
Academic Editor: Xiaochen Lu

Received: 4 December 2024

Revised: 29 January 2025

Accepted: 5 February 2025

Published: 10 February 2025

Citation: Vidhya, V.; Resende Faria,

D. Real-Time Gaze Estimation Using

Webcam-Based CNN Models for

Human–Computer Interactions.

Computers 2025, 14, 57. https://

doi.org/10.3390/computers14020057

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Real-Time Gaze Estimation Using Webcam-Based CNN Models
for Human–Computer Interactions
Visal Vidhya and Diego Resende Faria *

School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane,
Hertfordshire, Hatfield AL10 9AB, UK; vv22aad@herts.ac.uk
* Correspondence: d.faria@herts.ac.uk

Abstract: Gaze tracking and estimation are essential for understanding human behav-
ior and enhancing human–computer interactions. This study introduces an innovative,
cost-effective solution for real-time gaze tracking using a standard webcam, providing a
practical alternative to conventional methods that rely on expensive infrared (IR) cameras.
Traditional approaches, such as Pupil Center Corneal Reflection (PCCR), require IR cam-
eras to capture corneal reflections and iris glints, demanding high-resolution images and
controlled environments. In contrast, the proposed method utilizes a convolutional neural
network (CNN) trained on webcam-captured images to achieve precise gaze estimation.
The developed deep learning model achieves a mean squared error (MSE) of 0.0112 and
an accuracy of 90.98% through a novel trajectory-based accuracy evaluation system. This
system involves an animation of a ball moving across the screen, with the user’s gaze
following the ball’s motion. Accuracy is determined by calculating the proportion of gaze
points falling within a predefined threshold based on the ball’s radius, ensuring a compre-
hensive evaluation of the system’s performance across all screen regions. Data collection
is both simplified and effective, capturing images of the user’s right eye while they focus
on the screen. Additionally, the system includes advanced gaze analysis tools, such as
heat maps, gaze fixation tracking, and blink rate monitoring, which are all integrated into
an intuitive user interface. The robustness of this approach is further enhanced by incor-
porating Google’s Mediapipe model for facial landmark detection, improving accuracy
and reliability. The evaluation results demonstrate that the proposed method delivers
high-accuracy gaze prediction without the need for expensive equipment, making it a
practical and accessible solution for diverse applications in human–computer interactions
and behavioral research.

Keywords: eye tracking; CNN; gaze estimation

1. Introduction
In the field of computer vision and human–computer interactions, gaze estimation

aims to determine where a person is looking based on facial or eye images. This technology
has diverse applications, including virtual reality [1], marketing research [2], and assistive
technologies for individuals with disabilities [3]. Traditionally, gaze estimation relies on
specialized hardware, such as infrared cameras, which are costly and cumbersome, restrict-
ing their use to controlled laboratory settings. This research addresses these challenges
by developing a webcam-based gaze-tracking system powered by a convolutional neural
network (CNN). The motivation lies in creating an affordable, accessible, and user-friendly
alternative to traditional systems. By leveraging CNNs, this method effectively extracts
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gaze information using standard webcams, significantly reducing costs and setup com-
plexity. This innovative approach also emphasizes inclusivity, real-time processing, and
adaptability, making it suitable for diverse applications, from assistive technologies to
human–computer interactions, while prioritizing ethical and practical considerations.

1.1. General Overview of the Problem Domain

In recent years, eye-tracking technology has emerged as a powerful tool for enhancing
accessibility, improving user interactions, and gaining insights into human behavior. While
traditional eye-tracking systems offer high precision, they are often associated with signifi-
cant drawbacks, such as high costs and limited accessibility. Consequently, these systems
remain underutilized, especially in consumer-oriented applications where affordability and
ease of use are critical.

The advent of deep learning, particularly convolutional neural networks (CNNs), has
transformed computer vision, enabling the faster and more accurate processing of visual
data. By leveraging CNNs, it is now possible to create gaze-tracking models using standard
webcams. This democratization of eye tracking has unlocked numerous new applications
and opportunities across various fields.

Despite the promise of webcam-based gaze tracking, several challenges must be
addressed to achieve its successful integration into broader applications. The key issues
include those listed in the following subsections.

1.1.1. Legal and Ethical Issues

Privacy Concerns: Eye tracking involves capturing sensitive data, including a user’s
focus, interests, and cognitive patterns. Collecting and using such data raises significant
privacy concerns, particularly in consumer-facing applications where users may not fully
understand the extent of the data being recorded.

Data Security: Ensuring the security of gaze data is crucial to preventing misuse or
unauthorized access. Robust data protection measures and adherence to privacy regula-
tions, such as the General Data Protection Regulation (GDPR), are essential to address
these concerns.

1.1.2. Social and Ethical Issues

Bias and Inclusivity: CNN-based models can inherit biases present in their training
datasets, leading to inaccuracies in gaze estimation for users of different ethnicities, eye
shapes, or those with visual impairments. Addressing these biases is essential to ensuring
that the technology is equitable and inclusive for all users.

Impact on User Behavior: Eye-tracking technology used in consumer applications,
such as advertising or social media, could enable to creation of manipulative tactics that
subtly influence user behavior. This raises ethical concerns regarding the misuse of gaze
data in commercial settings, potentially leading to exploitative practices.

1.1.3. Economic Impact

The adoption of webcam-based eye tracking addresses cost-related challenges in gaze
estimation, making the technology more accessible for research and commercial applica-
tions. By reducing dependency on specialized hardware, this approach enhances afford-
ability, enabling its broader adoption in fields like healthcare, marketing, and gaming. This
shift fosters innovation and supports cost-effective solutions for real-time gaze tracking.
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1.1.4. Commercial Risks and Risk Management

Technical Limitations: Webcam-based systems may face challenges such as reduced ac-
curacy in low-light environments or when tracking rapid eye movements. These limitations
could hinder its adoption in fields that require high precision.

Market Acceptance: Concerns regarding the accuracy, reliability, and privacy of
webcam-based eye tracking could lead to hesitation among users and industries. To
mitigate these risks, thorough testing and transparent communication of the technology’s
benefits are essential.

By addressing these challenges, the development of CNN-based webcam gaze tracking
has the potential to revolutionize the field, making it more accessible, affordable, and
applicable to a wide array of domains.

To address the ethical and legal aspects of human-subject experiments and data collec-
tion, the proposed method incorporates privacy-conscious design principles. By utilizing
webcam-based gaze tracking, which avoids intrusive hardware setups, this approach mini-
mizes user discomfort and fosters transparency. Participants are fully informed about the
data collection process, and explicit consent is obtained, adhering to ethical guidelines. Ad-
ditionally, all data are anonymized and securely stored, ensuring compliance with privacy
regulations such as GDPR. This method also focuses on inclusivity by addressing poten-
tial biases in the CNN model, ensuring fair treatment across diverse user demographics,
including those with visual impairments.

1.2. Application Importance of Gaze Estimation

Gaze estimation is a transformative technology with applications spanning assistive
tools, digital interactions, and consumer behavior analysis. For individuals with disabilities,
it enables hands-free control of devices and software, fostering greater accessibility and
independence [3,4]. In gaming and virtual reality, gaze tracking enhances immersion by
facilitating natural interactions driven by users’ focus points [5].

Beyond these domains, gaze estimation is revolutionizing marketing, sales, and ad-
vertising by delivering actionable insights into consumer attention. Real-time gaze data
allow advertisers to create personalized, adaptive ad content, optimizing its placement
and design for maximum relevance and engagement [6]. In sales, gaze tracking transforms
shopping experiences by providing context-sensitive product information or offers based
on visual focus, boosting conversion rates. Additionally, it offers an unparalleled anal-
ysis of consumer behavior, identifying which ad elements capture attention and linking
engagement to purchasing decisions.

Integrating versatile, cost-effective gaze estimation systems into digital marketing
strategies enables businesses to enhance consumer engagement, improve ad effective-
ness, and drive sales growth. From assistive technologies to commercial applications,
gaze estimation continues to unlock innovative opportunities across industries, bridging
accessibility, interactivity, and consumer insights.

2. Related Work
Gaze tracking plays a crucial role in advancing human–computer interactions (HCIs)

and behavioral research. Traditional methods, such as Pupil Center Corneal Reflection
(PCCR), depend on expensive infrared (IR) cameras and controlled environments. These
systems, while precise, are cost-prohibitive and impractical for widespread use.

2.1. Gaze-Tracking Methods

Zhu and Ji [7] developed a gaze-tracking system capable of functioning with natural
head movements. This innovation marked a significant step toward more flexible and
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user-friendly solutions, demonstrating that accurate gaze estimation is possible without
requiring users to remain static. This advancement paved the way for dynamic applications
of gaze tracking.

Similarly, Macinnes et al. [8] explored wearable eye-tracking devices, comparing
their precision and accuracy. Their findings underscored the trade-offs between device
mobility and tracking performance, emphasizing the need for techniques that maintain
high accuracy without relying on specialized hardware. This study highlighted the demand
for accessible gaze-tracking solutions capable of operating effectively in diverse conditions.
To address these challenges, the proposed method diverges from traditional IR-based
techniques, offering an affordable and versatile alternative that employs standard webcams
and CNNs.

Wood et al. [9] made contributions to this area with their appearance-based gaze
estimator, which utilized a dataset of one million synthesized images. Their work under-
scored the importance of data diversity in training CNNs for gaze estimation. However,
their use of synthetic datasets posed challenges for achieving high accuracy in real-world
scenarios. Their study focused on controlled environments, limiting its applicability in
dynamic settings containing natural head movements. Although the dataset was ground-
breaking in addressing the scarcity of training data, it did not fully resolve issues related to
generalization across varied conditions.

Building on these advancements, Krafka et al. [10] introduced a gaze-tracking system
designed for mobile devices, leveraging crowdsourced data to capture a broader range of
real-world scenarios. This approach significantly improved the generalizability of gaze-
tracking models by incorporating diverse environmental conditions. However, the system
was constrained by its reliance on specific head positions and struggled to handle the free
head movements common in natural settings. While the inclusion of a larger and more
diverse dataset enhanced model robustness, the variability in camera quality across mobile
devices introduced inconsistencies in gaze estimation.

Deng and Zhu [11] tackled the challenge of free head movements by introducing a
monocular 3D gaze-tracking system. Their deep learning model incorporated geometric
constraints to improve gaze estimation accuracy under natural head movement conditions,
representing a significant advancement in the realistic and practical applications of gaze
tracking. However, the system demanded substantial computational resources, making
it less viable for real-time use on standard consumer devices. While the introduction
of geometric constraints was innovative, it added complexity to the model, limiting its
applicability in resource-constrained environments.

Building on these developments, Liu et al. [12] proposed an appearance-based gaze
estimation method optimized for free head movements and mobile devices. Their approach
refined Deng and Zhu’s [11] work by tailoring the model to the computational limitations
of mobile hardware. Despite this, the trade-off between model complexity and efficiency
led to a slight reduction in accuracy. The study extended gaze tracking to more practical
applications but continued to face challenges such as maintaining high accuracy across
varying lighting conditions and device types.

Chen et al. [13] explored the impact of different deep network architectures on
CNN-based gaze tracking, providing a comparative analysis of their accuracy and com-
putational efficiency. This research served as a guide for selecting suitable architectures
for specific gaze-tracking needs. However, Chen et al. [13] did not propose a novel
gaze-tracking system, instead focusing on optimizing existing models. Their findings
highlighted the importance of balancing accuracy and real-time performance, especially in
environments with limited resources.
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Kanade et al. [14] presented a CNN-based eye-gaze-tracking system designed to en-
hance driver safety. Their system utilized machine learning algorithms to accurately predict
eye gaze under challenging conditions, demonstrating high precision and efficiency in this
specific application. However, its generalizability to other human–computer interaction
(HCI) contexts was limited. The model’s optimization for web-based applications left
gaps in addressing broader challenges, such as variations in environmental conditions like
lighting and camera angles.

Ansari et al. [15] introduced a gaze-tracking system that leveraged an unmodified
webcam and a CNN, aiming to make gaze tracking more accessible by eliminating the
need for specialized hardware. This approach marked a significant step in democratiz-
ing gaze-tracking technology, yet it faced limitations in achieving high precision due to
the constraints of standard webcams. The lower image quality provided by these de-
vices impacted the system’s accuracy, making it less suitable for demanding applications.
Nonetheless, the study represented a commendable effort to strike a balance between
accessibility and performance, underscoring the need for further innovation to enhance
both accuracy and practicality.

Singh and Modi [16] advanced the accessibility of gaze tracking by creating a ro-
bust real-time camera-based system powered by deep learning. Designed to analyze
users’ visual attention with high precision, their system demonstrated its suitability for
diverse applications. By enhancing robustness across varying environmental conditions,
the study addressed the limitations seen in earlier approaches. The CNN architecture
utilized showcased significant improvements in performance. However, the reliance on
relatively high-quality cameras posed a barrier to broader adoption, especially in scenarios
where only standard webcams are available.

Narayana Darapaneni et al. [17] explored the application of CNNs in eye-tracking
analyses, focusing on educational and training environments. Their system prioritized
accuracy and efficiency, making it well-suited for real-time use. Despite these strengths,
the research was primarily conducted in controlled settings, which limited its applicability
within more dynamic, real-world contexts. This work underscored the need for further
innovation to enhance adaptability and generalizability in gaze-tracking systems.

Donuk et al. [18] developed a real-time eye-tracking system tailored for web mining
applications, leveraging CNNs to achieve high accuracy. Their research highlighted the
potential of using gaze tracking for specialized applications, particularly in web mining.
However, like many systems, it was constrained by the requirement for high-quality input
data and controlled testing environments. While the study offered valuable insights into
niche uses, it did not address the broader challenges of extending gaze-tracking technology
to diverse and less controlled domains.

2.2. Applications of Gaze Tracking

Zhang et al. [19] pioneered the use of eye tracking for analyzing viewer engage-
ment with video advertisements. By examining fixation duration and focus points, their
system offered a deeper understanding of consumer attention and preferences. This foun-
dational study helped advertisers identify the most captivating elements of their ads.
However, reliance on hardware-based eye-tracking devices restricted accessibility and
scalability, making the system less practical for widespread use.

Building on this, Lee et al. [20] introduced a gaze-data visualization system, enabling
a more granular analysis of user engagement by mapping gaze patterns onto specific
advertisement elements. Despite its innovative approach, the study shared similar limi-
tations, as it required specialized equipment and controlled environments. Moreover, it
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focused primarily on static content, leaving the dynamic nature of video advertisements
largely unaddressed.

Okano and Asakawa [21] bridged this gap by analyzing attention consumers paid to
product messages across web ads and TV commercials. Their study revealed that different
media formats significantly influence consumer perceptions and the retention of product
messages, emphasizing the importance of context in advertising. However, the lack of
machine learning techniques limited their ability to extract deeper insights from their
gaze data.

Expanding on these findings, Zhang and Yuan [22] conducted a comprehensive anal-
ysis of video advertisements, correlating specific ad elements with their effectiveness.
This study provided actionable insights for optimizing content but remained dependent
on traditional hardware, making it cost-prohibitive. Additionally, their work focused on
descriptive analyses, leaving predictive modeling unexplored.

Muñoz-Leiva et al. [23] conducted a thematic analysis of eye-tracking applications in
marketing, identifying emerging trends and research gaps. They highlighted the lack of
studies leveraging deep learning to improve the accuracy and efficiency of gaze tracking,
particularly in dynamic advertising environments. Their work underscored the potential
of combining eye tracking with machine learning for real-time applications.

Modi and Singh [24] addressed some of these challenges by developing a real-time
CNN-based gaze-tracking system using standard webcams. This innovation eliminated
the need for specialized hardware, making the technology more accessible and scalable.
While their study focused on social media applications, it set the stage for applying CNNs
in broader marketing and advertising contexts.

Onwuegbusi et al. [25] explored gaze behavior among young audiences exposed to
gambling and non-gambling advertisements. Their study underscored the importance
of understanding how various ad types capture attention, offering valuable insights for
regulatory policies. Using deep learning techniques could have enhanced the granularity
and accuracy of their analysis.

Xie et al. [26] advanced the field by incorporating machine learning into gaze tracking
for mobile advertisements. Their ambulatory eye-tracking study improved the precision of
consumer attention analysis, emphasizing the relevance of machine learning in dynamic
and real-world settings.

Finally, Tsubouchi et al. [27] introduced an innovative approach to personalized
web advertising on smartphones, aligning real-time advertisements with the user’s gaze.
This novel application demonstrated the potential for gaze tracking to transform targeted
advertising. However, the study was limited to smartphones and did not fully utilize CNNs
to enhance tracking accuracy or explore their applications in other advertising media.

2.3. Advancing Beyond the State of the Art

The proposed research aims to address the limitations of traditional eye-tracking meth-
ods by developing an affordable, real-time gaze-tracking system using a standard webcam
and a CNN. Traditional eye-tracking systems often depend on specialized hardware and
controlled environments, limiting their accessibility and scalability. Furthermore, the appli-
cation of CNN-based gaze tracking in marketing and advertising remains underexplored.
The proposed system enhances real-time gaze analysis by incorporating features such as
gaze heatmaps, fixation analysis, and blink rate detection, providing deeper insights into
consumer behavior. By integrating these advanced features with the real-time processing
capabilities of CNNs, the system offers marketers and advertisers a powerful tool to eval-
uate campaign effectiveness and optimize content based on consumer engagement. This
approach not only overcomes the challenges of traditional methods but also fills a critical
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gap in the current research by fully exploring the potential of CNNs in marketing and
advertising. Ultimately, this research has the potential to provide more accurate, actionable
insights, significantly enhancing advertising strategies and contributing to the growing
body of knowledge on gaze-tracking technology.

3. Materials and Methods
In this section, we propose a shallow CNN-based approach to gaze tracking, prioritiz-

ing computational efficiency and reduced complexity over deeper architectures like VGG16
or DenseNet. While deeper CNNs excel in feature extraction, their increased parameters
can lead to overfitting with limited data. Our shallow architecture effectively captures
essential features from the eye region, making it well suited for real-time gaze tracking
with minimal computational resources. To provide a clearer understanding of the overall
process, Figure 1 illustrates the flow of the proposed method, outlining the steps involved
in data collection, data pre-processing, and data analysis.

Figure 1. Flowchart of the proposed method.

3.1. Data Collection

This study uses a standard webcam along with the OpenCV library to capture images
of the right eye region. Data were collected in a well-lit environment and from nine
participants: four males, four females (all over 28 years old), and one eight-year-old
child. In accordance with ethical guidelines, all participants were informed about the
study’s purpose and signed a consent form prior to the experiment. The proposed method
employs Mediapipe, a pre-trained model developed by Google, to extract facial landmarks.
Specifically, the landmarks corresponding to the right eye region were identified and
passed to OpenCV for image capture. The data from all participants will be used to validate
the system’s accuracy under realistic conditions, such as varying user movements and
gaze shifts. The testing phase plays a vital role in assessing the model’s generalizability,
trajectory-based accuracy, and ability to consistently capture and interpret gaze patterns,
making the evaluation comprehensive and robust.

To facilitate data collection, the screen is divided into a grid of 16 cells, each containing
a pulsating red dot at its center to draw the user’s attention (see Figure 2). The dot appears
sequentially in each grid cell, remaining visible for five seconds to ensure accurate capture of
the user’s gaze images. All participants sat comfortably in front of the screen, approximately
40 cm away from the webcam, focusing on the red dot as it moved across the screen.
During this time, images of the right eye region were recorded in grayscale and resized to
256 × 256 pixels.
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During data collection, individual-level discrepancies were noted. Adults displayed
stable gaze patterns with minimal head movement, resulting in high-quality images. In
contrast, the child participant exhibited rapid gaze shifts and occasional head movement,
leading to variability and noise. Additional pre-processing, including filtering blurred
frames and using Mediapipe’s robust detection, addressed these issues. Variations in
eye shape, size, and lighting also affected image quality. Participants wearing glasses
experienced occasional glare, mitigated by adjusting the screen brightness and testing
angles beforehand.

The data collection process lasted approximately 80s, during which time the required
images were systematically captured and saved. These images were organized into a main
directory, with each subfolder labeled according to its corresponding grid number. In total,
3387 images were collected, averaging about 211 images per grid cell.

The methodology presented in this study highlights the effectiveness of using Medi-
apipe and OpenCV for capturing and processing eye-tracking data. Mediapipe provides
pre-built models for precise eye detection and tracking, while OpenCV manages image
processing tasks, enhancing both the accuracy and efficiency of the eye-tracking process.

Figure 2. Experimental setup to collect data for gaze tracking. The red dots indicate the center points
of each cell within the grid. The grid consists of 16 predefined regions, systematically dividing the
screen for spatial reference and analysis.

3.2. Data Pre-Processing

Data pre-processing is a vital step in this methodology, one which encompasses data
cleaning, image resizing, normalization, and augmentation to enhance the model’s ability
to generalize. Effective pre-processing ensures that the neural network can accurately learn
and predict gaze directions, which are essential to the model’s overall success.

The pre-processing pipeline, illustrated in Figure 3, begins by capturing eye region
images using the facial landmarks detected by Mediapipe in conjunction with OpenCV.
First, Mediapipe is initialized to identify 468 facial landmarks, with a focus on the right-eye
region. The landmarks surrounding the right eye are isolated to precisely capture the area
of interest. Once extracted, the image is converted to grayscale using OpenCV and resized
to 256 × 256 pixels. This standardized image size is essential for training the convolutional
neural network (CNN), ensuring consistent input data that supports accurate predictions.
The second step is data cleaning, which ensures the creation of a high-quality dataset for
model training. This process is performed manually, with each image carefully inspected
grid by grid. The goal is to remove any images containing blinks or distortions that could
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lead to inaccurate predictions. As the red dot moves sequentially across the grid, some
early images may not align correctly with the intended gaze direction.

Figure 3. Image Pre-processing: Landmark detection and eye-region segmentation.

These misaligned images, shown in Figure 4, are excluded to prevent them from
negatively impacting the neural network’s training. Future work aims to automate this
detection and correction process for greater efficiency.

The final step of pre-processing involves converting the images to grayscale to ensure
consistent image formatting. All images are then resized to the standard 256 × 256 pixel
dimensions, and pixel normalization is applied to enhance model stability. The grayscale
images have pixel values ranging from 0 to 255, where 0 represents black and 255 represents
white. To normalize, each pixel value is divided by 255.0, scaling the values to a range of
0 to 1. This normalization step standardizes the input data, improving the model’s stability
and enhancing its ability to generalize during training.

Figure 4. Examples of sequence of eye gaze where the blinking eyes and misaligned gaze directions
(i.e. within the red box) are removed .

3.3. Model Development and Training

After pre-processing, the data are ready for the convolutional neural network (CNN)
model. Its architecture, shown in Figure 5, comprises convolutional layers, pooling layers,
fully connected layers, and an output layer. Convolutional layers extract hierarchical
features using image convolution mechanisms, identifying patterns like edges and textures.
Pooling layers reduce feature map dimensions, minimizing computational complexity
and overfitting. Fully connected layers integrate the extracted features, enabling complex
pattern recognition. The output layer predicts gaze coordinates for regression tasks. Model
training involves optimizing weights through backpropagation, guided by a loss function,
such as the mean squared error (MSE), to minimize prediction errors efficiently.

The algorithm for real-time gaze estimation using CNN is presented in Algorithm 1.
Below we describe the CNN layers and parameters used.
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Algorithm 1 Real-Time Gaze Estimation using CNN.

1: Input: Right eye image in grayscale, size 256 × 256
2: Output: Gaze coordinates (x, y)
3: Step 1: Preprocessing
4: Normalize the grayscale image values to the range [0, 1]
5: Resize or pad the image to 256 × 256 if necessary
6: Step 2: CNN Layers
7: Convolutional Layer 1:
8: for each filter f ∈ Conv1(32 filters, 3 × 3) do
9: for each pixel (i, j) in the image do

10: Z(1)
ij = ReLU

(
∑3

m=1 ∑3
n=1 W(1)

mn X(i+m)(j+n) + b(1)
)

11: end for
12: end for
13: Subsampling Layer 1:
14: for each 2 × 2 pooling region (i, j) do

15: P(1)
ij = maxp,q∈[0,1]

(
Z(1)
(i+p)(j+q)

)
16: end for
17: Convolutional Layer 2:
18: for each filter f ∈ Conv2(64 filters, 3 × 3) do
19: for each pixel (i, j) in the output from Subsampling Layer 1 do

20: Z(2)
ij = ReLU

(
∑3

m=1 ∑3
n=1 W(2)

mn P(1)
(i+m)(j+n) + b(2)

)
21: end for
22: end for
23: Subsampling Layer 2:
24: for each 2 × 2 pooling region (i, j) do

25: P(2)
ij = maxp,q∈[0,1]

(
Z(2)
(i+p)(j+q)

)
26: end for
27: Convolutional Layer 3:
28: for each filter f ∈ Conv3(128 filters, 3 × 3) do
29: for each pixel (i, j) in the output from Subsampling Layer 2 do

30: Z(3)
ij = ReLU

(
∑3

m=1 ∑3
n=1 W(3)

mn P(2)
(i+m)(j+n) + b(3)

)
31: end for
32: end for
33: Subsampling Layer 3:
34: for each 2 × 2 pooling region (i, j) do

35: P(3)
ij = maxp,q∈[0,1]

(
Z(3)
(i+p)(j+q)

)
36: end for
37: Step 3: Fully Connected Layers
38: Flatten the pooled output P(3)

ij into a 1D vector
39: Fully Connected Layer 1:
40: for each neuron u ∈ FC1(128 neurons) do
41: Y(1)

u = ReLU(W(1)
u · F + b(1)u )

42: end for
43: Fully Connected Layer 2:
44: for each neuron v ∈ FC2(64 neurons) do
45: Y(2)

v = ReLU(W(2)
v · Y(1)

u + b(2)v )
46: end for
47: Step 4: Output Layer
48: for each output neuron o ∈ {x, y} do

49: Yo = Wo · Y(2)
v + bo

50: end for
51: Step 5: Return Gaze Coordinates
52: return: x, y
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Figure 5. CNN architecture of the proposed method.

Convolutional Layers

The CNN starts with convolutional layers, which are essential for extracting hierar-
chical features from the input images. The first convolutional layer uses 32 filters, each
3 × 3 in size, and applies the Rectified Linear Unit (ReLU) activation function. This layer
is responsible for detecting basic features, such as edges and textures. The output from
this layer is then passed through a subsampling layer, which reduces the spatial dimen-
sions of the feature map. The second convolutional layer, with 64 filters of the same
size, captures more complex features by analyzing combinations of those detected in the
first layer. This output is again subsampled to retain only the most significant information.
The third convolutional layer, using 128 filters, abstracts the feature representations even
further, detecting higher-level patterns in the data. The progressive increase in the number
of filters allows the model to capture increasingly complex structures, making the feature
extraction process more sophisticated. After this third layer, the output undergoes another
subsampling operation.

3.3.1. Algorithm for the Proposed Method
Subsampling Layers

Subsampling, also known as max pooling, is applied after each convolutional layer
to reduce the spatial dimensions of the feature maps. A 2 × 2 window slides across the
feature map, selecting the maximum value within each window. This operation effectively
retains the most important features while discarding less relevant information. By reducing
dimensionality, max pooling not only decreases the computational complexity of the model
but also helps prevent overfitting. Additionally, it contributes to a more abstract and
generalized representation of the input image, focusing on prominent features in each
region and helping the model learn more generalized patterns.

Fully Connected Layers

Following feature extraction and dimensionality reduction through the convolutional
and pooling layers, the model transitions to fully connected layers. The Flatten layer
converts the 2D feature maps into a 1D vector, which is then passed into dense layers. The
first dense layer contains 128 neurons with ReLU activation, allowing the model to learn
non-linear combinations of the features extracted from previous layers. The subsequent
dense layer, which has 64 neurons and also uses ReLU activation, further refines these
feature representations. These layers enable the model to learn the complex relationships
between features, preparing it for accurate predictions.
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Output Layer

The final layer of the model is the output layer, which consists of two neurons rep-
resenting the x and y coordinates of the predicted gaze direction. Since this model is
designed for regression tasks, no activation function is applied to the output layer, which
is appropriate for predicting continuous values such as gaze coordinates. During model
compilation, the mean squared error (MSE) loss function is used to measure the difference
between the predicted gaze coordinates and actual values. The optimization process aims
to minimize this error, guiding the model towards more accurate gaze location predictions.

The model is compiled using the Adam Optimizer, a well-regarded optimization
method known for its efficiency in training deep neural networks. The learning rate is
set to 0.001 to ensure stable and reliable convergence during training. The dataset is
divided for comprehensive evaluation and tuning: 80% of the data is used for training,
while the remaining 20% is reserved for validation. The training process involves multiple
epochs, during which the model weights are adjusted iteratively based on the loss func-
tion to minimize prediction errors and improve the model’s accuracy in estimating the
direction of the user’s gaze.

3.4. Data Analysis

After training the CNN model, it is used to track a user’s gaze on displayed content,
such as marketing visuals, images, and videos. This process involves identifying the areas
of the content that capture the user’s focus and measuring the duration for which their gaze
on specific regions, providing valuable insights into the effectiveness of visual elements in
capturing attention.

The content is displayed on a screen divided into 16 grids, each representing different
sections of the visuals. The CNN model predicts the user’s gaze coordinates on the screen,
tracking their focus in real time. These gaze data, including the coordinates and duration of
fixation, are recorded in an Excel file, creating a detailed log of where the user looked and
for how long. These data are crucial for marketers to determine which parts of the content
engage the audience most effectively and to identify areas that may need improvement.

In addition to gaze tracking, the Eye Aspect Ratio (EAR) is calculated to monitor the
user’s blink rate throughout the viewing process. The EAR is a measure of eye openness,
computed using the following equation:

EAR =
|P2 − P6|+ |P3 − P5|

2 × |P1 − P4|
. (1)

In Equation (1), |P2 − P6| and |P3 − P5| represent the vertical distances between specific
eye landmarks, while |P1 − P4| represents the horizontal distance (see Figure 6). A blink is
detected if the Eye Aspect Ratio (EAR) falls below a threshold of 0.2 for a specified number
of consecutive frames [28]. These blink data, along with timestamps, are also recorded in a
separate Excel file, providing insights into user engagement and potential fatigue during
image viewing. Monitoring blink rates can help marketers understand when users might
lose focus or become fatigued, informing adjustments to content length or pace.

A method has been developed to simulate gaze tracking by drawing a circle at a
randomly generated location within a specified grid cell on the screen. The method begins
by determining the center of a grid cell based on the user’s gaze coordinates. It then
computes a random angle and distance within a 200-pixel radius around this center. This
randomization introduces variability into the predicted gaze point, making the simulation
more dynamic and realistic. After calculating this random location, a circle is drawn at the
computed position, and the coordinates are stored for subsequent analysis.This method
of generating random coordinates mimics the natural variability found in human gaze
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behavior. In reality, the human eye does not focus on a single point but rather on a small
area around the target, referred to as the “visual axis”. This differs from the “optical axis”,
which is the straight line passing through the eye’s optical centers. As shown in Figure 7,
points. the deviation between these two axes is typically about 5 degrees [29], accounting
for the natural dispersion of gaze

Figure 6. |P2 − P6| and |P3 − P5| represent the vertical distances between specific eye landmarks (red
dots) and |P1 − P4| represents the horizontal distance.

Figure 7. Optical view of the eye, showing that the angle between the visual axis and the optical axis
is approximately 5 degrees [29]. Figure adapted from Encyclopædia Britannica [30].

Therefore, using random coordinates within a defined radius effectively simulates this
scatter, accurately reflecting the inherent variability and imprecision of human gaze behavior.

To generate heatmaps for the images and videos, the algorithm begins by loading
the gaze coordinates and initializing a heatmap matrix corresponding to the dimensions
of the image or video frame. These coordinates are used to add values to the heatmap
matrix, highlighting areas with a higher gaze concentration. For images, the heatmap is
smoothed using a Gaussian blur, followed by normalization and contrast enhancement
and then the application of a color map. The heatmap is then overlaid on the original
image, and a grid is drawn to segment the image into regions for easier visual reference.
For video processing, the algorithm operates frame-by-frame. As the video plays, the gaze
coordinates are continuously updated in the heatmap. Each frame undergoes smoothing
and contrast enhancement, and the heatmap is overlaid in real time, with a grid drawn on
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each frame to highlight regions of interest. This enables the dynamic visualization of gaze
patterns and a real-time analysis of user attention (e.g., fixations) throughout the video.

The heatmap can also be interpreted as a probabilistic representation of gaze fixation,
which is calculated as follows:

Probability for region =
Fixation on the particular region

Total fixation on the content
(2)

By transforming the raw gaze count data into a probability distribution, we generate
a heatmap that represents the likelihood of fixation occurring across different regions
of the visual content. This transformation is performed using Equation (2), where the
total number of gaze fixations across the entire image or video frame is first summed.
The probability of fixation in each region is then determined by dividing the count of
fixations in that specific region by the total number of fixations. The heatmap not only
highlights the regions of interest but also indicates the likelihood of each region attracting
attention. This additional layer of analysis provides a more nuanced understanding of gaze
patterns, offering deeper insights into how visual focus is distributed across the content. By
quantifying the likelihood of fixation, this approach enhances our ability to interpret and
optimize visual materials for maximum engagement.

3.5. Trajectory-Based Accuracy

Trajectory-based accuracy provides a novel and insightful approach for evaluating the
performance of gaze-tracking systems. Traditional accuracy metrics often focus on point-
based comparisons, assessing how closely predicted gaze points align with reference points.
While these methods offer valuable information, they fail to capture the dynamic nature of
gaze tracking, especially in real-world scenarios where gaze behavior is continuous and
fluid. Trajectory-based accuracy addresses this limitation by comparing the predicted gaze
path over time with a reference trajectory, providing a more comprehensive measure of
system performance.

In this approach, the algorithm tracks gaze points predicted by a convolutional neural
network (CNN) model as a user follows a moving object, often represented by a ball,
across a grid on the screen. The user follows a predefined reference trajectory, such
as a zigzag or circular pattern, which may cover all edges of the screen, as shown in
Figure 8. Both the predicted gaze points and the reference trajectory are recorded over
time, resulting in two sets of trajectories: one from the model’s predictions and one from
the predefined path. These trajectories are then converted into arrays to calculate various
performance metrics.

Figure 8. Trajectory-based accuracy method. The idea is to get the user gaze given the new trajectory
of the blue ball.

Several key metrics are employed to quantify how closely the predicted gaze trajectory
matches the reference trajectory.
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Mean Absolute Deviation (MAD): This metric calculates the average absolute differ-
ence between the predicted gaze points and the reference trajectory. The formula for MAD
is given as follows:

MAD =
1
n

n

∑
i=1

|gazedatai − trajre fi|, (3)

where n is the number of points, gazedatai is the predicted gaze point, and trajre fi is the
corresponding point on the reference path. A lower MAD indicates that the predicted gaze
closely follows the reference trajectory.

Root Mean Squared Error (RMSE): The RMSE measures the average magnitude of the
prediction error, giving more weight to larger errors. It is calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(gazedatai − trajre fi)
2. (4)

The RMSE is particularly useful for detecting outliers, as it penalizes large deviations
more heavily than MAD.

Dynamic Time Warping (DTW): DTW is a method used for measuring the similarity
between two sequences that may vary in time or speed.

It calculates the optimal alignment between two trajectories by minimizing the cu-
mulative distance between them, allowing for non-linear alignments. The DTW distance
between two trajectories X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) can be calculated
using the following equation:

DTW = min

√√√√ 1
n

n

∑
i=1

m

∑
j=1

d(xi, yj)

, (5)

where d(xi, yj) is the Euclidean distance between points xi from the predicted gaze trajectory
X and yj from the reference trajectory Y. The Euclidean distance d between two points is
calculated as follows:

d(xi, yj) =
√
(xi − yj)2. (6)

Accuracy: A unique aspect of the trajectory-based accuracy metric is its ability to
calculate accuracy based on a threshold distance around each reference point. In this case,
the threshold is set to 150 pixels to cover the grid area. If a predicted gaze point falls within
this threshold, it is considered correct. The accuracy is calculated as the ratio of correct
points to the total number of points, as shown below:

Accuracy =
Number of correct gaze points

Total number of gaze points
. (7)

Trajectory-based accuracy provides a more holistic view of the gaze-tracking system’s
performance, especially in scenarios where gaze movement is continuous. By considering
the entire trajectory rather than isolated points, this method captures the dynamic aspects
of gaze behavior, offering a valuable tool for evaluating and refining gaze-tracking systems.
It is particularly beneficial in real-world applications where gaze patterns are fluid and
constantly evolving.

4. Results
This section presents the results of the proposed CNN-based gaze-tracking model,

trained using data collected from participants in diverse locations and environments. The
evaluation covers various performance metrics, including model loss, gaze point plotting,
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heatmap visualization, a trajectory-based analysis, and an accuracy comparison with other
gaze-tracking models.

4.1. Model Evaluation and Case Analysis

Our CNN-based gaze-tracking model was trained over 50 epochs, with continuous
monitoring of its validation loss to evaluate its performance on unseen data. By the
final epoch, the validation loss was 0.0112, indicating the model’s capability to generalize
effectively to new data. As depicted in Figure 9, the training process showed a steady
decline in loss, indicative of the model’s efficient learning.

Initially, the loss decreased sharply, signifying that the model quickly learned fun-
damental features crucial for gaze prediction. Around the 20th epoch, the loss began to
plateau, signaling the model’s convergence toward optimal performance. This trend high-
lights the effectiveness of the proposed CNN architecture in learning underlying patterns
from the training data, which is essential for precise gaze tracking.

To comprehensively assess the model’s performance, three primary metrics were
analyzed (Figure 10).

Figure 9. Model loss over 50 epochs, with validation loss of 0.0112.

Figure 10. MSE (left), MAE (middle), and R-squared (right) values across epochs.

Mean Squared Error (MSE): The model achieved a low MSE of 0.0112, indicating that
the predicted gaze points closely aligned with the actual values.

Mean Absolute Error (MAE): The MAE was 0.0531, suggesting that the average
deviation between the predicted and actual gaze points was minimal, affirming the
model’s precision.



Computers 2025, 14, 57 17 of 27

R-squared Value: A high R-squared value of 0.9953 was recorded, signifying that
99.53% of the variance in gaze positions was explained by the model. This underscores its
strong predictive power and capacity to establish an accurate relationship between input
images and gaze coordinates.

4.1.1. Real-Time Accuracy Assessment

The model’s real-time prediction accuracy was validated using a 4 × 4 grid displayed
on a blank screen. Users sequentially focused on each square of the grid while the model’s
predictions were plotted in real time. The predictions consistently fell within the grid
square corresponding to the user’s focus, demonstrating the model’s reliability in real-time
applications. Figure 11 highlights the strong alignment between actual gaze points and the
predicted coordinates, with minimal deviation across the grid, showcasing the validity of
the model’s precision in dynamic scenarios.

Figure 11. Gaze tracking in different regions of the screen.

4.1.2. Heatmap Analysis

The model’s gaze-tracking performance was further analyzed using heatmap visu-
alizations of static images and video content displayed on a 4 × 4 grid, as shown in
Figures 12 and 13, which showcase data from one individual. The heatmaps represent
the regions receiving the most visual attention, with intense areas indicating prolonged
gaze fixation.

Static Image Heatmap: In Figure 12, using an image from Argos’s official website, the
heatmap revealed that the user’s gaze was primarily concentrated on specific grid regions,
confirming the model’s ability to accurately identify areas of interest.

Video Heatmap: Figure 13 illustrates dynamic gaze tracking conducted on video
content sourced from Pexels’s official website. The heatmap demonstrated consistent
tracking, with the gaze accurately following targeted regions across video frames. The link
for the demo heatmap analysis can be found at https://drive.google.com/file/d/1pRTvb9
lbpqt_sMOL0DxjfE0QlCOWaSvH/view?usp=sharing (accessed on Feb 2025.).

Figure 14 demonstrates the gaze fixation plots of an individual to showcase the
model’s capability to accurately record the grid regions with the highest concentration of
gaze points—region 3 for the static image and region 5 for the video. This fixation analysis
underscores the model’s consistent performance in tracking visual focus across both static
and dynamic content.

https://drive.google.com/file/d/1pRTvb9lbpqt_sMOL0DxjfE0QlCOWaSvH/view?usp=sharing
https://drive.google.com/file/d/1pRTvb9lbpqt_sMOL0DxjfE0QlCOWaSvH/view?usp=sharing
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Figure 12. Heatmap visualization computed for a static image. The predefined grid (green lines)
segments the image into distinct regions, while the heatmap illustrates the probability distribution of
fixations across the screen, highlighting areas of visual attention.

Figure 13. Heatmap interface: heatmap sequence computed given the frames of a video.

Additionally, Figure 15, also based on an individual example, demonstrates the utility
of the Eye Aspect Ratio (EAR) graph in analyzing blink behavior during gaze tracking. The
graph effectively captured the user’s blinks, confirming the model’s sensitivity to changes
in eye state while maintaining precise gaze predictions. The probability distributions of
gaze fixation depicted in Figure 16 and Table 1 similarly use individual examples to provide
a detailed view of gaze patterns, offering deeper insights into visual focus and attention.
These results demonstrate the model’s effectiveness and highlight its robust capabilities.

Figure 17 shows the results of a sample participant for whom the trajectory accuracy
was 94.65%, where the orange line represents gaze data, the blue line represents the ball’s
trajectory, and the green circle represents the threshold limit used to calculate the accuracy.
This test involved nine participants and yielded a trajectory accuracy of 90.98%, calculated
by averaging the accuracy across all participants. This high accuracy reflects the model’s
precision in following predefined paths. While accuracy can be influenced by factors
such as real-time data processing, system requirements, and environmental conditions,
the model consistently tracked gaze trajectories with minimal deviation. This robust
performance is critical for applications requiring accurate real-time gaze tracking, including
interactive systems, marketing analysis, and behavioral research, where precision and
reliability are paramount.
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Figure 14. Gaze fixation interface: gaze fixation distribution over different regions on the screen.

Table 1. Percentage of gaze fixation in different regions for image and video.

Image Region % Video Region %

Region 1 0.558659 Region 1 1.24224

Region 2 1.67598 Region 2 0.621118

Region 3 35.1955 Region 3 6.8323

Region 4 4.46927 Region 4 0

Region 5 9.49721 Region 5 43.4783

Region 6 7.26257 Region 6 13.0435

Region 7 12.8492 Region 7 4.34783

Region 8 0.558659 Region 8 0

Region 9 8.93855 Region 9 14.2857

Region 10 5.02793 Region 10 15.528
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Table 1. Cont.

Image Region % Video Region %

Region 11 11.1732 Region 11 0

Region 12 0 Region 12 0

Region 13 1.11732 Region 13 0

Region 14 1.11732 Region 14 0.621118

Region 15 0.558659 Region 15 0

Region 16 0 Region 16 0

Figure 15. EAR plot displaying the number of blinks.
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Figure 16. Gaze fixation interface: probability distribution of gaze fixation.

Figure 17. Accuracy of a sample participant using the trajectory-based method.

Mean Absolute Deviation (MAD): The MAD was 156, indicating the average deviation
of the predicted gaze points from the reference path.
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Root Mean Squared Error (RMSE): The RMSE was 208, representing the standard
deviation of the prediction errors.

Dynamic Time Warping (DTW) Distance: The DTW distance was 172,100.09, which is
a measure of the similarity between the predicted and reference trajectories, taking into
account possible time shifts in the gaze path.

These metrics provide a comprehensive view of the model’s trajectory-tracking per-
formance, with the MAD and RMSE indicating the precision of individual predictions
and the DTW distance assessing the overall alignment of the gaze trajectory with the
predefined path.

4.2. Ablation Study and Performance Analysis

An ablation study was conducted to evaluate the contribution of different components
of the proposed CNN model. The results indicate that the convolutional layers play a sig-
nificant role in extracting meaningful spatial features from the input images, contributing
the most to the model’s success. With 256× 256 pixel grayscale images of the right eye from
nine participants, the model demonstrated a strong performance under well-lit conditions,
leveraging its pre-processing steps and feature extraction capabilities. However, its perfor-
mance declined in low-light environments due to reduced image quality. These findings
highlight the importance of lighting and feature extraction in gaze-tracking accuracy.

4.3. Model Comparison

To evaluate the performance of the proposed CNN-based gaze-tracking model, its
accuracy was compared with that of existing gaze-tracking models. Table 2 provides a
detailed comparison, showcasing the accuracy metrics of each model.

Table 2. Comparison of the proposed model with existing gaze-tracking models.

Study System Setup Accuracy Method Used

Wu et al. (2012) [31] Webcam 88% Support vector machine

Meng and
Zhao (2017) [32] Two cameras 88% CNN

Sattar et al. (2020) [33] Tobii eye tracker 80% CNN

Ou et al. (2021) [34] Wearable eye tracker 80% CNN

Singh and
Modi (2022) [16] Webcam 84% CNN

The proposed method Webcam 90.98% CNN

The results demonstrate the superior effectiveness of the proposed method, with
notable improvements in both precision and reliability seen. This comparative analysis
highlights the model’s advanced capability to accurately predict gaze points, establishing it
as a robust solution for gaze-tracking applications.

Singh and Modi [16] conducted a comprehensive literature review analyzing various
gaze estimation models, evaluating them based on parameters such as accuracy, system
setup, and the datasets used. Building on their findings, the present study introduces a
novel gaze-tracking method that achieves a notable accuracy of 90.98%, outperforming
most existing models, particularly those that rely solely on standard webcam setups. This
final accuracy represents the average performance of nine participants who took part in
the testing phase. The proposed model demonstrates precise gaze-tracking capabilities,
making it a cost-effective and efficient alternative to complex systems that typically involve
infrared light sources or multiple cameras.
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Unlike earlier models that often required expensive equipment and frequent recalibra-
tion, this approach combines robustness with simplicity, eliminating the need for constant
adjustments. Its practicality makes it particularly suitable for scenarios where both cost
efficiency and reliable performance are crucial. By offering high accuracy without relying
on advanced or costly hardware, the proposed method addresses the challenges of accessi-
bility and affordability. This positions it as a strong candidate for real-world applications,
especially in settings where deploying more intricate and expensive setups is impractical.
Its versatility makes it suitable for a wide range of use cases, from marketing and user
behavior analysis to interactive system design.

4.4. Gaze-Tracking Interface

Figure 18a presents a user-friendly graphical interface developed using Python’s
Tkinter library, designed to simplify the process of gaze tracking and analysis. This interface
serves as a clean, visually appealing platform that facilitates the running of various scripts
related to eye-tracking research and analysis tasks.

Figure 18. Main gaze-tracking interface (a) and all available options (tracking, calibration, test, and
analysis). Figure (b) shows the accuracy test initialization.

4.4.1. Algorithm and Functionality

The interface consists of five primary buttons, each linked to specific scripts that
perform key functions in gaze tracking and analysis.

Gaze-Tracking Button: Activates the image gaze-tracking script, which records and
stores the user’s gaze data for specific areas of interest in the image. It also tracks blink
data, which is valuable for marketing research.

Video Gaze-Tracking Button: Runs the video gaze-tracking script, extending the
model’s gaze-tracking capabilities to video content. This function collects gaze and Eye
Aspect Ratio (EAR) data, enabling more dynamic analyses.

Analysis Button: Executes the heatmap script for the image, providing additional
insights into gaze fixation areas and blink counts. This script processes the stored gaze
data from image tracking, offering a visual representation of where the user focused on the
screen most.

Video Gaze Analysis Button: Runs the script for generating heatmaps for video content,
creating frame-by-frame heatmaps and metrics based on the collected gaze and EAR data.

Accuracy Test Button: Before running the trajectory-based accuracy script, this but-
ton prompts the user to follow a blue ball on the screen, ensuring they understand the
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task, as shown in Figure 18b. Once confirmed, the script calculates the accuracy of the
gaze tracking.

4.4.2. Visuals and Usability

The interface features a sleek black background, contributing to its modern and
professional look. The buttons are styled in pastel green and light walnut hues, offering
easy-to-read contrast. Each button includes an icon above its descriptive text, adding a
contemporary touch and enhancing the overall look and feel. The buttons have a 3D effect,
with hover states providing immediate visual feedback, enhancing its interactivity.

The layout is organized into a 2 × 3 grid, ensuring the buttons are evenly spaced and
easily clickable and improving overall usability. This design not only makes the interface
aesthetically pleasing but also ensures it is intuitive and easy to navigate. The combination
of its modern design and functional elements allows users to effortlessly manage and
execute complex gaze-tracking tasks.

Overall, this interface provides a robust tool for researchers and professionals, stream-
lining the process of conducting gaze tracking and analysis while maintaining a balance
between style and practicality.

5. Conclusions and Future Work
This research successfully developed a cost-effective and accurate gaze-tracking sys-

tem by leveraging a convolutional neural network (CNN) and a standard camera. Our
approach provides a practical alternative to traditional gaze-tracking systems, which typ-
ically rely on expensive infrared (IR) cameras and controlled environments. By using a
conventional camera, this method significantly broadens the accessibility of gaze-tracking
technology, making it feasible for a wider range of applications. The primary objective of
this project was to design and implement a CNN-based eye-tracking system capable of
delivering precise gaze estimation across various real-world scenarios. To achieve this, the
project focused on developing a robust calibration method for collecting eye data, creating a
CNN model specifically tailored to gaze estimation and designing a user-friendly interface
that integrates gaze tracking, data storage, and analysis functionalities. The findings of
this research underscore the effectiveness of the proposed approach, with the CNN model
achieving an accuracy of 90.98%. This represents the average performance of nine par-
ticipants during the test phase, assessed using a trajectory-based evaluation system. The
model’s performance exceeds that of many existing methods, confirming the viability of
this webcam-based approach for real-time gaze tracking across diverse environments. Key
performance metrics, including a low mean squared error (MSE), a high R-squared value,
and a minimal mean absolute error (MAE), further highlight the model’s precision and
robustness in predicting gaze points with exceptional reliability. Moreover, the real-time
validation and trajectory-based tests revealed that the model maintains high accuracy dur-
ing dynamic visual interactions, which is crucial for applications such as human–computer
interactions, marketing, and behavioral research.

The integration of advanced features like heatmaps, gaze fixation plots, and blink
rate analyses, all housed within an intuitive user interface, enhances the system’s usability
and broadens its range of potential applications. The proposed methodology stands out
compared to other gaze-tracking techniques due to its combination of high precision and
affordability. These attributes make it especially valuable in scenarios where both cost
efficiency and optimal performance are essential. The inclusion of Google’s Mediapipe
model for facial landmark detection further strengthens the system’s reliability, ensuring
consistent gaze estimation even under varying environmental conditions. Therefore, this
study has successfully addressed the limitations of traditional gaze-tracking systems by
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introducing a CNN-based approach that is both user-friendly and efficient. The developed
system not only delivers high accuracy but also provides a versatile tool suitable for a wide
range of applications, from academic research to commercial use in areas such as marketing
and user experience design. The comprehensive evaluation metrics and the intuitive inter-
face enhance the practical value of the system, positioning it as a significant advancement
in gaze-tracking technology. Future work could refine the model and interface, adding
more features or improving its adaptability to diverse environments and use cases.

Future Work

Looking ahead, there are numerous opportunities for further development. Future
iterations could involve designing more advanced CNN architectures to enhance both
accuracy and robustness. Allowing users to choose their preferred eye for tracking, expand-
ing the dataset, and implementing novel methods to clean outlier images would reduce
manual data sorting and further improve system performance. Additionally, increasing
the number and diversity of participants in future studies to include a wider range of age
groups, genders, and ethnicities would enhance the model’s generalizability and accuracy
across different populations. Furthermore, ensuring consistent model performance across
different devices is crucial. As this study was conducted on a 15-inch laptop, transitioning
to varying screen sizes will require additional data collection and model retraining. A
broader dataset covering resolutions from 240p to 1080p will be incorporated, alongside
an advanced system to map gaze points accurately across different screen sizes. These
advancements would build on the foundation laid in this project and push the boundaries
of webcam-based gaze tracking.
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