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Raviolo vertex algebras were introduced recently by Garner and Williams in [25]. Working at the level
of cochain complexes, in the present paper we construct spaces of conformal blocks, or more precisely
their duals, coinvariants, in the raviolo setting. We prove that the raviolo state-field map correctly
captures the limiting behaviour of coinvariants as marked points collide.

1 Introduction
Vertex algebras capture the physicists’ notion of operator product expansions and the state-field
correspondence in chiral conformal field theory in one complex dimension. Since their introduction [6]
they have become a powerful and ubiquitous tool in mathematical physics and representation theory.
Textbook references include [18, 31, 33].

The definition of vertex algebras appears to be closely tied to the special properties of complex
dimension one, and specifically of the formal disc D and the formal punctured disc D× = D \ {0},

D = SpecC[[z]], D× = SpecC((z)).

Roughly speaking, the formal punctured disc D× describes the possible collision geometries of two
marked points in the complex plane (one fixed at the origin, the other movable). See Figure 1.

What happens in higher dimensions? It has long been expected by experts that the language of
factorization algebras (as developed in the algebro-geometric setting in [20] following [4]—cf. also [3,
5, 13]—and in the smooth setting in [8, 9]) in principle allows vertex algebras to generalize to higher
dimensions. In this direction, see especially [26], [42, §4], and [24], and also [37], all broadly in the
smooth setting and using (pre)factorization algebras constructed using the Dolbeault resolution of the
holomorphic structure sheaf; and in the complex-algebraic setting see [21], [29], [32]. Writing down
explicit axioms in closed form for higher-dimensional vertex algebras remains a challenge, however.

Recently though, Garner and Williams ([25] and see also [23]) have considered a particularly tractable
instance of this general problem, namely the case of theories with one real topological dimension and
one complex holomorphic dimension, that is, theories on spacetimes modelled on R×C, such as twists
of three-dimensional supersymmetric Yang–Mills theory [17]. Such a spacetime structure can be neatly

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/4/rnaf004/8005482 by :: user on 25 February 2025


 13281 13076 a 13281
13076 a
 
mailto:c.young8@herts.ac.uk
mailto:c.young8@herts.ac.uk
mailto:c.young8@herts.ac.uk
mailto:c.young8@herts.ac.uk
mailto:c.young8@herts.ac.uk


2 | L. Alfonsi et al.

captured by a transversely holomorphic foliation [1, 14, 35]: that is, a foliation of the spacetime three-
manifold by curves such that the leaf space has the structure of a Riemann surface.

In that topological-holomorphic setting, marked points are allowed to collide in the complex plane,
but only if, when they do, they are separated in the topological direction. The upshot is that pairwise
collisions are no longer described by the formal punctured disc D×, but rather by the formal raviolo

Rav := D �D× D,

the scheme obtained by gluing together two copies of the formal disc along their common copy of the
formal punctured disc. Again, see Figure 1, and §2.1 below.

What’s so nice about this setting is that, on the one hand, it is a sufficiently mild generalization that
it is still possible to write down explicit axioms for the resulting raviolo vertex algebras in a form closely
parallel to the usual case—see [25]—while on the other hand it is sufficiently different that it exhibits
many of the features expected in the higher setting. Indeed, the formal raviolo Rav is no longer an affine
scheme, unlike the punctured disc D×. Its structure sheaf has higher cohomology, and one consequence
is that in the raviolo vertex algebras of [25] the usual lowering operators/negative modes disappear from
degree zero, and reappear in cohomological degree one.

Now let us describe the contents of the present paper. We do essentially two things: first, we work
at the level of cochain complexes rather than their cohomologies, and second, we introduce notions of
configuration space and rational conformal blocks in the raviolo setting.

In [25], the sheaf cohomology H•(Rav,O) is regarded as a graded commutative algebra. It plays
the role, there, that the commutative algebra of functions on the formal punctured disc, �(D×,O) =
H0(D×,O) ∼= C((z)), plays in the case of standard vertex algebras—that is, roughly speaking, it is what
organizes the positive and negative modes in the state-field correspondence. However, the cohomology
H•(Rav,O) comes endowed with additional higher structure, which is lost in this picture (as the authors
of [25] remark). One way to keep track of that higher structure is to work, instead, with the derived
global sections R�•(Rav,O) of the structure sheaf. This latter comes with the structure of a differential
graded (dg) commutative algebra, which, via homotopy transfer, encodes all the higher products on its
cohomology,

H•(Rav,O) ≡ H•(R�(Rav,O)).

Thus, for us it will be (a certain model of) R�•(Rav,O), which plays the role of �(D×,O) = C((z)) in
the usual case. For simplicity we focus exclusively on the raviolo analogues of the Kac–Moody vertex
algebras at level zero. We write down in Section 2 the definition of the raviolo vacuum module and
its state-field map at the level of cochain complexes (i.e., dg vector spaces) rather than graded vector
spaces. One immediate consequence is that for us there are lowering operators both in degree one
(representing cohomology classes) and in degree zero; see the discussion in §2.6.

Then our second and main goal is to introduce rational conformal blocks (or more precisely, their
duals, rational coinvariants) in the raviolo setting. To do that, after reviewing the standard definition of
rational coinvariants in Section 3, we define in Section 4 a notion of ravioli configuration space, RavConfN,
which plays the role of the usual configuration space

ConfN = AN
C

\ diagonals

for standard vertex algebras. Mirroring the passage from the punctured disc D× to the formal raviolo Rav,
the ravioli configuration space will be defined by gluing together N! copies of AN

C
along the complements

of their diagonals. The resulting (non-separated) scheme looks locally like AN
C

everywhere except on
diagonals, just like ConfN. But the diagonals themselves, rather than being removed, instead appear
with multiplicity > 1 (as one expects since, whenever marked points coincide, one has to keep track of
their ordering in the topological/leaf direction). We introduce a model of the derived space of sections

AN � R�(RavConfN,O)
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 3

Fig. 1. Sketch of copies of the formal disc D, the formal punctured disc D×, and the formal raviolo Rav associated
to a point a in the complex plane.

of the structure sheaf on this configuration space. It is a dg commutative algebra, and it plays the role
of the commutative algebra of functions BN := �(ConfN,O) = C[zi, (zi − zj)

−1]N
i,j=1;i �=j on configuration

space in the usual case.
Our model AN is so chosen that it is possible to write down (see Section 5) explicit raviolo analogues

of all the constructions reviewed in Section 3 for the usual case. We arrive at the definition of the
space—more precisely, the dg AN-module—of ravioli coinvariants

F(g;AN; M1, . . . , MN).

(See §5.3.)
The main result of the paper is then Theorem 20 in Section 6, which shows that the state-field map

for the raviolo vacuum module, defined in Section 2, correctly captures the limiting behaviour of ravioli
coinvariants as two marked points, each with copies of the vacuum module attached, are brought close
together.

As we discuss at greater length in §2.6 below, the limiting behaviour of conformal blocks as two
or three marked points collide is arguably what motivates the usual vertex algebra axioms (notably,
Borcherds identity), and at any rate those axioms can certainly be reconstructed by considering such
limits. Theorem 20 establishes an analogous setup in the raviolo case.

The proof of the main theorem, Theorem 20, is given in Section 7. Finally, in an appendix, we recall
some background material on semisimplicial sets and the Thom–Sullivan functor.

2 The Raviolo Vacuum Module in Cochain Complexes
2.1 The formal raviolo
The formal raviolo,

Rav := D �D× D,

is the C-scheme obtained by gluing two copies of the formal disc D = SpecC[[z]] along their common
copy of the formal punctured disc D× = SpecC((z)) (Rav = D �D× D is an infinitesimal analogue of the
affine-line-with-a-doubled-origin, A1

C
�SpecC[z,z−1] A

1
C

, which is usually pictured like this

Both are prototypical examples of nonseparated schemes obtained by gluing; see for example [16, I-44].
Note that D× is open in D.).

For our purposes, it is best to visualize the affine line A1
C

= SpecC[z] as a copy of the complex plane.
The formal disc, formal punctured disc, and formal raviolo at some given closed point a ∈ C may be
pictured as in Figure 1.

2.2 Functions on the formal raviolo
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4 | L. Alfonsi et al.

By definition, then, the formal raviolo Rav is the pushout in the category of C-schemes

or, equivalently, the coequalizer in C-schemes

This latter is a useful way to think of Rav because it presents it explicitly as the colimit of a diagram
corresponding to a semisimplicial object in affine schemes. (The notion of a semisimplicial object is

recalled in Appendix A.) Namely it is the colimit of the Čech nerve
of the open cover U = {U1, U2} of Rav by two copies of the formal disc U1 ∼= U2 ∼= D whose intersection in
Rav is, by definition, a copy of the punctured disc, U1∩RavU2 ∼= D×. On applying the global sections functor
�(−,O), one obtains the semicosimplicial object �(Č(U ),O) in commutative algebras. Commutative
algebras embed in differential graded (dg) commutative algebras. The derived global sections of the
structure sheaf O on Rav are then given, by definition, by taking homotopy limit in dg commutative
algebras,

R�(Rav,O) := holimdgCAlg
C
�(Č(U ),O)

= holimdgCAlg
C

(
C((z)) ⇔ C[[z]] × C[[z]]

)
.

As we shall recall in more detail in §4.2 and Appendix A, the Thom–Sullivan construction provides a
means of computing such homotopy limits. Namely, we let C{{z}} denote the dg commutative algebra

C{{z}} := {ω ∈ C((z)) ⊗ C[v, dv] : ω|v=0 ∈ C[[z]] and ω|v=1 ∈ C[[z]]
}
.

and we then have

C{{z}} � R�(Rav,O).

This will be our model, in dg commutative algebras, of the derived global sections of the structure sheaf
of Rav (Any other model of R�(Rav,O) will be related to this one by a zig-zag of quasi-isomorphisms. In
particular this should be true of (the local analogue of) the dg commutative algebra A of [25,§1.2].).

Informally one should think of C{{z}} as the “functions on the formal raviolo Rav”, just as the Laurent
series C((z)) are the “functions on the formal punctured disc D×”. The fact that C{{z}} is nontrivially
differential graded is a reflection of the fact that Rav is not an affine scheme. In particular the
cohomology of C{{z}} computes the sheaf cohomology of the structure sheaf O of Rav. As a graded vector
space, this cohomology is given by

H•(C{{z}}) ∼=grVect
C

⎧⎪⎪⎨⎪⎪⎩
C[[z]] • = 0

z−1C[z−1] • = 1

0 otherwise.

(The classes in degree one have representatives in z−1C[z−1]dv. Indeed, such one-forms are closed,
obviously, but fail to be exact in C{{z}} because of the boundary conditions. For example the would-be
primitive z−1v is not in C{{z}} since it is not regular in z when pulled back to v = 1.)

The cohomology H•(C{{z}}) comes with the structure of a graded commutative algebra. It is isomor-
phic, as a graded commutative algebra, to the algebra called K, or C〈〈z〉〉, in [25]:

H•(C{{z}}) ∼=grAlg
C
K ≡ C〈〈z〉〉.
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The cohomology has, however, more structure than that of a graded commutative algebra. Indeed,
H•(C{{z}}) gets the structure of a minimal C∞-algebra, coming from homotopy transfer of the dg commu-
tative algebra structure on C{{z}} � R�(Rav,O) itself. (See e.g., [34] for a discussion of homotopy transfer,
and specifically [7] and [34,§13.1.9] for the dg commutative case.) In practice, what that means is that
H•(C{{z}}) is endowed with a family (ck)k≥2 of higher products, the first of which, c2 is the binary product
of the graded commutative algebra structure. One way to keep track of this extra structure is to work
in dg commutative algebras rather than passing to their cohomologies.

2.3 Splitting
Let us define the dg commutative algebras

C{{z}}− := {ω ∈ z−1C[z−1] ⊗ C[v, dv] : ω|v=0 = 0 and ω|v=1 = 0
}

C{{z}}+ := C[[z]] ⊗ C[v, dv].

Then evidently there are maps of dg commutative algebras

C{{z}}− ↪→ C{{z}} ←↩ C{{z}}+

such that at the level of dg vector spaces

C{{z}} = C{{z}}− ⊕ C{{z}}+.

Moreover there are strong deformation retracts of dg vector spaces (The map ι is given by the embedding

of C[[z]] = C[[z]]⊗C
id⊗1−−→ C[[z]]⊗C[v, dv] = C{{z}}+, i.e., as “constant 0-forms in the v direction”. The map

(−)| 1
2

is given by pulling back forms to (say) v = 1
2 . A suitable homotopy h is given by “h(ω)(v) = ∫ v

1
2

ω”, by
which we mean, more precisely, the following: we have ω = f (v)+F(v)dv for some f (v), F(v) ∈ C[[z]]⊗C[v],
and we define h(f (v) + F(v)dv) := ∫ v

0 F(v′)dv′.)

and (A suitable homotopy k is given by is given by k(f (v)+ F(v)dv) := ∫ v
0 F(v′)dv′ − v

∫ 1
0 F(v′)dv′. Cf. e.g., [2,

Prop. 16].)

2.4 Residue pairing
Let us remark in passing that there is a map

Res : C{{z}} → C[−1]

given by

Res ω :=
∫ 1

v=0
resz ω

where resz : C((z)) → C is the usual formal residue map picking out the coefficient of z−1. In cohomology,
this map reproduces the residue pairing from [25]. For example one sees that it correctly pairs zk with
dv/zk+1, since Res dv/z = 1.
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6 | L. Alfonsi et al.

2.5 Vacuum module
Let us now pick a finite-dimensional simple Lie algebra g over C, for example sl2. We get the dg Lie
algebra, that is, the Lie algebra in dg vector spaces over C, given by

g ⊗ C{{z}}.

It is the raviolo loop algebra, the raviolo analogue of the usual loop algebra g ⊗ C((z)). It has dg Lie
subalgebras g ⊗ C{{z}}− and g ⊗ C{{z}}+. We shall think of elements of g ⊗ C{{z}}− as lowering operators
or negative modes, and of elements of g ⊗ C{{z}}+ as raising operators or positive modes. The PBW theorem
holds for dg Lie algebras and hence, in view of the splitting above, we have that

U(g ⊗ C{{z}}) ∼= U(g ⊗ C{{z}}−) ⊗ U(g ⊗ C{{z}}+)

as dg vector spaces and moreover as U(g ⊗ C{{z}}−), U(g ⊗ C{{z}}+)-bimodules. In particular U(g ⊗ C{{z}})
is free as a U(g ⊗ C{{z}}−), U(g ⊗ C{{z}}+)-bimodule.

Let V denote the module over g ⊗ C{{z}} induced (One can check that V models the derived tensor
product U(g ⊗ C{{z}}) ⊗L

U(g⊗C{{z}}+) C|0〉 where

⊗L : D(U(g⊗C{{z}})ModU(g⊗C{{z}}+)) × D(U(g⊗C{{z}}+)Mod) → D(U(g⊗C{{z}})Mod).)

from the trivial one-dimensional module C|0〉 over g ⊗ C{{z}}+:

V := U(g ⊗ C{{z}}) ⊗U(g⊗C{{z}}+) C|0〉.

Following the usual convention for vertex algebras, we call vectors in V states. The representation V

is the raviolo vacuum Verma module (at level zero).
By the PBW decomposition above, there is an isomorphism

V ∼= U(g ⊗ C{{z}}−) ⊗C C|0〉

of left U(g ⊗ C{{z}}−)-modules in dg vector spaces.

2.6 State-field map
Let V ((x)) denote the dg vector space of formal Laurent series in x with coefficients in V , which one
thinks of as a completion of the tensor product V ⊗ C((x)). Let V {{x}} denote the following dg vector
space,

V {{x}} := {ω ∈ V ((x)) ⊗ C[u, du] : ω|u=0 ∈ V [[x]] and ω|u=1 ∈ V [[x]]
}
,

which we similarly think as a completion of the tensor product V ⊗ C{{x}}. Now we define a state-field
map, namely a (degree-zero) map of dg vector spaces (Here by HomdgVect

C
we mean the internal Hom in

dg vector spaces, just as in the usual definition of the state-field map—cf. §3.4—HomVectC really means
the internal Hom in vector spaces.)

Y(−; x) : V → HomdgVect
C
(V , V {{x}}).

We do so recursively, as follows. First, we set

Y(|0〉; x) := idV .

Then for all homogeneous X ∈ g ⊗ C{{x}}− and all homogeneous states B ∈ V we define

Y (XB; x) := X+(x)Y (B; x) + (−1)|X||B|Y (B; x) X−(x),
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where it remains to say what X+(x) and X−(x) are. To do so, it is enough to define, for all a ∈ g and all
p(v, dv) ∈ C[v, dv] such that p|v=0 = p|v=1 = 0, first

(
a ⊗ p(v, dv)

z

)
+

(x) :=
∞∑

k=0

(
a ⊗ p(v, dv)

zk+1

)
xk

(
a ⊗ p(v, dv)

z

)
−

(x) :=
∞∑

k=0

(
a ⊗ zk

) p(1 − u, −du)

xk+1

and then, for any f (z) ∈ C((z)),

(
a ⊗ ∂

∂z
f (z)p(v, dv)

)
±

(x) := ∂

∂x

(
a ⊗ f (z)p(v, dv)

)
± (x).

More explicitly, one has the following, by induction.

Lemma 1 (Explicit formula for the state-field map). Given a collection of homogeneous lowering
operators Xi ∈ g ⊗ C{{z}}−, i = 1, . . . , n, we have

YRav(X1 . . . Xn|0〉, x) =
n∑

m=0

∑
(μ,ν)∈Unshfn

m

(−1)n−m+χ(|X1 |,...,|Xn |,μ,ν)Xμ1+ (x) . . . Xμm+ (x)Xνn−m− (x) . . . Xν1− (x).

The sum is over unshuffles, that is, permutations (μ1, . . . , μm, ν1, . . . , νn−m) of (1, . . . , n) such that
μ1 < · · · < μm and ν1 < · · · < νn−m, and (−1)χ(|X1 |,...,|Xn |,μ,ν) is the Koszul sign of an unshuffle of
the Xi, defined such that (−1)χ(|X1 |,...,|Xn |,μ,ν)X1 · · · Xn = Xμ1 · · · Xμm Xνn−m · · · Xν1 in the symmetric
algebra Sym(g ⊗ C{{w − zN}}−).

Some remarks are called for about this definition.
First, one should compare it to that of the usual state-field map for the vacuum Verma module V over

the loop algebra g ⊗ C((x)). (Cf. §3.4 below.) In some informal but intuitively helpful sense, the former
collapses to the latter if one ignores all of the factors p(v, dv).

To understand the role of the polynomial differential form p(v, dv), let us consider in turn the
examples

p(v, dv) = dv and p(v, dv) = v(1 − v).

The lowering operators

a ⊗ dv
zk

, a ∈ g, k ≥ 1,

represent non-trivial cohomology classes in degree one. What we call dv/zk corresponds to what [25]
call 
k−1 ∝ λk−1ω. On such cohomology classes, our definition here coincides with that of [25,§2.3]. (We
wrote only a special case of the normal-ordered product above. Cf. [25, Defn. 2.1.3].) In addition to those
lowering operators, there are also lowering operators in degree zero, for example,

a ⊗ v(1 − v)

zk
, a ∈ g, k ≥ 1,

which are neither closed nor exact. This is the first instance of what we meant above by working in dg
vector spaces rather than their cohomologies.

In view of [25], we expect that this definition of the state-field map will make the raviolo vacuum
module V above into an example of what should probably be called a raviolo vertex algebra in dg vector
spaces. It should be possible to spell out suitable axioms for such a structure, following [25] in the case

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/4/rnaf004/8005482 by :: user on 25 February 2025



8 | L. Alfonsi et al.

of raviolo vertex algebras in graded vector spaces and standard references for vertex algebras, [18, 31,
33] (Note also that (standard) vertex algebras internal to the category of dg vector spaces have been
studied in [10, 11], with rather different motivations. Vertex algebras internal to the category of Z/2Z-
graded vector spaces, i.e., super vertex algebras, are ubiquitous in the literature; see (but also contrast,
because the reference deals with supersymmetric vertex algebras in different sense)[28].).

However, in the present paper we want to do something slightly different. Let us adopt the standard
perspective that the reason the usual vertex algebra axioms (locality, Borcherds identity, etc.) are the way
they are is that they formalize the behaviour of what physicists would call operator product expansions
(OPEs) in chiral conformal field theories (CFTs). More precisely, they capture the limiting behaviour
of conformal blocks as two or more insertion points, associated to copies of the vacuum module, are
brought close together. That relationship between vertex algebras and conformal blocks is known to
hold for algebraic curves in very great generality—see [18] and references therein, following especially
[38]. But in particular it holds in the prototypical setting of conformal blocks in genus zero, that is, on
the complex plane or the Riemann sphere.

The crucial point, for us, is that in that latter genus zero setting it is well known how to define
conformal blocks without reference to vertex algebras. Namely, conformal blocks are defined as the duals
of rational coinvariants, as we are about to recall in detail, following [19] and [18, §13.3] (This is what we
mean by “conformal blocks”. The term has a number of closely related meanings in the mathematics
and theoretical physics literature. See e.g., the discussion in [12, §8].).

Consequently, if the axioms of vertex algebras were mysteriously lost, one principled way to recover
them would be by studying the limiting behaviour of such rational coinvariants.

The goal of the present paper is to establish the analogous relationship between vertex algebras and
coinvariants in the raviolo case. Namely, we shall define a notion of coinvariants in the raviolo case, and
then we shall show that the state-field map we defined above for the raviolo vacuum module emerges
naturally from the behaviour of these raviolo coinvariants in the limit in which marked points collide.

3 Rational Coinvariants and Conformal Blocks
In this section we review the standard definition of rational coinvariants/conformal blocks on the
complex plane with punctures. We focus exclusively on conformal blocks associated to an untwisted
affine Kac–Moody algebra; that is, in physics language, the chiral sector of a WZW model. Moreover for
simplicity we consider only the case of level zero, that is, we shall work with loop algebras and not their
central extensions (It is worth recalling that level zero is in certain important senses a generic value.
The non-generic value is the critical level, k = −h∨ in standard normalizations, at which for example the
usual Sugawara conformal vector of the vacuum Verma module becomes singular.).

3.1 Fixed punctures
In this subsection we work over the complex numbers C.

Let a1, . . . , aN ∈ C be pairwise distinct complex numbers. We think of them as marked points or
punctures in the complex plane.

Let C[w, (w − ai)
−1]′1≤i≤N denote the (non-unital) commutative C-algebra of rational expressions in

w singular at most at the points a1, . . . , aN and vanishing as w → ∞. It is a subalgebra of the unital
commutative C-algebra

�(A1
C

\ {a1, . . . , aN},O) = C[w, (w − ai)
−1]1≤i≤N

of sections of the structure sheaf O of the affine line A1
C

= SpecC[w] over the Zariski open subset
A1

C
\ {a1, . . . , aN}.
For each puncture ai, 1 ≤ i ≤ N, we have the algebra of formal series and of formal Laurent series,

C[[w − ai]] = �(Disc1(ai),O) and C((w − ai)) = �(Disc×
1 (ai),O), (1)

which are to be thought of as the algebras of regular functions on, respectively, the formal disc
Disc1(ai) = SpecC[[w − ai]] and the formal punctured disc Disc×

1 (ai) = SpecC((w − ai)) = Disc1(ai) \ ai at
the closed point ai of A1

C
.
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There are embeddings of commutative C-algebras

C[w, (w − ai)
−1]′1≤i≤N ↪→

N⊕
i=1

C((w − ai)) ←↩

N⊕
i=1

C[[w − ai]] (2a)

—on the left, by Laurent-expanding at each of the marked points; on the right, by the canonical
embedding summand by summand—such that, at the level of vector spaces, there is an isomorphism

N⊕
i=1

C((w − ai)) ∼=C C[w, (w − ai)
−1]′1≤i≤N ⊕

N⊕
i=1

C[[w − ai]]. (2b)

Let us now pick a simple Lie algebra g over C. We get Lie algebras over C

b :=
N⊕

i=1

g ⊗ C((w − ai))

b+ :=
N⊕

i=1

g ⊗ C[[w − ai]], b− := g ⊗ C[w, (w − ai)
−1]′1≤i≤N

and embeddings of Lie algebras over C

b− ↪→ b ←↩ b+, (3a)

which again give rise to an isomorphism of the underlying vector spaces,

b ∼=C b− ⊕ b+. (3b)

Let Mi, 1 ≤ i ≤ N be g-modules in the category of C-vector spaces. We make each Mi into a module
over the Lie algebra g ⊗ C[[w − ai]] by declaring X ⊗ 1 acts as X and X ⊗ (w − ai)

k acts as 0 for all
k ≥ 1 and all X ∈ g. In other words, we pull back Mi along the map of Lie algebras g ⊗ C[[w − ai]] →
g ⊗ C[[w − ai]]

/
g ⊗ (w − ai)C[[w − ai]] ∼= g.

Remark 2. More generally, one may start with, for each 1 ≤ i ≤ N, any module Mi over the Lie
algebra g ⊗ C[[w − ai]], which is smooth. Recall, from [18,§5.1.5], that a g ⊗ C[[x]]-module M is
said to be smooth if, for all m ∈ M, the Lie ideal g ⊗ xkC[[x]] acts as zero on m for all sufficiently
large k.

We may then construct the induced g ⊗ C((w − ai)) module

Mi := Indg⊗C((w−ai))

g⊗C[[w−ai]]
Mi := U(g ⊗ C((w − ai))) ⊗U(g⊗C[[w−ai]]) Mi. (4)

Equivalently, one sees that

M :=
N⊗

i=1

Mi = Indb

b+ M, where M :=
N⊗

i=1

Mi

On pulling back by the embedding b− ↪→ b, M is, in particular, a module over b−.
The space of rational coinvariants (at level zero) associated to these data a1, . . . , aN; g; M1, . . . , MN is then

by definition

F(g; a1, . . . , aN; M1, . . . , MN) := M
/
b− := M

/
(b−.M) ∼=C C ⊗U(b−) M

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/4/rnaf004/8005482 by :: user on 25 February 2025



10 | L. Alfonsi et al.

and the space of rational conformal blocks (at level zero) is by definition the dual space

HomC(M
/
b−,C) ∼=C HomModC(b−)(M,C).

Here we make C into the trivial b− module. Equivalently it is the U(b−)-module obtained by pulling back
by the counit map U(b−) → C.

It follows from (3) together with the PBW theorem that there is an isomorphism U(b) ∼= U(b−) ⊗C

U(b+) of (U(b−), U(b+))-bimodules. Consequently the space of coinvariants is canonically isomorphic to
underlying vector space of the g-module M = M1 ⊗ . . . ⊗ MN from which we began:

M
/
b− = C ⊗U(b−) M ∼=C C ⊗U(b−) U(b) ⊗U(b+) M

∼=C C ⊗U(b−) U(b−) ⊗C U(b+) ⊗U(b+) M

∼=C C ⊗C M = M.

The richness of the space of coinvariants really emerges when one allows the marked points a1, . . . , aN

to vary (One sense in which this is true is that the rational coinvariants/conformal blocks obey the
celebrated KZ equations. It would be interesting to investigate whether the coinvariants we introduce
below in the ravioli setting obey some analogous equations. (One possible obstruction is that, in the
raviolo case, every level is “critical” in the sense that the Sugawara construction fails [25,§4.4]; we thank
an anonymous referee for pointing this out.)). We turn to this now.

3.2 Movable punctures and configuration space
Our fixed set of distinct marked points a1, . . . , aN ∈ C from the previous subsection is now to be thought
of just one choice of closed point of the configuration space

ConfN := AN
C

\
⋃

1≤i<j≤N

(zi = zj) (5)

obtained by starting with the affine scheme AN
C

= SpecC[z1, . . . , zN] and removing (the Zariski closures
(zi = zj) of the generalized points (zi = zj) of) all the diagonal hyperplanes.

Following the approach of [18,§13], one can think that going from fixed to movable marked points is
a matter of changing the ground ring from C to the C-algebra BN := �(ConfN,O) of regular functions on
configuration space. Since ConfN is the complement in AN

C
of the zero locus of the function

�N :=
∏

1≤i<j≤N

(zi − zj)

we have by definition—see for example, [16,§I]—that

BN = C[z1, . . . , zN][�−1
N ] (6a)

is the localization of C[z1, . . . , zN] = �(AN
C

,O) obtained by adjoining an inverse to �N, and

ConfN = SpecBN

is again an affine scheme. Of course, once we can invert �N, we can invert any (zi − zj), so that, in more
suggestive notation,

BN = C[zi, (zi − zj)
−1]1≤i,j≤N

i �=j
. (6b)

Now we should ask what, in this setting, the analogues of the embeddings of C-algebras in (2) should
be. First, in place of C[w, (w − ai)

−1]1≤i≤N = �(A1
C

\ {a1, . . . , aN},O) we should consider

BN+1 = C[z1, . . . , zN, w]

⎡⎣(�N

N∏
i=1

(w − zi)

)−1
⎤⎦ = �(ConfN+1,O). (7)
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 11

This is a BN-algebra in the obvious way. Let B′
N+1 denote the (non-unital) subalgebra consisting of those

functions that vanish as w → ∞.
Next, we want the analogue of the disc Disc1(ai) = SpecC[[w−ai]] and the punctured disc Disc×

1 (ai) =
SpecC((w−ai)) near a closed point ai ∈ A1

C
. Recall that C[[w−ai]] is the completion of C[w] with respect

to the ideal (w − ai)C[w], and C((w − ai)) is then the localization of C[[w − ai]] obtained by adjoining
an inverse to w − ai. Here, since the ground ring is now BN, we consider the completion of BN[w] with
respect to (w − zi)BN[w], that is, the ring BN[[w − zi]], and then its localization BN((w − zi)).

We arrive at the following analogue of (2): there are embeddings of commutative algebras in BN-
modules

B′
N+1 ↪→

N⊕
i=1

BN((w − zi)) ←↩

N⊕
i=1

BN[[w − zi]] (8)

such that, at the level of BN-modules, there is an isomorphism

N⊕
i=1

BN((w − zi)) ∼=BN B′
N+1 ⊕

N⊕
i=1

BN[[w − zi]]. (9)

Let g be a simple Lie algebra over C as before. By extension of scalars we obtain the Lie algebra over BN,
that is, the Lie algebra in BN-modules, given by

Bg := BN ⊗ g.

We have also Lie algebras in BN-modules given by

Bb :=
N⊕

i=1

g ⊗ BN((w − zi))

Bb+ :=
N⊕

i=1

g ⊗ BN[[w − zi]], Bb− := g ⊗ B′
N+1

and embeddings of Lie algebras in BN-modules

Bb− ↪→ Bb ←↩ Bb+, (10a)

which give rise to an isomorphism of the underlying BN-modules,

Bb
∼= Bb− ⊕ Bb+. (10b)

Let Mi, 1 ≤ i ≤ N, be g-modules as before. By extension of scalars we get Bg-modules BMi := BN ⊗ Mi,
that is, Bg-module objects in the category of BN-modules. We make each BMi into a module over the
Lie algebra g⊗BN[[w − zi]] by pulling back along the map of Lie algebras g⊗BN[[w − zi]] → g⊗BN[[w −
zi]]
/
g ⊗ (w − zi)BN[[w − zi]] ∼= Bg.

(Again, as in Remark 2, there is actually no obstruction to taking BMi to be any smooth module over
the Lie algebra g ⊗ BN[[w − zi]]; we focus on the above class of such modules purely for concreteness.)

We may then construct the induced g ⊗ BN((w − zi))-module

BMi := Indg⊗BN((w−zi))

g⊗BN[[w−zi]] BMi

:= UBN (g ⊗ BN((w − zi))) ⊗UBN
(g⊗BN[[w−zi]]) BMi. (11)

(Here we write UBN (−) : AlgL〉�
(ModBN ) → AlgA∫

(ModBN ) for the functor whose action on objects is to
take a Lie algebra over BN to its universal envelope, an associative algebra over BN.)
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12 | L. Alfonsi et al.

The tensor product of these modules,

BM :=
N⊗

i=1

BN BMi,

is equivalently the induced module

BM = IndBb

Bb+ BM := UBN (b) ⊗UBN
(Bb+) BM, where BM :=

N⊗
i=1

BN BMi.

On pulling back by the embedding Bb− ↪→ Bb, BM is, in particular, a module over Bb−.
The space of rational coinvariants (at level zero) associated to these data g; M1, . . . , MN is then by

definition the BN-module

F(g;BN; M1, . . . , MN) := BM
/
Bb− := BM

/
(Bb−. BM)

∼=BN BN ⊗UBN
(Bb−) BM (12)

and the space of rational conformal blocks (at level zero) is by definition the dual

HomBN (BM
/
Bb−,BN) ∼=BN HomBb− (BM,BN).

Here we make BN into the trivial Bb−-module. Equivalently it is the UBN (Bb−)-module obtained by
pulling back by the counit map UBN (Bb−) → BN.

Once more, the data of the triple of Lie algebras (10) together with the PBW theorem imply that
there is an isomorphism, UBN (b) ∼= UBN (Bb−) ⊗BN UBN (Bb+), now of (UBN (Bb−), UBN (Bb+))-bimodules in
BN-modules, and hence that the space of coinvariants is canonically isomorphic to BM = BN ⊗ M:

BM
/
Bb− = BN ⊗UBN

(Bb−) BM

∼=BN BN ⊗UBN
(Bb−) UBN (b) ⊗UBN

(Bb+) BM

∼=BN BN ⊗UBN
(Bb−) UBN (Bb−) ⊗BN UBN (Bb+) ⊗UBN

(Bb+) BM

∼= BN ⊗BN BM = BM = BN ⊗ M. (13)

3.3 Taking coinvariants
For any C-point (a1, . . . , aN) ∈ ConfN we can apply the evaluation map

eva1,...,aN : BN → C

to recover the space of coinvariants for this particular choice of fixed marked points, as we had it in
§3.1. That is, the constructions above are all suitably functorial, so that there is a map

eva1,...,aN : F(g;BN; M1, . . . , MN) → F(g; a1, . . . , aN; M1, . . . , MN).

In checking this, one notes in particular the following lemma.

Lemma 3. For each i, BMi
∼= BN ⊗C Mi. Hence BM ∼= BN ⊗C M.

Proof. Let us define

g− := (w − zN)−1C[(w − zN)−1] and Bg− := (w − zN)−1BN[(w − zN)−1].
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 13

These are Lie algebras over C and BN respectively. Certainly we have

Bg− ∼= BN ⊗C g− (14)

(since these are just Lie algebras of polynomials) and hence that UBN (Bg−) ∼= BN ⊗C U(g−). We have the
“local” Lie algebra splitting, that is, the embeddings of Lie algebras in BN-modules

Bg− ↪→ g ⊗ BN((w − zN)) ←↩ g ⊗ BN[[w − zN]]

such that as BN-modules

Bg− ⊕ g ⊗ BN[[w − zN]] ∼= g ⊗ BN((w − zN)).

Therefore BMi is free as a module over UBN (g−):

BMi
∼= UBN (Bg−) ⊗BN BMi

The analogous statements hold for g− and Mi. The result follows. �

On the other hand, we can now consider fixing vectors mi ∈ Mi, for 1 ≤ i ≤ N, while letting the marked
points vary. More precisely, the unit map 1 : C → BN induces embeddings (of vector spaces)

Mi ↪→ BN ⊗ Mi
∼= BMi; m �→ 1 ⊗ m (15)

for each i, and hence M ↪→ BN ⊗ M ∼= BM. We may take the class of the vector m1 ⊗ . . . ⊗ mN ∈ M ∼=
1 ⊗ M ↪→ BN ⊗ M ∼= BM in the space of coinvariants in (13). We shall write this class as

It is an element of BN ⊗M, that is, an M =⊗N
i=1 Mi-valued rational function of z1, . . . , zN singular at most

on the diagonals zi − zj, 1 ≤ i < j ≤ N.
We call applying this map of BN-modules

(16)

the operation of taking coinvariants.

3.4 The usual vacuum Verma module and state-field map
Let now

V := Indg⊗C((s))
g⊗C[[s]] C|0〉

denote the module over the loop algebra g ⊗ C((s)) induced from the trivial one-dimensional module
C|0〉 over g⊗C[[s]] generated a vector |0〉. This module V is called the vacuum Verma module (at level zero).

The vacuum Verma module V comes equipped with a linear map

Y(−, s) : V → HomVectC (V,V((s))), A �→ Y(A, s) =
∑
n∈Z

A(n)s−n−1, (17)

called the state-field map. Vectors inV are called states, and one can think that Y(−, s) sends each state A ∈
V to the formal sum of its modes A(n) ∈ EndVectC (V). The state-field map satisfies certain axioms (notably
Borcherds identity), which can be found in standard references including [18, 31, 33] and which make
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14 | L. Alfonsi et al.

V into a vertex algebra. From our present perspective the important point is that one way to motivate
these axioms is by studying the limit of rational coinvariants as points collide, as we now describe.

Let us now specialize our discussion of rational coinvariants above to the case in which MN−1 = C|0〉
and MN = C|0〉. In that case

M =
N−2⊗
i=1

Mi ⊗ C ⊗ C =
N−2⊗
i=1

Mi and M =
N−2⊗
i=1

Mi ⊗ VN−1 ⊗ VN.

Now, by identifying local coordinates w−zi, we may identify each of the Lie algebras g⊗C((w−zi)) with
a single copy g ⊗ C((s)) (This identification is sometimes left implicit, but is an important assumption.
Other ways of picking preferred local coordinates and hence identifying copies of V at different points
are possible and can be important in applications: e.g., when one wants to go to what physicists would
call the cylinder geometry.), and thereby identify their vacuum Verma modules with a single abstract
copy of V:

V ∼= Vi := Indg⊗C((w−zi))

g⊗C[[w−zi]]
C|0〉.

Pick vectors mi ∈ Mi for 1 ≤ i ≤ N−2, and states A, B ∈ V in this abstract copy of V. On taking coinvariants,
we get the M-valued rational function

(18)

The usual state-field map captures the behaviour of this function in the limit in which the marked
point zN becomes close to marked point zN−1, while the points z1, . . . , zN−1, the vectors m1, . . . , mN−2, and
the states A, B are all held fixed.

Theorem 4 (Relation of the state-field map Y to rational coinvariants). For all A, B ∈ V and mi ∈
Mi, 1 ≤ i ≤ N − 2, we have

We give a proof of this very standard fact below, in §7.1. Note that while the left-hand side here is
manifestly in BN−1((zN − zN−1)) ⊗ M, since it is the expansion of an element of BN ⊗ M, a priori the right-
hand side is merely an element of (BN−1 ⊗ M)((zN − zN−1)): indeed what is meant by the right-hand side
is the series obtained by computing the coinvariant in F(g;BN−1; M1, . . . , MN−2,C) ∼= BN−1 ⊗ M order by
order in zN − zN−1.

Now let us close this digression on the usual rational conformal blocks associated to Kac–Moody
algebras at level zero, and return to the raviolo case.

4 Ravioli Configuration Space
As we just saw, the usual rational coinvariants/conformal blocks form a module over the commutative
algebra

BN := �(ConfN,O) = C[z1, . . . , zN][Discr−1
N ]

= C[zi, (zi − zj)
−1]1≤i,j≤N

i �=j
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of global sections of the structure sheaf on the configuration space of N distinguishable pairwise distinct
marked points in the complex plane,

ConfN := AN
C

\
⋃

1≤i<j≤N

(zi = zj).

Remark 5. In more geometrical language, the module of conformal blocks is the �(ConfN,O)-
module of global sections of a trivial vector bundle over configuration space, whose typical
fibre we described in §3.1; see [18,§13.3]. Cf. also for example, [39], [15].

In this section our goal is to introduce a suitable notion of configuration space in the ravioli setting,

RavConfN,

and then to construct a model

AN � R�(RavConfN,O),

in dg commutative algebras, of the derived global sections of its structure sheaf. This is a prelude to
defining ravioli analogues of rational coinvariants/conformal blocks, which we shall do in the next
section.

In the ravioli setting, we again want to describe configurations of N distinguishable marked points
in the complex plane. However, we now want to allow them to coincide, but with the stipulation that,
whenever two points do coincide, we want to keep track of which point is “on top” of which.

Formally then, what we shall do is to glue together N! copies of the affine scheme AN
C

along the
complements of the diagonal hyperplanes, as follows.

Let SN denote the group of permutations of the set [1, N] = {1, . . . , N}. We shall identify SN, as a set,
with the set of total orders on [1, N], by associating σ ∈ SN with the total order ≺σ on [1, N] defined by

σ(1) ≺σ σ (2) ≺σ · · · ≺σ σ (N).

Let Partial[1,N] denote the set of all partial orders ≺ on the set [1, N] = {1, . . . , N}. We make Partial[1,N] itself
into a partially ordered set (or, equivalently, a skeletal preorder) in which there is an arrow ≺→≺′ if
and only if ≺′ refines ≺ in the obvious sense. Given a partial order ≺∈ Partial[1,N], let O(U≺) denote the
commutative algebra

O(U≺) := C[z1, . . . , zN]

⎡⎢⎢⎣ ∏
i,j∈[1,N]

i �=j,i �≺j,j �≺i

1
zi − zj

⎤⎥⎥⎦ ∈ AlgCom
(VectC).

That is, O(U≺) is the localization of the polynomial algebra C[z1, . . . , zN] in which zi − zj is invertible
precisely for those distinct i and j that are ≺-incomparable. If ≺′ refines ≺ then there is a canonical
inclusion of C-algebras O(U≺′ ) → O(U≺), and hence a map of affine C-schemes U≺ → U≺′ . This defines
a functor (and hence a diagram in C-schemes. In fact RavConfN as we are about to define it is the colimit
in C-schemes of this diagram, RavConfN = colim≺∈Partial[1,N]

U≺.)

U : Partial[1,N] → AlgCom
(VectC)op ≡ AffSchC ↪→ SchC.

4.1 Definition of RavConfN by gluing Čech data
Recall that if we are given a C-scheme X, we can by definition always cover it with a collection U = {Ui}i∈I

of affine patches Ui ∈ AffSchC indexed by some totally ordered index set (I, <). The Čech nerve of this
cover is the semisimplicial object in C-schemes given by the diagram
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16 | L. Alfonsi et al.

where

Ui,j := Ui ∩X Uj

is the intersection in X of the affine patches Ui and Uj. (We recall the meaning of semisimplicial objects
in a category in Appendix A.) This is a diagram in C-schemes whose colimit is the original scheme X:

X = colim Č(U ).

Moreover we may always find a Leray cover, and the Čech cohomology of O with respect to such a cover
computes the sheaf cohomology of O. This is the case in particular if all the intersections Ui,j,...,k are
themselves affine.

With this in mind, let us define the ravioli configuration space RavConfN as follows. It is covered by the
collection of N! affine schemes

U := {U≺σ
∼= AN

C
: σ ∈ SN

}
.

We glue these affine patches together as follows. Given a collection of partial orders ≺1, . . . , ≺k∈
Partial[1,N], let

≺1 ∧ · · · ∧ ≺k

denote their finest common coarsening, or in other words their meet, or categorical product, in
Partial[1,N]. All meets exist in Partial[1,N]; at worst the meet may be the initial object, namely the partial
order in which no two elements are comparable. Given any distinct σ1, σ2 ∈ SN we define the intersection
in RavConfN of the affine patches U≺σ1

and U≺σ2
to be U≺σ1 ∧≺σ2

:

U≺σ1
∩RavConfN U≺σ2

:= U≺σ1 ∧≺σ2
,

with the inclusions U≺σ1 ∧≺σ2
↪→ U≺σ1

and U≺σ1 ∧≺σ2
↪→ U≺σ2

being the canonical inclusions we noted in the
definition of the functor U above. This gluing data satisfies the triple overlap condition, and we define
RavConfN to be the resulting C-scheme. (See e.g., [16,§I.2.4 and Corollary I-14] for a discussion of the
gluing construction.) Indeed, given any σ1, . . . , σk ∈ SN, the intersection of U≺σ1

, . . . , U≺σk
in RavConfN is

then a copy of the affine scheme U≺σ1 ∧···∧≺σk
:

U≺σ1
∩RavConfN · · · ∩RavConfN U≺σk

:= U≺σ1 ∧···∧≺σk
.

Thus, we pick and fix arbitrarily any total order < on SN, and define the semisimplicial object in affine
C-schemes given by the diagram

this diagram has a colimit in the category of C-schemes, and we define RavConfN to be that colimit:

RavConfN := colimSchC
Č(U ).

Informally then, RavConf2 is a copy of A2
C

but with a doubled diagonal; RavConf3 is a copy of A3
C

but
with all pairwise diagonals doubled and the main diagonal z1 = z2 = z3 having multiplicity 3! = 6; and
so on (We emphasize that, like the formal raviolo Rav itself, this configuration space RavConfN is not
separated as a scheme for any N ≥ 2; the underlying topological space of the corresponding analytic
space is not Hausdorff.).

4.2 Derived sections and the Thom–Sullivan functor
Our goal is now to give a model in dg commutative algebras of the derived global sections
R�(O, RavConfN) of the structure sheaf on RavConfN.
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 17

Given any finite Leray cover U = {Ui}i∈I of a C-scheme X, the derived global sections R�(X,O) of its
structure sheaf O is the dg commutative algebra defined, up to zig-zags of quasi-isomorphisms, as the
homotopy limit in dg commutative algebras

R�(X,O) = holim �(Č(U ),O).

The Thom–Sullivan functor Th• provides one way of computing any such homotopy limit, that is, the
homotopy limit of any diagram given by a semicosimplicial object in dg commutative algebras. We
recall the definition of this functor in Appendix A and refer the reader to [30], [32, Appendix A], or for
example [2] for further discussion.

The model of the homotopy limit that the Thom–Sullivan functor produces can be understood as
consisting of polynomial differential forms on a single (|I| − 1)-simplex, valued in O(

⋂
i∈I Ui), together

with polynomial differential forms on every face of that simplex. Each face is labelled by some subset
S ⊂ I, and the form on that face is valued in O(

⋂
i∈S Ui). (These intersections are taken in X.) These forms

are required to satisfy the natural compatibility conditions under pullbacks.
Whenever, as is true in our case, the maps O(

⋂
i∈S Ui) → O(

⋂
i∈I Ui), S ⊂ I, are all embeddings of

commutative algebras, then these compatibility conditions mean that the forms on the faces of the
(|I| − 1)-simplex are actually determined by the form in the bulk of the simplex itself. The model of
the homotopy limit is then a dg commutative algebra of polynomial differential forms on the (|I| − 1)-
simplex, valued in O(

⋂
i∈I Ui), subject to boundary conditions:

Th•
(�(Č(U ),O)) = {ω ∈ O(

⋂
i∈I

Ui) ⊗ C[ui, dui]i∈I
/〈∑

i∈I

ui − 1,
∑
i∈I

dui〉

: ω|{ui=0∀i∈I\S} ∈ O(
⋂
i∈S

Ui) ⊗ C[ui, dui]i∈S
/〈∑

i∈S

ui − 1,
∑
i∈S

dui〉

for all nonempty subsets S ⊂ I
}
.

(Here ω|{ui=0∀i∈I\S} denotes the pullback.)
Thus, in our case, we arrive at the following. Define the dg commutative algebra AN by

AN := {ω ∈ BN ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉

: ω|{uσ =0∀σ∈SN\S} ∈ O(U∧
σ∈S≺σ

) ⊗ C[ui, dui]i∈S
/〈∑

i∈S

ui − 1,
∑
i∈S

dui〉

for all nonempty subsets S ⊂ SN
}
.

Theorem 6. This AN is a model, in dg commutative algebras, of the derived global sections of the
structure sheaf on the ravioli configuration space RavConfN:

AN � R�(RavConfN,O).

Because this algebra AN will play a central role for us, it is worth noting the following equivalent
description. For any distinct i, j ∈ [1, N], let Sij

N ⊂ SN denote the set of total orders on [1, N] in which i
precedes j:

Sij
N := {σ ∈ SN : i ≺σ j}. (19)

Lemma 7. The definition of AN above is equivalent to

AN = {ω ∈ BN ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉

: for all distinct i, j ∈ [1, N] the pullback ω|{uσ =0∀σ∈Sij
N}

is regular in zi − zj
}
.
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18 | L. Alfonsi et al.

Proof. The idea is that by imposing the boundary conditions at these particular faces of the simplex,
we are in fact imposing all the boundary conditions in the definition of AN, because all other faces on
which the boundary conditions are non-empty arise as intersections of these faces.

To see this in detail, it is enough to check that, for every nonempty subset S ⊂ SN of the set of total
orders on [1, N], if ω obeys the boundary conditions given in the lemma, then it obeys the boundary
condition given in the definition of AN at the face {uσ = 0∀σ ∈ SN \ S} corresponding to S. To that end,
pick any such S and let ≺S denote the finest common coarsening,

≺S :=
∧
σ∈S

≺σ ,

or in other words, the partial order in which i ≺S j if and only if i ≺σ j for all σ ∈ S. The set S is then the
intersection (in SN) of the subsets Sij

N as i, j range over all pairs of distinct elements of [1, N] such that
i ≺S j:

S =
⋂
i≺Sj

Sij
N.

It follows that our hyperplane {uσ = 0∀σ ∈ SN \ S} is the intersection (in AN!
C

) of the hyperplanes {uσ =
0∀σ ∈ SN \ Sij

N} as i, j range over all pairs of distinct elements of [1, N] that are comparable with respect
to ≺S:

{uσ = 0∀σ ∈ SN \ S} =
⋂
i≺Sj

{uσ = 0∀σ ∈ SN \ Sij
N}.

Now, of course, SN \ Sij
N = Sji

N, and zi − zj = −(zj − zi). So we see that by imposing the boundary conditions
in the statement of the lemma, we are thereby imposing the condition that the pullback of ω to the face
{uσ = 0∀σ ∈ SN \ S} is regular in zi − zj for all i ≺S j. This is the boundary condition on that face in the
definition of AN, as required. �

5 Rational Ravioli Coinvariants
Having defined the ravioli configuration space RavConfN and a model AN of the derived global sections
of its structure sheaf, we now define the ravioli analogues of rational coinvariants/conformal blocks
from Section 3. As far as possible, we shall follow the same construction of spaces of coinvariants with
movable marked points we reviewed starting in §3.2, with RavConfN playing the role of ConfN and AN

playing the role of BN.
In what follows, the dg commutative algebra

AN � R�(RavConfN,O)

will play the role of the base ring (i.e., we shall work in dg AN-modules) in the same way that the
commutative algebra

BN = �(ConfN,O)

was the base ring (i.e., we worked in BN-modules) in the usual setting in §3.2 of rational coinvariants
with N movable marked points.

Now, the commutative algebra BN+1 ∼= BN[w, (w − zi)
−1]N

i=1 was naturally a module over BN. We want
something similar in the ravioli setting. Namely we would like to show that AN+1 is a commutative
algebra in dg AN-modules in some natural way.
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 19

To that end, let

πN : SN+1 → SN; σ �→ (σ (1), σ(2), . . . , N̂ + 1, . . . , σ(N + 1)) (20)

denote the surjective map of sets that sends total orders on [1, N+1] to total orders on [1, N] by forgetting
about the position of N + 1. We define a map of dg commutative algebras

ιN : C[uσ , duσ ]σ∈SN → C[uσ , duσ ]σ∈SN+1

by setting

ιN(uσ ) :=
∑

τ∈π−1
N (σ )

uτ . (21)

For example, when N = 2, we have

ι2(u(12)) = u(123) + u(132) + u(312), ι2(u(21)) = u(213) + u(231) + u(321).

Lemma 8. There is an injective map of dg commutative algebras

ιN : AN ↪→ AN+1,

(overloading notation somewhat) given by the tensor product of ιN above with the obvious
embedding BN ↪→ BN+1.

Proof. First observe that ιN maps the dg ideal 〈∑σ∈SN
uσ − 1,

∑
σ∈SN

duσ 〉 to the dg ideal 〈∑τ∈SN+1
uτ −

1,
∑

τ∈SN+1
duτ 〉, so it defines a map between the polynomial differential forms on the (N! −1)-simplex

and those on the ((N + 1)! −1)-simplex. Now we need to check that this map respects the defining
boundary conditions of AN+1. It is enough to consider elements ω ∈ AN of the form

ω = p ⊗ λ, p ∈ BN, λ ∈ C[uσ , duσ ]σ∈SN .

Obviously, p is not singular in zi − zN+1 for any i. Pick any distinct i, j ∈ [1, N] and suppose that p is
singular in zi − zj. We must check that ιN(λ) vanishes on pullback to the face of the (N + 1)! −1-simplex

given by {uτ = 0∀τ ∈ Sij
N+1}. On that zero locus, we have that ιN(uσ ) = 0 for every σ ∈ Sij

N. That is, the

operation of pulling back to the zero locus of all the uτ with τ ∈ Sij
N+1 factors through the operation of

pulling back first to the zero locus of the images ιN(uσ ) with σ ∈ Sij
N. That latter pullback commutes with

the dg algebra map ιN, that is, ιN(λ)|{ιN(uσ )=0∀σ∈Sij
N} = ιN(λ|{uσ =0∀σ∈Sij

N}). And finally, the pullback λ|{uσ =0∀σ∈Sij
N}

vanishes, since by assumption ω obeys the defining boundary conditions of AN. �

For example, when N = 2, we have the following well-defined element of A2:

u(12)u(21)

z1 − z2
∈ A2,

and its image is a well-defined element of A3:

(u(123) + u(132) + u(312))(u(213) + u(231) + u(321))

z1 − z2
∈ A3.

In this way, AN+1 has the structure of a commutative algebra not just in dg vector spaces but in dg
AN-modules.
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20 | L. Alfonsi et al.

In passing, let us note that the map ιN : AN ↪→ AN+1 of Lemma 8 has a natural family of
generalizations. Given any subset J ⊂ [1, N] we have a corresponding surjection

πJ⊂[1,N] : SN � S|J|

between the sets of total orders (given by forgetting about the positions of elements of [1, N] \ J) and
hence a map of dg commutative algebras

ιJ⊂[1,N] : C[uσ , duσ ]σ∈S|J| → C[uσ , duσ ]σ∈SN . (22)

On tensoring this with the obvious embedding of commutative algebras

B|J|
∼=−→ C[zi, (zi − zj)

−1]i,j∈J,i �=j ↪→ BN

we obtain an embedding of dg commutative algebras

ιJ⊂[1,N] : A|J| ↪→ AN. (23)

For example we have the three maps

ι{1,2}⊂[1,3], ι{1,3}⊂[1,3], ι{2,3}⊂[1,3] : A2 ↪→ A3.

Example 9. Such maps are a rich source of interesting elements of AN. Let i, j ∈ [1, N] be distinct.
Then the elements

dι{i,j}(u(12))

zi − zj

belong to AN. Compare Example 12 below.

5.1 Expansion maps
Recall that we write

ιw→zs : BN+1 → BN((w − zs))

for the map of commutative algebras in BN-modules given by taking the Laurent expansion in small
w−zs = zN+1 −zs with z1, . . . , zN held fixed. (To keep track of the distinguished role of the last coordinate,
we shall continue to write w := zN+1.) One thinks of BN((w − zs)) as a certain completion of the tensor
product

BN ⊗C C((w − zs)) ∼= �(ConfN,O) ⊗C �(D×,O).

In a similar spirit, let us now introduce a commutative algebra in dg AN-modules AN{{w−zs}}, which we
think of as a certain completion of the tensor product

AN ⊗C C{{w − zs}} � R�(RavConfN,O) ⊗C R�(Rav,O).
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Raviolo Vertex Algebras, Cochains, and Conformal Blocks | 21

Namely, we define

AN{{w − zs}} :={
ω ∈ BN((w − zs)) ⊗ C[v, dv] ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉

: for all distinct i, j ∈ [1, N] the pullback ω|{uσ =0∀σ∈Sij
N}

is regular in zi − zj,

and both ω|v=0 and ω|v=1 are regular in w − zs
}
.

We think of AN{{w − zs}} as the dg commutative algebra of functions on the formal raviolo near the
sth of N distinguishable movable marked points, in the same way that BN((w − zs)) is the commutative
algebra of functions on the formal punctured disc near the sth of N distinguishable movable marked
points, cf. [18,§13.2].

Now we shall define a map of commutative algebras in dg AN-modules

AN+1 → AN{{w − zs}}

given by Laurent expanding in w − zs and simultaneously pulling back to a certain judiciously chosen
curved copy of �1

C
× �N!−1

C
inside the algebro-geometric ((N + 1)! −1)-simplex

�
(N+1)!−1
C

:= Spec

⎛⎝C[uσ ]σ∈SN+1

/〈 ∑
σ∈SN+1

uσ − 1〉
⎞⎠ ↪→ A(N+1)!

C
.

Namely, we first define a map of affine schemes

A1
C

× AN!
C

= Spec
(
C[v] ⊗ C[uσ ]σ∈SN

)→ A(N+1)!
C

= SpecC[uσ ]σ∈SN+1

or equivalently a map of commutative algebras

C[uσ ]σ∈SN+1 → C[v] ⊗ C[uσ ]σ∈SN

by sending

uσ �→

⎧⎪⎪⎨⎪⎪⎩
(1 − v)u(...,s,... ) if σ = (. . . , N + 1, s, . . . )

vu(...,s,... ) if σ = (. . . , s, N + 1, . . . )

0 otherwise.

(24)

Since

∑
σ∈SN+1

uσ �→
∑
σ∈SN

(vuσ + (1 − v)uσ ) =
∑
σ∈SN

uσ ,

this map induces a map of affine schemes

pN+1→s : �1
C

× �N!−1
C

→ �
(N+1)!−1
C

.

One should think of this as embedding a curved copy of �1
C

× �N!−1
C

into �
(N+1)!−1
C

. We get also the map
p∗

N+1→s of dg commutative algebras from the polynomial differential forms on �
(N+1)!−1
C

to the polynomial
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22 | L. Alfonsi et al.

differential forms on �1
C

× �N!−1
C

,

p∗
N+1→s : C[uσ , duσ ]σ∈SN+1

/〈 ∑
σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ 〉

→ C[v, dv] ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉,

given again by (25).
We can now define an analogue of the Laurent-expansion map ιw→zs for AN. (Here we shall overload

the notation ιw→zs somewhat.)

Definition-Proposition 10. There is a map of commutative algebras in dg AN-modules

ιw→zs : AN+1 → AN{{w − zs}}

given by ιw→zs ⊗ p∗
N+1→s. That is, we take the formal Laurent expansion in small w − zs with

z1, . . . , zN held fixed, and we pull back to the copy of �1
C

×�N!−1
C

in �
(N+1)!−1
C

defined by the map
pN+1→s above.

Proof. We certainly have a map of commutative algebras in dg vector spaces

AN+1 → BN((w − zs)) ⊗ C[v, dv] ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉.

What has to be checked is first that this map respects the defining boundary conditions of AN{{w − zs}}
and second that it is a map of AN-modules.

Let ω ∈ AN+1 be any element. We must show that ιw→zs (ω) obeys the defining boundary conditions of
AN{{w − zs}}.

Consider first (ιw→zs (ω))|v=0. On the preimage of the zero locus of v under the map p∗
N+1→s, we have

that uτ vanishes for all τ ∈ SN+1 except for those of the form (. . . , N+1, s, . . . ). Thus, in particular, on that
preimage we have that uτ = 0 for all τ ∈ Ss,N+1

N+1 . Therefore the pullback of ω to that preimage is regular
in w − zs by virtue of the defining boundary conditions of AN+1, and hence (ιw→zs (ω))|v=0 is regular in
w − zs, as required.

The argument for (ιw→zs (ω))|v=1 is similar.
Next consider (ιw→zs (ω))|

uσ =0∀σ∈Sij
N

for distinct i, j ∈ [1, N] \ {s}. We must show that this is regular in

zi − zj. When we set to zero uσ for all σ ∈ Sij
N, we are thereby setting to zero the images p∗

N+1→s(uτ ) of uτ

for all τ ∈ Sij
N+1. Therefore the pullback ω|

(p∗
N+1→s)

−1({uσ =0∀σ∈Sij
N}) of ω to this preimage is regular in zi − zj, by

virtue of the defining boundary conditions of AN+1. Hence (ιw→zs (ω))|
uσ =0∀σ∈Sij

N
is regular in zi − zj, again

as required.
Finally we consider (ιw→zs (ω))|uσ =0∀σ∈Sis

N
for i ∈ [1, N] \ {s}. When we set to zero uσ for all σ ∈ Sis

N, we are

thereby setting to zero the images p∗
N+1→s(uτ ) of uτ both for all τ ∈ Sis

N+1 and crucially also for all τ ∈ Si,N+1
N+1 .

Therefore the defining boundary conditions of AN+1 guarantee that the pullback ω|(p∗
N+1→s)

−1({uσ =0∀σ∈Sis
N}) of

ω to this preimage is regular in both zi −zs and crucially also in zi −w. Hence (ιw→zs (ω))|uσ =0∀σ∈Sis
N

is regular
in zi − zs, again as required. (One should keep in mind that the process of taking Laurent expansions
introduces additional singularities. For example

ιw→zs

1
w − zi

=
∞∑

k=0

(−1)k 1
(zs − zi)

k+1
(w − zs)

k.

These are dealt with by the “and crucially” part of the argument above.)
The argument for (ιw→zs (ω))|uσ =0∀σ∈Ssi

N
is similar.
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It remains to check that the map is a map of dg AN-modules, cf. Lemma 8. But this follows from the
observation that, for every σ ∈ SN, we have

p∗
N+1→s(ιN(uσ )) =

∑
τ∈π−1

N (σ )

p∗
N+1→s(uτ ) = vuσ + (1 − v)uσ = uσ .

�

5.2 Cospan of dg Lie algebras
Let us define A′

N+1 to be the nonunital dg subalgebra of AN+1 consisting of those elements vanishing as
w → ∞. At this stage we have maps of commutative algebras in dg AN-modules

A′
N+1 −→

N⊕
k=1

AN{{w − zk}} ←−
N⊕

k=1

AN{{w − zk}}+.

(Here AN{{w − zk}}+ := AN[[w − zk]] ⊗ C[v, dv], as in §2.3.)
Let g be a simple finite-dimensional Lie algebra over C, as earlier. On tensoring with g we get maps

of Lie algebras in dg AN-modules. Namely, let us define

a := g ⊗
N⊕

k=1

AN{{w − zk}}, a+ := g ⊗
N⊕

k=1

AN{{w − zk}}+, a− := g ⊗ A′
N+1.

Then we have the cospan of Lie algebras in dg AN-modules

a−
IGlobal−−−→ a

IRavioli←−−− a+.

This is analogous to the cospan of Lie algebras in BN-modules we had in Section 3 above. (In what
follows we shall often omit the map IRavioli and simply identify elements of a+ with their embedded
images in a.)

Moreover, we still have the following.

Proposition 11. As a dg AN-module, a is the sum (although not, as we shall see, the direct sum)
of the images of a+ and a−:

a = a+ + IGlobal(a−).

Proof. We must show that every element of a can be written as a sum of an element of a+ and an
element of IGlobal(a−). Let us define

a± := g ⊗
N⊕

i=1

AN{{w − zi}}±

where on the right ± means restricting to non-negative (respectively, strictly negative) powers of w − zi.
Thus,a+ ≡ a+, but of course a− �= IGlobal(a−). At the level of dgAN-modules we evidently have a = a−⊕a+.
Given any element X ∈ a, let X = X+ + X− be its corresponding decomposition. It is enough to show that
X− is in the image of IGlobal(a−) modulo terms in a+. In other words, it is enough to construct a map of
dg AN-modules

g : a− → a−,

the “building global objects” map, with the property that (IGlobal(g(X−)))− = X− for all X ∈ a. To that end,
we first note that the map

pN+1→s : �1
C

× �N!−1
C

→ �
(N+1)!−1
C
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we defined above has a left inverse

qs : �
(N+1)!−1
C

→ �1
C

× �N!−1
C

(225)

given by (here, recall (22))

q∗
s := ι{s,N+1}⊂[1,N+1] ⊗ ι[1,N]⊂[1,N+1].

That is, explicitly, we have

q∗
s (v) =

∑
τ∈Ss,N+1

N+1

uτ , q∗
s (uσ ) = ιN(uσ ), σ ∈ SN,

with ιN as in (21) and Ss,N+1
N+1 as in (19). To see that qs is left inverse to pN+1→s we note first that

p∗
N+1→sq

∗
s (uσ ) = p∗

N+1→s(ιN(uσ )) = uσ for every σ ∈ SN, as we checked in the proof of Definition-
Proposition 10 above; and second that

p∗
N+1→sq

∗
s (v) = p∗

N+1→s

⎛⎜⎝ ∑
τ∈Ss,N+1

N+1

uτ

⎞⎟⎠ = v
∑
σ∈SN

uσ = v.

where in the last equality we have used the defining relation
∑

σ∈SN
uσ = 1 of the algebro-geometric

simplex �N!−1
C

.
Now, suppose we are given an element ω ∈ AN{{w − zk}}−. Such an ω is in particular a polynomial

differential form valued in (w − zk)
−1BN[(w − zk)

−1]. We apply to it the map of commutative algebras in
BN-modules

(w − zk)
−1BN[(w − zk)

−1] ↪→ B′
N+1.

The result is an element of the dg commutative algebra

B′
N+1 ⊗ C[v, dv] ⊗ C[uσ , duσ ]σ∈SN

/〈∑
σ∈SN

uσ − 1,
∑
σ∈SN

duσ 〉

obeying certain boundary conditions. We may map it to the dg commutative algebra

B′
N+1 ⊗ C[uσ , duσ ]σ∈SN+1

/〈 ∑
σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ 〉

via the map q∗
s,N. Let us check that the resulting form, call it ω̃, obeys the defining boundary conditions

of AN+1. First, consider singularities in zi −zj for any i, j ∈ [1, N] with i �= j. We must consider the pullback

of ω̃ to {uσ = 0∀σ ∈ Sij
N+1}. On the latter zero locus, we have q∗

s,N(uτ ) = 0 for every τ ∈ Sij
N. Therefore

this pullback of ω̃ is regular in zi − zj, since ω obeyed the boundary conditions of AN. Next, consider
singularities in w − zs. We are to consider the pullback of ω̃ to {uσ = 0∀σ ∈ Ss,N+1

N+1 } (or the same with
SN+1,s

N+1 , for which the argument is similar). On that zero locus, q∗
s (v) vanishes. Therefore ω̃ is regular in

w − zs there, since ω obeyed the boundary conditions of AN{{w − zs}}. Finally note that ω̃ is obviously
regular everywhere in zi − w for i �= s.

In this way we obtain a map of dg AN-modules

gk : AN{{w − zk}}− → A′
N+1 (26)

for each k. For future use, let us remark that for each individual k, the map gk is even a map
of commutative algebras in dg AN-modules. (It is the analogue in our raviolo context of the map
(w − zk)

−1BN[(w − zk)
−1] → B′

N+1 above.)
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Hence we obtain a map of dg AN-modules

g : g ⊗
N⊕

k=1

AN{{w − zk}}− → g ⊗ A′
N+1.

By construction, we have that (IGlobal(g(X)))− = X− for all X ∈ a. Thus, finally,

X = IGlobal(g(X)) + (X − IGlobal(g(X))) ∈ IGlobal(a−) + a+ (27)

for every X ∈ a, as required. �

The map IGlobal has a nontrivial kernel (For example, consider the case N = 2, N + 1 = 3. The element

u(123)u(312)

w − z2

belongs to A′
3, and it is in the kernel of the expansion map A3 → A2{{w − z1}} ⊕ A2{{w − z2}}. Indeed,

p∗
3→1(u(123)) = 0 and p∗

3→2(u(312)) = 0.
(Observe, in passing, that for example neither u(123)

w−z2
nor du(123)

w−z2
belong toA3: they are not regular in w−z2

on pullback to u(321) = u(312) = u(132) = 0.)). Of course, one could always simply define the subalgebra A′
N+1

to be the quotient of AN+1 by the kernel of IGlobal (a dg ideal). However, the following example illustrates
a more profound disanalogy between the usual case and the ravioli case.

Example 12. Consider the case N = 2, N + 1 = 3. Let us write

v12 := ι{1,2}(u(12)) = u(123) + u(132) + u(312),

v13 := ι{1,3}(u(12)) = u(123) + u(213) + u(132),

v23 := ι{2,3}(u(12)) = u(123) + u(213) + u(231)

(and v32 = 1 − v23 etc.). Consider the element


12 := dv31

w − z1
∧ dv32

w − z2
− dv21

z2 − z1
∧ dv32

w − z2
− dv31

w − z1
∧ dv12

z1 − z2
∈ A′

3.

It is nonzero. The singular part of its expansion in small w − z1 is

dv31 ∧ (dv32 − dv12
) 1

w − z1

1
z1 − z2

.

Consider the pullback of this to the copy of �1 × �1 in �3 defined by the map p3→1 above. We
have, on this copy of �1 × �1,

p∗
3→1(v12) = 0 + (1 − v)u(12) + vu(12) = u(12)

p∗
3→1(v13) = 0 + vu(21) + vu(12) = v(u(21) + u(12)) = v

p∗
3→1(v23) = 0 + vu(21) + (1 − v)u(21) = u(21).

Therefore this pullback vanishes:

− dv ∧ d(u(12) − u(12))
1

w − z1

1
z1 − z2

= 0.

A similar story holds for the expansion in small w − z2.
We conclude that the image of this element 
12 ∈ A′

3 in A2{{w − z1}} ⊕A2{{w − z2}}, while nonzero,
is nonsingular in the local variables w − zi in each summand, that is, it lies in the subalgebra
A2{{w − z1}}+ ⊕ A2{{w − z2}}+.
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Remark 13. The element 
12 is closed and we expect that it represents a nontrivial cohomology
class in A3. However we expect that its image in A2{{w − z1}} ⊕A2{{w − z2}} is exact. That is, we
expect that H(
12) is in the kernel of the induced map of cohomologies.

Remark 14. It is interesting to note the superficial similarity of the elements of which 
12 is an
example, namely

dvN+1,j

w − zj
∧ dvjk

zj − zk
+ dvjk

zj − zk
∧ dvk,N+1

zk − w
+ dvk,N+1

zk − w
∧ dvN+1,j

w − zj
,

with the relations

dzi − dzj

zi − zj
∧ dzj − dzk

zj − zk
+ dzj − dzk

zj − zk
∧ dzk − dzi

zk − zi
+ dzk − dzi

zk − zi
∧ dzi − dzj

zi − zj
= 0,

which hold in the de Rham complex of holomorphic forms on the usual configuration space
ConfN = AN

C
\ {diagonals} = SpecBN, and which are examples of Orlik–Solomon relations

associated to a hyperplane arrangement. See [36] and for example [40,§2].

As Example 12 shows, the image of a− in a has nontrivial intersection with a+. Let us define a0 to be
this intersection, a Lie subalgebra in dg AN-modules of a:

a0 := IGlobal(a−) ∩ a+ ⊂ a.

Remark 15. Recall that in the usual case reviewed in Section 3, we were able to arrange that
b− ∩ b+ = 0 in b, and hence that b = b− ⊕ b+ was the direct sum of vector spaces, or of BN-
modules. We did that by defining b− = g ⊗ B′

N+1, where B′
N+1 was the nonunital subalgebra of

BN+1 consisting of those rational expressions in w vanishing as w → ∞; that ensured, in (8), that
the image of B′

N+1 had trivial intersection with the image of
⊕N

i=1 BN[[w−zi]]. In the construction
of rational conformal blocks, [19], it is common to defineB′

N+1 that way, for precisely this reason.
Doing so yields what is called the modified space of conformal blocks in [18,§13]. If one weakens
that restriction on b− then one also has a non-trivial intersection b− ∩ b+ =: b0 in the usual
setting, and the space of coinvariants has a residual quotient,

F(g;BN; M1, . . . , MN) ∼= (BN ⊗ M)
/
b0.

For example, if one insists only that elements of b− be regular as w → ∞, then one finds
b0 = BN ⊗ g, the Lie algebra of zero modes. In that case, the space of rational coinvariants
is isomorphic as a BN-module to the quotient by the diagonal action of g on M =⊗N

i=1 Mi:

F(g;BN; M1, . . . , MN) ∼= BN ⊗ (M/g).
In our present setting, there seems to be no obvious way to avoid this non-trivial intersection a0. By

the PBW theorem (which holds since AN ⊃ Q) we get that

UAN (a) ∼= UAN (IGlobal(a−)) ⊗UAN
(a0) UAN (a+) (28)

as (UAN (IGlobal(a−)), UAN (a+))-bimodules in dg AN-modules.
That has the following somewhat awkward consequence: UAN (a) is not free as a (UAN (a−), UAN (a+))-

bimodule in dg AN-modules, and therefore we have no reason to expect UAN (a) to be cofibrant in that
category with respect to its projective model structure, cf. Remark 17 below.

5.3 Ravioli coinvariants
Let now Mi, 1 ≤ i ≤ N, be g-modules, just as in §3.1 and §3.2.

As in §3.1 we make Mi into a module over g⊗C[[w−zi]] by declaring that
(
g⊗(w−zi)C[[w−zi]]

)
.Mi = 0,

that is, that strictly positive modes act as zero.
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We then further make Mi into a module over g⊗C{{w−zi}}+ (cf. §2.3) by declaring that g⊗C[[w−zi]]⊗I
acts as zero, where I is the dg ideal in C[v, dv] generated by v. That is, the action of an element of
g ⊗ {{w − zi}}+ on Mi factors through taking the zero mode of the pullback of that element to v = 0.

The module Mi is then smooth as a g⊗C{{w − zi}}+-module. By smooth we mean, following [18,§5.1.5]
and [25, Def. 5.1.1], that for all m ∈ Mi the Lie ideal g ⊗ (w − zi)

kC{{w − zi}}+ acts as zero on m, for all
sufficiently large k. Since Mi is smooth over g⊗C{{w − zi}}+, we can extend scalars in an obvious way to
obtain a module AMi := AN ⊗ Mi over g⊗AN{{w − zi}}+, which is a smooth module over g⊗AN{{w − zi}}+,
for each i, and

AN ⊗ M := AN ⊗
N⊗

i=1

Mi

is a left UAN (a+)-module.

Remark 16. Much as in Remark 2, all we really require here is that, for each 1 ≤ i ≤ N, AMi be a
smooth module over the Lie algebra g⊗AN{{w − zi}}+. We specialize to the above class of such
modules for concreteness. (In particular, pulling back to v = 0, rather than say v = 1 or v = 1

2 ,
was a choice; and cf. also the discussion in Remark 18.)

We have the induced module

M := UAN (a) ⊗UAN
(a+) (AN ⊗ M),

a left UAN (a)-module. It is equivalently, the tensor product (over AN) of the induced modules

Mi := UAN (g ⊗ AN{{w − zi}}) ⊗UAN
(g⊗AN{{w−zi}}+) (AN ⊗ Mi)

at the marked points.
We may then define the space (more precisely, the dg AN-module) of ravioli coinvariants of g acting

on M1, . . . , MN to be

F(g;AN; M1, . . . , MN) := AN ⊗UAN
(a−) UAN (a) ⊗UAN

(a+) (AN ⊗ M).

By the PBW theorem, (28), we have that

F(g;AN; M1, . . . , MN) ∼= AN ⊗UAN
(a0) (AN ⊗ M) =: (AN ⊗ M)/a0 (29)

as left AN-modules.

Remark 17. This definition has the merit of being relatively concrete (although we don’t have an
explicit description of a0). In principle however, one should really consider the derived tensor
product

AN ⊗L

UAN
(a−) UAN (a) ⊗L

UAN
(a+) M, (30)

which will be modelled by the tensor product

F̃ := AN ⊗UAN
(a−) QUAN (a) ⊗UAN

(a+) M

where QUA(a) is a cofibrant replacement of UA(a) in the category of (UAN (a−), UAN (a+))-
bimodules in dg AN-modules equipped with its projective model structure [27] (That is, a
(UAN (a−), UAN (a+))-bimodule in dg AN-modules is the same thing as a left dg UAN (a−) ⊗AN

UAN (a
op
+ ))-module, so this is a special case of the model category structure on the category of

(left) dg-modules over a (not necessarily graded-commutative) dg-algebra as defined in [27].).
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28 | L. Alfonsi et al.

We expect Theorem 20 below to apply to (a suitable choice of model F̃ of) this derived space of
coinvariants as well, but we do not show that here.

5.4 Worked example
In this subsection we shall consider in detail a concrete example of raviolo coinvariants. We take g = sl2,
and N = 2 marked points. Let us further take

M1 = C2, M2 = C

where sl2 acts on C2 in the defining (i.e., fundamental) representation and acts trivially on C. Let e, f , h
denote the basis of sl2 with [h, e] = 2e, [h, f ] = −2f , [e, f ] = h, and denote by {m, f .m} a basis of C2, where
m is the sl2-highest weight vector, with e.m = 0, h.m = m.

As in the discussion above, we promote M1 to a smooth module over sl2 ⊗C{{w − z1}}+ = sl2 ⊗C[[w −
z1]]⊗C[v, dv] by declaring that the dg ideal generated by (w−z1) and v act trivially. We similarly promote
M2 to a smooth module over sl2 ⊗ C{{w − z2}}+.

Then A2 ⊗M1 and A2 ⊗M2 are smooth modules over respectively sl2 ⊗A2{{w−z1}}+ and sl2 ⊗A2{{w−
z2}}+. As above, on first inducing to obtain modules M1 and M2 and then taking coinvariants, we obtain
the space of ravioli coinvariants

F(sl2;A2;C2,C).

Let compute an example of taking coinvariants in this space. Let |0〉 span C. The induced module M2 is
a copy of the raviolo vacuum module V as we defined it in §2.6. It contains for example the vector

(
f ⊗ dv

w − z2

)
|0〉

Let us consider the class in F(sl2;A2;C2,C) of

[m ⊗
(

f ⊗ dv
w − z2

)
|0〉].

Now, by definition of coinvariants,

0 = [
(

f ⊗ dv23

w − z2

)
.(m ⊗ |0〉)]

where we write, as in Example 12,

v23 = ι{2,3}(u(12)) = u(123) + u(213) + u(231).

We compute

p∗
3→1(v23) = 1 − u(12), p∗

3→2(v23) = v

and thereby the expansions of
(
f ⊗ dv23

w−z2

)
at both marked points, 1 and 2. (For more detail on this step,

see §6.1 below.) We conclude that

[m ⊗
(

f ⊗ dv
w − z2

)
|0〉] = du(12)

z1 − z2
[(f .m) ⊗ |0〉]

where we pull out the scalar prefactor du(12)

z1−z2
∈ A2. In this way, we have expressed our initial coinvariant

as the class of an element in A2 ⊗ C2 ⊗ C.
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Remark 18. We say “the class of”, because F(sl2;A2;C2,C) ∼= (AN ⊗ C2 ⊗ C
) /

a0 and we must still
quotient by a0. The dg A2-module F(sl2;A2;C2,C), as we have defined it above, is certainly not
free. Recall the notations and calculations in Example 12, and consider the element

X12 := v13v31

w − z1
∧ v23v32

w − z2
− v12v21

z2 − z1
∧ v23v32

w − z2
− v13v31

w − z1
∧ v21v12

z1 − z2
∈ A′

3.

Since by definition [(f ⊗ X12).(m ⊗ |0〉)] = 0 in coinvariants, we find that

(
u(12)(1 − u(12))

(z1 − z2)

)2

[(f .m) ⊗ |0〉] = 0.

On the other hand, by inspection one confirms that the class of du(12)

z1−z2
[(f .m) ⊗ |0〉] is non-zero.

It is also interesting to note the following. Recall from Remark 16 that all we actually require of
the module M1 is that it be smooth over sl2 ⊗A2{{w − z1}}+ = sl2 ⊗A2[[w − z1]] ⊗C[v, dv]. We do
not need to assume, as we did in the main text, that the action of v is by 0. If we wish we can
instead take a different definition of M1 as smooth sl2 ⊗ A2{{w − z1}}+-module, by taking v to
act as u(12) ∈ A2. By inspection, one confirms that when one does that, then the elements X12

and 
12, cf. Example 12, act as zero on M1, and more generally that in fact a0 acts trivially on
M1⊗M2. With those particular choices, then, we expect the dg A2-module of ravioli coinvariants
to be free, ∼= A2 ⊗ M1 ⊗ M2.

6 Main Result
We can now state the main result of the present paper, which says that the state-field map for the
raviolo vacuum module V , as we defined it in §2.6, emerges naturally when one considers appropriate
limits of the spaces of coinvariants introduced in §5.3 above. That is, Theorem 4 above continues to hold
in the raviolo case, mutatis mutandis.

Indeed, let us again specialize to the case in which we insert a copy of the vacuum module at the
N − 1st and Nth marked points, MN−1 = C|0〉 and MN = C|0〉. By identifying local coordinates w − zi in
the complex-algebraic direction, we may identify each of the dg Lie algebras g⊗C{{w − zi}} with a single
copy g ⊗ C{{s}}, and thereby identify their vacuum Verma modules with a single abstract copy of V :

V ∼= Vi := Indg⊗C{{w−zi}}
g⊗C[[w−zi]]

C|0〉.

There is then an evident embedding map of dg vector spaces

Vi ↪→ UAN (g ⊗ AN{{w − zi}}) ⊗UAN
(g⊗AN{{w−zi}}+) (AN|0〉)

coming from the unit map 1 : C ↪→ AN.
At the other sites, we pick arbitrary smooth modules Mi as before. Pick vectors mi ∈ Mi for 1 ≤ i ≤ N−2,

and states A, B ∈ V in this abstract copy of V . On taking coinvariants, we get the class

(31)

Remark 19. One should keep in mind that, despite our attempt to make the notation as similar
as possible to the usual case in (18), this object encodes a lot of information. It is a polynomial
differential form on a simplex of dimension N! −1, whose pullbacks to certain faces of that
simplex encode the behaviour in regimes in which some of the insertion points are ordered in
particular ways in the topological direction whenever they collide in the complex plane. For
example, the pullback to the vertex given by uσ = 1 encodes the behaviour in the regime in
which all the points are so ordered, in the particular total order σ(1) < · · · < σ(N).

The raviolo vacuum module state-field map captures the behaviour of this coinvariant in the limit
in which the Nth marked point becomes close to the (N − 1)st marked point, while remaining marked
points, the vectors m1, . . . , mN−2, and the states A, B are all held fixed.
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30 | L. Alfonsi et al.

Indeed, recall that AN � R�(RavConfN,O) models the dg commutative algebra of derived sections of
the structure sheaf on ravioli configuration space. We have the expansion map

ιzN→zN−1 : AN → AN−1{{zN − zN−1}}

defined in the same way as ιzN+1→zN in §5.1 above.

Theorem 20 (Relation of the raviolo state-field map YRav to coinvariants). For all homogeneous
states A, B ∈ V and vectors mi ∈ Mi, 1 ≤ i ≤ N − 2, we have

where

YRav(−; x) : V → HomdgVect
C
(V , V {{x}})

is the raviolo state-field map defined in §2.6.

Proof. The proof is given in Section 7 below. �

6.1 Worked example
Before we give the proof of Theorem 20 it is instructive to work through a simple example in detail. Let
a ∈ g and consider the state

(
a ⊗ dv

z

)
|0〉 ∈ V

in the vacuum module V . Everything below will hold, mutatis mutandis, with dv replaced by v(1 − v);
cf. the discussion about cochains versus cohomology in §2.6 above.

We are first to identify this abstract copy of V with the local copy associated to the Nth marked point,
by identifying the coordinate z with the local coordinate w − zN at that point. Then we are to insert the
state above into a generic coinvariant with some vectors m1, . . . , mN−2 at (what are about to be) the far
marked points, and some state B ∈ V at (what is about to be) the nearby N−1st marked point. We obtain
a coinvariant we shall call f ,

(32)

Our aim is to now to “swap” the lowering operator onto the other sites. The first step is to identify the
lowering operator a⊗ dv

w−zN
as the expansion at this Nth site of some element of the global dg Lie algebra.

To do that, we apply the map gN of (26) to the element

a ⊗ dv
w − zN

∈ g ⊗ C{{w − zN}}− ↪→ g ⊗ AN{{w − zN}}−.

We have, cf. (25),

q∗
N(v) = ι{N,N+1}⊂[1,N+1](v) =

∑
σ∈SN,N+1

N+1

uσ
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and so we find that

G := gN(a ⊗ dv
w − zN

) = a ⊗
d
∑

σ∈SN,N+1
N+1

uσ

w − zN
∈ g ⊗ A′

N+1

where we have introduced a name, G, for this element. By definition of coinvariants, we have

Here (−)∗ are certain Koszul signs, which we do not write out in full.
We are to take the expansion ιzN→zN−1 f ∈ AN−1{{zN − zN−1}} ⊗ M of this element f ∈ AN ⊗ M. As we shall

discuss in (7.2.1) below, coinvariants are suitably functorial, so that

(33)

Now let us actually compute these expansions of G at the other sites. Recall the definition of the
expansion map, Definition-Proposition 10. For every s ∈ {1, . . . , N − 1} we have

p∗
N+1→s

⎛⎜⎝ ∑
σ∈SN,N+1

N+1

uσ

⎞⎟⎠ = v
∑

σ∈SN,s
N

uσ + (1 − v)
∑

σ∈SN,s
N

uσ =
∑

σ∈SN,s
N

uσ (34)

Thus, in particular, the expansion of G at the (N − 1)st site is given by

ιw→zN−1 G = −
∞∑

k=0

d
∑

σ∈SN,N−1
N

uσ

(zN − zN−1)k+1

(
a ⊗ (w − zN−1)

k
)

.

We are working in dg AN-modules, so that the factor
d
∑

σ∈SN,N−1
N

uσ

(zN−zN−1)k+1 is a scalar. Let us apply the expansion
map ιzN→zN−1 to this scalar prefactor. Note that

p∗
N→N−1

∑
σ∈SN,N−1

N

uσ = (1 − u)
∑

σ∈SN−1

uσ = (1 − u).

Here we write u here rather than v for the coordinate of

C{{zN − zN−1}} := {ω ∈ C((zN − zN−1)) ⊗ C[u, du]

: ω|u=0 ∈ C[[zN − zN−1]] and ω|u=1 ∈ C[[zN − zN−1]]
}

to avoid a clash with the coordinate v of for example, C{{w − zs}}. Note that the above is consistent with
the fact that

∑
σ∈SN,N−1

N
uσ = ι{N−1,N}⊂[1,N](1 − u); see (22) for the definition of ι{N−1,N}⊂[1,N]. We obtain that

ιzN→zN−1

d
∑

σ∈SN,N−1
N

uσ

(zN − zN−1)k+1
= 1

d(1 − u)

(zN − zN−1)k+1
∈ AN−1{{zN − zN−1}}.
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Next let us consider the expansions of g at the far sites. Crucially, for each i ≤ N − 2, the operations
ιzN−zN−1 and ιw→zi commute. This is true for the coefficients in C[zi, w, (zi −zj)

−1, (w−zi)
−1]1≤i,j≤N;i �=j ≡ BN+1

just as in the usual case; and for the forms on the simplex, one checks (similarly to (34)) that on the one
hand

p∗
N→N−1p∗

N+1→i

⎛⎜⎝ ∑
σ∈SN,N+1

N+1

uσ

⎞⎟⎠ =
∑

σ∈SN,i
N

uσ =
∑

σ∈SN−1,i
N−1

uσ

while on the other hand

p∗
N+1→ip

∗
N→N−1

⎛⎜⎝ ∑
σ∈SN,N+1

N+1

uσ

⎞⎟⎠ =
∑

σ∈SN−1,N+1
{1,...,N−1,N+1}

uσ =
∑

σ∈SN−1,i
N−1

uσ .

(We don’t get such agreement when i = N − 1, which is reassuringly consistent with the fact that the
usual expansion maps ιw→zN−1 and ιzN→zN−1 certainly do not commute—indeed this failure is in some
sense at the heart of how vertex algebras work.)

Thus, for each i ≤ N − 2, we have ιzN→zN−1 ιw→zi G = ιw→zi ιzN→zN−1 G and here

ιzN−zN−1 G = +
∞∑

k=0

(zN − zN−1)
k ⊗
(

a ⊗
d
∑

σ∈SN−1,N+1
{1,...,N−1,N+1}

uσ

(w − zN−1)k+1

)
.

We recognize the terms in this expansion as elements of the global Lie algebra, and by definition of
coinvariants we obtain that

(Here we dropped the vacuum state at the Nth site, cf. §7.3 below.)
We recognize the first and second lines here as, respectively, the (−)+ and (−)− parts of the raviolo

mode expansion of the state (a ⊗ dv
w−zN

)|0〉 with which we began, as we defined it in §2.6.

7 Proof of Theorem 20
In this section we prove Theorem 20, namely that the raviolo state-field map YRav from §2.6 emerges
naturally when one considers appropriate limits of the spaces of ravioli coinvariants introduced in §5.3.

To separate concerns, we shall first warm up by rehearsing a proof of the analogous statement in the
usual case, Theorem 4. Our approach is similar to that of [41].

7.1 Proof of Theorem 4
We first need to recall a functoriality property of coinvariants and the property known as propagation
of vacua.

7.1.1 Functoriality of coinvariants
Let us consider certain spaces of coinvariants with N − 1 movable marked points. The construction of
coinvariants in Section 3 of course goes through with N − 1 in place of N, yielding the BN−1-module

F(g;BN−1; M1, . . . , MN−1).

But we may also choose to work over BN, or over BN−1((zN − zN−1)), that is, to allow our coefficient
functions to depend in some prescribed way on the formal variable zN, even though there are now only
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modules assigned to the points z1, . . . , zN−1. More precisely, we may consider the following cospans of
commutative algebras

(35)

—in BN-modules on the left and in BN−1((zN − zN−1))-modules on the right. We obtain corresponding
spaces of coinvariants, which we denote respectively as

F(g;BN; M1, . . . , MN−1) and F(g;BN−1((zN − zN−1)); M1, . . . , MN−1).

Moreover the algebra map

BN → BN−1((zN − zN−1))

given by expanding in small zN − zN−1 for fixed z1, . . . , zN−1 allows us to change base ring, in the sense
that it induces the embeddings of commutative algebras in BN−1-modules shown as horizontal arrows
in the diagram above. Let us use ιbase

change
for that change-of-base map. The diagram above commutes. In

this way, one has the following functoriality property of coinvariants.

Lemma 21 (Base change commutes with taking coinvariants). The following diagram of BN−1-
modules commutes:

Let us stress that in the horizontal maps in (37) above, we are merely performing a change of base
ring. By contrast, we reserve the notation ιzN→zN−1 for the algebra map, which expands in small zN − zN−1

for fixed z1, . . . , zN−1 and w ≡ zN+1. Thus, for example,

ιzN→zN−1 : B′
N+1 → BN−1[w, (w − zj)

−1]1≤j≤N−1((zN − zN−1))

sends the element 1/(w − zN) to its expansion
∑∞

k=0
(zN−zN−1)k

(w−zN−1)k+1 .
One should keep in mind that the Laurent-expansion maps ιw→zN−1 and ιzN→zN−1 do not commute. For

example, they fail to commute when applied to 1/(w − zN). (Indeed, they map from BN+1 into different
rings. In some sense, this fact is central to the notion of vertex algebras: see e.g., the discussion in
[18,§1].) On the other hand, for all i ≤ N−2, the Laurent expansion maps ιw→zi and ιzN→zN−1 do commute.

7.1.2 Propagation of vacua
When MN = C, there is a canonical identification, of BN-modules, between our initial space of
coinvariants with N marked points and one with only N − 1 marked points (The reader will notice that
while the choice MN = C is crucial here, the choice MN−1 = C actually plays no role. And indeed, the
construction goes through more generally, and yields the structure of MN−1 as a module over the vertex
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algebra V.):

F(g;BN; M1, . . . , MN−2,C,C) ∼= BN ⊗ M ∼= F(g;BN; M1, . . . , MN−2,C).

One has, moreover, the following equality

(36)

This property is an example of what is sometimes called propagation of vacua.

7.1.3 Completion of the proof of Theorem 4
The equality in (36) establishes the statement of Theorem 4 in the special case that A = |0〉 is the
vacuum state.

Next we shall show that for all states A ∈ V, the class

has a representative of the form

for some finite sum over i and for certain A(−)

i and A(+)

i belonging to U(g⊗ (w−zN)−1C[(w−zN)−1]). Here,
when we write A(−)

i .(m1 ⊗ . . . ⊗ mN−2), the action is by definition via the embedding

ιfar : g ⊗ (w − zN)−1C[(w − zN)−1] ↪→ g ⊗ (w − zN)−1BN[(w − zN)−1]

↪→
N−2⊕
i=1

g ⊗ BN[[w − zi]].

Call this embedding ιfar. Similarly when we write A(+)

i .B, the action is via the embedding into g⊗BN[[w−
zN−1]], which we shall call ιnear:

ιnear : g ⊗ (w − zN)−1C[(w − zN)−1] ↪→ g ⊗ (w − zN)−1BN[(w − zN)−1]

↪→ g ⊗ BN[[w − zN−1]].

Indeed, we may suppose

A = X1
−k1

· · · Xn
−kn

|0〉

for some number n ∈ Z≥0 of elements Xi ∈ g and mode numbers −ki ∈ Z<0. Here Xk := X ⊗ (w − zN)k.
(Such states A span V as a C-vector space.) By a straightforward induction on n, one checks that

(37)
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where the inner sum is over unshuffles, that is, permutations (μ1, . . . , μm, ν1, . . . , νn−m) of (1, . . . , n) such
that μ1 < · · · < μm and ν1 < · · · < νn−m, and where we write

←−
A μ := Xμm

−kμm
· · · Xμ1

−kμ1
,

←−
A ν := Xνn−m

−kνn−m
· · · Xν1

−kν1
.

Then by propagation of vacua as in (36), we may regard the right-hand side in (37) as an element of
the space of coinvariants F(g;BN; M1, . . . , MN−2,C). The equality in (37) is in BN ⊗ M. We may apply the
change-of-base map ιbase

change
to both sides to obtain the equality

(38)

in BN−1((zN − zN−1)) ⊗ M. In the second step, we used the functoriality of coinvariants, Lemma 21.
It remains to show that this expression is equal to the expression on the right-hand side in the

statement of Theorem 4. The latter is, first and foremost, a formal series in (zN − zN−1)
±1 whose

coefficients belong to the space of coinvariants F(g;BN−1; M1, . . . , MN−2,C) ∼=BN−1 BN−1 ⊗ M:

Smoothness of the module V ensures that for each fixed A, B ∈ V this is in fact a formal Laurent series,
that is, A(k)B = 0 for k � 0. Thus, it certainly belongs in (BN−1 ⊗M)((zN −zN−1)). To show that it is equal to
the expression in (38) we must show that for each k ∈ Z, the coefficients of (zN − zN−1)

k agree. Consider
any term (μ, ν) in the sum in (38). We have

ιbase
change

ιfar
←−
A μ = ιzN→zN−1 ιfar

←−
A μ = ιfarιzN→zN−1

←−
A μ.

Since (ιnear
←−
A ν )B ∈ (zN−zN−1)

−1BN−1[(zN−zN−1)
−1]⊗V, only finitely many terms in the series ιzN→zN−1

←−
A μ

contribute to the overall coefficient of (zN − zN−1)
k. The coefficients of these finitely many terms belong

to U(g⊗BN−1[w, (w − zN−1)
−1]′), and we can swap them over to the module at the marked point zN−1, by

definition of the space of coinvariants. After doing so we obtain

where
−→
A μ := Xμ1

−kμ1
. . . Xμm

−kμm
. Here, we recognize the state-field map Y:

n∑
m=0

(−1)n−m
∑

(μ,ν)∈Unshfn
m

(ιnearιzN→zN−1

−→
A μ)(ιbase

change
ιnear

←−
A ν )B = Y(A, zN − zN−1)B.

(This expression can be checked by induction on n.)
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7.2 Proof of Theorem 20
Now we return to the proof of Theorem 20. Where possible, we shall try to follow the proof above almost
word-for-word.

We begin by establishing a raviolo analogue of the functoriality property of coinvariants, Lemma 21.

7.2.1 Functoriality of raviolo coinvariants
Once again, let us consider certain spaces of coinvariants with N − 1 movable marked points. We
certainly have the dg AN−1-module

F(g;AN−1; M1, . . . , MN−1).

But we may also choose to work over AN, or over AN−1{{zN − zN−1}}. More precisely, we may consider the
following cospans of commutative algebras

(39)

—in dg AN-modules on the left and in dg AN−1{{zN − zN−1}}-modules on the right. Here, the algebras
appearing in the top line are defined in close analogy with the definition of A′

N+1 in §5.1. Namely, we first
let AN{w, (w − zi)

−1}1≤i≤N−1 denote the commutative algebra in dg AN-modules given by the subalgebra
of AN+1 consisting of forms that are regular in w − zN ≡ zN+1 − zN everywhere:

AN{w, (w − zi)
−1}1≤i≤N−1

:= {ω ∈ BN[w, (w − zi)
−1]1≤i≤N−1 ⊗ C[uσ , duσ ]σ∈SN+1

/〈 ∑
σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ 〉

: for all distinct i, j ∈ [1, N + 1] the pullback ω|{uσ =0∀σ∈Sij
N+1}

is regular in zi − zj
}
.

Similarly, we let AN−1{{zN − zN−1}}{w, (w − zi)
−1}1≤i≤N−1 denote the dg commutative algebra given by

AN−1{{zN − zN−1}}{w, (w − zi)
−1}1≤i≤N−1

:= {ω ∈ BN−1((zN − zN−1))[w, (w − zi)
−1]1≤i≤N−1 ⊗ C[v, dv]

⊗ C[uσ , duσ ]σ∈S[1,N−1]∪{N+1}
/〈 ∑

σ∈S[1,N−1]∪{N+1}

uσ − 1,
∑

σ∈S[1,N−1]∪{N+1}

duσ 〉

: for all distinct i, j ∈ [1, N − 1] ∪ {N + 1},
the pullback ω|{uσ =0∀σ∈Sij

[1,N−1]∪{N+1}}
is regular in zi − zj,

and the pullbacks ω|v=0 and ω|v=1 are both regular in zN − zN−1
}
.

It is a commutative algebra in dg AN−1{{zN −zN−1}}-modules, by an argument similar to that in Lemma 8.
We again let prime ′ denote the subalgebras of these algebras consisting of forms ω such that ω → 0

as w → ∞.
We obtain corresponding spaces of coinvariants, which we denote respectively as

F(g;AN; M1, . . . , MN−1) and F(g;AN−1{{zN − zN−1}}; M1, . . . , MN−1).
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Moreover the algebra map

AN → AN−1{{zN − zN−1}}

from §5.1 induces the maps of commutative algebras in dg AN−1-modules shown as horizontal arrows
in the diagram above. At the cost of overloading notation somewhat, let us continue to use ιbase

change
for

that change-of-base map.
The diagram above is then a commuting diagram in the category of commutative algebras in dg

AN−1-modules. In this way, one has the following functoriality property of coinvariants.

Lemma 22 (Base change commutes with taking coinvariants—raviolo case). The following dia-
gram of dg AN−1-modules commutes:

We continue to reserve the notation ιzN→zN−1 for the expansion map, in the sense of §5.1, which
expands in small zN − zN−1 for fixed z1, . . . , zN−1 and w ≡ zN+1.

7.3 Propagation of vacua in the raviolo case
When MN = C is the trivial module, there is an isomorphism, of dg AN-modules, between our initial
space of coinvariants with N marked points and one with only N − 1 marked points:

F(g;AN; M1, . . . , MN−2,C,C) ∼= F(g;AN; M1, . . . , MN−2,C).

One has the equality

(40)

which is the propagation of vacua property in the raviolo case.

7.4 Completion of the proof of Theorem 20
The equality in (40) establishes the statement of Theorem 20 in the special case that A = |0〉 is the
vacuum state.

Next we shall show that for all states A ∈ V in the raviolo vacuum module V , the class

has a representative of the form

for some finite sum over i and for certain A(−)

i and A(+)

i belonging to U(g⊗C{{w−zN}}−). Recall the algebra
map

gN : AN{{w − zN}}− → A′
N+1
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from (26). When we write A(−)

i .(m1 ⊗ . . .⊗mN−2), the action is by definition via the map of dg Lie algebras

ιfar : g ⊗ C{{w − zN}}− ↪→ g ⊗ AN{{w − zN}}−

gN−→ g ⊗ A′
N+1

(ιw→z1 ,...,ιw→zN−2 )−−−−−−−−−−→
N−2⊕
i=1

g ⊗ AN{{w − zi}}+,

which we continue to call ιfar. Similarly when we write A(+)

i .B, the action is by definition via the map of
dg Lie algebras

ιnear : g ⊗ C{{w − zN}}− ↪→ g ⊗ AN{{w − zN}}−
gN−→ g ⊗ A′

N+1

ιw→zN−1−−−−→ g ⊗ AN{{w − zN−1}}+.

Indeed, we may suppose

A = X1 · · · Xn|0〉

for some number n ≥ 0 of elements Xi ∈ g ⊗ C{{w − zN}}−, 1 ≤ i ≤ n. By a straightforward induction on n,
one checks that

(41)

where the inner sum is over unshuffles, as defined above after (37), and where we write

←−
A μ := Xμm · · · Xμ1 ,

←−
A ν := Xνn−m · · · Xν1 .

In the expression above (−1)χ denotes the appropriate Koszul sign coming from the braiding of the
tensor product; it is implicitly a function of the grades of the factors Xi and of the states mj (all of which
without loss of generality we shall assume are homogeneous) and on the unshuffle (μ, ν). We don’t
need to work it out explicitly at this stage—many of the terms will cancel out in the next swapping step
below; in particular the dependence on the |mj| will drop out.

By propagation of vacua as in (40), we may regard the right-hand side in (41) as an element of the
space of coinvariants F(g;AN; M1, . . . , MN−2,C,C). We may apply the change-of-base map ιbase

change
to both

sides to obtain the equality

(42)

In the second step, we used Lemma 22.
The space of coinvariants F(g,AN−1{{zN − zN−1, M1, . . . , MN−2,C,C) is a quotient of the free module

AN−1{{zN − zN−1}} ⊗ M, cf. (29). Consider a representative in that free module. An element of AN−1{{zN −
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zN−1}} ⊗ M is by definition an element of

AN−1((zN − zN−1)) ⊗ C[v, dv] ⊗ M

whose pullbacks to v = 0 and v = 1 are regular in zN −zN−1. So it is a Laurent series in zN −zN−1 (albeit one
obeying certain extra conditions), and thus to specify it it is enough to give the coefficient of (zN −zN−1)

k

for every k ∈ Z. So, let k ∈ Z and consider the coefficient of (zN −zN−1)
k in the expression in (42). Consider

any term (μ, ν) in the sum. We still have (In more detail: it is still the case that ιw→zs and ιzN→zN−1 commute
whenever s ≤ N − 2, where these are now the expansion maps defined as in Definition-Proposition10.
Indeed, one checks that the maps p∗

N+1→s and p∗
N→N−1 (the latter defined by obvious analogy with the

former) commute for all s ≤ N − 2. It is interesting to note also that they do not commute for s = N − 1.)

ιbase
change

ιfar
←−
A μ = ιzN→zN−1 ιfar

←−
A μ = ιfarιzN→zN−1

←−
A μ.

By smoothness of the vacuum module V , we have that

ιnear
←−
A νB ∈ AN−1{{zN − zN−1}}− ⊗ V .

(To stress the point: on grading grounds, at most finitely many terms in the series ιnearX ∈ g ⊗ AN[[w −
zN−1]] are nonzero when acting on B, for any given state B ∈ V and X ∈ g ⊗ C{{w − zN}}. It follows that
there is a lower bound on the powers of zN − zN−1 that appear in ιnear

←−
A νB. This logic is exactly as in the

usual case discussed in §7.1.)
Therefore only finitely many terms in the series ιzN→zN−1

←−
A μ contribute to the overall coefficient of

(zN − zN−1)
k. The coefficients of these finitely many terms belong to U(g ⊗ AN−1{{zN − zN−1}}−), and we

can swap them over to the module at the marked point zN−1, by definition of the space of coinvariants.
After doing so we obtain

where we recognize the expression for the raviolo state-field map YRav from Lemma 1. This completes
the proof of Theorem 20.

Acknowledgments
The authors gratefully acknowledge the financial support of the Leverhulme Trust, Research Project
Grant number RPG-2021-092. The authors thank Leron Borsten and Charles Strickland-Constable for
helpful discussions. C.Y. would like to thank Alexander Schenkel and James Waldron for helpful
discussions.

Appendix A. Semisimplicial Objects and the Thom–Sullivan Functor

A.1 Semisimplicial objects
Let � denote the category whose objects are the finite nonempty totally-ordered sets

[n] := {0 < 1 < · · · < n}, n ∈ Z≥0,

and whose morphisms are the strictly order-preserving maps θ : [n] → [N]. Such maps are generated by
coface maps,

dj : [n] → [n + 1]; i �→
⎧⎨⎩i i < j

i + 1 i ≥ j
for j = 0, 1, . . . , n + 1.
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A semicosimplicial object A in a category C is a functor A : � → C. Similarly, a semisimplicial object Z in a
category C is a functor Z : �op → C. The maps ∂n

i := Z(dn
i ) : Z([n + 1]) → Z([n]) are the face maps of Z. One

thinks of the category � as follows:

and so a semisimplicial object Z in C defines a diagram in C of the form

A.2 Polynomial differential forms on the standard algebro-geometric
simplex
There is a simplicial dg commutative algebra


 : �op → AlgCom
(dgVect

C
)

defined as follows. For each n ≥ 0, 
([n]) is the dg commutative algebra


([n]) := C[t0, . . . , tn; dt0, . . . dtn]
/〈 n∑

i=0

ti − 1,
n∑

i=0

dti〉

with ti in degree 0 and dti in degree 1, for each i, and equipped with the usual de Rham differential. For
any map φ : [n] → [N] of �,


(φ) : 
([N]) → 
([n])

is the map of dg commutative algebras defined by ti �→ ∑j∈φ−1(i) tj. One should think of 
([n]) as the
complex of polynomial differential forms on the standard algebro-geometric n-simplex,

�n
C

:= SpecC[t0, . . . , tn]/〈
n∑

i=0

ti − 1〉 ↪→ An+1
C

.

A.3 The functor Th
Suppose we are given a functor A : � → AlgCom

(VectC); that is, suppose we are given a semicosimplicial
object in commutative algebras in vector spaces. One can construct a commutative algebra in dg vector
spaces, given by the graded vector space

Th•
(A) :=

{
a = (an)n≥0 ∈

∏
n≥0

A([n]) ⊗ 
•([n]) :

(
A(φ) ⊗ id⊗) an = (id ⊗ 
(φ)

)
am in 
([n]) ⊗ A([m])

for all maps φ : [n] → [m] of �

}
, (A.1)

equipped with the de Rham differential d = dde Rham ⊗ id and the graded commutative product given by
(ω⊗a)(τ ⊗b) := ω∧τ ⊗ab. This defines the action on objects of a functor, called the Thom–Sullivan [30] or
Thom–Whitney [22] functor, from semicosimplicial commutative algebras to dg commutative algebras,

Th : [�, AlgCom
(VectC)] → AlgCom

(dgVect
C
).

There is a quasi-isomorphism of dg vector spaces
∫

: Th•
(A)

∼−→ C•(A) to the unnormalized cochain
complex C•(A) associated A, namely the complex with Cn(A) := A([n]) for n ≥ 0, Cn(A) = 0 for n < 0, and
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differential dn
C :=∑n+1

j=0 (−1)jdj. (This quasi-isomorphism is defined by integrating over the simplices; see
[30,§5.2.6].)

(By suitably totalizing, the definition Th• extends to a functor from semicosimplicial dg commutative
algebras to dg commutative algebras, which is how Th• is more commonly presented; but the semi-
cosimplicial commutative algebras we encounter in the present paper are all concentrated in degree 0,
so (A.1) suffices for our purposes.)
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