
Citation: Saini, A.; Tsokanos, A.;

Kirner, R. QuantumGS-Box—A

Key-Dependent GA and QRNG-Based

S-Box for High-Speed Cloud-Based

Storage Encryption. Sci 2024, 6, 86.

https://doi.org/10.3390/sci6040086

Academic Editor: Luis Javier Garcia

Villalba

Received: 13 October 2024

Revised: 8 December 2024

Accepted: 12 December 2024

Published: 23 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

QuantumGS-Box—A Key-Dependent GA and QRNG-Based
S-Box for High-Speed Cloud-Based Storage Encryption
Anish Saini *, Athanasios Tsokanos and Raimund Kirner

School of Physics, Engineering and Computer Science (SPECS), University of Hertfordshire,
Hertfordshire AL10 9AB, UK; a.tsokanos@herts.ac.uk (A.T.); r.kirner@herts.ac.uk (R.K.)
* Correspondence: a.saini@herts.ac.uk

Abstract: Cloud computing has revolutionized the digital era by providing a more efficient, scalable,
and cost-effective infrastructure. Secure systems that encrypt and protect data before it is transmitted
over a network and stored in the cloud benefit the entire transmission process. Transmission data can
be encrypted and protected with a secure dynamic substitution box (S-box). In this paper, we propose
the QuantumGS-box, which is a dynamic S-box for high-speed cloud-based storage encryption gener-
ated by bit shuffling with a genetic algorithm and a quantum random number generator (QRNG). The
proposed work generates the S-box optimized values in a dynamic way, and an experimental evalua-
tion of the proposed S-box method has been conducted using several cryptographic criteria, including
bit independence criteria, speed, non-linearity, differential and linear approximation probabilities,
strict avalanche criteria and balanced output. The results demonstrate that the QuantumGS-box can
enhance robustness, is resilient to differential and provide improved linear cryptoanalysis compared
to other research works while assuring non-linearity. The characteristics of the proposed S-box are
compared with other state of the art S-boxes to validate its performance. These characteristics indicate
that the QuantumGS-box is a promising candidate for cloud-based storage encryption applications.

Keywords: dynamic S-box; QRNG; cloud-based storage; encryption

1. Introduction

Cloud computing has become a significant part of the IT landscape in the last few
years due to the migration from local drive storage to cloud computing storage. This
leads to data being stored remotely rather than locally and with interconnected networks,
being accessed over the Internet [1]. Transmission of data over a network requires the
consideration of a number of factors, including the processing speed and security. Data
security is a significant concern as information flows through the internet. Incorporating
cryptography [2] that meets secure transmission requirements ensures that the data is
transmitted securely. Secure data transmission over a network transmission can be achieved
by cryptography that uses Key Schedule Algorithms (KSA) [3] and encryption [4].

KSA includes methods of generating a random key typically based on substitution
and permutation. The substitution replaces the specific bits with other defined bits, and
a substitution-box (S-box) is used to implement substitution. Permutation includes the
shuffling of bits with specific operations. The S-box performs substitution in both KSA
and encryption.

Our approach is shown in Figure 1, where Alice is both the sender and receiver. Alice
encrypts the data before sending it to the network receiving the same encrypted data.
Encrypting the data before sending it to the network is the most effective way of protecting
cloud-based (remote) storage from unauthorised access or attacks.

Figure 2 illustrates a cloud-based storage network that uses a static S-box to implement
KSA and encryption.

Sci 2024, 6, 86. https://doi.org/10.3390/sci6040086 https://www.mdpi.com/journal/sci

https://doi.org/10.3390/sci6040086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sci
https://www.mdpi.com
https://orcid.org/0000-0003-3921-6813
https://doi.org/10.3390/sci6040086
https://www.mdpi.com/journal/sci
https://www.mdpi.com/article/10.3390/sci6040086?type=check_update&version=2

Sci 2024, 6, 86 2 of 23
Sci 2024, 6, x FOR PEER REVIEW 2 of 23

Figure 1. Alice is sender and receiver.

Figure 2 illustrates a cloud-based storage network that uses a static S-box to imple-

ment KSA and encryption.

Figure 2. Usage Motivation: AES static S-box in cloud-based storage encryption through high-speed

network.

Figure 1. Alice is sender and receiver.

Sci 2024, 6, x FOR PEER REVIEW 2 of 23

Figure 1. Alice is sender and receiver.

Figure 2 illustrates a cloud-based storage network that uses a static S-box to imple-

ment KSA and encryption.

Figure 2. Usage Motivation: AES static S-box in cloud-based storage encryption through high-speed

network.

Figure 2. Usage Motivation: AES static S-box in cloud-based storage encryption through high-
speed network.

The AES S-box shown is a 16 × 16 matrix of static bits. Using the KSA and S-box,
Alice generates the key and encrypts the data. Alice encrypts the data before sending it

Sci 2024, 6, 86 3 of 23

to cloud-based storage (remote) through HSN, and then decrypts it after receiving it. The
inverse of an S-box is used to decrypt data.

The static S-box is used to provide a substitution of values. The security strength of the
system depends on how vulnerable is the key generated by the KSA and its components [5]
for the cryptanalysis attack, which is a key point of our research. In the last two decades the
concept of a dynamic S-box has become an important research area for enhancing security.
The static bits of an S-box make it vulnerable to attack and many researchers have focused
on making a dynamic S-box with different scientific approaches.

There are various approaches of creating dynamic S-box with

• Algebraic theory-based: A mixture of classical and modern mathematics, Galois Theory
processed the solutions of polynomial equations (mathematical equations made of
numbers and variables) to form different values of dynamic S-box [6–9].

• Chaos theory-based: The theory uses different patterns and mathematical formulations
to generate randomness in the system and corresponds to different dynamic values of
the S-box [10–12].

• Random number generator-based—The random number generated by sources like electri-
cal and quantum noise leads to pseudo, true, and quantum generators, processing the
values of dynamic S-box [13,14].

• Advanced data analysis techniques-based: Advanced data analysis techniques like ma-
chine learning, particle swarm optimization, genetic algorithms, and heuristic tech-
niques analyze the different sources of data and generate the values of the S-box
dynamically [15–17].

Conventional AES keys are based on Pseudo-Random Number Generators [18,19]
to generate random data to enhance AES’s security. RK-AES [20] proposed a Symmetric
Random Function Generator to achieve randomness in AES’s key. However, the most
unpredictable [21] and truly random data [22] can be achieved using a quantum random
number generator (QRNG) [23].

Miguel Herrero-Collantes et al. explained different types of Quatum Number Gen-
erator based on different sources like optical and non-optical QRNG [24]. Xiongfeng Ma
et al. categorized the QRNGs into three groups: the practical QRNG (generate random-
ness at a high speed and built on fully trusted and calibrated devices), self-testing QRNG
(randomness without the trusting the actual implementation) and semi-self-testing QRNG
(a tradeoff between the trustworthiness on the device and the random number generation
speed) [25]. Jinlu Liu et al. proposed a 117 Gbits/s random bit generation rate QRNG
using min-entropy estimation and Toeplitz-hashing randomness extraction, based on the
quantum phase fluctuation of a distributed feedback (DFB) laser [26]. Meilana Siswanto,
et al. designed a photonic-based RNG to enhance the security of an Internet of Things
(IoT) system comprised of optical components, analog-digital electronic systems, and
an asynchronous transmitter [27]. It also utilizes Verilog firmware to integrate the IoT sys-
tem. Zhu Cao et al. proposed a source-independent QRNG in which output randomness
can be certified even when the source is uncharacterized and untrusted. Figure 3 shows
the random number generation process using optical device and generating quantum
random numbers.

IDQ created a hardware QRNG for generating true (non-pseudo) randomness. Quan-
tis [22] is a state-of-the-art QRNG, exploiting an optical quantum process as the source of
randomness. A QRNG is superior to traditional random number generators as their source
of randomness is associated with environmental perturbations [28]. The device has also
a monitoring function. If a failure is detected, the random bit stream created is immediately
disabled. The device provides true randomness from the first bit, separates Quantum noise
from classical noise, auto calibrated and certified [29].

Sci 2024, 6, 86 4 of 23
Sci 2024, 6, x FOR PEER REVIEW 4 of 23

Figure 3. Random number generation using optical process as QRNG.

On the other hand, a genetic algorithm [30] is a search heuristic inspired by the nat-

ural evolution of Charles Darwin’s theory. The algorithm corresponds to the natural se-

lection of selecting the fittest individuals based on a fitness function in order for reproduc-

tion to produce offsprings of the next generation. A genetic algorithm requires the follow-

ing two factors of a domain solution: a genetic representation and a fitness function to

evaluate suitability. Initial population, fitness function, selection, crossover, mutation, and

termination are phases of a genetic algorithm aiming to an optimal solution.

Sourabh Katoch et al. reviewed various advantages, disadvantages of different GAs

like Classical GA, Binary coded GAs, Real-coded GAs, Multiobjective GAs, Parallel GAs,

Chaotic GAs and Hybrid GAs [31]. They also discussed various operators used for differ-

ent GAs. Yong Wang et al. proposed a novel method for constructing S-box by transform-

ing it to a Traveling Salesman Problem and designed S-box based on chaos and genetic

algorithm [32]. Another research by Yong Wang et al. proposed a novel genetic algorithm

to construct bijective S-boxes with high nonlinearity, taking the nonlinearity of the S-box

as the optimization objective [33].

Our research focuses on improving security by creating an S-box that is dynamic us-

ing a quantum random number generator and evolutionary computation. The KSA de-

pends on a proposed dynamic S-box based on quantum random bits and a genetic algo-

rithm in order to generate the key.

Our proposed work uses a 128-bits secret key and 128-bits from the QRNG as an

initial population and performs crossover and mutation functions to generate different

values in the S-box.

The focus of this article is to create a key-dependent dynamic S-box based on quan-

tum randomness and a bit shuffling method. The contributions of this work are:

• Designing an algorithm that takes a user-defined key and quantum random bits from

a QRNG and generates a dynamic S-box using bit shuffling with genetic evolution.

• Analysing the proposed algorithm corresponding to a range of cryptographic prop-

erties, including nonlinearity, randomness, linear and differential probabilities, bit

independence criteria, and balance.

The organisation of this paper is as follows: Section 2 covers the background of AES

static S-boxes; Section 3 provides information about related work; Section 4 introduces the

design principles and proposed methodology of the proposed dynamic S-box (Quan-

tumGS-box); The test results and analysis are presented in Section 5, while Section 6 con-

cludes the paper.

2. Background

An AES static S-box [34,35] having the order (𝑝 × 𝑞) is a mapping function 𝐿 =

 𝑆(𝑐), where 𝑆 = {0,1}𝑝 → {0,1}𝑞 which is used to map p-bits input string 𝑐 to q-bits out-

put string L. The input is mapped with its multiplicative inverse in 𝐺𝐹(2)8.

Figure 3. Random number generation using optical process as QRNG.

On the other hand, a genetic algorithm [30] is a search heuristic inspired by the natural
evolution of Charles Darwin’s theory. The algorithm corresponds to the natural selection
of selecting the fittest individuals based on a fitness function in order for reproduction
to produce offsprings of the next generation. A genetic algorithm requires the following
two factors of a domain solution: a genetic representation and a fitness function to eval-
uate suitability. Initial population, fitness function, selection, crossover, mutation, and
termination are phases of a genetic algorithm aiming to an optimal solution.

Sourabh Katoch et al. reviewed various advantages, disadvantages of different GAs
like Classical GA, Binary coded GAs, Real-coded GAs, Multiobjective GAs, Parallel GAs,
Chaotic GAs and Hybrid GAs [31]. They also discussed various operators used for different
GAs. Yong Wang et al. proposed a novel method for constructing S-box by transforming
it to a Traveling Salesman Problem and designed S-box based on chaos and genetic algo-
rithm [32]. Another research by Yong Wang et al. proposed a novel genetic algorithm to
construct bijective S-boxes with high nonlinearity, taking the nonlinearity of the S-box as
the optimization objective [33].

Our research focuses on improving security by creating an S-box that is dynamic using
a quantum random number generator and evolutionary computation. The KSA depends
on a proposed dynamic S-box based on quantum random bits and a genetic algorithm in
order to generate the key.

Our proposed work uses a 128-bits secret key and 128-bits from the QRNG as an initial
population and performs crossover and mutation functions to generate different values in
the S-box.

The focus of this article is to create a key-dependent dynamic S-box based on quantum
randomness and a bit shuffling method. The contributions of this work are:

• Designing an algorithm that takes a user-defined key and quantum random bits from
a QRNG and generates a dynamic S-box using bit shuffling with genetic evolution.

• Analysing the proposed algorithm corresponding to a range of cryptographic prop-
erties, including nonlinearity, randomness, linear and differential probabilities, bit
independence criteria, and balance.

The organisation of this paper is as follows: Section 2 covers the background of AES
static S-boxes; Section 3 provides information about related work; Section 4 introduces the
design principles and proposed methodology of the proposed dynamic S-box (QuantumGS-
box); The test results and analysis are presented in Section 5, while Section 6 concludes
the paper.

2. Background

An AES static S-box [34,35] having the order (p × q) is a mapping function L = S(c),
where S = {0, 1}p → {0, 1}q which is used to map p-bits input string c to q-bits output
string L. The input is mapped with its multiplicative inverse in GF(2)8.

Sci 2024, 6, 86 5 of 23

I. The first step is a nonlinear function f (c) defined as:

f (c) =

{
0, i f c = 0

c−1, i f c ̸= 0
(1)

The function f (c) maps zero to zero, and for a non-zero field element c, it maps the
element to its multiplicative inverse c−1 in GF(2)8

II. The multiplicative inverse is then transformed using the following affine transformation

L = Affine8(C) + b (2)

where Affine8 is 8 × 8 matrix and b is a constant. Namely, for a field element C = (C7, C6,
C5, C4, C3, C2, C1, C0), L = Affine8(C) + b with

L7
L6
L5
L4
L3
L2
L1
L0


=



1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
1

1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1


×



c7
c6
c5
c4
c3
c2
c1
c0


+



0
1
1
0
0
0
1
1


Table 1 shows an AES static S-box. It is a 16 × 16 matrix of hexadecimal values that are

used in KSA and encryption. There are several cryptographic properties that make an AES
S-box unique, such as high nonlinearity, correlation immunity, algebraic immunity, and no
fixed points or opposite fixed points. However, because of its static nature, it is susceptible
to enhanced cryptoanalysis techniques [36,37].

Table 1. Value matrix of an AES Static S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 1 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 4 C7 23 C3 18 96 5 9A 7 12 80 E2 EB 27 B2 75
4 9 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 0 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 2 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E B DB
A E0 32 3A A 49 6 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 8
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 3 F6 E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 D BF E6 42 68 41 99 2D F B0 54 BB 16

The other part of this research study is the evolution computation with a genetic algo-
rithm. A genetic algorithm (GA) is a well-known algorithm for search-oriented optimization
inspired by biological evolution. A GA derives from the Darwinian theory of survival of
the fittest. A GA dynamically changes the search process to reach an optimal solution based
on crossover and mutation probabilities as a part of different phases of its cycle. Binary GA,
as a search-oriented optimization, dynamically searches the solution within the generations

Sci 2024, 6, 86 6 of 23

of the population encoded in the binary format. The fitness function is used to evaluate the
population that undergoes a crossover or mutation to find the best value.

Our proposed work uses the transformation operations of a binary GA to provide
efficient shuffling for the determination of the values of a dynamic S-box.

The initial population phase sets the foundation for the genetic algorithm by creating
a diverse set of candidate solutions. The fitness function phase evaluates the quality of each
solution, allowing the algorithm to prioritize the fittest individuals. The selection phase
determines which individuals will be chosen as parents for reproduction, promoting the
propagation of desirable traits. The crossover phase combines the genetic information of
selected parents to create offspring with potentially improved characteristics. The mutation
phase introduces small random changes to the offspring, ensuring the exploration of new
solutions. Finally, the termination phase stops the algorithm once a satisfactory solution is
found, or a predefined number of generations is reached.

3. Related Work

During the past two decades, cryptosystem designers have become increasingly con-
cerned with designing key-dependent S-box methods with random properties. Various
cryptoanalysis techniques, such as differential, linear, meet-in-the-middle, key recovery,
and shortcut attacks, require dynamic methods and randomly generated substitution cryp-
tosystems. As such, a strong emphasis has been placed on developing and implementing
key-dependent S-box methods with random properties resistant to various cryptoanalysis
techniques. Julia Juremi et al. surveyed many dynamic S-boxes focusing on framing the
technology for generating them and creating them dynamically to increase cryptographic
strengths and resist different attacks significantly [38].

Various methodologies for constructing dynamic S-boxes have been proposed, includ-
ing pseudo random number generators (PRNGs) and true random number generators
(TRNGs) with specific considerations, Chaos-based, algebraic, and optimization techniques.

Mangal Deep Gupta et al. proposed an architecture for reconfigurable PRNG designed
using Verilog HDL, synthesized on the Xilinx tool using the Virtex-5 (XC5VLX50T) and
Zynq (XC7Z045) FPGA [39]. Utilizing these PRNGs, they design two 16 × 16 substitution
boxes (S boxes). The proposed S-boxes fulfil the cryptographic criteria such as Bijective,
Balanced, Nonlinearity, Dynamic Distance, Strict Avalanche Criterion (SAC), and BIC
nonlinearity criterion. They enhanced the security for image encryption by using these two
S-boxes in terms of various parameters of image encryption like key space, information
entropy, number of pixels change rate (NPCR), unified average changing intensity (UACI),
and image encryption quantitatively in terms of (mean-squared error (MSE), structural
similarity index (SSIM) and peak signal-to-noise ratio (PSNR)). Mengdi Zhao et al. a non-
degenerate 2D enhanced quadratic map (2D-EQM) that exhibits ergodicity and randomness.
In addition, they used it to generate affine transformation matrices and constants for seeding
S-boxes based on affine transformation matrices [40]. They generated a number of keyed
strong S-boxes with high nonlinearity.

Researchers have also used irreducible polynomials, additive constants, and static
lookup tables [41] to make a dynamic S-box. Alamsyah et al. proposed a combination of an
irreducible polynomial (irreducible polynomials) and an affine matrix (a Boolean operation
XOR for each affine matrix element of the AES S-box) [42]. Several high-quality S-boxes
with corresponding cryptographic properties are built from the combination of the results
of these modifications. Using dynamic S-boxes and shift rows to simplify the encryption
process also increased the encryption strength of the AES cipher [43]. Manjula G. et al.
proposed that the modified S-boxes are dynamic, random, and key-dependent, adding
to the algorithm’s complexity and making cracking them more challenging [44]. Praveen
et al. proposed a dynamic key-dependent S-box that relies on affine transformations
with irreducible polynomials and affine constants [45]. Grasha Jacob et al. developed an
S-box that can be generated dynamically based on the sub-byte transformation used in
cryptography [46].

Sci 2024, 6, 86 7 of 23

Chaos-based dynamic S-boxes are also of interest to many researchers. Alaa F. Kadhim
et al. used shifting, chaotic theory (1D, 2D logistic maps), and particle swarm algorithms
to generate a dynamic S-box based on the input key [17]. The system provides enhanced
cryptographic properties. The authors of another study proposed an uncorrelated S-box
element for generating an S-box that meets cryptographic criteria like bijection, nonlinearity,
strict avalanche, output bit independence, equiprobable input/output XOR distribution,
and maximum expected linear probability computed on typical chaos-based schemes
without taking into account the lag time of a chaotic series [47]. Muhammad et al. report
a new chaos-based affine transformation generation method that uses rotational matrices
to generate key-based S-boxes [48].

Researchers also focus on genetic algorithms for creating dynamic S-boxes that lead to
secure symmetric cryptosystems. Aguirre et al. proposed high nonlinearity by using the
multi-objective evolutionary approach to evolve Boolean functions [49]. Stjepan Picek et al.
experimented with a genetic algorithm and programming by modifying the mutation opera-
tor and initialization process to search Boolean functions with cryptographic properties [50].
Anand Kumar et al. proposed a robust S-box design with a hybrid approach of GA and
Particle Swarm Optimization (PSO) [51]. Their performance evaluation is better regarding
nonlinearity, strict avalanche effects, bits distribution, and bijectivity. By employing a GA
in SP boxes and implementing a nonlinear neural network in the SP network, Kalaisel et al.
proposed a redesigned, enhanced AES cryptosystem that increases security against timing
attacks and reduces computation time. In order to reduce the probability of the algorithm
being impervious to future dialects, Alaa F. Haitham et al. used the chaotic function to
generate an initial random sequence of bits and the quantum crossover to provide a new
and improved substitution box with increased nonlinearity [52].

Researchers focused on creating dynamic S-boxes; however, generating dynamicity
using quantum randomness and a user key and creating a dynamic S-box while retaining
the box’s cryptographic properties is still an unexplored of research.

Our proposed substitution method contributes to existing knowledge by enhancing
security of symmetric cryptosystems in HSN by generating the values of S-box at the time
of execution from the secret key and (QRNG).

4. QuantumGS-Box—High-Speed Cloud-Based Storage Encryption with GA-Based
Key Optimisation

The proposed method of generating a dynamic S-box includes a QRNG and bit shuf-
fling based on the operations of a genetic algorithm to make the mathematical calculation
simple while at the same time ensuring that the values generated by this method are highly
secure. The proposed QuantumGS-box values are generated dynamically with the user
defined key and quantum random number generated bits. The design principle is discussed
first, followed by the proposed methodology.

4.1. The Design Principle

The design principle of the proposed work uses algebraic techniques, quantum ran-
domness, and optimization techniques to generate a dynamic, highly secure S-box. There
are a variety of cryptographic properties associated with a highly secure S-box. These prop-
erties include nonlinearity, balance, correlation immunity, algebraic degree, and differential
and linear approximation probabilities. A diagram illustrating the design principles is
shown in Figure 4.

The random number generators (RNGs)-based S-box effectively affects the randomness
of bits in the S-box. Pseudo-random number generator (PRNG) [39] and true random
number generator (TRNG) [13] based S-boxes are proposed by some researchers in order to
enhance the cryptographic properties. However, QRNG [53] ensures high entropy using
quantum states of light. Quantis [22], a QRNG developed by IDQ, generates random num-
bers using a quantum process [54,55]. The device allows live verification of its operation
and provides the highest level of entropy without requiring a post-processing function

Sci 2024, 6, 86 8 of 23

to increase its entropy rate. QRNGs [23] are considered superior to traditional random
number generators, as their source of randomness is invulnerable to environmental pertur-
bations such as temperature, voltage, or current and are provably secure random number
generators [28,56].

Sci 2024, 6, x FOR PEER REVIEW 8 of 23

to enhance the cryptographic properties. However, QRNG [53] ensures high entropy us-

ing quantum states of light. Quantis [22], a QRNG developed by IDQ, generates random

numbers using a quantum process [54,55]. The device allows live verification of its oper-

ation and provides the highest level of entropy without requiring a post-processing func-

tion to increase its entropy rate. QRNGs [23] are considered superior to traditional ran-

dom number generators, as their source of randomness is invulnerable to environmental

perturbations such as temperature, voltage, or current and are provably secure random

number generators [28,56].

Figure 4. Design principle of the proposed work.

Algebraic methods are used to achieve various cryptographic properties in generat-

ing the S-box. However, with the advancement of cryptanalysis [57,58] over the last few

years, these methods are becoming more vulnerable to exploitation.

Another important criterion in the design of S-box dynamic bits is the speed at which

the bits are generated. There needs to be an increase in the speed at which the S-box is

constructed to make it more difficult to access the bits in the S-box. Dynamic S-boxes com-

prise the basis for generating the key and encrypting the data using that key. The higher

speed of generating dynamic S-box values also contributes to the high-speed encryption

of the data. Increasing the generation speed of dynamic S-box values reduces encryption

time and data travel time on communication channels and data storage facilities.

The last criterion is the optimal values based on all three above-mentioned criteria,

which can be achieved through evolutionary computation (EC). There are various stud-

ies[59–61] by researchers who created dynamic S-boxes based on EC and optimized the

most effective solution for creating S-box values.

4.2. Proposed Methodology

Figure 5 shows the dynamic proposed S-box, called QuantumGS-box, for KSA and

for a cloud-based storage encryption. The figure shows the encryption with the new

QuantumGS-box. The QuantumGS-box is a 16 × 16 matrix consisting of dynamic bits. The

user will generate the key with KSA along with S-box and encrypt the information. Alice

is both sender and receiver in this scenario, who encrypts the data before sending it to the

high-speed network and decrypt it once it receives back.

The QuantumGS-box provides a matrix of substitution values based on a QRNG and

a user defined key for KSA and encrypting the data. Alice will send the encrypted infor-

mation over a communication channel to the cloud. The encrypted format makes the data

secure before traveling through various HSN nodes. This ensures that the data is protected

from Eve, a potential malicious attacker, who could attempt to intercept the data while in

transit. The encrypted data is stored on multiple servers depending on their cloud appli-

cation. The same encrypted data travels back over the network when Alice wants to access

the data. Overall, this process ensures that Alice’s data remains secure and confidential

during data transmission to the cloud.

Figure 4. Design principle of the proposed work.

Algebraic methods are used to achieve various cryptographic properties in generating
the S-box. However, with the advancement of cryptanalysis [57,58] over the last few years,
these methods are becoming more vulnerable to exploitation.

Another important criterion in the design of S-box dynamic bits is the speed at which
the bits are generated. There needs to be an increase in the speed at which the S-box
is constructed to make it more difficult to access the bits in the S-box. Dynamic S-boxes
comprise the basis for generating the key and encrypting the data using that key. The higher
speed of generating dynamic S-box values also contributes to the high-speed encryption of
the data. Increasing the generation speed of dynamic S-box values reduces encryption time
and data travel time on communication channels and data storage facilities.

The last criterion is the optimal values based on all three above-mentioned criteria,
which can be achieved through evolutionary computation (EC). There are various stud-
ies [59–61] by researchers who created dynamic S-boxes based on EC and optimized the
most effective solution for creating S-box values.

4.2. Proposed Methodology

Figure 5 shows the dynamic proposed S-box, called QuantumGS-box, for KSA and
for a cloud-based storage encryption. The figure shows the encryption with the new
QuantumGS-box. The QuantumGS-box is a 16 × 16 matrix consisting of dynamic bits. The
user will generate the key with KSA along with S-box and encrypt the information. Alice is
both sender and receiver in this scenario, who encrypts the data before sending it to the
high-speed network and decrypt it once it receives back.

The QuantumGS-box provides a matrix of substitution values based on a QRNG
and a user defined key for KSA and encrypting the data. Alice will send the encrypted
information over a communication channel to the cloud. The encrypted format makes
the data secure before traveling through various HSN nodes. This ensures that the data
is protected from Eve, a potential malicious attacker, who could attempt to intercept the
data while in transit. The encrypted data is stored on multiple servers depending on their
cloud application. The same encrypted data travels back over the network when Alice
wants to access the data. Overall, this process ensures that Alice’s data remains secure and
confidential during data transmission to the cloud.

Sci 2024, 6, 86 9 of 23Sci 2024, 6, x FOR PEER REVIEW 9 of 23

Figure 5. Proposed QuantumGS-box in cloud-based storage encryption through high-speed net-

work.

4.2.1. Step by Step Procedure and Algorithm to Generate QuantumGS-Box

This section illustrates the mathematical calculation and the bit shuffling based on

the operations of a genetic algorithm (GA) of the proposed method to generate dynamic S-

box values. The step-by-step operation of the proposed method is shown with a control-

flow diagram in Figure 6.

The flowchart starts with taking a user key from the user and then random bits from

QRNG. The genetic algorithm will be processed with initial population, the generation

and generating the chromosomes. A fitness function is used to select the best chromo-

somes in order to find the index to generate the values of QuantumGS-box.

Step1 (S1): Initially, the user inputs a 16-character key, denoted as 𝑈𝐾𝑒𝑦

Step2 (S2): The QRNG generates the 128 quantum random bits, denoted as
𝑄𝑅𝑁𝐺(128)

Step3 (S3): The user key UKey is converted into bits and denoted as 𝐾𝑒𝑦𝑏

Step4 (S4): Initial Population generation (𝑃𝑖𝑛𝑖𝑡)

• 𝑄𝑅𝑁𝐺(128)—Quantum random bits from QRNG (128 bits)

• 𝐾𝑒𝑦𝑏 -User defined key (128 bits)

𝑃 = 𝑃 ∪ (𝑄𝑅𝑁𝐺(128) ⊕ 𝐾𝑒𝑦𝑏) (3)

Step5 (S5): This step calls the genetic algorithm with the function name optimize_GA

and a parameter initial population (𝑃𝑖𝑛𝑖𝑡) , calculated at S4. Algorithm 1 shows the

pseudo-code of the proposed algorithm for optimize_GA. Section 4.2.2 focuses on the op-

timize_GA

Figure 5. Proposed QuantumGS-box in cloud-based storage encryption through high-speed network.

4.2.1. Step by Step Procedure and Algorithm to Generate QuantumGS-Box

This section illustrates the mathematical calculation and the bit shuffling based on the
operations of a genetic algorithm (GA) of the proposed method to generate dynamic S-box
values. The step-by-step operation of the proposed method is shown with a control-flow
diagram in Figure 6.

The flowchart starts with taking a user key from the user and then random bits from
QRNG. The genetic algorithm will be processed with initial population, the generation and
generating the chromosomes. A fitness function is used to select the best chromosomes in
order to find the index to generate the values of QuantumGS-box.

Step1 (S1): Initially, the user inputs a 16-character key, denoted as UKey
Step2 (S2): The QRNG generates the 128 quantum random bits, denoted as QRNG(128)
Step3 (S3): The user key UKey is converted into bits and denoted as Keyb
Step4 (S4): Initial Population generation (Pinit)

• QRNG(128)—Quantum random bits from QRNG (128 bits)
• Keyb —User defined key (128 bits)

P = P ∪ (QRNG(128)⊕ Keyb) (3)

Step5 (S5): This step calls the genetic algorithm with the function name optimize_GA
and a parameter initial population (P init), calculated at S4. Algorithm 1 shows the pseudo-
code of the proposed algorithm for optimize_GA. Section 4.2.2 focuses on the optimize_GA.

Sci 2024, 6, 86 10 of 23Sci 2024, 6, x FOR PEER REVIEW 10 of 23

Figure 6. Flowchart of the proposed QuantumGS-box. Figure 6. Flowchart of the proposed QuantumGS-box.

Sci 2024, 6, 86 11 of 23

Step 6 (S6): This step checks each element in the QGSbox with row m and column n.
The decision depends on the positions that have NaN (⊥) as their value.

The following steps will calculate the weight of that positions, where there is a NaN
(Not a Number) in the QGSbox. If there is no NaN, then this will proceed to stop.

Step 7 (S7) to Step 9 (S9): These steps will continue till QGSbox has NaN (⊥).
The quantum random number bits will be generated from QRNG and as QRNG(255)
The value of temporary weight denoted as weight is calculated by using a XOR

function on the quantum random bits and user-defined key bits.

weight = QRNG(255)⊕ Keyb (4)

The next block will check if the value for weight has already been stored in QGSbox,
and greater than 256. If it is, the value will be regenerated; if it does not, the value will be
stored in the QGSbox.

When the algorithm reaches the stop, then all QGSbox values have been calculated and
the algorithm terminates. Algorithm 2 shows the pseudo-code of the proposed algorithm.

Algorithm 1: Algorithm optimize_GA(P init): Calculate positions for weights of QuantumGS-box

INPUT: Pinit //initial population (with PSIZEchromosomes)

SSbox =


a00 a01 · · · a0F
a01 a11 · · · a1F

...
...

. . .
...

aF0 aF1 · · · aFF

//static S-Box

RMAX//max number of S-Box weights to replace: 10 ≤ RMAX ≤ 250

OUTPUT: QGSboxtmp//interim QuantumGS-box

1 begin:
2 Ptmp = Pinit / /initialize current population with initial population
3 QGSboxtmp = SSbox //initialize output QuantumGS-box
4 for gen_cnt is 1 to RMAX //iterate RMAXtimes
5 C f ittest = argmax

C∈ Ptmp

f itness_GA(C)/ /chromosome with max fitness value

6 i = C f ittest[60], j = C f ittest[61], k = C f ittest[62], l = C f ittest[63]
7 p = C f ittest[124], q = C f ittest[125], r = C f ittest[126], s = C f ittest[127]
8 x = bin_to_hex(i, j, k, l) / / i · 23 + j · 22 + k · 21 + l · 20

9 y = bin_to_hex(p, q, r, s) / / p · 23 + q · 22 + r · 21 + s · 20

10 QGSboxtmp[x][y] = ⊥
11 QGSboxtmp[y][x] = ⊥
12 Ptmp = mutate

(
crossover

(
Ptmp

))
/ /population of next generation

13 return QuantumGSboxtmp
14 end

Algorithm 2: Algorithm to generate QuantumGS-box

INPUT: UKey //16-character textual key provided by user

OUTPUT: QGSbox =


a00 a01 · · · a0F
a01 a11 · · · a1F

...
...

. . .
...

aF0 aF1 · · · aFF

 //QuantumGS-box

1 begin:
2 Kb = convert_to_128bit_binary_key(UKey)
3 Pinit = ∅ //initial population
4 ∀i ∈ {1 . . . PSIZE}. P = P ∪ (QRNG(128)⊕ Keyb) //fill initial population

Sci 2024, 6, 86 12 of 23

5 QGSbox = optimize_GA (Pinit)
6 ∀m, n ∈ QGSBox[][]
7 If QGSbox[m][n] = ⊥
8 do
9 weight = QRNG(255) ⊕ Keyb
10 while weight ∈ QGSBox ∧ weight > 256
11 QGSbox[s] = weight
12 end

Note: ⊥—Not a Number (NaN).

4.2.2. Algorithm optimize_GA(P init)

Algorithm 1 shows the steps to calculate the positions for weights of QGSbox.
This step will continue to execute from generation 1 to RMAX. RMAX is used to

define the upper limit of the generation of the genetic algorithm.
In a population of chromosomes, f itness_GA(C) computes the fitness of each chro-

mosome. The fitness value that is highest across all chromosomes will be considered the
most appropriate and its chromosome is denoted as C f ittest. Algorithms 3 and 4 focuses on
f itness_GA(C) and how to calculate each fitness value.

This highest value chromosome C f ittest tells the positions for the weights of QGSbox.
We have chosen four middle bits and four most significant bits to calculate the row and
column index. The index positions a1 and a2 represent row and column positions. For
example, the 60, 61, 62 and 63 bits of C f ittest are 0110 and 124, 125, 127 and 128 bits are 0100,
so the a1 = 0110 in binary and a1 = 6 in hexadecimal. Similarly, a2 = 0100 and a2 = 4.

These positions in QGSbox as QGSbox [4][6] and QGSbox [6][4] will now have NaN.
The next step will calculate the next population (P tmp

)
using crossover and mutation

for the next iteration of the generation.

Crossover: crossover
(
Ptmp

)
We are using the crossover operation of a GA [62]. The chromosomes of each gener-

ation are combined with via the crossover function to produce the chromosomes of the
next generation. A one-point crossover mechanism has been used. In order to create a new
offspring, a crossover point is chosen at random and the tails of (C1 and C2) are swapped
to create a new offspring. The crossover chromosome is calculated as follows:

crossover
(

Ptmp
)
= f

(
Ptmp

)
(5)

where:
crossover

(
Ptmp

)
—Population chromosome after crossover

n—a random number crossover point derived from the QRNG
Algorithm 3 shows the crossover

(
Ptmp

)
function to calculate the crossover for the

current population. Algorithm 4 crossoverC(C1, C2) shows the 1-point crossover with
a quantum random number.

Algorithm 3: Algorithm crossover
(

Ptmp
)

: Calculate crossover for the current population

INPUT: Ptmp //initial population (with PSIZEchromosomes)

OUTPUT: Pnew//interim population for crossover

1 begin:
2 Pnew = ∅ / /initialize new population
3 while

(
Ptmp ̸= ∅

)
4 C1, C2 = remove

(
Ptmp

)
/ /Two chromosomes from current population

5 Pnew = Pnew ∪ crossoverC(C1, C2)
6 return Pnew
7 end

Sci 2024, 6, 86 13 of 23

Algorithm 4: Algorithm crossoverC(C1, C2) : Calculate 1-point crossover.

INPUT: C1, C2//two chromosomes from the current population

OUTPUT: C′
1 , C′

2//new crossover chromosomes

1 begin:
2 p = QRNG(0 . . . 127)/ /a quantum random number from QRNG within the range
3 C′

1 = C1[0 . . . (p − 1)] + C2[(p) . . . 127]
4 C′

2 = C2[0 . . . (p − 1)] + C1[(p) . . . 127]
5 return

(
C′

1 , C′
2
)

6 end

Mutation: mutate
(
Ptmp

)
We are using the mutation operation of a GA [62]. In the GA, mutations can be used

to maintain diversity among the chromosomes in a population. A mutation has not been
incorporated into the population as a whole, it is measured by a mutation probability
that is assigned to each individual according to their fitness value. A random number
is generated between 0 and 1 and the mutation probability (k) of our proposed work is
0.95 (see (5)). If the random number is greater than the (k) probability, the values will be
generated by QRNG.

The mutation chromosome is calculated as follows:

mutate_c(C) =

{
QRNG(128), Qrn(0, 1) > k | k = 0.95

C,otherwise
(6)

where:
mutate_c(C)—Population chromosome after mutation
C—Chromosome of initial population (Pinit)
Qrn(n1, n2)—a random number from QRNG within the range n1 ≤ Qrn(n1, n2) ≤ n2
The process will proceed to RMAX generation and the population for the next iteration

will be as follows:
Ptmp = mutate

(
crossover

(
Ptmp

))
(7)

Algorithm 5 shows the mutate_c(C) function to calculate the mutation for the cur-
rent population.

Algorithm 5: Algorithm mutate_c
(

Ptmp
)

: Calculate mutation for the current population.

INPUT: Ptmp //initial population (with PSIZEchromosomes)

OUTPUT: Pnew//interim population for mutation

1 begin:
2 Pnew = ∅ / /initialize new population
3 while

(
Ptmp ̸= ∅

)
4 C = remove

(
Ptmp

)
/ /chromosome from current population

5 Pnew = Pnew ∪ mutateC(C)
6 return Pnew
7 end

4.2.3. Algorithm f itness_GA(C)

Algorithm 6 shows pseudo-code of the proposed algorithm for f itness_GA(C) and
the calculation of each of the chromosomes fitness value.

Sci 2024, 6, 86 14 of 23

Algorithm 6: Algorithm fitness_GA(C): Calculate fitness value for a given chromosome
(128-bit sequence).

INPUT: C //chromosome (128-bit sequence)

OUTPUT: Fitness //fitness value

1 begin:
2 R = C[0 . . . 63] / /least significant 64 bits of C
3 L = C[64 . . . 127] / /most significant 64 bits of C
4 Hdist = Hamming_distance(R , L)
5 JWdist = Jaro_Winkler_distance (R , L)
6 Ldist = Levenshtein_distance (R , L)
7 Fitness = Hdist + JWdist + Ldist
8 return Fitness
9 end

The current chromosome splits into two parts.
Chromosome: (Split the C into two halves R and L)

R = C[0 . . . 63] (8)

L = C[64 . . . 127] (9)

Different distance values will be calculated using these two parts, leading to the fitness
value, Fitness. The highest fitness value is the optimum to optimize chromosomes.

4.2.4. Calculation of Distance Values: Hdist, JWdist, Ldist

Fitness calculates the fitness function for the QuantumGS-box as follows:

Fitness = (Hdist + JWdist + Ldist) (10)

where:
Hdist—Hamming Distance between R and L: Hdist(R, L)
JWdist—Jaro-Winkler Distance between R and L: JWdist(R, L)
Ldist —Levenshtein Distance between R and L: Ldist(R, L)

Hamming Distance (Hdist)

Hdist(BS1 , BS2), the hamming distance [63] between two bit sequences BS1 and BS2
is calculated as the number of bit positions BS1,j in BS1 that are different to those BS2,j in
BS2, divided by the chromosome length:

Hdist(BS1, BS2) =

∣∣ {BS1,j
∣∣ BS1,j ̸= BS2,j ∧ (0 ≤ j < len(BS1))

} ∣∣
len(BS1)

(11)

Jaro-Winkler Distance (JWdist)

The first step in calculating JWdist(BS1 , BS2), the Jaro-Winkler Distance between BS1
and BS2, is to obtain the Jaro similarity JS(BS1 , BS2), score between BS1 and BS2.

The JS(BS1, BS2) score is 0 if the strings do not match at all, and 1 if they are an exact
match. JS is calculated as follows:

JS(BS1, BS2) =


0,i f m = 0

1
3

(
m

|BS1|
+

m
|BS2|

+
m − t

m

)
,otherwise

(12)

where:
|BSi|—is the length of the bitstring BSi

Sci 2024, 6, 86 15 of 23

m—the number of matching bits
t—the number of transpositions
The Jaro–Winkler similarity (JWS) uses a con for a more specific similarity with

a defined length len and is calculated as follows:

JWS(BS1, BS2) = JS(BS1, BS2) + len × con(1 − JS(BS1, BS2)) (13)

where:
JS is the Jaro similarity between bitstring; BS1 and BS2
len—the length of common prefix at the start of the string with up to a maximum of

4 characters
The final JWdist is

JWdist(BS1, BS2) = 1 − JWS(BS1, BS2) (14)

Levenshtein Distance (L dist)

The Levenshtein distance Ldist (BS1 , BS2) between two bitstring BS1 and BS2 is
calculated as follows:

Ldist(BS1, BS2) =



|BS 1| i f |BS2| = 0,
|BS 2| i f |BS1| = 0,

Ldist(tail(BS1), tail(BS 2)) i f BS1[0] = BS2[0],

1 + min


Ldist(tail(BS1), BS2)
Ldist(BS1, tail(BS2)

Ldist(tail(BS1), tail(BS 2))
Otherwise

(15)

The proposed algorithm generates different QuantumGS-boxes based on different
generations and keys. Table 2 shows the QuantumGS-box using the 75th generation of the
GA and the user defined key—“The QuantumGS-box”.

Table 2. QuantumGS-box generated using the 75-th generation of the GA.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 1 67 2B FE D7 AB 25
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 F6 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 D9 8D 31 15
3 4 C7 23 C3 18 96 5 9A 7 12 80 E2 EB 27 B2 75
4 9 83 2C 1A 1B 6E 5A A0 52 3B D6 72 29 E3 2F 8A
5 53 D1 1D ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 2 7F 50 B3 9F 42
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E B DB
A E0 32 3A A 49 6 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 84 D5 4E A9 6C 56 F4 EA 65 7A AE 8
C BA 78 F8 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 3C
D 70 3E B5 66 48 3 D8 E 61 35 57 B9 86 C1 B0 9E
E E1 BF 98 11 69 76 8E 94 9B 1E 87 E9 CE 8C 28 DF
F A8 A1 89 D 71 E6 55 68 41 99 2D F 0 54 BB 16

5. Result Analysis

Results are drawn from the strength of S-box parameters such as nonlinearity, bit-
independence, avalanche properties including differential and linear approximation anal-
ysis. There are several tools to evaluate the performance analysis of cryptographic prop-
erties of S-box. The most common tools are MATLAB, Sage [64], SET [65] and the S-
BOX performance analysis [66] tool. We evaluated our results using SET and the S-BOX
performance tool.

Sci 2024, 6, 86 16 of 23

SET-UP experiments and Tools
Hardware: Quantis [29]—A USB-based Quantum random number generators de-

veloped by IDQ Its general specifications include—Random bit rate 1:4 Mbit/s ± 10%
(Quantis-USB-4M), Thermal noise contribution: <1% (Fraction of random bits arising from
thermal noise), Storage temperature: −25 to + 85 ◦C, USB specification 2.0 and Power Via
USB port

Computer—Processor: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz, RAM:
8.00 GB, System type: 64-bit operating system, x64-based processor

Software: Java—Netbeans with JDK 1.8.0
S-box Testing Tools: SET [65] and S-BOX performance analysis [66]

5.1. Bijectivity Property

An S-box of n × n size is said to be bijective if it has all possible output values from
interval [0,2n−1]. If fi(1 ≤ i ≤ n) is a Boolean function of an S-box [67], it satisfies

wt
(
∑n

i=1 ai fi

)
= 2n−1 (16)

where ai ∈ {0, 1}, (a1a2. . . an) ̸= (0, 0 . . . 0) and wt(x) is the hamming weight, which
indicates the number of 1’s in a given vector. fi is to be balanced between 0 and 1. The
proposed QuantumGS-box generates the n × n matrix of unique values, as shown in
Table 2.

5.2. Non-Linearity

An S-box is strong if it uses a Boolean function with a high non-linearity value. The
non-linearity [68] N f of a Boolean function f(x) is

N f = 2n−1
(

1 − 2−nmax
∣∣∣WS f (ω)

∣∣∣) (17)

where WS f (ω), the Walsh spectrum of function f is defined as

WS f (ω) = ∑n
ω∈GF(2n)

(−1) f (x)+x·ω (18)

where, x·ω represents the dot-product of x and ω
Table 3 shows the nonlinearity of different S-boxes generated by different generations.

The speed illustrates the time taken to generate the dynamic S-box bits based on the
related generations.

Table 3. Nonlinearity of the QuantumGS-box with three different generation and their genera-
tion time.

Generation 50, Time: 3.238 s

Nonlinearity 108 110 112 112 112 110 110 110

Generation 75, Time: 4.560 s

Nonlinearity 106 108 108 110 108 110 110 110

Generation 100, Time: 4.874 s

Nonlinearity 112 108 108 108 108 108 108 110

Table 4 presents a comprehensive comparison of our proposed S-box security anal-
ysis of nonlinearity. The sample of QuantumGS-box (75th generation), generated by the
proposed method is compared with relevant dynamic S-boxes published in the last few
years in different category. In the proposed work, we achieve a 110 as the maximum value
of nonlinearity with an average of 108.75. Figure 7 shows the graphical representation of
nonlinearity comparisons.

Sci 2024, 6, 86 17 of 23

Table 4. Comparison of QuantumGS-box with different research studies in terms of nonlinearity.

Design Methodology Ref.
Non-Linearity

Min Max Avg

Algebraic

[69] 106 108 107

[70] 106 108 107.25

[71] 104 108 106.8

[72] 102 111 106.5

[8] 106 110 107.75

[73] 106 108 106.5

Chaos Based Design

[74] 108 110 109.5

[75] 104 110 106.3

[76] 108 112 109.25

[77] 100 106 104

[78] 100 110 103.8

[79] 100 108 105

Others

[13] 99 108 103.5

[80] 102 110 106.5

[59] 102 110 107

QuantumGS-box 75 Gen this work 106 110 108.75

Sci 2024, 6, x FOR PEER REVIEW 17 of 23

Table 4. Comparison of QuantumGS-box with different research studies in terms of nonlinearity.

Design Methodology Ref
Non-Linearity

Min Max Avg

Algebraic

[69] 106 108 107

[70] 106 108 107.25

[71] 104 108 106.8

[72] 102 111 106.5

[8] 106 110 107.75

[73] 106 108 106.5

Chaos Based Design

[74] 108 110 109.5

[75] 104 110 106.3

[76] 108 112 109.25

[77] 100 106 104

[78] 100 110 103.8

[79] 100 108 105

Others

[13] 99 108 103.5

[80] 102 110 106.5

[59] 102 110 107

QuantumGS-box 75 Gen this work 106 110 108.75

Figure 7. Comparison of QuantumGS-box(this work) with different research studies in terms of

nonlinearity. Zahid, A.H (2019)—[69]; Attaullah (2018)—[70]; Zahid, A.H, (2019)—[71]; Ejaz, A

(2021)—[72]; Ibrahim, S (2021)—[8]; Gao, W (2020)—[73]; Al-zaidi, A.A (2018)—[74]; Lu, Q (2019)—

[75]; Ahmad, M (2018)—[76]; Wang, X (2020)—[77]; Belazi, A (2017)—[78]; Liu, H (2020)—[79]; Khan,

M.F (2022)—[13]; Soto, R (2021)—[80]; Abd-El-Atty, B (2023)—[59].

97 99 101 103 105 107 109 111 113

this work

Abd-El-Atty, B (2023)

Soto, R (2021)

Khan, M.F (2022)

Alzaidi, A.A (2018)

Lu, Q (2019)

Ahmad, M (2018)

Wang, X (2020)

Belazi, A (2017)

Liu, H (2020)

Zahid, A.H (2019)

Attaullah (2018)

Zahid, A.H, (2019)

Ejaz, A (2021)

Ibrahim, S (2021)

Gao, W (2020)

O
th

er
s

C
h

ao
s

B
as

ed
 D

es
ig

n
A

lg
eb

ra
ic

Nonlinearity

Nonlinearity Avg Nonlinearity Max Nonlinearity Min

Figure 7. Comparison of QuantumGS-box(this work) with different research studies in terms
of nonlinearity. Zahid, A.H (2019)—[69]; Attaullah (2018)—[70]; Zahid, A.H, (2019)—[71];
Ejaz, A (2021)—[72]; Ibrahim, S (2021)—[8]; Gao, W (2020)—[73]; Al-zaidi, A.A (2018)—[74];
Lu, Q (2019)—[75]; Ahmad, M (2018)—[76]; Wang, X (2020)—[77]; Belazi, A (2017)—[78]; Liu, H
(2020)—[79]; Khan, M.F (2022)—[13]; Soto, R (2021)—[80]; Abd-El-Atty, B (2023)—[59].

Sci 2024, 6, 86 18 of 23

5.3. Bit-Independence Criteria—Strict Avalanche Criteria (BIC-SAC)

Bit-Independence Criteria (BIC) tests measure the correlation between each pair of output
bits when one input bit changes in response to the change in the output bit. In this test, the
diagonal values are excluded from the output matrix of n × n dimensions.

If a Boolean function satisfies the Strict Avalanche Criteria (SAC) [46], half of the output
bits should change when there is a change in a bit. Any change in the input vector will
significantly change the output vector with a probability of ½. Table 5 shows the BIC-
SAC values of the proposed QuantumGS-box. The maximum, minimum and average SAC
values for the QuantumGS-box are equal to 0.525391, 0.46875, and 0.497070 correspondingly.
Based on the results, the proposed QuantumGS-box fulfils the SAC property as the average
value for the QuantumGS-box is equal to the desired value of SAC (0.5).

Table 5. BIC-SAC of QuantumGS-box.

0 0.511719 0.503906 0.525391 0.513672 0.486328 0.46875 0.509766

0.511719 0 0.511719 0.496094 0.498047 0.507813 0.507813 0.515625

0.503906 0.511719 0 0.527344 0.501953 0.507813 0.486328 0.505859

0.525391 0.496094 0.527344 0 0.519531 0.517578 0.503906 0.503906

0.513672 0.498047 0.501953 0.519531 0 0.519531 0.515625 0.5

0.486328 0.507813 0.507813 0.517578 0.519531 0 0.509766 0.488281

0.46875 0.507813 0.486328 0.503906 0.515625 0.509766 0 0.517578

0.509766 0.515625 0.505859 0.503906 0.5 0.488281 0.517578 0

5.4. Linear Approximation Probability (LAP)

The LAP assesses the security of S-boxes against linear cryptanalysis. An S-box
provides diffusion and confusion of bits through linear mappings between inputs and
outputs. The LAP of an event determines a maximum imbalance [48,65].

LAP = max
px ,qx ̸=0

∣∣∣∣ |{ x | (x ∈ R) ∧ (x·px = S(x)·qx) }|
2n − 1

2

∣∣∣∣ (19)

where:
px and qx are the input and output values respectively and R = {1, 2, 3, 4, . . . , 255}
A small linear probability in an S-box makes the box very resistant to linear crypt-

analysis. In our proposed work, we achieve a LAP value of 0.1015. Table 6 compares
the maximum LP of different researchers with the proposed work. Figure 8 shows the
graphical representation of the comparison data.

Table 6. Comparison of QuantumGS-box with different research studies in terms of LAP.

Design Methodology Ref. Linear Approximation Probability (LAP)

Algebraic

[69] 0.1560

[70] 0.1094

[71] 0.1400

[72] 0.1090

[8] 0.1172

[73] 0.1250

Sci 2024, 6, 86 19 of 23

Table 6. Cont.

Design Methodology Ref. Linear Approximation Probability (LAP)

Chaos Based Design

[74] 0.1328

[75] 0.1250

[76] 0.1250

[77] 0.1328

[78] 0.1250

[79] 0.1250

Others

[13] 0.1406

[80] 0.1484

[59] 0.1172

QuantumGS-box 75 Gen this work 0.1015

Sci 2024, 6, x FOR PEER REVIEW 19 of 23

Others

[13] 0.1406

[80] 0.1484

[59] 0.1172

QuantumGS-box 75 Gen this work 0.1015

Figure 8. Comparison of the QuantumGS-box with different research studies in terms of LAP. Za-

hid, A.H (2019)—[69]; Attaullah (2018)—[70]; Zahid, A.H, (2019)—[71]; Ejaz, A (2021)—[72]; Ibra-

him, S (2021)—[8]; Gao, W (2020)—[73]; Alzaidi, A.A (2018)—[74]; Lu, Q (2019)—[75]; Ahmad, M

(2018)—[76]; Wang, X (2020)—[77]; Belazi, A (2017)—[78]; Liu, H (2020)—[79]; Khan, M.F (2022)—

[13]; Soto, R (2021)—[80]; Abd-El-Atty, B (2023)—[59].

5.5. Differential Approximation Probability (DP)

An effective way to assess S-box resistance to differential attacks is to use the differ-

ential approximation probability (DP) [48,81]. DP indicates the probability that a particu-

lar change in output bits will occur due to a change in input bits.

The 𝐷𝑃 is calculated as follows

𝐷𝑃(Δ𝑥 → Δ𝑦) = (
|{ 𝑥 | (𝑥 ∈ 𝑋) ∧ ((𝑆(𝑥)⨁𝑆(𝑥⨁Δ𝑥)) = Δ𝑦)}|

2𝑛
) (20)

where

𝑥 represents the set of all possible input values, 2n is a total number of all the ele-

ments in the

An S-box with a small differential value is strongly resistant to differential cryptoa-

nalysis. In our proposed work, we achieve a DAP value of 0.03125.

5.6. Balanced Output

An S-box with n input bits and m output bits, m ≤ n, is balanced if each output occurs

2n−m times. For the S-box to be balanced [46], it should have the same number of 0’s and

1’s. The result from the SET [65] tool assessed that the QuantumGS-box is balanced.

0.1015625

0.1172

0.1484

0.1406

0.125

0.125

0.1328

0.125

0.125

0.1328

0.125

0.1172

0.109

0.14

0.1094

0.156

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

this work

Abd-El-Atty, B (2023)

Soto, R (2021)

Khan, M.F (2022)

Liu, H (2020)

Belazi, A (2017)

Wang, X (2020)

Ahmad, M (2018)

Lu, Q (2019)

Alzaidi, A.A (2018)

Gao, W (2020)

Ibrahim, S (2021)

Ejaz, A (2021)

Zahid, A.H, (2019)

Attaullah (2018)

Zahid, A.H (2019)

O
th

er
s

C
h

ao
s

B
as

ed
 D

es
ig

n
A

lg
eb

ra
ic

Linear Approximation Probability (LAP)

Figure 8. Comparison of the QuantumGS-box with different research studies in terms of LAP.
Zahid, A.H (2019)—[69]; Attaullah (2018)—[70]; Zahid, A.H, (2019)—[71]; Ejaz, A (2021)—[72];
Ibrahim, S (2021)—[8]; Gao, W (2020)—[73]; Alzaidi, A.A (2018)—[74]; Lu, Q (2019)—[75];
Ahmad, M (2018)—[76]; Wang, X (2020)—[77]; Belazi, A (2017)—[78]; Liu, H (2020)—[79]; Khan,
M.F (2022)—[13]; Soto, R (2021)—[80]; Abd-El-Atty, B (2023)—[59].

5.5. Differential Approximation Probability (DP)

An effective way to assess S-box resistance to differential attacks is to use the differen-
tial approximation probability (DP) [48,81]. DP indicates the probability that a particular
change in output bits will occur due to a change in input bits.

The DP is calculated as follows

DP(∆x → ∆y) =
(
|{ x | (x ∈ X) ∧ ((S(x)

⊕
S(x

⊕
∆x)) = ∆y)}|

2n

)
(20)

Sci 2024, 6, 86 20 of 23

where
x represents the set of all possible input values, 2n is a total number of all the elements

in the S-box with a small differential value is strongly resistant to differential cryptoanalysis.
In our proposed work, we achieve a DAP value of 0.03125.

5.6. Balanced Output

An S-box with n input bits and m output bits, m ≤ n, is balanced if each output occurs
2n−m times. For the S-box to be balanced [46], it should have the same number of 0’s and
1’s. The result from the SET [65] tool assessed that the QuantumGS-box is balanced.

6. Conclusions

Our research concludes that the quantum random number-based genetic algorithm
can generate dynamic QuantamGS-boxes with different random S-box values at different
arbitrary positions for cloud-based storage. The dynamic feature of the algorithm based on
bit-shuffling with the operations of a genetic algorithm also makes it more resilient to mod-
ern cryptographic attacks. In our proposed work, we achieve the lowest LAP value when
compared to other researches. QuantumGS-boxes generated by the proposed algorithm
assures nonlinear. The QuantumGS-box also has low differential and linear approximation
properties in addition to satisfying bijectivity cryptography properties, making it resistant
to differential and linear attacks. Low differential and linear approximation properties
makes guessing the algorithm’s output from its inputs difficult and resistant to attacks that
seek to exploit patterns in the input or output of the cryptographic system. Our proposed
QuantumGS-box ensures that cloud-based storage over will be more resilient to various
cryptographic attacks.

The future work of this research focuses on the proposed QuantumGSbox for the
LoRaWAN IoT security symmetric algorithm and can be used to enhance the IoT security.
LoRaWAN is a low-power wide-area network that connects devices with long-range
communication over a low bit rate. This protocol is widely used in IoT communication.
The encryption process of the LoRaWAN using the QuantumGS-box encrypts the user’s
data. The user sends the encrypted data over the high-speed network on IoT cloud storage
and receives the same encrypted data.

Author Contributions: Methodology, A.S., A.T. and R.K.; Software, A.S.; Validation, R.K.; Data
curation, A.S.; Writing—original draft, A.S., A.T. and R.K.; Writing—review & editing, A.S., A.T. and
R.K.; Visualization, A.S. and R.K.; Supervision, A.T. and R.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research work received funding by University of Hertfordshire, United Kingdom.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, X.; Li, W.; Hu, H.; Dutta, N.K. High-speed all-optical encryption and decryption based on two-photon absorption in

semiconductor optical amplifiers. J. Opt. Commun. Netw. 2015, 7, 276–285. [CrossRef]
2. Stallings, W. Cryptography and Network Security: Principles and Practices, 6th ed.; Prentice Hall Press: Upper Saddle River, NJ,

USA, 2013.
3. May, L.; Henricksen, M.; Millan, W.; Carter, G.; Dawson, E. Strengthening the key schedule of the AES. Lect. Notes Comput. Sci.

2002, 2384, 226–240. [CrossRef]
4. Hughes, R.; Nordholt, J. Strengthening the Security Foundation of Cryptography with Whitewood’s Quantum-Powered Entropy Engine;

Whitewood Encryption Systems, Inc.: Boston, MA, USA, 2016; Available online: http://www.whitewoodencryption.com
(accessed on 3 August 2021).

5. Smart, N.P.; Rijmen, V.; Warinschi, B.; Watson, G. Algorithms, Key Sizes and Parameters Report; ENISA: Athens, Greece, 2014.
Available online: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014 (accessed on
9 September 2021).

6. Siddiqui, N.; Khalid, H.; Murtaza, F.; Ehatisham-Ul-Haq, M.; Azam, M.A. A novel algebraic technique for design of computational
substitution-boxes using action of matrices on galois field. IEEE Access 2020, 8, 197630–197643. [CrossRef]

https://doi.org/10.1364/JOCN.7.000276
https://doi.org/10.1007/3-540-45450-0_19
http://www.whitewoodencryption.com
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://doi.org/10.1109/ACCESS.2020.3034832

Sci 2024, 6, 86 21 of 23

7. Alharbi, A.R.; Jamal, S.S.; Khan, M.F.; Gondal, M.A.; Abbasi, A.A. Construction and Optimization of Dynamic S-Boxes Based on
Gaussian Distribution. IEEE Access 2023, 11, 35818–35829. [CrossRef]

8. Ibrahim, S.; Abbas, A.M. Efficient key-dependent dynamic S-boxes based on permutated elliptic curves. Inf. Sci. 2021, 558, 246–264.
[CrossRef]

9. Zahid, A.H.; Tawalbeh, L.; Ahmad, M.; Alkhayyat, A.; Hassan, M.T.; Manzoor, A.; Farhan, A.K. Efficient Dynamic S-Box
Generation Using Linear Trigonometric Transformation for Security Applications. IEEE Access 2021, 9, 98460–98475. [CrossRef]

10. Lu, Q.; Zhu, C.; Deng, X. An Efficient Image Encryption Scheme Based on the LSS Chaotic Map and Single S-Box. IEEE Access
2020, 8, 25664–25678. [CrossRef]

11. Ibrahim, S.; Abbas, A.M.; Alharbi, A.A.; Albahar, M.A. A New 12-Bit Chaotic Image Encryption Scheme Using a 12 × 12 Dynamic
S-Box. IEEE Access 2024, 12, 37631–37642. [CrossRef]

12. Özkaynak, F. On the effect of chaotic system in performance characteristics of chaos based s-box designs. Phys. A Stat. Mech. Its
Appl. 2020, 550, 124072. [CrossRef]

13. Khan, M.F.; Saleem, K.; Alotaibi, M.; Hazzazi, M.M.; Rehman, E.; Abbasi, A.A.; Gondal, M.A. Construction and Optimization of
TRNG Based Substitution Boxes for Block Encryption Algorithms. Comput. Mater. Contin. 2022, 73, 2679–2696. [CrossRef]

14. Ibrahim, H.; Ozkaynak, F. A Substitution-Box Structure Based on Crowd Supply Infinite Noise TRNG. In Proceedings of the 9th
International Symposium on Digital Forensics and Security, ISDFS, Elazig, Turkey, 28–29 June 2021; Volume 2021. [CrossRef]

15. Kim, G.; Kim, H.; Heo, Y.; Jeon, Y.; Kim, J. Generating Cryptographic S-Boxes Using the Reinforcement Learning. IEEE Access
2021, 9, 83092–83104. [CrossRef]

16. Yang, M.; Wang, Z.; Meng, Q.; Han, L. Evolutionary design of S-box with cryptographic properties. In Proceedings of the 9th
IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops, ISPAW 2011, ICASE 2011,
SGH 2011, GSDP 2011, Busan, Republic of Korea, 26–28 May 2011; p. 12. [CrossRef]

17. Kadhim, A.F.; Kamal, Z.A. Generating dynamic S-BOX based on Particle Swarm Optimization and Chaos Theory for AES. Iraqi J.
Sci. 2018, 59, 1733–1745. [CrossRef]

18. Sahmoud, S.; Elmasry, W.; Shadi, A. Enhancement the Security of AES Against Modern Attacks by Using Variable Key Block
Cipher. Int. Arab J. E-Technol. 2013, 3, 17–26.

19. Oracle. SecureRandom. 2020. Available online: https://docs.oracle.com/javase/8/docs/technotes/guides/security/
StandardNames.html#SecureRandom (accessed on 23 June 2020).

20. Saha, R.; Geetha, G.; Kumar, G.; Kim, T.H. RK-AES: An Improved Version of AES Using a New Key Generation Process with
Random Keys. Secur. Commun. Netw. 2018, 2018, 9802475. [CrossRef]

21. Jane, M.; Bruno, H.; Moulds, R.; Nino, W.; Anthony, F. Quantum-Safe Security Working Group Quantum Random Number Generators;
Cloud Security Alliance: Bellingham, WA, USA, 2016.

22. Quantique, I.D. What Is the Q in QRNG? 2020. Available online: https://www.idquantique.com/random-number-generation/
overview/ (accessed on 7 July 2020).

23. Quantique, I.D. Understanding Quantum Cryptography. 2020. Available online: https://www.idquantique.com/quantum-safe-
security/quantum-key-distribution/ (accessed on 7 July 2020).

24. Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [CrossRef]
25. Cao, Z.; Zhou, H.; Yuan, X.; Ma, X. Source-independent quantum random number generation. Phys. Rev. X 2016, 6, 011020.

[CrossRef]
26. Liu, J.; Yang, J.; Li, Z.; Su, Q.; Huang, W.; Xu, B.; Guo, H. 117 Gbits/s Quantum Random Number Generation with Simple

Structure. IEEE Photonics Technol. Lett. 2017, 29, 283–286. [CrossRef]
27. Siswanto, M.; Rudiyanto, B. Designing of quantum random number generator (QRNG) for security application. In Proceedings

of the 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October
2017; pp. 273–277. [CrossRef]

28. Quantique, I.D. Gaming-and-Lotteries. Available online: https://www.idquantique.com/random-number-generation/
applications/gaming-and-lotteries/ (accessed on 7 July 2020).

29. IDQ. Quantis-Random-Number-Generator. Available online: https://www.idquantique.com/random-number-generation/
products/quantis-random-number-generator (accessed on 7 July 2020).

30. Picek, S.; Marchiori, E.; Batina, L.; Jakobovic, D. Combining evolutionary computation and algebraic constructions to find
cryptography-relevant boolean functions. Lect. Notes Comput. Sci. 2014, 8672, 822–831. [CrossRef]

31. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,
80, 8091–8126. [CrossRef]

32. Wang, Y.; Wong, K.W.; Li, C.; Li, Y. A novel method to design S-box based on chaotic map and genetic algorithm. Phys. Lett. Sect.
A Gen. At. Solid State Phys. 2012, 376, 827–833. [CrossRef]

33. Wang, Y.; Zhang, Z.; Zhang, L.Y.; Feng, J.; Gao, J.; Lei, P. A genetic algorithm for constructing bijective substitution boxes with
high nonlinearity. Inf. Sci. 2020, 523, 152–166. [CrossRef]

34. Nitaj, A.; Susilo, W.; Tonien, J. A New Improved AES S-box with Enhanced Properties. Lect. Notes Comput. Sci. 2020,
12248, 125–141. [CrossRef]

35. Daemen, J.; Rijmen, V. The Design of Rijndael; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 3540425802.

https://doi.org/10.1109/ACCESS.2023.3262313
https://doi.org/10.1016/j.ins.2021.01.014
https://doi.org/10.1109/ACCESS.2021.3095618
https://doi.org/10.1109/ACCESS.2020.2970806
https://doi.org/10.1109/ACCESS.2024.3374218
https://doi.org/10.1016/j.physa.2019.124072
https://doi.org/10.32604/cmc.2022.027655
https://doi.org/10.1109/ISDFS52919.2021.9486317
https://doi.org/10.1109/ACCESS.2021.3085861
https://doi.org/10.1109/ISPAW.2011.59
https://doi.org/10.24996/IJS.2018.59.3C.18
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#SecureRandom
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#SecureRandom
https://doi.org/10.1155/2018/9802475
https://www.idquantique.com/random-number-generation/overview/
https://www.idquantique.com/random-number-generation/overview/
https://www.idquantique.com/quantum-safe-security/quantum-key-distribution/
https://www.idquantique.com/quantum-safe-security/quantum-key-distribution/
https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1103/PhysRevX.6.011020
https://doi.org/10.1109/LPT.2016.2639562
https://doi.org/10.1109/ICSITech.2017.8257124
https://www.idquantique.com/random-number-generation/applications/gaming-and-lotteries/
https://www.idquantique.com/random-number-generation/applications/gaming-and-lotteries/
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator
https://doi.org/10.1007/978-3-319-10762-2_81
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1016/j.physleta.2012.01.009
https://doi.org/10.1016/j.ins.2020.03.025
https://doi.org/10.1007/978-3-030-55304-3_7

Sci 2024, 6, 86 22 of 23

36. Gullasch, D.; Bangerter, E.; Krenn, S. Cache games Bringing access-based cache attacks on AES to practice. In Proceedings of the
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 2–25 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 490–505.

37. Biryukov, A.; Khovratovich, D. Related-key cryptanalysis of the full AES-192 and AES-256. In Advances in Cryptology ASIACRYPT
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–18. ISBN 3642103650.

38. Juremi, J.; Sulaiman, S.; Saad, N.H.M. A survey on various dynamic S-box implementation in block cipher encryption algorithm.
J. Appl. 2019, 3, 2–5.

39. Gupta, M.D.; Chauhan, R.K. Secure image encryption scheme using 4D-Hyperchaotic systems based reconfigurable pseudo-
random number generator and S-Box. Integration 2021, 81, 137–159. [CrossRef]

40. Zhao, M.; Liu, H.; Niu, Y. Batch generating keyed strong S-Boxes with high nonlinearity using 2D hyper chaotic map. Integration
2023, 92, 91–98. [CrossRef]

41. Arrag, S.; Hamdoun, A.; Tragha, A.; Khamlich Salah, E. Implementation of stronger AES by using dynamic S-box dependent of
master key. J. Theor. Appl. Inf. Technol. 2013, 53, 196–204.

42. Alamsyah Improving the Quality of AES S-box by Modifications Irreducible Polynomial and Affine Matrix. In Proceedings of
the 2020 5th International Conference on Informatics and Computing, ICIC 2020, Gorontalo, Indonesia, 3–4 November 2020.
[CrossRef]

43. Alamsyah; Prasetiyo, B.; Ardian, M.N. Enhancement security AES algorithm using a modification of transformation ShiftRows
and dynamic S-box. J. Phys. Conf. Ser. 2020, 1567, 032025. [CrossRef]

44. Manjula, G.; Mohan, H.S. Constructing key dependent dynamic S-Box for AES block cipher system. In Proceedings of the 2016
2nd International Conference on Applied and Theoretical Computing and Communication Technology, iCATccT 2016, Bengaluru,
India, 21–23 July 2016; pp. 613–617. [CrossRef]

45. Agarwal, P.; Singh, A.; Kilicman, A. Development of key-dependent dynamic S-Boxes with dynamic irreducible polynomial and
affine constant. Adv. Mech. Eng. 2018, 10, 1–18. [CrossRef]

46. Jacob, G.; Murugan, A.; Viola, I. Towards the Generation of a Dynamic Key-Dependent S-Box to Enhance Security. IACR Cryptol.
ePrint Arch. 2015, 2015, 92.

47. Cassal-Quiroga, B.B.; Campos-Cantón, E. Generation of Dynamical S-Boxes for Block Ciphers via Extended Logistic Map. Math.
Probl. Eng. 2020, 2020, 2702653. [CrossRef]

48. Mahmood Malik, M.S.; Ali, M.A.; Khan, M.A.; Ehatisham-Ul-Haq, M.; Shah, S.N.M.; Rehman, M.; Ahmad, W. Generation of
Highly Nonlinear and Dynamic AES Substitution-Boxes (S-Boxes) Using Chaos-Based Rotational Matrices. IEEE Access 2020,
8, 35682–35695. [CrossRef]

49. Aguirre, H.; Okazaki, H.; Fuwa, Y. An evolutionary multiobjective approach to design highly non-linear Boolean functions.
In Proceedings of the GECCO 2007: Genetic and Evolutionary Computation Conference, New York, NY, USA, 9–13 July 2007;
pp. 749–756. [CrossRef]

50. Picek, S.; Jakobovic, D.; Golub, M. Evolving cryptographically sound boolean functions. In Proceedings of the GECCO 2013
Genetic and Evolutionary Computation Conference Companion, Amsterdam, The Netherlands, 6–10 July 2013; pp. 191–192.
[CrossRef]

51. Kalaiselvi, K.; Kumar, A. A Novel Method to Design S-box Based on Genetic Algorithm and Particle Swarm Optimizationin
AES-128 Cryptosystem. 2018, 118, 1443–1457. Int. J. Pure Appl. Math. 2018, 118, 1443–1457.

52. Alsaif, H.; Guesmi, R.; Kalghoum, A.; Alshammari, B.M.; Guesmi, T. A Novel Strong S-Box Design Using Quantum Crossover
and Chaotic Boolean Functions for Symmetric Cryptosystems. Symmetry 2023, 15, 833. [CrossRef]

53. Iavich, M.; Kuchukhidze, T.; Okhrimenko, T.; Dorozhynskyi, S. Novel Quantum Random Number Generator for Cryptographical
Applications. In Proceedings of the 2020 IEEE International Conference on Problems of Infocommunications. Science and
Technology (PIC S&T), Kharkiv, Ukraine, 6–9 October 2020; pp. 727–732. [CrossRef]

54. Shaw, G.; Sivaram, S.R.; Prabhakar, A. Quantum Random Number Generator with One and Two Entropy Sources. In Proceedings
of the National Conference on Communications (NCC), Bangalore, India, 20–23 February 2019; IEEE: Piscataway, NJ, USA, 2019;
p. 1. [CrossRef]

55. Mogos, G. Quantum Random Number Generator vs. In Random Number Generator. In Proceedings of the IEEE International
Conference on Communications, Kuala Lumpur, Malaysia, 22–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 423–426.

56. IDQ. Quantum versus Classical Random Number Generators; ID QUANTIQUE SA: Geneva, Switzerland, 2020.
57. Albrecht, M.R. Algebraic Techniques in Cryptanalysis. Ecrypt2[Ppt] 2011, 3, 120–141.
58. Bardeh, N.G.; Rønjom, S. Practical attacks on reduced-round AES. Lect. Notes Comput. Sci. 2019, 11627, 297–310. [CrossRef]
59. Abd-El-Atty, B. Efficient S-box construction based on quantum-inspired quantum walks with PSO algorithm and its application

to image cryptosystem. Complex Intell. Syst. 2023, 9, 4817–4835. [CrossRef]
60. Kalaiselvi, K.; Kumar, A. Enhanced AES cryptosystem by using genetic algorithm and neural network in S-box. In Proceed-

ings of the 2016 IEEE International Conference on Current Trends in Advanced Computing ICCTAC 2016, Bangalore, India,
10–11 March 2016. [CrossRef]

61. Zhu, D.; Zhang, M.; Tong, X.; Wang, Z. A Novel S-box Optimization Method Based on Immune Genetic Algorithm. In Proceedings
of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, Beijing, China, 21–23 October 2022;
p. 32. [CrossRef]

https://doi.org/10.1016/j.vlsi.2021.07.002
https://doi.org/10.1016/j.vlsi.2023.05.006
https://doi.org/10.1109/ICIC50835.2020.9288567
https://doi.org/10.1088/1742-6596/1567/3/032025
https://doi.org/10.1109/ICATCCT.2016.7912073
https://doi.org/10.1177/1687814018781638
https://doi.org/10.1155/2020/2702653
https://doi.org/10.1109/ACCESS.2020.2973679
https://doi.org/10.1145/1276958.1277112
https://doi.org/10.1145/2464576.2464671
https://doi.org/10.3390/sym15040833
https://doi.org/10.1109/PICST51311.2020.9467951
https://doi.org/10.1109/NCC.2019.8732222
https://doi.org/10.1007/978-3-030-23696-0_15
https://doi.org/10.1007/s40747-023-00988-7
https://doi.org/10.1109/ICCTAC.2016.7567340
https://doi.org/10.1109/ICSESS49938.2020.9237665

Sci 2024, 6, 86 23 of 23

62. Zhu, D.; Tong, X.; Zhang, M.; Wang, Z. A new s-box generation method and advanced design based on combined chaotic system.
Symmetry 2020, 12, 2087. [CrossRef]

63. Community, T.S. Hamming. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.
hamming.html (accessed on 9 July 2020).

64. Team, T.S.D. Sage. Available online: https://doc.sagemath.org/html/en/reference/cryptography/index.html (accessed on
14 November 2022).

65. Picek, S.; Batina, L.; Jakobović, D.; Ege, B.; Golub, M. S-box, SET, Match: A Toolbox for S-box Analysis. In Proceedings of the 8th
IFIP International Workshop on Information Security Theory and Practice (WISTP), Heraklion, Crete, Greece, 30 June–2 July 2014;
pp. 140–149. [CrossRef]

66. YongWang, D. S-Box Performance Analysis. Available online: http://42.192.236.76/Login (accessed on 17 March 2023).
67. Ahmad, M.; Haleem, H.; Khan, P.M. A new chaotic substitution box design for block ciphers. In Proceedings of the 2014 Interna-

tional Conference on Signal Processing and Integrated Networks, SPIN 2014, Noida, India, 20–21 February 2014; pp. 255–258.
[CrossRef]

68. Ahmad, M.; Mittal, N.; Garg, P.; Maftab Khan, M. Efficient cryptographic substitution box design using travelling salesman
problem and chaos. Perspect. Sci. 2016, 8, 465–468. [CrossRef]

69. Zahid, A.H.; Arshad, M.J.; Ahmad, M. A novel construction of efficient substitution-boxes using cubic fractional transformation.
Entropy 2019, 21, 245. [CrossRef]

70. Attaullah; Jamal, S.S.; Shah, T. A Novel Algebraic Technique for the Construction of Strong Substitution Box. Wirel. Pers. Commun.
2018, 99, 213–226. [CrossRef]

71. Zahid, A.H.; Arshad, M.J. An innovative design of substitution-boxes using cubic polynomial mapping. Symmetry 2019, 11, 437.
[CrossRef]

72. Ejaz, A.; Shoukat, I.A.; Iqbal, U.; Rauf, A.; Kanwal, A. A secure key dependent dynamic substitution method for symmetric
cryptosystems. PeerJ Comput. Sci. 2021, 7, 587. [CrossRef]

73. Gao, W.; Idrees, B.; Zafar, S.; Rashid, T. Construction of Nonlinear Component of Block Cipher by Action of Modular Group
PSL(2, Z) on Projective Line PL(GF(2 8)). IEEE Access 2020, 8, 136736–136749. [CrossRef]

74. Alzaidi, A.A.; Ahmad, M.; Ahmed, H.S.; Solami, E. Al Sine-Cosine Optimization-Based Bijective Substitution-Boxes Construction
Using Enhanced Dynamics of Chaotic Map. Complexity 2018, 2018, 9389065. [CrossRef]

75. Lu, Q.; Zhu, C.; Wang, G. A Novel S-Box Design Algorithm Based on a New Compound Chaotic System. Entropy 2019, 21, 1004.
[CrossRef]

76. Ahmad, M.; Doja, M.N.; Beg, M.M.S. ABC Optimization Based Construction of Strong Substitution-Boxes. Wirel. Pers. Commun.
2018, 101, 1715–1729. [CrossRef]

77. Wang, X.; Yang, J. A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic
system. Optik 2020, 217, 164884. [CrossRef]

78. Belazi, A.; El-Latif, A.A.A. A simple yet efficient S-box method based on chaotic sine map. Optik 2017, 130, 1438–1444. [CrossRef]
79. Liu, H.; Kadir, A.; Xu, C. Cryptanalysis and constructing S-Box based on chaotic map and backtracking. Appl. Math. Comput.

2020, 376, 125153. [CrossRef]
80. Soto, R.; Crawford, B.; Molina, F.G.; Olivares, R. Human Behaviour Based Optimization Supported with Self-Organizing Maps

for Solving the S-Box Design Problem. IEEE Access 2021, 9, 84605–84618. [CrossRef]
81. Khan, M.F.; Saleem, K.; Shah, T.; Hazzazi, M.M.; Bahkali, I.; Shukla, P.K. Block Cipher’s Substitution Box Generation Based on

Natural Randomness in Underwater Acoustics and Knight’s Tour Chain. Comput. Intell. Neurosci. 2022, 2022, 8338508. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/sym12122087
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html
https://doc.sagemath.org/html/en/reference/cryptography/index.html
https://doi.org/10.1007/978-3-662-43826-8_10
http://42.192.236.76/Login
https://doi.org/10.1109/spin.2014.6776958
https://doi.org/10.1016/j.pisc.2016.06.001
https://doi.org/10.3390/e21030245
https://doi.org/10.1007/s11277-017-5054-x
https://doi.org/10.3390/sym11030437
https://doi.org/10.7717/peerj-cs.587
https://doi.org/10.1109/ACCESS.2020.3010615
https://doi.org/10.1155/2018/9389065
https://doi.org/10.3390/e21101004
https://doi.org/10.1007/s11277-018-5787-1
https://doi.org/10.1016/j.ijleo.2020.164884
https://doi.org/10.1016/j.ijleo.2016.11.152
https://doi.org/10.1016/j.amc.2020.125153
https://doi.org/10.1109/ACCESS.2021.3087139
https://doi.org/10.1155/2022/8338508
https://www.ncbi.nlm.nih.gov/pubmed/35634082

	Introduction
	Background
	Related Work
	QuantumGS-Box—High-Speed Cloud-Based Storage Encryption with GA-Based Key Optimisation
	The Design Principle
	Proposed Methodology
	Step by Step Procedure and Algorithm to Generate QuantumGS-Box
	Algorithm . optimize_ GA(P .init)
	Algorithm fitness_ GA(C)
	Calculation of Distance Values: Hdist,JWdist,Ldist

	Result Analysis
	Bijectivity Property
	Non-Linearity
	Bit-Independence Criteria—Strict Avalanche Criteria (BIC-SAC)
	Linear Approximation Probability (LAP)
	Differential Approximation Probability (DP)
	Balanced Output

	Conclusions
	References

