.7

One can easily see that lð0; zÞ ¼ 1. Thus, for sufficiently
small t, we can again assume

hðt; zÞ ¼ eχðt;zÞ; with χ some curve in l: ð2:45Þ

We now show that in the infinite case, the k⊖l projection of
S−1∂S only depends on w, and is an L-singlet.
The w-dependence follows from (2.44). Namely

S−1ðzÞ d
dt

����
t¼0

SðSðzÞetTābS−1ðzÞzÞ

¼ d
dt

����
t¼0

SðetTāb n̂ðwÞÞeχðt;zÞ

¼ d
dt

����
t¼0

SðetTāb n̂ðwÞÞ þ χ̇ð0; zÞ; ð2:46Þ

5This equality holds up to soðnÞ shifts.

6We slightly abuse notation here, one has to keep in mind that
S only depends on the Sn−1 coordinates. Similarly n̂ is a function
of w only.

7This can be done without loss of generality.
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it is clear that the k⊖l component of (2.46), can only
depend on w. We will now show that (2.37) is an L-singlet.
Let Λ∈L, one can act directly on (2.46)

Λ
d
dt

����
t¼0

SðΛ−1etTab n̂ðwÞÞeχðt;zÞΛ−1

¼ d
dt

����
t¼0

SðetTab n̂ðwÞÞλðt; wÞeχðt;zÞΛ−1; ð2:47Þ

where we again use the fundamental property of S. The
extra factor λðt; wÞ∈L “compensates” for Λ−1 being pulled
out of S on the left-hand side. Let us now consider t ¼ 0,

1 ¼ Sðn̂ðwÞÞ ¼ SðΛ−1n̂ðwÞÞ
¼ Λ−1Sðn̂ðwÞÞλð0; wÞ
¼ Λ−1λð0; wÞ; ð2:48Þ

so that λð0; wÞ ¼ Λ. Hence, again for small t, we can take

λðt;wÞ ¼Λeξðt;wÞ;

with ξa curve in l such that ξð0;wÞ ¼ 0: ð2:49Þ

Substituting (2.49) into (2.47) gives

Λ
d
dt

����
t¼0

SðΛ−1etTab n̂ðwÞÞeχðt;zÞΛ−1

¼ d
dt

����
t¼0

SðetTab n̂ðwÞÞ þ some l contribution; ð2:50Þ

Thus we conclude that the k⊖l projection is an L-singlet.
To conclude, in the infinite case, the intrinsic torsion is

still an L-singlet. However, unlike the finite case, it is not
constant. Instead, it depends on the transverse coordinate,
w. It would be interesting to explicitly evaluate τint for the
infinite case.

III. G2-INVARIANT SOLUTIONS OF D= 11
SUPERGRAVITY

In this section, we will use the ExFT structures in order to
revisit and construct new G2-invariant AdS4 × Σ7 solutions
of D ¼ 11 supergravity. Solutions of this type have
been constructed in the past directly in D ¼ 11 dimensions
[18–20], and most systematically in [17]. However, all
previous constructions have been restricted to solutions that
live within the consistent truncation to N ¼ 8 supergravity
[21]. In terms of the D ¼ 4 theory, they correspond to the
G2-invariant extremal points of the scalar potential [22].
Instead, here we will allow for a deformation of the

round S7 by the most general combination of the infinitely
many G2-invariant scalar modes in the KK spectrum. In the
ExFT framework, this corresponds to analysing a consis-
tent truncation to infinitely many fields [10]. Since we are

interested in AdS4 solutions, we focus on the scalar sector
of the four-dimensional theory.

A. Consistent truncation to G2-singlets

We start by representing the seven-sphere S7 as a
foliation of S6 over an interval I . Specifically, we use
its embedding coordinates YI inside R8, satisfying
YIYI ¼ 1, and represent them as

Yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

p
yi; Y8 ¼w∈ ½−1;1�; i¼ 1;…;7; ð3:1Þ

with the embedding coordinates yi of the round S6

satisfying yiyi ¼ 1. We will also introduce the angle
coordinate θ∈ ½0; π� by

w ¼ − cos θ: ð3:2Þ

According to the general discussion, within ExFT the
consistent truncation to G2-singlets in the scalar sector
is described by a parametrization of the generalized
vielbein as

Vðx; y; θÞ ¼ Ůðy; θÞSðyÞWðx; θÞS−1ðyÞ: ð3:3Þ

Here, SðyÞ is a coset representative for

S6 ¼ G2

SUð3Þ ; ð3:4Þ

and the W is a coset representative of the coset (1.3)

ComSUð3ÞðE7ð7ÞÞ
ComSUð3ÞðSUð8ÞÞ

¼ SUð2; 1Þ
Uð2Þ ×

SUð1; 1Þ
Uð1Þ ; ð3:5Þ

still depending on the additional coordinate θ∈ ½0; π�,
parametrizing the infinite families of KK states. We denote
by fϕ; χg the coordinates of the second factor of (3.5), and
parametrize the quaternionic manifold SUð2; 1Þ=Uð2Þ by
coordinates

fϕ1; χmg ¼ fϕ1; χ1a; χ1b; χ2g: ð3:6Þ

By virtue of their θ-dependence, each of these six fields
represents an infinite family of four-dimensional scalars,
which, however, still include both physical scalars together
with the Goldstone modes. As for the remaining bosonic
fields, the truncation carries two infinite families of vector
fields, parametrized by θ as Aα

μðθÞ, α ¼ 1, 2, as well as the
spin-2 tower described by gμνðθÞ. After Higgsing (for spin-1
and spin-2 fields), the theory then describes the massive
spin-2 tower, together with one massive spin-1 tower and
four infinite towers of massive scalar fields. In the fermionic
sector, the four-dimensional theory after Higgsing carries
two infinite towers of massive gravitino fields ψu

μðθÞ, u ¼ 1,
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2, together with two towers of massive spin 1=2 fermions.
Indeed, this matches the counting of G2-singlets within the
KK spectrum around the round sphere S7 [34–37].
When searching for AdS4 solutions, we will impose

vanishing fermions, and set

Aa
μðθÞ ¼ 0; ∂θgμνðθÞ ¼ 0: ð3:7Þ

The external part Lkin of the ExFT Lagrangian (2.3) in this
truncation is computed by evaluating the Lagrangian with
the Ansatz (3.3), leading to

g−1=2Lkin ¼ −2ρ−2
�
∂μϕ1∂

μϕ1 þ e−4ϕ1Mmn∂μχ
m
∂
μχn

þ 3

4
ð∂μϕ∂μϕþ e−2ϕ∂μχ∂μχÞ

	
; ð3:8Þ

with the weight factor

ρ ¼ ðsin θÞ−3; ð3:9Þ

and the scalar matrix Mmn given by

Mmn ¼

0
B@

e2ϕ1 þ χ21b −χ1aχ1b −χ1b
−χ1aχ1b e2ϕ1 þ χ21a χ1a

−χ1b χ1a 1

1
CA: ð3:10Þ

This confirms that the scalar kinetic term (3.8) is given by a
four-dimensional sigma-model on the six-dimensional
target space (3.5) with all fields carrying an additional
dependence on the coordinate θ.
In the search for AdS4 solutions, wewill further restrict to

scalar fields that are constant in AdS4, i.e. reduce to
functions of only the additional coordinate θ. For such
solutions, the kinetic Lagrangian (3.8) vanishes and does
not contribute to the field equations. The relevant
Lagrangian is thus obtained from the internal part Lpot of
the ExFT Lagrangian (2.3). After some lengthy but straight-
forward computation this yields the truncated Lagrangian

Lpot ¼ ρ−2g−1=2Lpot; ð3:11Þ

with

Lpot ¼
3

2
e−3ϕDθϕDθϕ − e−3ϕDθϕ1Dθϕ1 − e−3ϕ−4ϕ1MmnDθχ

mDθχ
n

þ 3e−ϕf2cot2θð5χ21a þ 3χ21bÞ − 4e−4ϕ1ðχ1a þ cot θðχ21aχ1b þ 2χ1aχ2 þ χ31bÞÞ2
þ e−2ϕ1ðð5þ cot θð10χ2 − 8χ1aχ1bÞÞð1þ 2 cot θχ2Þ þ cot2θð5χ21a − 3χ21bÞðχ21a þ χ21bÞÞg
þ 15e−ϕþ2ϕ1cot2θ − 3e−3ϕð1þ 3 cosð2θÞÞcsc2θ; ð3:12Þ

with the matrix Mmn from (3.10) above and the “covariant” derivatives Dθ defined as

Dθϕ ¼ ∂θϕþ 2 cot θ;

Dθϕ1 ¼ ∂θϕ1 þ 2χ2 − 3 cot θ − 6χχ1a cot θ;

Dθχ1a ¼ ∂θχ1a − 3χ1a cot θ − χ1bðe2ϕ1 þ χ21a þ χ21bÞ þ 2χ1aχ2 þ 3χ cot θðe2ϕ1 − χ21a þ 3χ21bÞ;
Dθχ1b ¼ ∂θχ1b − 3χ1b cot θ þ χ1aðe2ϕ1 þ χ21a þ χ21bÞ þ 2χ1bχ2 − 3χð1þ 2 cot θð2χ1aχ1b þ χ2ÞÞ;

Dθχ2 ¼ ∂θχ2 −
1

2
e4ϕ1 −

5

2
− 6χ2 cot θ −

1

2
ðχ21a þ χ21bÞð2e2ϕ1 þ χ21a þ χ21bÞ þ 2χ22

þ 3χðcot θðχ1bðe2ϕ1 þ χ21a þ χ21bÞ − 2χ1aχ2Þ − χ1aÞ: ð3:13Þ

All fields depend on the coordinate θ only, variation of
(3.12) thus implies a set of ordinary differential equations
for the scalar fields. Furthermore, the Lagrangian (3.12)
explicitly depends on the coordinate θ induced by the
θ-dependence of the generalized frame of the round sphere
Ů in the truncation Ansatz (3.3).
It is straightforward to check that the combination

V ¼ −Lpot −
3

4
ρ2∂θðρ−2e−3ϕ∂θϕÞ; ð3:14Þ

is conserved on-shell, i.e. ∂θV ¼ 0 as a result of the field
equations implied by (3.12). This charge shows up in the
four-dimensional Einstein field equations in this truncation,
and encodes the AdS4 radius l4 as

Rμν −
1

2
gμνR ¼ −Vgμν ¼

3

l2
4

gμν: ð3:15Þ

The uplift of the consistent truncation can be computed
by extracting the D ¼ 11 fields upon combining (2.1) with
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the Ansatz (3.3). For instance, the D ¼ 11 metric is
expressed in terms of the scalar fields (3.6) as

ds2 ¼ Δ−1ds2ð4Þ þ e3ϕΔ−1dθ2 þ e−
ϕ
2 sin2 θΔ1=2ds2S6 : ð3:16Þ

Here, ds2
S6
denotes the metric of the round S6, and the warp

factor Δ is given by

Δ ¼ eϕþ4ϕ1=3ðcos θÞ−4=3ððe2ϕ1 þ χ21a þ χ21bÞ2
þ ðtan θ þ 2χ2Þ2Þ−2=3: ð3:17Þ

All fields are functions of θ. Similarly, one may extract the
D ¼ 11 three-form. We give explicit formulas below,
cf. (3.52), after further simplification of the system.
By construction, every solution to the equations of

motion of (3.12) locally describes a solution of D ¼ 11
supergravity. However, searching for a solution with
compact internal space given by a seven-sphere, the form
of the metric (3.16) shows that we need to require all fields
to remain regular at the endpoints of the interval θ∈ ½0; π�.
As we will make explicit below, the field equations derived
from (3.12) are singular at these endpoints, such that the
proof of existence and the construction of regular solutions
becomes a rather nontrivial task. In particular, we will see
that only a discrete and finite set of such solutions exists.
Before proceeding with the analysis of solutions, let us

note that the Lagrangian (3.12) can be further simplified.
First, we observe that it is invariant under the gauge
transformations

δχ ¼ −∂θΛ − 2Λ cot θ;

δΛϕ1 ¼ −6Λχ1a cot θ;

δΛχ1a ¼ 3Λ cot θðe2ϕ1 − χ21a þ 3χ21bÞ;
δΛχ1b ¼ −3Λð1þ 2 cot θð2χ1aχ1b þ χ2ÞÞ;
δΛχ2 ¼ 3Λðcot θðχ1bðe2ϕ1 þ χ21a þ χ21bÞ − 2χ1aχ2Þ − χ1aÞ;

ð3:18Þ

with arbitrary Λ ¼ ΛðθÞ, which can be used to eliminate
one of the scalar fields. Moreover, the Lagrangian (3.12)
only depends algebraically on the field χ which can thus be
integrated out by virtue of its field equations, reducing the
system to only four scalar fields. This is a remnant of the
Higgs mechanism of the full theory.
As it turns out, the system can further be drastically

simplified by going to different variables which are closer
to the higher-dimensional origin of the fields. We will show
in the following that upon change of coordinates and fields,
the Lagrangians (3.8), (3.12) embed into a simple five-
dimensional Lagrangian upon merging the AdS4 coordi-
nates x and the extra coordinate θ into a five-dimensional
space-time. In turn, this significantly simplifies the equa-
tions of motion such that they can be treated by numerical

methods. In order to illustrate this simplification of the
system, we will first discuss the further subtruncation to
the (still infinitely many) SOð7Þ-singlets in the spectrum of
the round sphere.

B. SOð7Þ truncation
As an illustration, let us first discuss the truncation of the

system to the SOð7Þ-singlets in the S7 spectrum. This sector
has been discussed in [10]. Within the above discussion,
this corresponds to the further (consistent) truncation

χ ¼ χ1a ¼ χ1b ¼ 0; ð3:19Þ

such that we are left with three θ-dependent scalar fields
fϕ;ϕ1; χ2g parametrizing the target space

SUð1; 1Þ
Uð1Þ ×R; ð3:20Þ

with ϕ denoting the R coordinate. The ExFT action (3.8),
(3.12) in this truncation reduces to

S ¼
Z

d4xdθρ−2g−1=2ðLkin þ LpotÞ; ð3:21Þ

with

Lkin¼−
3

2
∂μϕ∂

μϕ−2∂μϕ1∂
μϕ1−2e−4ϕ1∂μχ2∂

μχ2; ð3:22Þ

Lpot ¼
3

2
e−3ϕð∂θϕþ 2 cotθÞ2 − e−3ϕð∂θϕ1 þ 2χ2 − 3 cotθÞ2

− e−3ϕ−4ϕ1

�
∂θχ2 þ 2χ22 −

1

2
e4ϕ1 − 6χ2 cotθ−

5

2

	
2

þ 15e−ϕ−2ϕ1ð1þ 2χ2 cotθÞ2 þ 15cot2θe−ϕþ2ϕ1

− 2e−3ϕð1þ 3 cosð2θÞÞcsc2θÞ: ð3:23Þ

Again, one finds that the combination V from (3.14) is
conserved on-shell, i.e. as a result of the field equations
implied by (3.23), and encodes the AdS4 radius l4

according to (3.15).8 Furthermore, one finds that the field
equations obtained from (3.23) imply that

Δ−3ρ2∂θðρ−2e−3ϕΔ2CθÞ ¼ const; ð3:25Þ

8After change of coordinates

ϕ1 → −
1

2
φ; χ2 → χ; θ → π − θ7; ð3:24Þ

one may further check that V in the SOð7Þ truncation precisely
reproduces the effective potential derived in [10], where it is
directly obtained via the embedding (3.3) with (3.4) replaced by
SOð7Þ=SOð6Þ and given in their Eq. (3.31).
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where Cθ is defined by

Cθ ¼ tan θe3ϕΔ−2ð1 − fðθÞÞ − e
3ϕ
2
−2ϕ1Δ−1=2ðtan θ þ 2χ2Þ;

ð3:26Þ

with the function f satisfying the differential equation

f0ðθÞ ¼ ð6 − 7fðθÞÞ cot θ − fðθÞ tan θ: ð3:27Þ

Equation (3.25) is inherited from the Bianchi identity in
D ¼ 11 supergravity, with Cθ describing the D ¼ 11
internal 6-form as ⋆7Cð6Þ ¼ Cθdθ.
The existence of two conserved charges (3.14) and (3.25)

suggests that the model (3.21) can be further simplified
exploiting the associated global symmetries. Indeed this is
the case and leads to a compact reformulation in terms of
redefined coordinates and fields that are naturally associ-
ated with a D ¼ 5 uplift of the field equations as we shall
show now.

1. Redefined coordinates and fields

Exploiting the global symmetry derived from the
conserved charge (3.14) reveals a redefinition of the
θ-coordinate, which together with a θ-dependent R ×
SLð2Þ transformation on the scalar fields, leads to a
Lagrangian which no longer shows any explicit coordi-
nate-dependence. Explicitly, this is achieved, by going to
the coordinate u defined as

u ¼ −
1

96
ð96þ 45 sinð2θÞ − 9 sinð4θÞ

þ sinð6θÞ − 60θÞ∈ ½−1; 1�;
⇒ ∂θu ¼ 2ρ−2 ¼ 2 sin6 θ: ð3:28Þ

Simultaneously, we define the scalar fields as

fϕ;ϕ1; χ2g ⟶ fΦ;Φ1;X2g;
with eΦ ¼ ρ4=3eϕ;

eΦ1 ¼ ρ−1e−3ϕ=4Δ3=4;

X2 ¼
1

2
ρ−2ðe−3ϕ=2−2ϕ1Δ3=2ðtan θ þ 2χ2Þ

− ðtan θ − 3ρ2uÞÞ; ð3:29Þ

with ρ, Δ, and u from (3.9), (3.17), and (3.28), respec-
tively. Although not manifest, one may verify that this
transformation, corresponds to a nonlinear θ-dependent
R × SUð1; 1Þ transformation on the fields. As a result, the
kinetic term (3.22) remains unchanged.
The Lagrangian (3.23) after redefinition (3.28), (3.29)

takes the remarkably compact form

Lpot ¼ e−3Φð3∂uΦ∂uΦ − 2∂uΦ1∂uΦ1 − 2e−4Φ1∂uX2∂uX2Þ

þ 15

2
e−Φ−2Φ1 : ð3:30Þ

As a result, the action given by (3.22) and (3.30) [upon
temporarily relaxing the constraints (3.7)] can be written in
manifestly five-dimensional form as

S ¼
Z

d4x du
ffiffiffiffiffiffiffiffiffiffiffi
jGð5Þj

q �
Rð5Þ − 2∂μ̂Φ1∂

μ̂Φ1

− 2e−4Φ1∂μ̂X2∂
μ̂X2 þ

15

2
e−2Φ1

	
; ð3:31Þ

with fxμ̂g ¼ fxμ; ug, μ̂ ¼ 0;…; 4. This is the action of
D ¼ 5 gravity coupled to an SLð2Þ=SOð2Þ sigma model. It
results from the consistent truncation of D ¼ 11 super-
gravity to the SOð6Þ-singlet modes around the round six-
sphere S6 ¼ SOð7Þ=SOð6Þ. Splitting the 5D metric in the
standard Kaluza-Klein fashion

Gμ̂ ν̂ ¼
 
e−Φgμν þ e2ΦAμAν e2ΦAμ

e2ΦAμ e2Φ

!
; ð3:32Þ

reinstating the truncation (3.7), together with inverting
the change of coordinates (3.28) and fields (3.29), the
Lagrangian (3.31) then yields back the ExFT Lagrangian
(3.22), (3.23).
As seen above, solutions of type AdS4 × Σ7 correspond

to regular boundary behavior (at the endpoints of the
interval θ ¼ 0, θ ¼ π) for the fields fϕ;ϕ1; χ2g, which
in turn will correspond to divergent boundary behavior of
fΦ;Φ1;X2g at the endpoints of the interval u∈ ½−1; 1�. In
other words, in the D ¼ 5 reformulation (3.31) of this
truncation, we need to identify particular singular solutions
in order to describe a regular AdS4 × Σ7 geometry.

2. Field equations

The reformulation (3.31) of the SOð7Þ-singlet sector of
D ¼ 11 supergravity allows to quickly derive and further
simplify the equations of motion. Let us first note that the
global symmetry associated with the conserved charge V
from (3.14) is nothing but the invariance of (3.30) under
translations in u, i.e. corresponds to the conserved “energy”
of this one-dimensional Lagrangian. Moreover, the field
equations following from the Lagrangian (3.30) imply that

e−3Φ−4Φ1∂uX2 ¼ F; ð3:33Þ

with some constant F, corresponding to equation (3.25) in
the previous variables. In consequence, this equation can be
used to eliminate X2 from the Lagrangian and arrive at
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Lpot;red ¼ e−3Φð3ð∂uΦÞ2 − 2ð∂uΦ1Þ2Þ þ 2e3Φþ4Φ1F2 þ 15

2
e−Φ−2Φ1 : ð3:34Þ

The conserved charge V from (3.14) then is simply given by

V ¼ e−3Φð3ð∂uΦÞ2 − 2ð∂uΦ1Þ2Þ − 2e3Φþ4Φ
1F

2−
15

2
e−Φ−2Φ1 : ð3:35Þ

Let us spell out the field equations obtained from (3.34), however reexpressed in terms of the original fields ϕ and Δ, in
order to better illustrate the boundary asymptotics

0 ¼ 720Δ−3=2e
7ϕ
2 − 720cos2θ − 36 sinð2θÞðΔ−1

∂θΔ − 5∂θϕÞ
þ sin2θð−48Δ−1

∂
2
θΔ − 45ð∂θϕÞ2 þ 90Δ−1

∂θΔ∂θϕþ 75Δ−2ð∂θΔÞ2 − 320F2Δ3e3ϕÞ;
0 ¼ 80ðΔ−3=2e

7ϕ
2 − 1Þ þ 12 sinð2θÞð−3Δ−1

∂θΔþ 7∂θϕÞ
þ sin2θð16∂2θϕ − 33ð∂θϕÞ2 þ 18Δ−1

∂θΔ∂θϕ − 9Δ−2ð∂θΔÞ2 − 64F2Δ3e3ϕ þ 144Þ: ð3:36Þ

In these fields, the conserved charge (3.35) takes the form

V ¼ 1

32
e−3ϕð18Δ−1

∂θΔð∂θϕ − 4 cotðθÞÞ − 9Δ−2
∂θΔ2 þ 15ð∂θϕ − 4 cotðθÞÞ2Þ

−
15

2
Δ−3=2eϕ=2 csc2 θ − 2F2Δ3 ¼ −

3

l2
4

: ð3:37Þ

Expanding the system of ordinary differential equa-
tions (3.36) near the boundaries of the interval θ∈ ½0; π�
exhibits the singularities. Imposing regularity of the sol-
utions ϕ, Δ at the boundary requires both to be even
functions in θ with the lowest coefficients in their Taylor
expansion restricted by

Δjθ¼0 ¼ e7ϕ=3jθ¼0;

∂
2
θΔjθ¼0 ¼

1

33
½e7ϕ=3ð36þ 81∂2θϕ− 16e10ϕF2Þ�θ¼0: ð3:38Þ

A solution regular at θ ¼ 0 thus is determined by two
integration constants, which may be chosen to be ϕð0Þ and
∂
2
θϕjθ¼0. A generic solution of this type will be singular at
the other end θ ¼ π of the interval. Inducing regularity at
both endpoints of the interval thus reduces the set of
solutions to a discrete set.
Before analysing possible regular solutions in more

detail, let us note that we may recover two analytic
solutions of the system (3.36), both corresponding to
known solutions living within the consistent truncation
to N ¼ 8 supergravity [21]

SOð8Þ∶ ϕ ¼ 0; Δ ¼ 1; F ¼ 3

2
; l4 ¼

1

2
;

SOð7Þþ∶ ϕ ¼ −
1

4
ln 5; Δ ¼ 51=12

ð3þ 2 cosð2θÞÞ2=3 ;

F ¼ 53=4

2
; l4 ¼

31=2

2 × 53=8
: ð3:39Þ

The first solution is the round sphere S7, the second one
corresponds to the SOð7Þ-squashed S7 found in [20].

C. G2 truncation and uplift to D= 11

Having described in detail the simplification of the
consistent truncation to SOð7Þ-singlets, eventually
described by the simple D ¼ 5 Lagrangian (3.34),
we can now extend the discussion to the full sector of
G2-singlets. Recall, that the Lagrangian obtained from
ExFT is given by (3.12), (3.13) in terms of six scalar
fields parametrizing the coset space (3.5). Following the
previous discussion, we apply the coordinate transforma-
tion (3.28) together with a field redefinition

fϕ;χ;ϕ1;χ1a;χ1b;χ2g⟶ fΦ;X ;Φ1;XA;XB;X2g; ð3:40Þ

by a nonlinear θ-dependent SLð2Þ × SUð2; 1Þ transforma-
tion, generalizing (3.29). After this redefinition, the action
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(3.12) takes the compact form

Lpot ¼ 3e−3Φð∂uΦÞ2 − 2e−3Φð∂uΦ1Þ2
− 2e−3Φ−4Φ1MmnDuXmDuXn

þ 15

2
e−Φ−2Φ1 − 6e−Φ−4Φ1X2

A; ð3:41Þ

with fXmg ¼ fXA;XB;X2g, the matrix

Mmn ¼

0
B@

e2Φ1 þ X2
B −XAXB −XB

−XAXB e2Φ1 þ X2
A XA

−XB XA 1

1
CA; ð3:42Þ

and the “covariant” derivatives Du defined as

DuXA ¼ ∂uXA; DuXB ¼ ∂uXB − 3X ;

DuX2 ¼ ∂uX2 − 3XXA: ð3:43Þ

The kinetic term (3.8) is invariant under the transformation
(3.40). The full truncation to G2-singlets can then be
written in manifestly five-dimensional form upon extend-
ing (3.31) to

S ¼
Z

d4xdu
ffiffiffiffiffiffiffiffiffiffiffi
jGð5Þj

q �
L5D;min − 2∂μ̂Φ1∂

μ̂Φ1

− 2e−4Φ1MijDμ̂X iDμ̂X j

þ 15

2
e−2Φ1 − 6e−4Φ1X2

A

	
; ð3:44Þ

with

Dμ̂XA ¼ ∂μ̂XA; Dμ̂XB ¼ ∂μ̂XB − 3Aμ̂;

Dμ̂X2 ¼ ∂μ̂X2 − 3Aμ̂XA; ð3:45Þ

with fxμ̂g ¼ fxμ; ug, μ̂ ¼ 0;…; 4. The first term in (3.45)
is the bosonic sector of minimal supergravity in D ¼ 5, i.e.
describes a vector field Aμ with D ¼ 5 Chern-Simons term
coupled to D ¼ 5 gravity. The remaining part of (3.45)
describes the coupling to one hypermultiplet with target
space SUð2; 1Þ=Uð1Þ and gauging of a shift isometry
according to (3.43) (upon identification of X with the fifth
component Au of the gauge field). The Lagrangian (3.45)
results from the consistent truncationofD ¼ 11 supergravity
to the G2-singlets around the six-sphere S6 ¼ G2=SUð3Þ. Its
form is consistent with the fact that this truncation retains
one D ¼ 5 gravitino, thus describes the bosonic sector of a
D ¼ 5, N ¼ 1 supergravity.
In the search for AdS4 solutions, we again impose (3.7)

and require scalar fields to be constant in AdS4 spacetime,
such that the system is described by the ordinary differ-
ential equations obtained from variation of the Lagrangian
(3.41). Variation with respect to X 2 implies that

e−3Φ−4Φ1ð∂uX2 þ XA∂uXB − XB∂uXA − 6XAXÞ ¼ F;

ð3:46Þ

with some constant F, generalizing equation (3.33).
Moreover, the field X appears only algebraically in
(3.41), entering the covariant derivatives (3.43). It can thus
be eliminated by its own field equation

3X ¼ ∂uXB þ 2e3Φþ2Φ1FXA; ð3:47Þ

where we have already used (3.46) for simplification. Upon
integrating out X and X2, we are thus left with the one-
dimensional Lagrangian

Lpot;red ¼ 3e−3Φð∂uΦÞ2 − 2e−3Φð∂uΦ1Þ2
− 2e−3Φ−4Φ1ð∂uXAÞ2

þ 15

2
e−Φ−2Φ1 − 6e−Φ−4Φ1X2

A

þ 2e3Φþ4Φ1F2 þ 8e3Φþ2Φ1F2X2
A; ð3:48Þ

describing all the equations that define an AdS4 solution. In
particular, we note that the field XB has also disappeared
from the Lagrangian, such that we are left with a system of
three scalar fields. This is a remnant of the gauge freedom
and the Higgs effect in the full D ¼ 11 theory.
Before analyzing the field equations and their solutions,

let us first spell out the uplift of the model to D ¼ 11
dimensions. For the D ¼ 11 metric, we have given the
result in (3.16) above

ds2¼Δ−1ds2ð4Þ þe3ϕΔ−1dθ2þe−
ϕ
2 sin2θΔ1=2ds2

S6
; ð3:49Þ

where ϕ and Δ are related to the fields of (3.48) via (3.29)

eΦ ¼ ρ4=3eϕ; eΦ1 ¼ ρ−1e−3ϕ=4Δ3=4: ð3:50Þ

In particular, the determinant of the metric on the internal
space is given by

det gð7Þ ¼ ρ−4Δ2 det gS6 : ð3:51Þ

Similarly, one obtains the uplift for the D ¼ 11 three-form
Cð3Þ and its field strength Fð4Þ as

Fð4Þ ¼ 4Fωð4Þ þ dCð3Þ;

Cð3Þ ¼
1

6
sin4 θAðcijnckmnymdyidyjdyk

− 4Fe3ϕ=2Δ3=2cijkyidyjdykdθÞ; ð3:52Þ

after redefining

XA ¼ ρ−4=3A; ð3:53Þ

CONSISTENT TRUNCATIONS AND G2-INVARIANT … PHYS. REV. D 111, 066007 (2025)

066007-13



and where F is the constant introduced in (3.46). The
result is given in terms of the embedding coordinates yi,
i ¼ 1;…7, of the round S6, yiyi ¼ 1, while cijk is the
unique totally antisymmetric cubic G2-invariant tensor,
normalized as cijkcijk ¼ 42. ωð4Þ is the AdS4 vol-
ume form.
In turn, the Ansatz (3.49), (3.52) is the most general

G2-invariant Ansatz for an AdS4 × Σ7 solution of D ¼ 11
supergravity, after gauge fixing of theD ¼ 11 tensor gauge
symmetries. The metric (3.49) still has the full SOð7Þ
isometry group, which is broken to G2 by the three-form
Cð3Þ. An early analysis of G2-invariant compactifications
[16] was restricted to a constant warp factor Δ ¼ 1, which
leaves the system with only two solutions, denoted as

SOð8Þ and SOð7Þ− below. The subsequent analysis of [17]
allowed for a warp factor, but was restricted to solutions
that live within the consistent truncation to N ¼ 8 super-
gravity. In particular, this implies ϕ ¼ const, and leaves the
system with four solutions, given in the next subsection.
Relaxing these restrictions, we will find new numerical
solutions in Sec. III E below.

D. Field equations and analytic solutions

For the further analysis, we spell out the equations of
motion derived from variation of (3.48) in terms of the
coordinate θ and the fields (3.50), (3.53) which directly
feature in the expressions for the D ¼ 11 fields. Explicitly,
these equations are given by

0 ¼ sin2 θð−48Δ−1
∂
2
θΔ − 45ð∂θϕÞ2 þ 90Δ−1

∂θΔ∂θϕþ 75Δ−2ð∂θΔÞ2 − 320F2Δ3e3ϕÞ
þ 720Δ−3=2e

7ϕ
2 − 720 cos2 θ − 36 sinð2θÞðΔ−1

∂θΔ − 5∂θϕÞ
− 16e3ϕ=2Δ−3 sin2 θðΔ3=2ð4A cos θ þ ∂θA sin θÞ2 þ 84e7ϕ=2A2 þ 16e3ϕF2Δ9=2A2 sin2 θÞ;

0 ¼ sin2 θð16∂2θϕ − 33ð∂θϕÞ2 þ 18Δ−1
∂θΔ∂θϕ − 9Δ−2ð∂θΔÞ2 − 64F2Δ3e3ϕ þ 144Þ

þ 80ðΔ−3=2e
7ϕ
2 − 1Þ þ 12 sinð2θÞð−3Δ−1

∂θΔþ 7∂θϕÞ
− 16e3ϕ=2Δ−3 sin2 θðΔ3=2ð4A cos θ þ ∂θA sin θÞ2 þ 4e7ϕ=2A2 þ 16e3ϕF2Δ9=2A2 sin2 θÞ;

0 ¼ sin2 θð−2∂2θAþ 3∂θAð∂θϕþ Δ−1
∂θΔÞ þ 32Að1 − e3ϕF2Δ3ÞÞ

þ sinð2θÞð6Að∂θϕþ Δ−1
∂θΔÞ − 8∂θAÞ þ 24Aðe7ϕ=2Δ−3=2 − 1Þ: ð3:54Þ

The system admits a conserved charge, corresponding to the invariance of the system (3.48) under translations in u,
originally given in (3.14) and related to the AdS4 radius by (3.15). In terms of the fields fϕ;Δ; Ag, it takes the explicit form

V ¼ 1

32
e−3ϕð18Δ−1

∂θΔð∂θϕ − 4 cotðθÞÞ − 9Δ−2
∂θΔ2 þ 15ð∂θϕ − 4 cotðθÞÞ2Þ

−
15

2
Δ−3=2eϕ=2 csc2 θ − 2F2Δ3 −

1

2
e−3ϕ=2Δ−3=2ð4A cos θ þ ∂θA sin θÞ2

þ 2ð3e2ϕΔ−3 − 4e3ϕ=2Δ3=2F2 sin2 θÞA2 ¼ −
3

l2
4

; ð3:55Þ

generalizing (3.37) to the full G2 truncation. One may
check explicitly, that V is conserved, ∂θV ¼ 0, as a
consequence of the equations (3.54).
Equations (3.54) are invariant under the scaling sym-

metry

eϕ → λ3eϕ; Δ → λ7Δ; A → λ3A;

F → λ−15F; λ∈R�; ð3:56Þ

with constant λ. This is the trombone symmetry of D ¼ 11
supergravity [38], under which the AdS4 radius l4 (3.55)
scales as

l4 → λ9=2l4: ð3:57Þ

For the subsequent numerical analysis, we fix this scaling
symmetry (3.56) to set the constant F from (3.46) to

F ¼ 3

2
: ð3:58Þ

All previously known solutions to the equations (3.54)
are analytic, have constant ϕ, and live within the consistent
truncation to N ¼ 8 supergravity [21]. They correspond
to the four G2-invariant extremal points of the scalar
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potential [22]. In our conventions, in particular after having fixed the scaling symmetry by (3.58), they take the form

SOð8Þ∶ eϕ ¼ 1; Δ ¼ 1; A ¼ 0;

SOð7Þþ∶ eϕ ¼ 3−1=55−1=10; Δ ¼ 513=303−7=15ð1þ 4cos2θÞ−2=3; A ¼ 0;

SOð7Þ−∶ eϕ ¼ 21=53−1=5; Δ ¼ 27=153−7=15; A ¼ 2−4=53−1=5;

G2∶ eϕ ¼ 3−3=10; Δ ¼ 3−1=30ð1þ 2cos2θÞ−2=3; A ¼ 31=55−1=2ð1þ 2cos2θÞ: ð3:59Þ

E. New numerical solutions

In the rest of this paper, we will discuss the equations of
motion (3.54) and their solutions by numerical analysis. To
this end, we go back to coordinate w from (3.2). As we have
already discussed for the SO(7) subsector, cf. (3.38) above,
the system of second order differential equations (3.54) is
singular at the boundary of the interval θ∈ ½0; π�, i.e.
w ¼ �1. As a consequence, for a regular solution only
three of the (a priori six) initial conditions can be chosen
freely at w ¼ 1, and we choose these to be

ϕð1Þ≡ q; ϕ0ð1Þ≡ p; Að1Þ≡ a: ð3:60Þ

Throughout this section, primes refer to derivatives with
respect to w: ϕ0 ¼ ∂wϕ, etc.. Regularity of the solution at
w ¼ 1 then determines the next coefficients in the respec-
tive Taylor expansions

Δð1Þ ¼ e7q=3;

Δ0ð1Þ ¼ 1

33
eq=3ð80a2 þ 16F2e12q þ 9e2qð9p − 4ÞÞ;

A0ð1Þ → 4

99
ae−2qð−20a2 þ 40F2e12q þ e2qð54p− 35ÞÞ;

ð3:61Þ

and similarly, all higher coefficients in the Taylor expansion
are fixed by expanding the equations (3.54). For generic

choice of the boundary conditions (3.60), the solution will
however be singular at the other endpoint w ¼ −1 of the
interval, or even diverge before reaching the endpoint.
Further imposing regularity at the opposite boundary
w ¼ −1 thus imposes three (highly nonlinear) relations
among the parameters (3.60) such that a naive counting
argument indicates that the system allows for only a
discrete set of regular solutions. Indeed, that is what we
observe in the following.
Let us also note that the cosmological constant (3.55) is

given as a function of the boundary conditions (3.60) as

l2
4 ¼

66e5q

180a2 þ 80F2e12q − 21e2qð9p − 4Þ : ð3:62Þ

In the following numerical analysis, we will separate the
cases A ¼ 0, which amounts to truncating to the subsector
of SO(7)-singlets discussed in Sec. III B, and A ≠ 0. In
total, we find three new numerical solutions on top of the
known analytic solutions (3.59). Our findings are summa-
rized in Table II.

1. A = 0

We first discuss the subsector with A ¼ 0, which is a
consistent truncation of the system (3.54), corresponding to
the subsector of SO(7)-singlets discussed in Sec. III B. We
then scan the two-dimensional parameter space of initial
conditions fq; pg for solutions regular at w ¼ 1, searching

TABLE II. List of regular G2-invariant solutions of the system (3.54). The first four solutions live within the consistent truncation to
N ¼ 8 supergravity [21] and correspond to the four G2-invariant extremal points of the scalar potential [22]. They have been known
before and can be given in analytic form (3.59). The three last lines are the new numerical solutions. All digits displayed are within the
numerical accuracy.

Solution q p a l4 Comments

SO(8) 0 0 0 0.500000 [18], N ¼ 8, round S7

SOð7Þ− −0.0810930 0 0.461054 0.497590 [19], “parallelized” S7

SOð7Þþ −0.380666 0 0 0.489270 [20]
G2 −0.329584 0 0.185703 0.489049 [17], N ¼ 1

SOð7Þ0 −0.250533 −0.137962 0 0.499467 New, preserves SO(7)
G0

2 −0.202438 −0.105189 0.225857 0.504244 New
G00

2 0.0544548 0.892275 0.658650 0.512668 New
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for solutions regular throughout the interval w∈ ½−1; 1�.
While regularity at w ¼ −1 is hard to control, we note that
the problem can be simplified for even solutions satisfying

ϕð−wÞ ¼ ϕðwÞ; Δð−wÞ ¼ ΔðwÞ; ð3:63Þ

corresponding to a Z2-symmetry of the system (3.54).
Starting from a solution regular at w ¼ 1, we search for
initial conditions such that the solution satisfies

ϕ0ð0Þ ¼ 0 ¼ Δ0ð0Þ; ð3:64Þ

at w ¼ 0. This implies the symmetry (3.63) and regularity
at the other endpoint w ¼ −1 becomes a simple conse-
quence of this symmetry. The conditions (3.64) can be
straightforwardly implemented into a numerical search. For
a regular solution to exist, however, both conditions (3.64)
must hold exactly, not just approximately.
To this end, we first identify the lines in the parameter

space of initial conditions ðq; pÞ, along which ϕ0ð0Þ and
Δ0ð0Þ vanish separately. Even before optimizing the
numerical accuracy, we can infer the existence of such
lines by identifying the regions in parameter space in
which the signs of ϕ0ð0Þ and Δ0ð0Þ are positive and
negative, respectively. Concretely, we depict in the first
plot of Fig. 1 the yellow region in which ϕ0ð0Þ is positive
and the blue region in which ϕ0ð0Þ is negative. The
interface between the two regions then defines a line
along which ϕ0ð0Þ vanishes. In the second plot of Fig. 1,
we depict the analogous information for Δ0ð0Þ. We then
extract the lines of vanishing ϕ0ð0Þ (blue) and vanishing
Δ0ð0Þ (red) in the third plot, which shows the existence of
three intersection points at which both conditions (3.64)

are satisfied.9 Once, we have established the existence of
such intersection points, we can work on improving the
numerical accuracy of the corresponding solutions. Two
of these points correspond to the known SOð8Þ, and
SOð7Þþ solutions from (3.59), the third one represents
a new SOð7Þ-invariant solution, which we will denote as
SOð7Þ0. We plot the fields ϕ and Δ for the new numerical
solution in Fig. 2. Extending the search along the blue line
of vanishing ϕ0ð0Þ, we find that there are no other
intersection with any red lines, i.e. no other solution to
(3.64) in the parameter space.

2. A ≠ 0

We now extend the search of solutions to the full
truncation of G2-invariant singlets, i.e. we allow for non-
vanishing A. In this case we scan the three-dimensional
parameter space (3.60) for regular solutions. Similar to our
discussion of the SO(7) sector, we start by restricting the
search to even solutions

ϕð−wÞ ¼ ϕðwÞ; Δð−wÞ ¼ ΔðwÞ; Að−wÞ ¼ AðwÞ;
ð3:65Þ

again corresponding to a Z2-symmetry of the system
(3.54). Accordingly, starting from a solution regular at
w ¼ 1, the symmetry (3.65) is implemented by the follow-
ing conditions

FIG. 1. Initial values for the regular solutions in the SO(7) system with vanishing A ¼ 0. The first two plots show the regions in the
two-dimensional parameter space ðq; pÞ in which the signs of ϕ0ð0Þ andΔ0ð0Þ are positive (yellow) and negative (blue), respectively. The
third plot extracts the lines of vanishing ϕ0ð0Þ (blue) and vanishing Δ0ð0Þ (red). The three intersection points of the red and blue lines in
this plot correspond to the solutions SOð8Þ, SOð7Þþ, and SOð7Þ0 from Table II.

9A better resolution of the hatched zone in the second plot of
Fig. 1 would require to improve the numerical accuracy. How-
ever, the third plot shows that this region is not close to any blue
line, thus irrelevant for the search of solutions.
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ϕ0ð0Þ ¼ 0 ¼ Δ0ð0Þ ¼ A0ð0Þ: ð3:66Þ

at w ¼ 0. Regularity at the other endpoint w ¼ −1 is then
implied by the symmetry (3.65). Consequently, we scan
the three-dimensional parameter space for points where all
three conditions (3.66) hold exactly. Generalizing the
analysis of Sec. III E 1, we study the intersections of the
hyperplanes, defined by the vanishing of ϕ0ð0Þ, Δ0ð0Þ,
and A0ð0Þ, respectively. However, this analysis reveals only
the known solutions SOð7Þ− and G2, listed in Table II
and (3.59).
Next, we employ another Z2-symmetry of the system

(3.54): A → �A, and search for solutions in which ϕ and Δ
are even whereas A is odd in w

ϕð−wÞ ¼ ϕðwÞ; Δð−wÞ ¼ ΔðwÞ;
Að−wÞ ¼ −AðwÞ: ð3:67Þ

Similar to (3.66), the symmetry (3.67) can be implemented
by the following conditions

ϕ0ð0Þ ¼ 0 ¼ Δ0ð0Þ ¼ Að0Þ; ð3:68Þ

at w ¼ 0, which in turn implies regularity throughout the
interval. We search for such solutions with the same

method described above. In Fig. 3, we have depicted
two slices in the three-dimensional parameter space,
defined by fixed neighbored values a1, a2, of a. In each
slice we plot the three curves defined by the vanishing of
ϕ0ð0Þ, Δ0ð0Þ, and Að0Þ, respectively. The configuration of
the lines shows that on some intermediate slice a1 < a <
a2 there must be a common intersection point of the three
lines. Having established its existence, we can then zoom in
and optimize the numerical accuracy of the solution. The
result is the new solution called G0

2 in Table II. The
corresponding profiles of the fields ϕ, Δ and A are plotted
in Fig. 4.
It remains to extend the analysis to the full parameter

space by systematically scanning the two-dimensional
slices of fixed a. Zooming into a different area in parameter
space, we have also identified the slices shown in Fig. 5.
Again, the configuration of lines indicates the existence of
an intermediate slice with a common intersection of all
three lines, thus another exact solution to (3.68). The
resulting solution is given as G2

00 in Table II. The
corresponding profiles of the fields ϕ, Δ and A are plotted
in Fig. 6.
We have further gone through the slices of the three-

dimensional parameter space and not found any other
critical region that would indicate another solution.
Although we have not attempted a rigorous proof, the
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FIG. 3. Lines of vanishing ϕ0ð0Þ (red), vanishing Δ0ð0Þ (blue) and vanishing Að0Þ (green) on slices in the parameter space of initial
conditions, with q on the horizontal axis and p on the vertical axis. The two slices are given at the values a1 ¼ −0.226667 (left) and
a2 ¼ −0.225417, respectively. The common intersection of red, blue and green line, which must appear on some intermediate slice,
corresponds to the solution G0
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conditions, with q on the horizontal axis and p on the vertical axis. The two slices are given at the values a ¼ 0.658 (left) and a ¼ 0.66,
respectively. The common intersection of red, blue and green line, which must appear on some intermediate slice, would correspond to
the solution G00
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analysis suggests that the set of regular solutions given in
Table II is complete, if one restricts to even (3.66) and odd
(3.68) solutions. Relaxing the latter conditions, one may
expect yet more regular solutions, but we have not explored
this systematically.
Let us recall that the spacetime geometry for all of them

is of the form AdS4 × Σ7, c.f. (3.49), where the internal
space Σ7 is given by a squashed seven sphere preserving
SOð7Þ isometries. In order to characterize the different
geometries, we compute the curvature scalar R7 of the
internal manifold Σ7. From (3.49), and using the equations
of motion (3.54) and (3.55) to simplify the expression, we
obtain the following expression

R7¼ 6e−3ϕ=2Δ−1=2ð4wA− ð1−w2Þ∂wAÞ2
þ96F2ð1−w2Þe3ϕ=2Δ5=2A2þ72e2ϕΔ−2A2

þ40F2Δ4−
12Δ
l2
4

−3ð1−w2Þe−3ϕΔ−1ð∂wΔÞ2; ð3:69Þ

in terms of the fields ϕ,Δ, and A. As an illustration, we may
plot the resulting function for the different solutions of
Table II, which is displayed in Fig. 7.

F. Numerics

In the previous section, we have established the existence
of regular solutions at certain discrete points in the three-
dimensional parameter space. For each solution, once we
have proven its existence, we can zoom in to improve the
numerical accuracy. To this end, we have finally imple-
mented a simple gradient descent algorithm in Python. As
explained above, the problem is set by three initial con-
ditions (3.60). Next, we define a regularization function, or
loss function, to assess the regularity of a given solution.
Put differently, this function quantifies how far a solution is
from being regular.
As discussed above, for even and odd solutions, regu-

larity is conveniently encoded in the conditions (3.68)
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FIG. 7. Curvature scalar R7 of the internal deformed S7 as a function of w∈ ½−1; 1� for the different G2-invariant solutions collected
in Table II.
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and (3.68), respectively. Accordingly, we can define the
loss function as

L ¼ lnðϕ0ð0Þ2 þ Δ0ð0Þ2Þ: ð3:70Þ

when a ¼ 0, and as

L ¼ lnðϕ0ð0Þ2 þ Δ0ð0Þ2 þ A0ð0Þ2Þ;
L ¼ lnðϕ0ð0Þ2 þ Δ0ð0Þ2 þ Að0Þ2Þ: ð3:71Þ

for even (3.65) and odd (3.67) solutions, respectively.
With these loss functions in place, we can per-

form gradient descent by updating the initial parameters
according to

ðp; q; aÞ⟵ðp; q; aÞ − α∇Lðp; q; aÞ ð3:72Þ

where α is the learning rate, controlling the step size in the
gradient descent. This method allows us to verify and refine
the previous analysis, enabling a fine-tuning of the initial
parameters. The results are collected in Table II where all
numbers are accurate to the displayed digits.

IV. CONCLUSIONS

In this paper, we have discussed the consistent trunca-
tions to K-singlets with respect to a subgroup K of the
isometry group of the internal manifold. We have reviewed
how these truncations are described in the framework of
generalized geometry and exceptional field theory. As an
application, we have worked out the field equations for the
most general G2-invariant AdS4 solution of D ¼ 11 super-
gravity, with the internal space Σ7 given by a squashed
seven-sphere preserving SO(7) isometries. The ExFT
description of this truncation features a scalar sector
described by the six-dimensional coset space ðSUð2; 1Þ×
SUð1; 1ÞÞ=ðUð2Þ × Uð1ÞÞ with all scalars still depending
on an extra coordinate θ. The latter encodes the description
of the infinite Kaluza-Klein towers of G2-singlets within a
four-dimensional field theory. Searching for AdS4 vacua,
we have shown that the system can be simplified to a set of
three second-order ordinary differential equations for three
scalar fields. Furthermore, we have given the explicit uplift
of this sector to D ¼ 11 dimensions.
Imposing a compact internal seven-dimensional space

restricts the search to solutions regular at the endpoints of
the interval θ∈ ½0; π� ¼ I , with the seven-sphere repre-
sented as a foliation of S6 ¼ G2=SUð3Þ over the interval I .
The equations of motion are singular at these endpoints and
a closer inspection shows that only a discrete set of such
regular solutions exists. More precisely, solutions that are
regular at one endpoint θ ¼ 0 are characterized by a three-
dimensional parameter space. Imposing regularity through-
out the interval defines discrete points in this space. We
conduct a numerical scan for these points. Importantly, we

find that the condition of regularity can be very efficiently
implemented by requiring the solutions to be even/odd
according to (3.65) or (3.67), such that regularity at the
opposite endpoint follows from symmetry. In this sector, we
recover in particular the four solutions that were previously
known in analytic form [17]. These all live within the
consistent truncation to N ¼ 8 supergravity [21] and
correspond to the four G2-invariant extremal points of its
scalar potential [22]. On top of these known solutions, we
identify three new numerical regular solutions, which we
label as SOð7Þ0, G0

2, and G00
2 , respectively. They all uplift to

D ¼ 11 geometries of the form AdS4 × Σ7 together with a
nonvanishing three-form flux which preserves G2 ⊂ SOð7Þ
symmetry. All these solutions are collected in Table II.
Within the sector of even/odd solutions satisfying (3.65) or
(3.67), the analysis appears to be complete. Relaxing these
additional conditions, one may expect yet more regular
solutions, and it would be highly interesting to extend the
numerical search to be able to identify all the regular
solutions of the system.
The embedding of the new solutions into the ExFT

framework allows to directly extract the generalized frames
associated to these backgrounds. In turn, that should allow
to adapt the techniques of [4–7] for a computation of the
Kaluza-Klein spectra around these new backgrounds. It
would be particularly interesting to find if supersymmetry
is preserved by any of these backgrounds.
Remarkably, most of the solutions we have identified

already live within the consistent truncation to N ¼ 8

supergravity. I.e. they only require nonvanishing scalar
fields from the lowest Kaluza-Klein multiplet. Allowing for
nonvanishing scalars among the infinitely many higher
Kaluza-Klein modes somewhat surprisingly only gives rise
to three new AdS4 solutions in this sector. In turn, it is then
tempting to speculate that these new solutions might also be
related to some particular consistent truncations of the full
theory. It may be worth noting that the ω-deformed
maximal supergravities constructed in [39] do admit addi-
tional G2-invariant vacua while retaining the N ¼ 8

vacuum of the round sphere [39–41]. Yet, it probably is
wishful musing to imagine that these theories might play a
role in the description of the new vacua. While that would
certainly be an exceptional turn of events, we leave these
questions and others for future studies.
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[6] M. Cesàro and O. Varela, Kaluza-Klein fermion mass
matrices from exceptional field theory and N ¼ 1 spectra,
J. High Energy Phys. 03 (2021) 138.

[7] B. Duboeuf, E. Malek, and H. Samtleben, Kaluza-Klein
spectrometry beyond consistent truncations: The squashed
S7, J. High Energy Phys. 04 (2023) 062.

[8] B. Duboeuf, M. Galli, E. Malek, and H. Samtleben, Holo-
graphic RG flow from the squashed to the round S7, Phys.
Rev. D 108, 086002 (2023).

[9] M. J. Duff and C. N. Pope, Consistent truncations in Kaluza-
Klein theories, Nucl. Phys. B255, 355 (1985).

[10] C. D. A. Blair, M. Pico, and O. Varela, Infinite and finite
consistent truncations on deformed generalised parallelisa-
tions, J. High Energy Phys. 09 (2024) 065.

[11] M. A. Awada, M. J. Duff, and C. N. Pope, N ¼ 8 super-
gravity breaks down to N ¼ 1, Phys. Rev. Lett. 50, 294
(1983).

[12] M. J. Duff, B. E. W. Nilsson, and C. N. Pope, Spontaneous
supersymmetry breaking by the squashed seven sphere,
Phys. Rev. Lett. 50, 2043 (1983); 51, 846(E) (1983).

[13] D. Cassani, G. Dall’Agata, and A. F. Faedo, Type
IIB supergravity on squashed Sasaki-Einstein manifolds,
J. High Energy Phys. 05 (2010) 094.

[14] K. Skenderis, M. Taylor, and D. Tsimpis, A consistent
truncation of IIB supergravity on manifolds admitting a
Sasaki-Einstein structure, J. High Energy Phys. 06 (2010)
025.

[15] J. P. Gauntlett and O. Varela, Universal Kaluza-Klein
reductions of type IIB to N ¼ 4 supergravity in five
dimensions, J. High Energy Phys. 06 (2010) 081.

[16] M. Gunaydin and N. P. Warner, The G2 invariant compac-
tifications in eleven-dimensional supergravity, Nucl. Phys.
B248, 685 (1984).

[17] B. de Wit, H. Nicolai, and N. Warner, The embedding of
gauged N ¼ 8 supergravity into d ¼ 11 supergravity, Nucl.
Phys. B255, 29 (1985).

[18] M. J. Duff and C. N. Pope, Kaluza-Klein supergravity and
the seven-sphere, in Supersymmetry and Supergravity ’82,
edited by S. Ferrara, J. Taylor, and P. van Nieuwenhuzen
(World Scientific, Singapore, 1983), pp. 183–228.

[19] F. Englert, Spontaneous compactification of eleven-
dimensional supergravity, Phys. Lett. 119B, 339 (1982).

[20] B. de Wit and H. Nicolai, A new SO(7) invariant solution of
d ¼ 11 supergravity, Phys. Lett. 148B, 60 (1984).

[21] B. de Wit and H. Nicolai, N ¼ 8 supergravity, Nucl. Phys.
B208, 323 (1982).

[22] N. P. Warner, Some new extrema of the scalar potential
of gauged N ¼ 8 supergravity, Phys. Lett. 128B, 169
(1983).

[23] O. Hohm and H. Samtleben, Exceptional form of D ¼ 11
supergravity, Phys. Rev. Lett. 111, 231601 (2013).

[24] O. Hohm and H. Samtleben, Exceptional field theory. II.
E7ð7Þ, Phys. Rev. D 89, 066017 (2014).

[25] B. de Wit and H. Nicolai, The consistency of the S7

truncation in D ¼ 11 supergravity, Nucl. Phys. B281,
211 (1987).

[26] B. Duboeuf, E. Malek, and H. Samtleben, Cubic and
higher-order supergravity couplings for AdS vacua using
exceptional field theory, J. High Energy Phys. 05 (2024)
214.

[27] nLab, Coset space structure on n-spheres—table, https://
ncatlab.org/nlab/show/coset+space+structure+on+n-spheres
+–+table (2024).

[28] D. Cassani and P. Koerber, Tri-Sasakian consistent reduc-
tion, J. High Energy Phys. 01 (2012) 086.

[29] J. P. Gauntlett, S. Kim, O. Varela, and D. Waldram, Con-
sistent supersymmetric Kaluza-Klein truncations with mas-
sive modes, J. High Energy Phys. 04 (2009) 102.

[30] C. Ahn and S.-J. Rey, Three-dimensional CFTs and RG
flow from squashing M2-brane horizon, Nucl. Phys. B565,
210 (2000).

[31] D. Cassani and A.-K. Kashani-Poor, Exploiting N ¼ 2 in
consistent coset reductions of type IIA, Nucl. Phys. B817,
25 (2009).

[32] A.-K. Kashani-Poor, Nearly Kähler reduction, J. High
Energy Phys. 11 (2007) 026.

[33] A. Coimbra, C. Strickland-Constable, and D. Waldram,
EdðdÞ ×Rþ generalised geometry, connections and M
theory, J. High Energy Phys. 02 (2014) 054.

[34] F. Englert and H. Nicolai, Supergravity in eleven-
dimensional space-time, in Proceedings of the XIIth

CONSISTENT TRUNCATIONS AND G2-INVARIANT … PHYS. REV. D 111, 066007 (2025)

066007-21

https://doi.org/10.1002/prop.201700048
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP11(2019)017
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevD.102.106016
https://doi.org/10.1103/PhysRevD.102.106016
https://doi.org/10.1007/JHEP03(2021)138
https://doi.org/10.1007/JHEP04(2023)062
https://doi.org/10.1103/PhysRevD.108.086002
https://doi.org/10.1103/PhysRevD.108.086002
https://doi.org/10.1016/0550-3213(85)90140-3
https://doi.org/10.1007/JHEP09(2024)065
https://doi.org/10.1103/PhysRevLett.50.294
https://doi.org/10.1103/PhysRevLett.50.294
https://doi.org/10.1103/PhysRevLett.50.2043
https://doi.org/10.1103/PhysRevLett.51.846
https://doi.org/10.1007/JHEP05(2010)094
https://doi.org/10.1007/JHEP06(2010)025
https://doi.org/10.1007/JHEP06(2010)025
https://doi.org/10.1007/JHEP06(2010)081
https://doi.org/10.1016/0550-3213(84)90618-7
https://doi.org/10.1016/0550-3213(84)90618-7
https://doi.org/10.1016/0550-3213(85)90128-2
https://doi.org/10.1016/0550-3213(85)90128-2
https://doi.org/10.1016/0370-2693(82)90684-0
https://doi.org/10.1016/0370-2693(84)91611-3
https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0370-2693(83)90383-0
https://doi.org/10.1016/0370-2693(83)90383-0
https://doi.org/10.1103/PhysRevLett.111.231601
https://doi.org/10.1103/PhysRevD.89.066017
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1007/JHEP05(2024)214
https://doi.org/10.1007/JHEP05(2024)214
https://ncatlab.org/nlab/show/coset%2Bspace%2Bstructure%2Bon%2Bn-spheres%2B--%2Btable
https://ncatlab.org/nlab/show/coset%2Bspace%2Bstructure%2Bon%2Bn-spheres%2B--%2Btable
https://ncatlab.org/nlab/show/coset%2Bspace%2Bstructure%2Bon%2Bn-spheres%2B--%2Btable
https://ncatlab.org/nlab/show/coset%2Bspace%2Bstructure%2Bon%2Bn-spheres%2B--%2Btable
https://doi.org/10.1007/JHEP01(2012)086
https://doi.org/10.1088/1126-6708/2009/04/102
https://doi.org/10.1016/S0550-3213(99)00660-4
https://doi.org/10.1016/S0550-3213(99)00660-4
https://doi.org/10.1016/j.nuclphysb.2009.03.011
https://doi.org/10.1016/j.nuclphysb.2009.03.011
https://doi.org/10.1088/1126-6708/2007/11/026
https://doi.org/10.1088/1126-6708/2007/11/026
https://doi.org/10.1007/JHEP02(2014)054


International Colloquium on Group Theoretical Methods in
Physics 1983, edited by G. Denardo, G. Ghirardi, and T.
Weber, Lect. Notes Phys. 201 (Springer, New York, 1984),
pp. 249–283.

[35] B. Biran, A. Casher, F. Englert, M. Rooman, and P. Spindel,
The fluctuating seven sphere in eleven-dimensional super-
gravity, Phys. Lett. 134B, 179 (1984).

[36] E. Sezgin, The spectrum of the eleven-dimensional super-
gravity compactified on the round seven sphere, Phys. Lett.
138B, 57 (1984).

[37] A. Casher, F. Englert, H. Nicolai, and M. Rooman, The mass
spectrum of supergravity on the round seven sphere, Nucl.
Phys. B243, 173 (1984).

[38] E. Cremmer, H. Lu, C. N. Pope, and K. S. Stelle, Spectrum
generating symmetries for BPS solitons, Nucl. Phys. B520,
132 (1998).

[39] G. Dall’Agata, G. Inverso, and M. Trigiante, Evidence for a
family of SOð8Þ gauged supergravity theories, Phys. Rev.
Lett. 109, 201301 (2012).

[40] A. Borghese, A. Guarino, and D. Roest, All G2 invariant
critical points of maximal supergravity, J. High Energy
Phys. 12 (2012) 108.

[41] D. Berman, T. Fischbacher, G. Inverso, and B. Scellier,
Vacua of ω-deformed SOð8Þ supergravity, J. High Energy
Phys. 06 (2022) 133.

DUBOEUF, GALLI, MALEK, and SAMTLEBEN PHYS. REV. D 111, 066007 (2025)

066007-22

https://doi.org/10.1016/0370-2693(84)90666-X
https://doi.org/10.1016/0370-2693(84)91872-0
https://doi.org/10.1016/0370-2693(84)91872-0
https://doi.org/10.1016/0550-3213(84)90392-4
https://doi.org/10.1016/0550-3213(84)90392-4
https://doi.org/10.1016/S0550-3213(98)00057-1
https://doi.org/10.1016/S0550-3213(98)00057-1
https://doi.org/10.1103/PhysRevLett.109.201301
https://doi.org/10.1103/PhysRevLett.109.201301
https://doi.org/10.1007/JHEP12(2012)108
https://doi.org/10.1007/JHEP12(2012)108
https://doi.org/10.1007/JHEP06(2022)133
https://doi.org/10.1007/JHEP06(2022)133

	Consistent truncations and G2-invariant AdS4 solutions of D=11 supergravity
	I. INTRODUCTION
	II. CONSISTENT TRUNCATIONS TO K-SINGLETS IN EXFT
	A. ExFT and maximal consistent truncations
	B. Consistent truncations to K-singlets
	C. Consistent truncation via the L-structure
	D. Intrinsic torsion
	1. Finite case
	2. Infinite case


	III. G2-INVARIANT SOLUTIONS OF D=11 SUPERGRAVITY
	A. Consistent truncation to G2-singlets
	B. SO(7) truncation
	1. Redefined coordinates and fields
	2. Field equations

	C. G2 truncation and uplift to D=11
	D. Field equations and analytic solutions
	E. New numerical solutions
	1. A=0
	2. A&ne;0

	F. Numerics

	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	References


