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The generalized-geometric formulation of 10-dimensional supergravity suggests a particular simple
“limit,” which results in a theory whose only dynamical degrees of freedom are the dilaton and the dilatino.
The theory is still invariant both under generalized diffeomorphisms and a local supersymmetry and in
many aspects is structurally similar to the original supergravity, which makes it a convenient playground for
understanding more subtle aspects of the full physical setup. In particular, the simplicity and the geometric
nature of the dilatonic theory allow us to build a full Batalin-Vilkovisky (BV) extension to all orders in the
fermionic variables.
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I. INTRODUCTION

String theory famously features an enormous amount of
symmetries and dualities. Part of these is elegantly captured
using the framework of generalized geometry [1–4] which,
roughly speaking, amounts to the replacement

ðtangent bundle; Lie derivativeÞ ⟶ ðCourant algebroid;
generalized Lie derivativeÞ:

In this note we focus on performing a particular “limit”
of the generalized-geometric formulation of the
10-dimensional N ¼ 1 supergravity coupled to vector
multiplets with a gauge group [5–7]. For special choices
of the gauge group this is the two-derivative part of the
heterotic or type I supergravity. After performing the
above-mentioned limit the theory becomes topological,
in the sense of not containing any (dynamical) metric
degrees of freedom. Before describing the limit procedure,
let us stress that this is not related to the twist of super-
gravity in the sense of Costello-Li [8].
It is known [9,10] that, (at least) up to the quadratic order

in fermions, the 10-dimensional supergravity admits a
generalized-geometric formulation in which the ordinary
fields are naturally interpreted as

metricþ B-fieldþ gauge fieldþ dilaton

⟶ generalized metricGþ half-density σ;

gravitinoþ gauginoþ dilatino

⟶ generalized gravitinoψ þ generalized dilatino ρ:

The supergravity action can be written, up to quadratic
order in fermions, in the elegant form [9]

Squad ¼
Z

RðG; σÞσ2 − ψ̄ āDψ ā − ρ̄Dρ − 2ρ̄Dāψ
ā:

Let us comment briefly on the details of the construction.
(See the Appendices A–E for an introduction to the relevant
notions in generalized geometry.) The underlying Courant
algebroid here is transitive, given by the bundle

E ≔ TM ⊕ T�M ⊕ adðGÞ;

where adðGÞ is the adjoint bundle associated to some
principal G-bundle, with G a Lie group with an invariant
pairing on its Lie algebra. The generalized metric G can be
understood as a symmetric endomorphism of E satisfying
G2 ¼ id, which induces an eigenbundle decomposition
E ¼ Cþ ⊕ C−. The fields ρ and ψ are an R and C−-valued
spinor half-densities with respect to the subbundle Cþ.[11]
The index ā runs over the subbundle C− and is raised/
lowered using the Courant algebroid pairing. In the above
physically interesting setup Cþ is taken to be the graph of a
map TM → T�M ⊕ adðGÞ, which is equivalent to the data
of g, B and A. The half-density σ is given by σ2 ¼ ffiffiffi

g
p

e−2φ,
whereφ is the dilaton understood as a function onM. (In this
work we will, however, refer to σ directly as the dilaton, in
accordance with, e.g., [12].)
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This note is based on the observation that the formalism
is consistent even for other (less immediately physically
relevant) choices of Courant algebroids and generalized
metrics. We will here investigate the most extreme case,
namely taking G to be the identity operator, while keeping
the Courant algebroid constrained only by the condition
that its signature ðp; qÞ is either (9, 1) or (5, 5) [13] and
the vector bundle itself is spin (so that we obtain
10-dimensional Majorana–Weyl spinors). This leads to
several drastic simplifications. First, the generalized metric
becomes nondynamical, since there is no nontrivial varia-
tion of G ¼ id which is both symmetric and preserves the
constraint G2 ¼ id. Furthermore, as the subbundle Cþ now
spans the entire bundle, there are no generalized gravitinos.
The only surviving fields are the dilaton σ and the
generalized dilatino ρ, which is the reason we refer to
the resulting theory as the dilatonic supergravity [19]. In
turns out that, in contrast to the physical supergravity, this
theory does not require the addition of any terms of higher
order in fermions.
The above simplifications allow us to provide a complete

generalized-geometric description of the theory to all
orders in fermions, together with all its relevant sym-
metries, and also allow us to write down the full BVaction.
Our main hope is that some of the insights and structural
results can then be carried over to the full physical
supergravity.
We can visualize the passage from the physical

supergravity to the dilatonic supergravity as follows.
In every fiber of a given Courant algebroid, the space S
of possible generalized metrics naturally decomposes
into the disjoint union of Sn, corresponding to general-
ized metrics with dimCþ ¼ n. In the transitive case, the
physically relevant generalized metrics sit inside Sdim M.
If G is trivial then dim M ¼ rankðEÞ=2, and so the
“physical” generalized metrics correspond to the largest
Sn (in terms of dimensionality). The focus of this paper
is on the extremal point SrankðEÞ (the top point in Fig. 1),
where G ¼ id.
This note is structured as follows: We first describe the

dilatonic supergravity and its symmetries. We then
provide the full BV construction, count the classical
degrees of freedom, and discuss the twisting in the sense
of Costello–Li. We look in more detail at two classes of
examples, given by exact Courant algebroids and quad-
ratic Lie algebras. Since the latter is particularly simple
while still keeping some of the key nontrivial features of

the general setup, we have written the relevant Sec. III B
in a self-contained way without the Courant algebroid
language, in the hope of making it more accessible
for the readers without prior acquaintance with gener-
alized geometry. Finally, we provide an introduction to
the relevant geometric notions, including Courant algeb-
roids and generalized geometry, in the collection of
Appendices.

II. DILATONIC SUPERGRAVITY

A. The theory and its symmetries

Let E → M be an arbitrary Courant algebroid with
signature either (9, 1) or (5, 5), with Majorana-Weyl spinor
bundles Sþ and S−, and denote by H the line bundle of
half-densities on M [20].
The fields of the dilatonic supergravity are the fermionic

spinor half-density ρ∈ΓðΠSþ ⊗ HÞ and the bosonic
positive half-density σ ∈ΓðHÞþ, whereΠ denotes the parity
shift. Note that this does not include any metric and hence
the theory will be naively topological. The action is

Sðσ; ρÞ ≔
Z
M
Rσ2 − ρ̄Dρ; ð1Þ

where D is the Dirac operator and R ≔ D2 ∈C∞ðMÞ.
The equation of motion for ρ is

Dρ ¼ 0; ð2Þ

while the situation for σ is more degenerate. For instance, if
R is nonvanishing (almost) everywhere then there are no
critical points at all (since σ is everywhere positive). On the
other hand, if R ¼ 0 everywhere (as happens for instance
on exact Courant algebroids) then the extrema of S are
given by any σ and ρ satisfying (2).
In contrast to this almost trivial on-shell structure of the

theory, we will now see that the action (1) still exhibits
interesting symmetries analogous to those of the original
physical theory, and admits a rich BVextension. For starter,
we note that S is invariant under the generalized diffeo-
morphisms [21] and supersymmetry transformations

δζρ ¼ Lζρ; δζσ ¼ Lζσ; ζ∈ΓðEÞ; δϵρ ¼ Dϵ;

δϵσ ¼ 1

σ
ρ̄ϵ; ϵ∈ΓðΠS− ⊗ HÞ; ð3Þ

where L is the generalized Lie derivative. Note the
usefulness of the half-density picture—replacing the spinor
half-densities ρ, ϵ by the more conventional spinors ρ0 ≔
σ−1ρ and ϵ0 ≔ σ−1ϵ, the action and the supersymmetry
transformations would take the more complicated formFIG. 1. Decomposition of S into Sn.
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Sðσ; ρ0Þ ¼
Z
M
ðR − ρ̄0Dσρ

0Þσ2;

δϵ0ρ
0 ¼ Dσϵ

0 −
1

96
ðρ̄0γαβγρ0Þγαβγϵ0;

δϵ0σ ¼ σðρ̄0ϵ0Þ;

where we defined the “dressed” Dirac operator Dσϵ
0 ≔

σ−1Dðσϵ0Þ and used a Fierz identity. Indeed, one of the
simplifications of using the half-densities is that the Dirac
operator D in the action (1) is independent of the fields, as
opposed to Dσ .
Next, a quick calculation with (3) gives

½δϵ1 ;δϵ2 �ρ¼0; ½δϵ1 ;δϵ2 �σ¼Lζσ; ζα≔2σ−2ϵ̄2γ
αϵ1: ð4Þ

We see that we can (but of course will not) in principle
consider the symmetries of the theory to be the local
supersymmetry together with the diffeomorphisms which
only act on σ and leave ρ invariant. However, in order to
make connection with the original supergravity and its
usual supersymmetry algebra analysis, we will consider the
action of diffeomorphisms on ρ as well, and compensate
this contribution by another supersymmetry transforma-
tion, to obtain a symmetry algebra which closes on-shell.
In other words, we can equally well write

½δϵ1 ; δϵ2 �σ ¼ δζσ þ δϵσ ð5Þ

½δϵ1 ; δϵ2 �ρ ¼ δζρþ δϵρ −
1

2
ζαγ

αDρ; ð6Þ

where

ζα ≔ 2σ−2ϵ̄2γ
αϵ1; ϵ ≔ −

1

2
ζαγ

αρ:

Note that the right-hand side (rhs) of (6) vanishes due to
(E2), and the second term on the rhs of (5) is zero since
ρ̄γαρ ¼ 0. The rest of the algebra satisfies the usual (off-
shell) relations

½ζ; ϵ� ¼ Lζϵ; ½ζ1; ζ2� ¼ Lζ1ζ2: ð7Þ

The form (5)–(7) of the local supersymmetry algebra is
much simpler than the expressions found in the literature.
For instance, in contrast to [5] we only obtain half of the
supersymmetric variations (and no Lorentz transforma-
tions) on the rhs of (5) and (6).

B. BV action

The BV description (which in this case uses Z2 × Z-
grading) uses the following fields:

σ ρa ξα ea f σ� ρ�a ξ�α e�a f�

Density Half Half Zero Half Zero Half Half One Half One
Z2 degree ½0� ½1� ½0� ½1� ½0� ½0� ½1� ½0� ½1� ½0�
Z degree 0 0 1 1 2 −1 −1 −2 −2 −3

Total Even Odd Odd Even Even Odd Even Even Odd Odd

These are all densities valued in either the spinor bundles
S�, the generalized tangent bundle E, the trivial bundle, or
their duals (this is marked by the corresponding index
which is here Latin for spinors and Greek for sections of E),
the antifields being decorated by a star. The whole BV
space can be described as

MBV ¼ T�½1�ðΓðHÞþ × ΓðΠSþ ⊗ HÞ × ΓðE½1�Þ
× ΓðΠS−½1� ⊗ HÞ × C∞ðMÞ½2�Þ:

The fields ξ and e correspond to the anticommuting ghost
for the generalized diffeomorphism symmetry and the
commuting ghost for the local supersymmetry, respectively.
The field f is a “ghost for ghost” corresponding to the fact
that LDh ¼ 0 for any function h∈C∞ðMÞ.
The BV action takes the form

SBV ¼
Z
M
Rσ2− ρ̄Dρþσ�ðLξσ−σ−1ðρ̄eÞÞþ ρ̄�ðLξρþDeÞ

þ ē�
�
Lξeþ

1

2
σ−2ðēγαeÞγαρ

�

þhξ�;Dfþ1

2
Lξξi−ξ�ασ−2ðēγαeÞ

þ1

2
f�
�
Lξfþσ−2ðēγαeÞξα−

1

6
hξ;Lξξi

�

þ1

8
σ−2ðēγαeÞðρ̄�γαρ�Þ: ð8Þ

Before checking this expression, let us note several
interesting features of the action. First, note the appearance
of a term of higher order in the antifields—this corresponds
to the fact that our symmetry algebra only closed on-shell.
We also note that in the language of L∞-algebras the last
two terms in the second line of SBV correspond to a
3-bracket, schematically

½susy; susy; gauge� ¼ gauge for gauge;

½gauge; gauge; gauge� ¼ gauge for gauge:

The verification that (8) satisfies the classical master
equation fSBV; SBVg ¼ 0 is straightforward and will not be
shown here in full, since for most part it simply corresponds
to the preceding calculation of the supersymmetry algebra.
We will however explicitly display below some less trivial
parts of the calculation, which also exhibit the general
pattern [22].
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We note that the only nontrivial algebraic identity that is
needed in checking the classical master equation is the
Fierz identity (A1), and it is due to this identity that we
work with spinors in 10 dimensions.
For instance, defining V ∈ΓðEÞ by

Vα ≔ σ−2ðēγαeÞ;

the terms in 1
2
fSBV; SBVg involving ρ� and two e’s (on top

of the “classical fields” σ, ρ), combine to give

Z
M

δ

δρ�

�Z
M

1

8
Vαðρ̄�γαρ�Þ

�
δ

δρ

�
−
Z
M
ρ̄Dρ

�

þ δ

δe�

�Z
M

1

2
Vαðē�γαρÞ

�
δ

δe

�Z
M
ρ̄�De

�

þ δ

δξ�

�
−
Z
M
Vαξ�α

�
δ

δξ

�Z
M
ρ̄�Lξρ

�

¼
Z
M

1

2
Vαðρ̄�γαDρÞ þ 1

2
Vαðρ̄γαDρ�Þ − ρ̄�LVρ

¼
Z
M

1

2
ρ̄Vαγ

αDρ� −
1

2
ρ̄�DVαγ

αρ ¼ 0;

where toward the end we used (E1), (E2), and the fact that
γαρ ¼ −ρ̄γα. Similarly, using γαγ

β ¼ −γβγα þ 2δβα, the
terms involving ξ�eee give

Z
M
−2σ−2Vαðρ̄eÞξ�α þ σ−2Vαðρ̄γαγβeÞξ�β

¼ −
Z
M
σ−2Vαðρ̄γβγαeÞξ�β;

which vanishes due to the Fierz identity (A1). One also
easily sees that the last two terms in the second line of SBV
are needed to ensure the vanishing of the ξ�ξee and ξ�ξξξ
terms, respectively.

C. Degrees of freedom

We now briefly examine in more detail the on-shell
structure of the theory. We will consider the case of Courant
algebroids with R vanishing identically (recall that the
other extremal case of everywhere nonvanishing R admits
no classical solutions), and count the corresponding
degrees of freedom, i.e., solutions of the equations of
motion modulo gauge transformations. We shall do this on
the infinitesimal level, in the following sense.
First, note that a classical background, i.e., a bosonic

solution to the equations of motion of (1), simply corre-
sponds to

ρ ¼ 0; σ ¼ σ0;

with σ0 arbitrary. Expanding the BV action around this
configuration (we define σ ¼ σ0e−φ), the quadratic part of
the action becomes

SquadBV ¼
Z
M
−ρ̄Dρþ σ�Lξσ0 þ ρ̄�Deþ hξ�;Dfi:

From this we read off the linearized BV operator, whose
cohomology at degree zero is

H0 ¼ H0
even ⊕ H0

odd; H0
even ≅

fφ∈C∞ðMÞg
fσ−10 Lζσ0jζ∈ΓðEÞg ;

H0
odd ≅

fDρ ¼ 0g
fDϵjϵ∈ΓðΠS− ⊗ HÞg :

Let us now study in more detail the local degrees of
freedom on a transitive Courant algebroid (i.e., we will
consider a contractible neighborhood of a point). One can
then interpret H0

even as all functions modulo functions
which arise as divergences with respect to the density
σ20. Since in a contractible region all functions arise in this
way, we conclude that H0

even ¼ 0. Similarly, one obtains
that H0

odd, which coincides with the cohomology of the
Dirac operator, is finite-dimensional. [23] Putting things
together, we see that H0 is finite-dimensional.

D. Twist à la Costello-Li

The BV form (8) of the dilatonic supergravity provides a
simple playground to investigate the twist of supergravity
due to Costello-Li [8]. This amounts to the following
question: what are the extrema of SBV, or equivalently at
which points in Meven

BV ⊂ MBV does the BV differential
QBV ≔ fSBV; ·g vanish?
HereMeven

BV is the space of configurations with vanishing
odd fields, i.e.,

Meven
BV ¼ fρ ¼ ξ ¼ σ� ¼ e� ¼ f� ¼ 0g ⊂ MBV:

Since there are no terms with odd number of odd fields in
SBV, to find the extrema on Meven

BV it suffices to vary the
action along the subspace Meven

BV itself. Since

SBVjMeven
BV

¼
Z
M
Rσ2 þ ρ̄�De − σ−2ðēγαeÞξ�α

þ 1

8
σ−2ðēγαeÞðρ̄�γαρ�Þ þ hξ�;Dfi;

the extrema correspond to

Rσ2 þ
�
ξ�α −

1

8
ρ̄�γαρ�

�
Dαf ¼ 0; d½aðξ�Þ� ¼ 0;

σ−2ðēγαeÞ ¼ Dαf; De ¼ −
1

4
ðDαfÞγαρ�;

Dρ� ¼ 2σ−2ξ�αγαeþ
1

4
σ−2ðρ̄�γαρ�Þγαe; ð9Þ

whereDαf ¼ ðDfÞα and we have used the third equation to
simplify the other ones. To understand the second equation,
we (locally) pick any orientation and identify [24]
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aðξ�Þ∈ΓðTM ⊗ H2Þ ≅ ΓðTM ⊗ Λdim MT�MÞ
≅ Ωdim M−1ðMÞ:

Costello-Li twisting corresponds to expanding the theory
around a background with a nontrivial value of the
supersymmetry ghost, i.e., around a solution of (9) with
e ≠ 0. Note that if we set f ¼ 0, the supersymmetry ghost
must satisfy De ¼ 0 and ēγαe ¼ 0.[25] Since this corre-
sponds [via (3)] to the supersymmetry of the (bosonic)
background ðσ ∈ΓðHÞþ; ρ ¼ 0Þ given by a pure spinor, it
can be seen (roughly) as an analog of the Calabi-Yau
condition in the present case. The system (9) can then be
understood as a generalization of the Calabi-Yau condition.
In particular, the theory obtained by expanding around a
solution to this system can be regarded, following the
conjecture of [8], as an analog of the BCOV theory [26].

III. EXAMPLES

We will now look in more detail at two classes of
examples, lying in a sense at the opposite ends of the
spectrum of transitive Courant algebroids—these are exact
Courant algebroids (where the gauge group is trivial) and
quadratic Lie algebras (where the manifold is trivial).

A. Exact Courant algebroids

LetM be a 5-dimensional real manifold and H∈Ω3ðMÞ
a closed 3-form [27]. Let E be the corresponding exact
Courant algebroid. For simplicity we will also assume that
M is oriented. The bundle of spinor half-densities then
corresponds to the bundle of all forms, and chirality
translates to the parity of the form degree. In particular,
we can choose to identify Sþ ⊗ H and S− ⊗ H with even
and odd forms, respectively, or vice versa. The spinor
pairing is given by the Mukai pairing

ðα; βÞ ≔ ð−1Þ½deg α2
�ðα ∧ βÞtop;

where ð…Þtop extracts the top form part of the expression.
The Dirac operator is

Dρ ¼ dρþH ∧ ρ:

Since for exact Courant algebroids R ¼ 0, the classical
theory is

Sðσ; ρÞ ¼ −
Z
M
ðρ; dρþH ∧ ρÞ;

where σ is a positive bosonic half-density and ρ a fermionic
collection of either purely even or purely odd polyforms
(depending on which one we pick to correspond to Sþ and
S−)

σ ∈ΓðHÞþ; ρ∈ΠΩeven=oddðMÞ: ð10Þ

The supersymmetry parameter and transformations are

ϵ∈ΠΩodd=evenðMÞ; δϵρ ¼ dϵþH ∧ ϵ;

δϵσ ¼ 1

σ
ðρ; ϵÞ:

Note that here σ naturally decouples both from the action
and the transformation of ρ. Using integration by parts and
taking into account the fermionic nature of ρ, we obtain the
two theories

1

2
S1 ¼

Z
M
ρ0 ∧ dρ4 −

1

2
ρ2 ∧ dρ2 þH ∧ ρ0 ∧ ρ2;

1

2
S2 ¼

Z
M
ρ1 ∧ dρ3 −

1

2
H ∧ ρ1 ∧ ρ1:

These theories can be regarded asH-twisted versions of the
bc-ghost system.
In either case we can now consider the BV extension

given by (8). We can however also consistently remove all
terms containing σ or σ�, to get

S0BV ¼
Z
M
−ðρ; DρÞ þ ðρ�; Deþ LξρÞ þ ðe�;LξeÞ

þ
�
ξ�;

1

2
LξξþDf

�
þ f�

�
1

2
Lξf −

1

12
hξ;Lξξi

�
:

Note that all the terms are at most linear in antifields, which
corresponds to the fact that, with terms with σ removed, the
supersymmetry closes off-shell. In fact, one can also
remove ξ, ξ�, f, f� to get simply

S00BV ¼
Z
M
−ðρ; DρÞ þ ðρ�; DeÞ;

describing a theory acted upon by the supergroup whose
Lie superalgebra is purely odd and given by

ΓðΠS−Þ ≅ ΠΩodd=evenðMÞ:

Each of SBV, S0BV, and S
00
BV thus describe a (different) BV

extension of the starting actions S1 and S2. Note that due to
D2 ¼ 0, the supersymmetry of S0BV and S00BV is (infinitely
[28]) reducible. Thus, if we were to quantize these theories,
we would need to add a corresponding tower of ghosts to
compensate for the reducibility. However, we are not
concerned about this in the present text, as our main goal
is to gain insight into the symmetry structure of the original
physical theory (where this issue does not arise).

B. Quadratic Lie algebras

One can restrict the analysis of Sec. II B to the particular
case when the Courant algebroid is simply a quadratic Lie
algebra. However, there is also a way to build a different
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(but related) BVextension of (1) for a quadratic Lie algebra,
which is what we now turn to. We shall spell out the details,
making it self-contained and accessible to readers without
prior knowledge of generalized geometry or Courant
algebroids.
The setup now corresponds to a given Lie algebra g with

invariant pairing of signature either (9, 1) or (5, 5). Some
nontrivial examples include [29]

(i) g ¼ suð2Þ ⊕ suð2Þ ⊕ suð2Þ ⊕ uð1Þ with inner
product of signature ð3;0Þþð3;0Þþð3;0Þþð0;1Þ,

(ii) g ¼ slð2;RÞ ⊕ suð2Þ ⊕ suð2Þ ⊕ uð1Þ with inner
product of signature ð2;1Þþð3;0Þþð3;0Þþð1;0Þ,
and

(iii) the semi-Abelian Drinfeld doubles g ¼ a ⋉ a�, for
a any 5-dimensional Lie algebra (here a� is Abelian
and acted upon by a, and h·; ·i is the pairing between
a� and a).

Denoting the structure coefficients of g by cαβγ, we have the
Dirac operator

D ¼ −
1

12
cαβγγαβγ:

One easily verifies, using the Jacobi identity, that

R ≔ D2 ¼ 1

2
fD;Dg ¼ 1

144
cαβγcδϵζð9δδαγβγϵζ − 6δδϵζαβγÞ

¼ −
1

24
cαβγcαβγ ∈R:

The classical fields of our theory are now σ ∈Rþ and
ρ∈ΠSþ, where again Π denotes the parity shift and Sþ
stands for positive chirality Majorana spinors with respect
to the pairing on g. The action for the theory is

Sðσ; ρÞ ¼ Rσ2 − ρ̄Dρ: ð11Þ

This is invariant under the generalized diffeomorphism (3)

δζρ ¼ 1

4
ζαcαβγγβγρ; δζσ ¼ 0; ζ∈ g;

as well as under the supersymmetry transformations

δϵρ ¼ Dϵ; δϵσ ¼ σ−1ρ̄ϵ; ϵ∈ΠS−:

However, we note that in this case we have [cf. (4)]

½δϵ1 ; δϵ2 � ¼ 0;

i.e., the symmetry algebra closes off-shell into the Lie
superalgebra

g⋉ΠS−;

½ζ1þ ϵ1;ζ2þ ϵ2� ¼ ½ζ1;ζ2�gþ
1

4
ζα1cαβγγ

βγϵ2−
1

4
ζα2cαβγγ

βγϵ1;

which leads to a simple BV description with fields

σ ∈R�; σ� ∈ΠR; ρ∈ΠSþ; ρ� ∈ S−;

e∈ S−; e� ∈ΠSþ; ξ∈Πg; ξ� ∈ g;

and the BV action

S̃BV ¼Rσ2− ρ̄Dρþσ−1ðρ̄eÞσ� þ ρ̄�Deþ1

4
ξαcαβγðρ̄�γβγρÞ

−
1

4
ξαcαβγðē�γβγeÞþ

1

2
cγαβξαξβξ�γ :

Let us stress again that this is a different BVextension of the
same classical theory (11) than the one obtained by restrict-
ing the analysis in Sec. II B to this case. Similarly, one
can consider the action (8) with both f and f� set to zero,
i.e., restricting to the subspace ff ¼ f� ¼ 0g ⊂ MBV.
Analogously to the preceding subsection, these three
actions define consistent BV theories [30], and should be
regarded as different BV extensions of the same starting
theory (11) [31].
The special property of S̃BV is that in checking the

classical master equation we do not need to use the Fierz
identity (A1) and so the theory in fact makes sense on any
quadratic Lie algebra with inner product of signature ðp; qÞ
with

pþ q≡ 10 ðmod 8Þ; p − q≡ 0 ðmod 8Þ;

so that we have Majorana-Weyl spinors. Again, taking the
fields to be complex-valued we can extend this further to
any even-dimensional quadratic Lie algebra. Thus S̃BV
provides a large class of simple finite-dimensional BV
theories which serve as toy models for the original
supergravity.

IV. CONCLUSIONS

Although the ultimate goal is to perform a similar
analysis in the fully “physical” case with (generalized)
metrics, the present model already allows us to draw several
interesting conclusions that might apply to the structure of
the full/physical supergravity.
First, the generalized geometry/Courant algebroid frame-

work tells us that the Dirac operator naturally acts on spinor
half-densities [2,32]. Intending to keep the simple formula
from [9]

δϵρ ¼ Dϵþ…;
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in our analysis we were consequently forced to treat both ϵ
and ρ as spinor half-densities. This in turn leads to the
following consequences:

(i) Higher order ρ-terms in the supersymmetric varia-
tion of ρ drop out. Quite intriguingly, we note that a
similar observation was made in [5], which however
uses a different version of dilatino. It is not immedi-
ately clear to the authors how these two facts are
related.

(ii) Half of the supersymmetry variations in the com-
mutator ½δϵ1 ; δϵ2 � drop out [see (5) and (6)]. In
addition there are no terms with Lorentz trans-
formations.

(iii) The Dirac operator D appearing in the action is
independent of the dilaton.

Furthermore, we see that this restricted setup still keeps
some nontrivial aspects of the full “physical” supergravity
story (such as a roughly anticipated form of the BV
extension of supergravity), even in the seemingly trivial
case of Courant algebroids over a point, i.e., quadratic Lie
algebras. In fact, if the quadratic Lie algebra g contains a
coisotropic subalgebra h then one can canonically construct
[33] a transitive Courant algebroid on the quotient G=H of
the corresponding Lie groups—the bracket on this algeb-
roid will arise from the bracket on g. Thus, roughly
speaking, nontrivial geometry of G=H, reflected in the
bracket of its vector fields and hence encoded in the
Courant algebroid bracket, corresponds to a nontrivial
Lie algebra structure on g. This is one of the basic ideas
which allow us to extract geometrically interesting results
and ideas by working in a purely algebraic framework.
We conclude the discussion by a brief comment on the

relation to the first order formulation of supergravity. In the
latter approach one replaces the metric degrees of freedom
by the vielbein and the spin connection. This however leads
to a further enhancement of the gauge symmetry (by adding
the Lorentz transformations), and in particular also adds
extra terms to the BV action. A further technical compli-
cation stems from the nonuniqueness of the Levi-Civita
connections in generalized geometry. Nevertheless, we
expect that, if desired, the first order reformulation of this
letter should be possible, following [34]. We leave this to a
future work.
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APPENDIX A: SPINORS IN SIGNATURES (9, 1)
AND (5, 5)

Let us denote by S the space of Majorana spinors. We
will adhere to the conventions (cf. [9])

fγα; γβg ¼ 2δβα; ψ̄ ≔ ψTC; CγαC−1 ¼ −γTα ;

CT ¼ −C; γα…β ≔ γ½α…γβ�:

which in particular imply that for any pair of fermionic
spinors

ψ̄γðpÞχ ¼ ð−1Þ½pþ1
2
�χ̄γðpÞψ ;

where γðpÞ denotes any γα…β with p indices.
Majorana spinors admit the decomposition S ¼ Sþ ⊕

S− into Weyl spinors, where

γð10ÞjS� ¼ �idS� ; γð10Þ ≔ γ0…γ9:

We also have the following vanishing bilinears:

ψ̄γð2kÞχ ¼ 0 if ψ ; χ have the same chirality;

ψ̄γð2kþ1Þχ ¼ 0 if ψ ; χ have opposite chirality:

This in particular implies that the only nonzero bilinear of a
single chiral fermionic spinor ρ is

ρ̄γαβγρ:

Two further important things that happen in 10 dimensions
(which do not happen in 10þ 8k dimensions for k ≥ 1) are

(i) the fourth antisymmetric tensor power of Sþ (or S−)
does not contain any singlet, implying that one
cannot add any quartic terms in the chiral fermionic
spinor ρ to the action (1), and

(ii) the third symmetric power of S− does not contain
any Sþ summand, and vice-versa, implying the
following Fierz identity for any bosonic chiral
spinor e:

ðēγαeÞēγα ¼ 0: ðA1Þ

The latter is the reason why we restrict our analysis to 10
dimensions, since (A1) is needed in order that our BV
action (8) satisfies the classical master equation.

APPENDIX B: ON λ-DENSITIES

Let M be an n-dimensional manifold and λ a real
number. We define the line bundle Lλ as the bundle
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associated to the frame bundle of M via the 1-dimensional
representation of GLðn;RÞ given by

A ↦ j detðAÞj−λ:

Practically, this means that every local frame onM induces
a local section of Lλ, and changing the frame by a transition
matrix A results in multiplying the section by j detðAÞj−λ.
Sections of Lλ are called λ-densities. If λ ¼ 1=2, we simply
talk about half-densities; for simplicity we will set

H ≔ L1=2:

We also have Lλ ⊗ Lλ0 ≅ Lλ⊗λ0 . Owing to the absolute
value in their definition, λ-densities enjoy two important
properties:

(i) they always exist globally, i.e., the line bundle Lλ is
always trivial (though it does not have a canonical
trivialization), and

(ii) it makes sense to talk about positive or negative
λ-densities (at every point on M).

The space of everywhere positive half-densities will be
denoted by ΓðHÞþ.
Finally, 1-densities can be naturally integrated. In fact, if

M is orientable, a choice of orientation on M provides an
identification of 1-densities with top forms onM. However,
integration of 1-densities is well defined even on non-
orientable manifolds.

APPENDIX C: ON COURANT ALGEBROIDS

A Courant algebroid [1] is a vector bundle E → M,
equipped with some additional structure, namely

(i) an R-bilinear operation ½·; ·�∶ΓðEÞ × ΓðEÞ → ΓðEÞ,
(ii) a fiberwise nondegenerate bilinear symmetric form

h·; ·i,
(iii) a vector bundle map a∶E → TM,

satisfying several axioms. First, for all u; v∈ΓðEÞ,
f∈C∞ðMÞ we have

½u; fv� ¼ f½u; v� þ ðaðuÞfÞv:
This allows us to extend the action of u on sections of E
(via ½u; ·�) and on functions [via aðuÞ] to a derivation Lu of
the whole tensor algebra on E. For instance, for v; w∈ΓðEÞ
we have

Luðv ⊗ wÞ ¼ ðLuvÞ ⊗ wþ v ⊗ ðLuwÞ:

We call L the generalized Lie derivative. The remaining
axioms of the Courant algebroid can then be simply
stated as

Lu½v; w� ¼ ½Luv; w� þ ½v;Luw�; Luh·; ·i ¼ 0;

½u; v� þ ½v; u� ¼ Dhu; vi;

for any u; v; w∈ΓðEÞ and f∈C∞ðMÞ, where the operator
D∶C∞ðMÞ → ΓðEÞ is defined by

hDf; ui ≔ aðuÞf:

Note that the pairing/inner product h·; ·i allows us to
identify E ≅ E�, which we will use freely. In other words,
the indices on a Courant algebroid are always lowered/
raised using this inner product.
The compatibility of L and the pairing imply that Lu

also acts naturally on any associated spinor bundles.
Finally, we have a natural action on λ-densities, given
by Luσ ¼ LaðuÞσ, where L is the ordinary Lie derivative.
Several things can be worked out following this defi-

nition. First, for any two sections we get

að½u; v�Þ ¼ ½aðuÞ; aðvÞ�;

which implies that if rankðaÞ is constant (we say the
algebroid is regular) then imðaÞ ⊂ TM is an integrable
distribution. Furthermore, denoting the dual map to a by a�,
we have the important property a∘a� ¼ 0, which can be
restated by saying that

0 → T�M⟶
a�

E⟶
a
TM → 0 ðC1Þ

is a chain complex. We say that a Courant algebroid is exact
if (C1) is an exact sequence. More generally, it is transitive
if a is surjective. It is known [2,35] that every exact Courant
algebroid has the following form

E ≅ TM ⊕ T�M; aðX þ αÞ ¼ X;

hX þ α; Y þ βi ¼ αðYÞ þ βðXÞ;
½X þ α; Y þ β� ¼ LXY þ ðLXβ − iYdαþHðX; Y; ·ÞÞ;

for some closed 3-form H on M. Two exact CAs on M
whose 3-forms differ by an exact 3-form can be shown to be
isomorphic. In particular, all exact Courant algebroids over
M look locally the same.
Similarly [2], every transitive Courant algebroid on M is

locally determined by a choice of a quadratic Lie algebra g
(i.e., a Lie algebra together with an invariant nondegenerate
symmetric pairing). Explicitly, around any point in M we
can find an open subset U ⊂ M and g such that

EjU ≅ TU ⊕ T�U ⊕ ðg × UÞ; aðX þ αþ sÞ ¼ X;

hX þ αþ s; Y þ β þ ti ¼ αðYÞ þ βðXÞ þ hs; tig;
½X þ αþ s; Y þ β þ t� ¼ LXY þ ðLXβ − iYdαþ hds; tigÞ

þ ðLXt − LYsþ ½s; t�gÞ:

As a special case we can take M ¼ point, so that E ¼ g,
a ¼ 0, with the bracket and pairing on E coinciding with
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those on g. Any quadratic Lie algebra can thus be seen as a
Courant algebroid. Dilatonic supergravity in this particu-
larly simple setup is studied in detail in Sec. III B.

APPENDIX D: GENERALIZED CONNECTIONS
AND THE DIRAC OPERATOR

In this section we follow [32] (see also [2]). On any
Courant algebroid E → M we define generalized connec-
tions to be maps satisfying

D∶ΓðEÞ ⊗ ΓðEÞ → ΓðEÞ s:t: Dfuv ¼ fDuv;

DuðfvÞ ¼ fDuvþ ðaðuÞfÞv; Duh·; ·i ¼ 0:

Here the last property again uses the fact that Du can be
extended (due to the second property) to a derivation of the
whole tensor algebra of E. Again, the definition implies
that generalized connections also naturally act on spinors
with respect to E.
Slightly more surprisingly, generalized connections also

naturally act on λ-densities on M via

Duσ ≔ LaðuÞσ − λσDαuα; u∈ΓðEÞ; σ ∈ΓðLλÞ;
Thus, both Lu and Du act naturally on any E-tensors or
spinors valued in λ-densities on M.
For any generalized connection, we can define its

torsion by

Tðu; vÞ ≔ Duv −Dvu − ½u; v� þ hDu; vi:
One can check that this expression is tensorial in both slots,
and in fact the torsion is a tensor

T ∈ΓðΛ3EÞ:
Assume now that D is torsion-free (i.e., its torsion

vanishes; such connections exist on any Courant algebroid
[36]). It then turns out [32], crucially, that the Dirac
operator

D ≔ γαDα∶ΓðS ⊗ L1=2Þ → ΓðS ⊗ L1=2Þ

is in fact independent of the choice of the particular torsion-
free connection D and is thus intrinsic to the Courant
algebroid structure itself. Note that this independence only
holds when D acts on spinor half-densities. One implica-
tion of this fact is the useful formula

½D;Lu� ¼ 0: ðD1Þ
For instance, on an exact Courant algebroid twisted by

H∈Ω3
clðMÞ, with M oriented, spinor half-densities can be

understood as differential forms on M, and the Dirac
operator is

Dρ ¼ dρþH ∧ ρ;

while for a quadratic Lie algebra we obtain

D ¼ −
1

12
cαβγγαβγ;

where cαβγ denotes the structure constants. For a transitive
Courant algebroid the Dirac operator is locally a sum of the
two above (where we can also take the 3-formH to vanish).
Another important fact about the Dirac operator acting

on spinor half-densities is that its square D2 contains no
derivatives and in fact corresponds to the multiplication by
a function, which we will denote by

R∈C∞ðMÞ:
As the notation suggests, R can be understood (up to a
prefactor) as the scalar curvature associated to the gener-
alized metric G ¼ id (cf. the generalized Lichnerowicz
formula in [9]).
Note that (D1) implies that R is preserved by the action

of the generalized Lie derivative L, and hence it is constant
on the integral leaves of the distribution imðaÞ ⊂ TM.
Explicitly, on a transitive Courant algebroid we obtain the
constant function

R ¼ −
1

24
cαβγcαβγ; ðD2Þ

where c are the structure constants of the corresponding
quadratic Lie algebra g. In particular, R vanishes on exact
Courant algebroids.

APPENDIX E: SOME USEFUL FORMULAS

For any bosonic spinor half-densities α, β, we have

ᾱDβ þ β̄Dα ¼ Luσ
2; uα ¼ σ−2ᾱγαβ

for any positive half-density σ. (Note that the rhs is indeed
independent of σ—when multiplying σ by any nonzero
function the newly created terms involving derivatives of
the function cancel against each other.) In particularZ

M
ᾱDβ ¼ −

Z
M
β̄Dα: ðE1Þ

Let R → M be an associated vector bundle to the spin lift
of the bundle of the oriented orthonormal frames of E and
λ∈R. IfD is torsion free then for any λ-density valued in R
we have

Luψ ¼Duψ þA ·ψ þ λðDαuαÞψ ; Aαβ ≔Dαuβ−Dβuα:

In particular, for spinor half-densities we have

Luψ ¼ Duψ þ 1

2
ðDαuβÞγαβψ þ 1

2
ðDαuαÞψ :

Using this, one easily shows that for any spinor half-density
ψ and u∈ΓðEÞ

DðuαγαψÞ ¼ 2Luψ − uαγαDψ : ðE2Þ
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