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1 Introduction

In recent years positive geometries [1] have become an established tool in the computation
of physical observables. This approach has seen most progress in the study of scattering
amplitudes, where the main effort has been made for three theories in particular: planar
maximally supersymmetric N = 4 super-Yang-Mills (sYM) in four dimensions [2], ABJM in
three dimensions [3] and scalar ϕ3 in any dimension [4], with recent advances in more realistic
theories including non-linear sigma models and pure Yang-Mills theory [5, 6]. This paper
focuses on planar N = 4 sYM for which the known positive geometries provide tree-level
amplitudes and loop-level integrands. The set up of the positive geometry framework strongly
depends on the kinematic space in which it is defined, and for N = 4 sYM there have been
two natural kinematic spaces which have played a dominant role in recent years. One is
momentum twistor space, which provides a natural description of Wilson loops in N = 4
sYM, which are known to be dual to scattering amplitudes in the planar limit. The positive
geometry in momentum twistor space is the amplituhedron [2], which provided the starting
point for the development of many ideas in the field. Alternatively, one can use spinor helicity
space, in which the momentum amplituhedron is defined [7, 8]. More recently, the latter has
been directly translated to the four-dimensional dual momentum space with (2, 2) signature.
In particular, it was shown in [9] that integrands can be obtained as canonical differential
forms of curvy versions of simple polytopes that are defined using the null structure of R2,2,
see also [10] for a parallel development in ABJM theory. This leads to the triality between
kinematic spaces and their corresponding positive geometries illustrated in figure 1.
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Null-cone geometries

Figure 1. Triality of kinematic spaces: spinor helicity space, momentum twistor space and dual
momentum space; and the corresponding positive geometries.

The dual momentum space approach adopted in this paper focuses on the loop integrands
of N(k−2)MHVn amplitudes in planar N = 4 sYM. To each fixed configuration of momenta
in the scattering process, one associates a null polygon, with the scattering momenta given
by differences of its consecutive vertices. Then for each such polygon one defines a one-loop
fiber as the set of points positively separated from each vertex of the polygon, together
with a sign flip condition. For each null polygon, the so defined space turns out to be a
compact region in R2,2, with vertices including the corners of the null polygon, together with
a collection of quadruple intersections of null-cones. For MHV integrands, the one-loop fiber
is combinatorially equivalent for all admissible null polygons. Beyond MHV, the structure of
the one-loop fiber will depend upon the null polygon which is chosen, however, there exists
a finite number of combinatorially inequivalent one-loop fibers. The tree-level regions for
which the one-loop fibers are combinatorially equivalent were referred to as chambers in [9],
which we now refer to as tree-level chambers, and they allow for the one-loop geometry to be
decomposed as a fibration over tree-level, as illustrated in figure 2. Importantly, this allows
one to write the canonical form for the one-loop integrand [11] in a factorised way:

Ωn,k,1 =
∑

i

Ω[tree-level chamberi] ∧ Ω[one-loop fiberi], (1.1)

where the sum runs over all tree-level chambers for a given number of particles n and helicity k.
It is important to note that for MHV integrands, namely k = 2, which will be the focus of this
paper, there is a single tree-level chamber and hence the above sum collapses to a single term

Ωn,2,1 = Ωn,2,0 ∧ Ω[one-loop fiber]. (1.2)

The goal of this paper is to extend the idea of fibrations to the two-loop problem
where we focus on the case of MHV integrands. From the definition provided in [9], the
two-loop geometry comprises of all pairs of points (y1, y2) both inside the one-loop fiber, and
additionally constrained to be positively separated. In contrast to [3] we will not fibrate
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Figure 2. One-loop geometry as a fibration over tree level. The red outlined shape indicates the
tree-level geometry which is divided into tree-level chambers. Over each point in the tree-level geometry,
there is a one-loop fiber geometry whose combinatorial structure is constant inside each chamber.

n 4 5 6 7 8
# one-loop chambers 1 11 66 302 1191

Table 1. Number of one-loop chambers for MHV amplitudes.

the two-loop geometry over the tree-level. Instead, we choose to work recursively by loop
order, an approach we refer to as a fibration of fibration. To achieve this we first fix the
tree-level configuration given by a null polygon with vertices xa, a = 1, . . . , n, and then
for a fixed point y1 inside the one-loop fiber, we study the set of points y2, also inside the
one-loop fiber, which are positively separated from y1. We refer to this set of points as the
two-loop fiber geometry with respect to xa and y1. It is then a simple matter to extend the
notion of chambers to loop level by defining one-loop chambers to be the set of all points
y1 inside the one-loop fiber for which the corresponding two-loop fibers are combinatorially
equivalent. This decomposition of the one-loop fiber will allow us to produce new formulae for
the one-loop MHV integrands written as a sum over one-loop chambers, and will ultimately
lead to a factorised form for the two-loop MHV integrand [12–14] as

Ωn,2,2 = Ωn,2,0 ∧
∑

i

Ω [one-loop chamberi] ∧ Ω [two-loop fiberi] . (1.3)

Interestingly, for MHV the one-loop chambers that we find are in one-to-one corre-
spondence to the chambers found in [15] for the toy version of the amplituhedron An,2,2.
In particular, the number of one-loop chambers for the MHVn integrand are the Eulerian
numbers E3,n−1 listed in table 1. Using the results of [15] we will show how the one-loop
chambers are characterised by the signs of the distances of y1 to each vertex of the one-loop
fiber, and demonstrate how this information can be encoded simply by a permutation. We
will go a step further and compute the canonical forms of the one-loop chambers and their
corresponding two-loop fibers and show how they can be written as a sum over their vertices
making them into curvy versions of simple polytopes.
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The paper is organised as follows. In section 2 we set up the problem of studying the
momentum amplituhedron in dual momentum space. In section 3 we move on to discuss the
one-loop geometry and review the notion of tree-level chambers and one-loop fibers which
are needed to understand the one-loop integrand as a fibration over tree-level. Section 4
contains the main results of the paper. It is here we will introduce the concept of fibrations of
fibrations together with the notion of one-loop chambers and two-loop fibers. We show how
the canonical forms of both chambers and fibers can be written as a sum over vertices and
provide concrete examples by working out the five-point case in full detail. By making use of
the results of [15] it will be possible to determine the full set of one-loop chambers for all MHV
integrands, allowing us to extend the five-point results to arbitrary n. The main result will be
the two-loop MHV integrand written explicitly in the fibration of fibration form (4.2). Finally,
we conclude with a discussion of our results and future research directions in section 5.

2 Tree-level

We start by recalling basic notions associated to the split-signature space R2,2 and explain
how to describe the four-dimensional scattering kinematics relevant for planar theories.

2.1 Kinematics

To describe scattering processes in planar N = 4 sYM, we will use the framework of positive
geometries and therefore consider the scattering data to be in the split-signature space R2,2,
where we take the signature to be (+, +,−,−). The scattering data for n-particle massless
scattering is encoded by a set of n four-dimensional momenta pµ

a , where a = 1, . . . , n and
µ = 1, . . . , 4, subject to the on-shell condition p2

a = 0 and momentum conservation
n∑

a=1
pµ

a = 0 . (2.1)

In the planar theory, this data can be equivalently encoded using dual momentum coordinates
xµ

a defined as

pµ
a = xµ

a+1 − xµ
a , (2.2)

with the xa subject to the periodic boundary condition xn+1 ≡ x1. Two points xµ, yµ ∈ R2,2

are null separated if

(x − y)2 := (x1 − y1)2 + (x2 − y2)2 − (x3 − y3)2 − (x4 − y4)2 = 0, (2.3)

otherwise they are positively separated if (x − y)2 > 0, and they are negatively separated if
(x − y)2 < 0. The collection of dual momenta xa associated to a scattering process defines a
null polygon in R2,2, where consecutive points xa and xa+1 are null-separated. We denote
the space of all null polygons in R2,2 with n vertices by Pn, and label each null polygon by
the coordinates of its vertices x := (x1, x2, . . . , xn) ∈ Pn. Note that the definition of the dual
coordinates (2.2) is invariant under shifts of the xa by an arbitrary constant vector and for
convenience we can choose x1 = 0. This allows us to invert relation (2.2) to get

xµ
b =

b−1∑
a=1

pµ
a . (2.4)

– 4 –
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In the following we will be interested in the situation where all x’s are positively or null
separated. A generic set of four such dual momenta, xa, xb, xc, xd for some a, b, c, d = 1, . . . , n,
defines two points q±abcd that are null-separated from all four of them:

(q±abcd − xa)2 = (q±abcd − xb)2 = (q±abcd − xc)2 = (q±abcd − xd)2 = 0, (2.5)

where the two solutions are distinguished by the sign of the determinant

ϵabcd(q) = 1 1 1 1 1
xµ

a xµ
b xµ

c xµ
d qµ , (2.6)

where sgn(ϵabcd(q±abcd)) = ±1. In the following, we will refer to setting a distance between
two points to zero, i.e. (y1 − y2)2 = 0, as cutting a propagator. Then, the points q±abcd

correspond to the maximal cut solutions in four dimensions, i.e. quadruple-cut points, and
will play an important role in the following as they are the vertices of the one-loop fibers
defined in the next section.

Additionally, the on-shell condition p2
a = 0 can be resolved by introducing spinor helicity

variables and writing

pαα̇ =
(

p0 + p2 p1 + p3

−p1 + p3 p0 − p2

)
= λαλ̃α̇ , (2.7)

where α = 1, 2, α̇ = 1, 2, and λ, λ̃ are real variables defined up to little group rescaling
λ → tλ, λ̃ → t−1λ̃ for t ∈ R. Then, each scattering process is determined by a pair of
2 × n matrices (λ, λ̃) that, due to momentum conservation (2.1), are orthogonal to each
other λλ̃T = 0. We denote the space of all such pairs (λ, λ̃) by Kn. In the following we
will make use of the familiar spinor brackets

⟨ab⟩ = λ1
aλ2

b − λ2
aλ1

b , [ab] = λ̃1
aλ̃2

b − λ̃2
aλ̃1

b , (2.8)

and Mandelstam variables

sa1,a2,...,ar = (pa1 + pa2 + . . . par )2 . (2.9)

In the planar theory, we are mostly interested in the case when the indices of the Mandelstam
variables are consecutive. One can write these planar Mandelstam variables as distances
between points in dual momentum space

sa,a+1,...,b−1 = (xa − xb)2 . (2.10)

2.2 Tree-level momentum amplituhedron in dual momentum space

The relations (2.4) and (2.7) provide a map from spinor helicity kinematic space Kn to the
space of null polygons in dual momentum space Pn:

Kn ∋ (λ, λ̃) 7→ x(λ,λ̃) ∈ Pn. (2.11)

Following [9], we will only be interested in a particular subset of null polygons, namely those
which correspond to the images of points (λ, λ̃) inside the tree-level momentum amplituhedron
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Mn,k,0. The null polygons that are images of (λ, λ̃) ∈ Mn,k,0, for k = 2, 3, . . . , n− 2, through
the map (2.11) are relevant for the N(k−2)MHVn amplitude, and we will denote the set of
such null polygons by Pn,k. An alternative characterisation of Pn,k is given by the following:
for fixed (λ, λ̃) ∈ Kn such that

• all consecutive brackets of λ are positive ⟨aa + 1⟩ > 0,

• and the sequences of brackets

{⟨a a + 1⟩, ⟨a a + 2⟩, . . . , ⟨a a − 1⟩},

have k − 2 sign flips for all a = 1, . . . , n,

a null polygon x(λ,λ̃) is inside Pn,k if its vertices satisfy the following conditions:

• all non-consecutive vertices of x(λ,λ̃) are positively separated

(xa − xb)2 > 0 for all |a − b| > 1, (2.12)

• and the sequences of distances

{⟨a+1 a+2⟩(xa−ℓ∗a+1 a+2)2, ⟨a+1 a+3⟩(xa−ℓ∗a+1 a+3)2, . . . , ⟨a+1 a−2⟩(xa−ℓ∗a+1 a−2)2},

have k − 2 sign flips for all a = 1, . . . , n, where we have definedℓ∗ab = q+
aa+1bb+1, |a − b| > 1,

ℓ∗aa+1 = xa+1 .
(2.13)

We pick up a factor of (−1)k−1 for ⟨a b⟩ when b > n due to the twisted cyclic symmetry,
see [16] for details.

The latter characterisation allows one to generate points in Pn,k without referring back to
the definition of the momentum amplituhedron.

For fixed n and k the set Pn,k forms an infinite family of null polygons. However, the
null polygons in Pn,k can be organised into equivalence classes which were referred to as
chambers [9], but which we now refer to as tree-level chambers. The tree-level chambers
can be characterised by the condition that their one-loop fiber geometries, whose definition
we will turn to in the next section, are combinatorially equivalent. Importantly, for MHV
amplitudes, all null polygons in Pn,2 belong to the same equivalence class, and therefore there
exists only one tree-level chamber in this case. This means that there is a unique one-loop
fiber geometry, whose combinatorial structure can be easily found for all n.

3 One-loop review

In this section we revisit the results of [9] for the one-loop integrand. We begin by defining
the one-loop fiber, and list the full set of quadruple-cut points which appear as vertices
of the one-loop fiber for MHV. With the set of vertices at hand, it is simple to write the
corresponding canonical form as a sum over vertices.

– 6 –
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3.1 One-loop geometry

The loop momentum amplituhedron Mn,k,L was defined in [8]: each point in Mn,k,L is
specified by a point (λ, λ̃) in the tree-level momentum amplituhedron Mn,k,0, together with
a collection of L loop momenta ℓi. The canonical form of the loop momentum amplituhedron
Ω[Mn,k,L] conjecturally encodes the L-loop integrand of planar N = 4 sYM. When translated
to the dual momentum space, as in [9], the loop momentum amplituhedron is specified by
points (λ, x), where x is a null polygon x ∈ Pn,k, together with a collection of loop dual
momenta yi, for i = 1, . . . , L, satisfying additional positivity conditions. We will denote the
set of all (λ, x, y1, . . . , yL) corresponding to points in the loop momentum amplituhedron by
M̃n,k,L and its canonical differential form by Ωn,k,L = Ω

[
M̃n,k,L

]
.

Let us focus on the one-loop momentum amplituhedron Mn,k,1, which consists of points
(λ, λ̃, y), where (λ, λ̃) ∈ Mn,k,0. The spinor helicity variables (λ, λ̃) define a null-polygon
x ≡ x(λ,λ̃) through equation (2.11), and y is required to satisfy that

• the distances between y and all vertices xa of the null polygon are non-negative

(y − xa)2 ≥ 0 for all a = 1, . . . , n , (3.1)

• the sequences

{⟨a a + 1⟩(y − ℓ∗a a+1)2, ⟨a a + 2⟩(y − ℓ∗a a+2)2, . . . , ⟨a a + n − 1⟩(y − ℓ∗a a+n−1)2} , (3.2)

have k sign flips for all a = 1, . . . , n.

The notion of one-loop fiber arises from considering a projection map from M̃n,k,1 to M̃n,k,0
which sends (λ, x, y) 7→ (λ, x). The fiber attached to a point (λ, x) ∈ M̃n,k,0 is the preimage
of this projection map. It consists of all the points y ∈ R2,2 which satisfy the above positivity
and sign-flip definition for fixed (λ, x). We denote this one-loop fiber as ∆(x) (or ∆n,k(x)
if we want to keep track of n and k explicitly). In other words, we associate to a fixed
null polygon x ∈ Pn,k, a subset ∆(x) ⊂ R2,2. It is clear that the one-loop fiber encodes
the loop-level structure whereas M̃n,k,0 encodes the tree-level structure. This thus gives
an interpretation of the loop momentum amplituhedron as a fibration over the tree-level
momentum amplituhedron in the dual momentum space.

It was argued in [9] that the one-loop fiber ∆(x) is a compact region of R2,2 with facets
given by (y − xa)2 = 0, a = 1, 2, . . . , n, i.e. it is ‘cut out’ by the null-cones centered at the
points xa. For this reason we will often refer to the fiber geometry as a null-cone geometry.
Furthermore, ∆(x) is a curvy version of a simple polytope in four dimensions, since all vertices
of ∆(x) have exactly four incident edges. Moreover, the boundary stratification of ∆(x) can
be directly related to familiar notions from the scattering process. The facets (y − xa)2 = 0
correspond to forward limits, and lower-dimensional boundaries correspond to cutting the
integrand multiple times. In particular, the vertices of ∆(x) correspond to a subset of
maximal cuts of the one-loop integrand which can be split into two groups:

• Composite cuts correspond to the vertices xa defining the null-polygon. They are the
solutions to cutting three consecutive propagators

(y − xa−1)2 = (y − xa)2 = (y − xa+1)2 = 0 , (3.3)

– 7 –
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together with the vanishing of the Jacobian for these equations

Jac(y−xa−1)2=(y−xa)2=(y−xa+1)2 = 0 . (3.4)

• Quadruple-cut points q±abcd ∈ R2,2 are the two solutions to the quadruple-cut conditions

(y − xa)2 = (y − xb)2 = (y − xc)2 = (y − xd)2 = 0 . (3.5)

For a fixed null-polygon x it is straightforward to determine which vertices are inside the
one-loop fiber ∆(x), as it is sufficient to check the positivity conditions (3.1) and the sign-flip
conditions (3.2) for each of the quadruple-cut solutions q±abcd. Some care must be taken when
counting sign flips, however, since the quadruple-cut points are defined to be null separated
to four of the xa. Therefore, some entries in the sequence (3.2) will be zero. To remedy this,
we simply consider a slight deviation from the point q±abcd. Effectively, this replaces the zeroes
in the sign-flip sequence by either ±1. If there exists a replacement which satisfies the correct
number of sign flips, then the point q±abcd is a vertex of the one-loop fiber geometry.

For MHV amplitudes, which are the main interest of this paper, one finds that for all
null-polygons x ∈ Pn,2 the quadruple-cut points that are vertices of ∆(x) are ℓ∗ab = q+

aa+1bb+1
for |a − b| > 1, and all other quadruple-cut points sit outside.

3.2 Canonical forms for one-loop fibers

As explained in [9], to write down the canonical differential form of the one-loop fiber ∆(x),
it is sufficient to find all quadruple-cut points q±abcd that are inside. This originates from the
fact that the one-loop fibers are curvy versions of simple polytopes. Each vertex q±abcd inside
∆(x) contributes to its canonical form the following expression

ω±
abcd = 1

2(ω□
abcd ± ωabcd), (3.6)

where the box integrand is defined as

ω□
abcd =±dlog (y−xa)2

(y−q±abcd)2 ∧dlog (y−xb)2

(y−q±abcd)2 ∧dlog (y−xc)2

(y−q±abcd)2 ∧dlog (y−xd)2

(y−q±abcd)2 , (3.7)

= 4∆(xa−xc)2(xb−xd)2d4y

(y−xa)2(y−xb)2(y−xc)2(y−xd)2 , ∆=
√

(1−u−v)2−4uv, (3.8)

where we use the standard cross-ratios u = (xa−xb)2(xc−xd)2

(xa−xc)2(xb−xd)2 , v = (xa−xd)2(xc−xc)2

(xa−xc)2(xb−xd)2 , and

ωabcd = d log(y − xa)2 ∧ d log(y − xb)2 ∧ d log(y − xc)2 ∧ d log(y − xd)2. (3.9)

By construction, the form ω±
abcd has the desired property of having non-zero residue on only

one of the quadruple-cut points q±abcd with the corresponding residues given by

Res
y=q±

abcd

ω±
abcd = ±1 , Res

y=q±
abcd

ω∓
abcd = 0 . (3.10)

Importantly, the vertices q±abcd are not the only locations where the forms ω±
abcd have non-

vanishing residues. Any form with at least two consecutive indices ω±
aa+1b1b2

has a non-zero

– 8 –
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composite residue when taking (y−xa)2 = (y−xa+1)2 = (y−xbp)2 = 0 together with cutting
the corresponding Jacobian. In particular, the forms with three consecutive indices ω±

a−1aa+1b

have a composite residue at the point xa which evaluates to

Res
x=xa

ω±
a−1aa+1b = 1

2 . (3.11)

The one-loop fiber ∆(x) always contains exactly one vertex of the form q+
a−1aa+1b and one

vertex of the form q−a−1aa+1c for all a = 1, . . . , n, from which follows that the canonical form
of ∆(x) has unit residue at each of the vertices xa.

With these definitions for ω±
abcd, the canonical form for the one-loop fiber can be written

as a sum over the set of all quadruple-cut points V(∆(x)) inside ∆(x)

Ω [∆(x)] =
∑

q±
abcd

∈V(∆(x))

sgn±
abcd ω±

abcd , (3.12)

where the signs sgn±
abcd are fixed by demanding projective invariance of Ω [∆(x)] under the

following rescaling:

(y − p)2 → Λ(y)(y − p)2 , (3.13)

for all vertices p of ∆(x). If we fix the ordering of (a, b, c, d) to follow the standard ordering
on 1, 2, . . . , n, then we find sgnabcd = 1 for all q±abcd.

For MHV amplitudes, the canonical form of ∆(x) can be written very explicitly since
the only quadruple-cut points inside ∆(x) are ℓ∗ab = q+

aa+1bb+1 for |a − b| > 1. This allows us
to write the canonical form of the full one-loop MHV momentum amplituhedron as

Ωn,2,1 = Ωn,2,0 ∧ Ω[∆n,2] , (3.14)

where the canonical form of the one-loop fiber is given by

Ω[∆n,2] =
∑

|a−b|>1
ω+

aa+1bb+1 , (3.15)

and the distance |a − b| is taken with cyclic boundary conditions.

4 Two loops

In this section we move on to study the two-loop MHV integrands for which the extension of
the formalism from the previous sections will lead to new formulae based on geometry. We
begin by introducing a conceptual framework we refer to as fibrations of fibrations. The main
idea in this approach is to view the two-loop geometry as an iterated fibration over both the
tree-level kinematics given by a null polygon x and the position of the loop momentum y1
within the one-loop fiber ∆(x). As we shall see this will lead to a natural decomposition of
the one-loop fiber into one-loop chambers. The significance of the one-loop chambers is that
their corresponding two-loop fibers, to be defined in the next section, are combinatorially
equivalent. Ultimately, this will lead to a factorised form for the two-loop MHV integrand
analogous to that of (3.14).
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Having introduced the idea of fibrations of fibrations we demonstrate how it works in
practice for the five-point example which is simple enough to be presented in full detail.
Following this we present a full classification of one-loop chambers for general n. By making
use of the results of [15], we show how each chamber is characterised by the signs of the
distances (y1 − ℓ∗ab)2, and how this information can be succinctly encoded by a permutation.
We then move on to discuss how to compute the canonical forms for both the one-loop
chambers and their corresponding two-loop fibers as a sum over vertices. The main result
will be the two-loop MHV integrand written explicitly in the fibration of fibration form (4.2).

4.1 Fibration of fibration

At one-loop the key insight of [9] was that splitting the space of null polygons Pn,k into
tree-level chambers leads to an expression for the one-loop integrand (1.1) where each term
takes a factorised form. We now wish to show how this can be extended to two-loops for
all MHV integrands.

At two loops the momentum amplituhedron M̃n,k,2 is parametrised by a null polygon
x ∈ Pn,2, and by two loop momenta y1 and y2, both constrained to the one-loop fiber ∆(x),
with the additional mutual positivity condition (y1 − y2)2 ≥ 0. We begin by fixing the null
polygon x together with y1 ∈ ∆(x) and define the two-loop fiber ∆(x, y1) to be:

∆(x, y1) := {y ∈ ∆(x) | (y − y1)2 ≥ 0}. (4.1)

The combinatorial structure of ∆(x, y1) will differ as we vary y1 ∈ ∆(x) and, in analogy to
the situation at one loop, we wish to consider the equivalence classes of points for which the
combinatorial structure of ∆(x, y1) remains unchanged. We refer to these equivalence classes
as one-loop chambers which we label as c

{i}
n,2, where the superscript indicates the one-loop

chamber in which the first loop momentum y1 resides. This will allow us to write the two-loop
MHV integrand in the form of a fibration of fibration as

Ωn,2,2 = Ωn,2,0 ∧
∑

i

Ω
[
c
{i}
n,2

]
∧ Ω

[
∆{i}

n,2

]
, (4.2)

where ∆{i}
n,2 = ∆(x, y1) is the two-loop fiber geometry for y1 ∈ c

{i}
n,2. Here the sum is over all

one-loop chambers and the last factor is the canonical form for the corresponding two-loop
fiber. Remarkably, as we will see in the coming sections, the two-loop fibers for MHV
amplitudes are again curvy versions of simple polytopes, and as such their canonical forms
can be calculated via a sum over their vertices

Ω
[
∆{i}

n,2

]
=

∑
v∈V{i}

n,2

ωv, (4.3)

where here we have defined V{i}
n,2 to be the vertex set of ∆{i}

n,2.

4.2 Warm-up example

To make the discussion of the previous section more concrete we begin by providing exhaustive
details for the two-loop five-point MHV amplitude. As is the case for all MHV amplitudes,
there is only one tree-level chamber, meaning that for all possible null polygons x ∈ P5,2
the one-loop fiber geometry ∆(x) has the same combinatorial structure. As explained in [9],
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x1

x5

x4 x3

x2

q+
1234

q+
2345

q−1345

q+
1245 q−1235

134

245

135124

235

125+125−

123+

123−

234+

234−345+

345−

145+

145−

Figure 3. One-skeleton of the one-loop fiber geometry for the five-point MHV amplitude. The edges
correspond to triple-cut solutions and are therefore labelled by triples abc, with a, b, c = 1, . . . , n.

the one-loop fiber geometry for n = 5 has 10 vertices: five vertices of the null polygon xa,
a = 1, . . . , 5, together with five quadruple-cut points:

{q+
1234, q+

2345, q+
3451, q+

4512, q+
5123}. (4.4)

The one-skeleton of this one-loop fiber geometry containing all vertices and edges of the
geometry is depicted in figure 3.

To study the two-loop geometry, we take a fixed null polygon x ∈ P5,2, and we fix
y1 ∈ ∆(x). The two-loop fiber geometry ∆(x, y1) is defined as all points in ∆(x) that are
additionally positively separated from y1. By explicit computation, for example by sampling
random points y1 ∈ ∆(x), one finds 11 combinatorially inequivalent two-loop fiber geometries,
each of which define a one-loop chamber c

{i}
5,2 for i = 1, . . . , 11. These 11 chambers are disjoint

and they subdivide the one-loop fiber geometry ∆(x) into smaller regions and each region is
specified by a set of inequalities. It is straightforward to identify the inequalities which define
a given chamber as they are governed by the signs of the distances from y1 to the one-loop
geometry quadruple-cut points (4.4). Not all possible combinations of signs are realised for
points inside ∆(x), and it is easy to check that the allowed combinations are those given in
table 2. In this case the 11 chambers and their adjacency can be illustrated1 as in figure 4.

1The fact that all chambers can be depicted and labelled as in figure 4 is only possible for n = 5, since in
this case, the one-loop chamber decomposition is dual to the chamber decomposition of a convex pentagon.
Such duality however does not generalise to higher n.
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c
{1}
5,2 c

{2}
5,2 c

{3}
5,2 c

{4}
5,2 c

{5}
5,2 c

{6}
5,2 c

{7}
5,2 c

{8}
5,2 c

{9}
5,2 c

{10}
5,2 c

{11}
5,2

ℓ∗
13 = q+

1234 + − − − + + − − − − −
ℓ∗

24 = q+
2345 + + − − − − + − − − −

ℓ∗
35 = q+

3451 − + + − − − − + − − −
ℓ∗

14 = q+
4512 − − + + − − − − + − −

ℓ∗
25 = q+

5123 − − − + + − − − − + −

Table 2. The collections of signs of distances (y1 − v)2 to the quadruple-cut points v ∈
{q+

1234, q+
2345, q+

3451, q+
4512, q+

5123} for all one-loop chambers for n = 5, k = 2.

1

5

4 3

2

c
{11}
5,2

c
{10}
5,2

c
{9}
5,2

c
{8}
5,2 c

{7}
5,2

c
{6}
5,2

c
{3}
5,2

c
{2}
5,2

c
{1}
5,2

c
{5}
5,2c

{4}
5,2

Figure 4. One-loop chambers for the five-point MHV amplitude. Each chord (a, b) divides the
pentagon into a triangle and a quadrilateral, which correspond to the regions of ∆5,2 for which
(y − ℓ∗

ab)2 > 0 and (y − ℓ∗
ab)2 < 0, respectively.

As illustrated by table 2, the one-loop chambers can be divided into three cyclic classes,
and the one-loop geometry is the union of all chambers

∆(x) =
(
c
{1}
5,2 ∪ . . . ∪ c

{5}
5,2

)
∪
(
c
{6}
5,2 ∪ . . . ∪ c

{10}
5,2

)
∪
(
c
{11}
5,2

)
. (4.5)

For each one-loop chamber c{i}
5,2 for i = 1, . . . , 11, one can study the second loop fiber geometry

∆{i}
5,2 , and in particular find all of its vertices. The vertices of any two-loop fiber geometry

form a subset of the following points:

• vertices of the null polygon xa,

• quadruple-cut points involving four vertices of the null polygon: q+
aa+1bb+1,

• quadruple-cut points involving three vertices of the null polygon and y1: q±aa+1by1
.

– 12 –



J
H
E
P
0
2
(
2
0
2
5
)
0
4
4

From explicit calculations in each chamber, we find that the vertex sets are:

V{1}
5,2 = {xa, q+

1234, q+
2345, q−123y1 , q+

125y1 , q−125y1 , q+
145y1 , q−145y1 , q+

345y1 , q−245y1 , q+
235y1 , q+

124y1 , q−134y1} ,

V{6}
5,2 = {xa, q+

1234, q−123y1 , q+
125y1 , q−125y1 , q+

145y1 , q−145y1 , q+
345y1 , q−345y1 , q+

234y1 , q+
124y1 , q−134y1} ,

V{11}
5,2 = {xa, q+

123y1 , q−123y1 , q+
125y1 , q−125y1 , q+

145y1 , q−145y1 , q+
345y1 , q−345y1 , q+

234y1 , q−234y1} , (4.6)

with the remaining chambers obtained by cyclic rotation of labels. Moreover, every vertex
is adjacent to exactly four edges, making the two-loop fiber geometry a curvy version of
a simple polytope.

Following the same logic we applied to the one-loop problem, we can find the explicit
formula for the canonical form of the two-loop fiber geometry, which after summing over
all chambers gives the following expression for the two-loop integrand:

Ω5,2,2 = Ω5,2,0 ∧
11∑

i=1

(
Ω[c{i}

5,2 ] ∧ Ω[∆{i}
5,2 ]
)

. (4.7)

Using (4.6), the three cyclic types of chambers contribute

Ω[∆{1}
5,2 ] = ω2

145y1 +ω2
125y1 +ω−

123y1 +ω+
345y1 +ω+

1234+ω+
124y1 +ω−

134y1 +ω+
2345+ω−

245y1 +ω+
235y1 ,

Ω[∆{6}
5,2 ] = ω2

145y1 +ω2
125y1 +ω−

123y1 +ω+
234y1 +ω2

345y1 +ω+
1234+ω+

124y1 +ω−
134y1 ,

Ω[∆{11}
5,2 ] = ω2

145y1 +ω2
125y1 +ω2

123y1 +ω2
234y1 +ω2

345y1 , (4.8)

where we recall that ω2
abcd = ω+

abcd + ω−
abcd, and the formulae for the remaining eight chambers

can be obtained by cyclic rotation of labels. Notice that all signs in front of the differ-
ential forms are positive. Understanding the structure of the above answer will lead to a
straightforward generalisation to all MHVn two-loop amplitudes. Interestingly, there exists
an alternative expression for the canonical forms of the two-loop fiber geometries as a sum
over box and chiral pentagon differential forms ωaa+1bb+1x defined as

ωaa+1bb+1x =
4sab(y − q−aa+1bb+1)2(x − q+

aa+1bb+1)2

(y − xa)2(y − xa+1)2(y − xb)2(y − xb+1)2(y − x)2 d4y , (4.9)

where xµ is an arbitrary point in dual-momentum space. We can relate the chiral pentagon
to the non-chiral pentagon and box differential forms via

ωaa+1bb+1x = 1
2
(
ωaa+1bb+1x ± ω2

aa+1bb+1 ± ω2
aa+1bx ± ω2

aa+1b+1x ± ω2
bb+1ax ± ω2

bb+1a+1x

)
,

(4.10)

where the non-chiral pentagon is given by

ωabcde = ωabcd − ωabce + ωabde − ωacde + ωbcde , (4.11)

and the signs in front of box differential forms depend on x. The latter originates from the
fact that when any two indices of the box differential form are consecutive, namely any two
points are null separated, then the box differential form simplifies to

ω2
aa+1bc = 4 |(xa − xb)2(xa+1 − xc)2 − (xa − xc)2(xa+1 − xb)2|

(y − xa)2(y − xa+1)2(y − xb)2(y − xc)2 d4y . (4.12)
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Then, the signs in formula (4.10) are related to the signs of the expressions inside the
absolute value.

In the basis of chiral pentagons and boxes, the canonical forms for the two-loop
fibers become

Ω[∆{1}
5,2 ] = ω2

123y1 + ω2
234y1 + ω2

345y1 + ω2
451y1 + ω2

512y1 + ω1234y1 + ω2345y1 ,

Ω[∆{6}
5,2 ] = ω2

123y1 + ω2
234y1 + ω2

345y1 + ω2
451y1 + ω2

512y1 + ω1234y1 ,

Ω[∆{11}
5,2 ] = ω2

123y1 + ω2
234y1 + ω2

345y1 + ω2
451y1 + ω2

512y1 , (4.13)

where we used the fact that the signs in formula (4.10) are fixed when y1 is inside a one-loop
chamber. Comparing this to the sign vectors for each chamber in table 2, one notices that the
chiral pentagons ωaa+1bb+1y1

which appear for a given one-loop chamber are exactly those for
which the corresponding vertex q+

aa+1bb+1 is positively separated from the loop momentum y1.
Surprisingly, also the canonical differential forms of the one-loop chambers can be found

using a very similar method since the one-loop chambers themselves are curvy versions
of simple polytopes and therefore the canonical forms can again be found as a sum over
their vertices. We find

Ω[c{1}
5,2 ] = ω2

ℓ∗13x1x5ℓ∗24
,

Ω[c{6}
5,2 ] = ω−

x1ℓ∗24ℓ∗25x4
− ω+

ℓ∗13x1ℓ∗25x4
− ω−

ℓ∗13x1ℓ∗24x4
+ ω−

ℓ∗13x1ℓ∗24ℓ∗25
+ ω+

ℓ∗13ℓ∗24ℓ∗25x4
= ωℓ∗13x1ℓ∗24x4ℓ∗25

,

Ω[c{11}
5,2 ] = ω−

ℓ∗13ℓ∗14ℓ∗25ℓ∗35
+ ω−

ℓ∗24ℓ∗25ℓ∗13ℓ∗14
+ ω−

ℓ∗35ℓ∗13ℓ∗24ℓ∗25
+ ω−

ℓ∗14ℓ∗24ℓ∗35ℓ∗13
+ ω−

ℓ∗25ℓ∗35ℓ∗14ℓ∗24
. (4.14)

Interestingly, the canonical form for c
{11}
5,2 equals the five-point MHV5 amplitude for the

null-polygon formed of all ℓ∗aa+2.
Before proceeding to general n, we provide an interesting way in which we can re-organise

formula (4.7). If one rewrites (4.7) with respect to the last entry in each wedge product,
one finds the coefficients that multiply contributions coming from any single vertex of the
two-loop fiber geometry, namely

Ω5,2,2
Ω5,2,0

=
(
Ω(1)

12345−Ω(1)
451ℓ∗13

)
ω+

123y1 +
(
Ω(1)

12345−Ω(1)
345ℓ∗25

)
ω−

123y1 +
(
Ω(1)

451ℓ∗13

)
ω+

1234 + cyclic

±
(
Ω(1)

451ℓ∗13
−Ω(1)

234ℓ∗14

)
ω±

124y1 ±
(
Ω(1)

345ℓ∗25
−Ω(1)

512ℓ∗24

)
ω±

235y1 ±
(
Ω(1)

451ℓ∗13
−Ω(1)

123ℓ∗35

)
ω±

134y1

±
(
Ω(1)

234ℓ∗14
−Ω(1)

512ℓ∗24

)
ω±

245y1 ±
(
Ω(1)

345ℓ∗25
−Ω(1)

123ℓ∗35

)
ω±

135y1 , (4.15)

where Ω5,2,2/Ω5,2,0 means the canonical form of the two loop momentum amplituhedron
M̃5,2,2 with the tree-level part removed, and the signs ± on the forms depend on the explicit
position of y1. Here we have defined Ω(1)

a...bℓ∗
a−1b

to be the one-loop MHV integrand (without
the tree-level part) evaluated on the points {xa, . . . , xb, ℓ∗a−1b}. Again, it is possible to simplify
the formula (4.15) if we use chiral pentagon differential forms to get

Ω5,2,2
Ω5,2,0

= Ω(1)
12345 ∧

5∑
a=1

ω2
a−1aa+1y1 + Ω(1)

451ℓ∗13
∧ ω1234y1 + Ω(1)

512ℓ∗24
∧ ω2345y1

+ Ω(1)
123ℓ∗35

∧ ω3451y1 + Ω(1)
234ℓ∗14

∧ ω4512y1 + Ω(1)
345ℓ∗25

∧ ω5123y1 . (4.16)

As we will see in the next section, there exists a natural generalisation of this formula for all n.
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4.3 One-loop chambers

As we have already seen in the five-point example, the structure of the two-loop fiber geometry
is combinatorially identical for regions with fixed signs for the distances of y1 to each vertex
ℓ∗ab of the one-loop fiber. This fact generalizes to all two-loop fiber geometries for MHV
amplitudes. Therefore, in order to determine the set of all one-loop chambers, we only
need to determine the set of all possible sign patterns within the one-loop fiber geometry
for the following table of distances

sgn12 sgn13 . . . sgn1n

sgn23 . . . sgn2n

. . . ...
sgnn−1n

sgnab = sign(y1 − q+
aa+1bb+1)2,

sgnaa+1 = sign(y1 − xa+1)2.

(4.17)

Thankfully, this problem was already solved in [15], albeit in a slightly different context. The
focus of that paper was the decomposition of both the hypersimplex ∆̃k+1,n and the m = 2
amplituhedron, related to each other using T-duality [17], into objects coined w-simplices
and w-chambers, respectively. It was shown how for fixed k and n the w-simplices and w-
chambers are both in one-to-one correspondence with a set of permutations whose cardinality
is the Eulerian number Ek+1,n−1. Moreover, one can read off from these permutations
the set of vertices of the corresponding w-simplex or, more relevant for us, the set of
inequalities which define the corresponding w-chamber. Due to the correspondence between
the (m, k′, L) = (2, 2, 0) and the (m, k, L) = (4, 2, 1) amplituhedra, these results can be
directly translated to the problem studied here of characterising all one-loop chambers in
the dual space. In particular, the one-loop chambers for MHV amplitudes are in one-to-one
correspondence with the w-simplices inside the hypersimplex ∆̃3,n. We now review their
construction and describe how to go from a permutation to a sign pattern table (4.17),
emphasising that the content found in the remainder of this section is simply a translation
of the results of [15], which we refer to for a more detailed discussion.

We start by defining the hypersimplex ∆̃k+1,n that is the subset of Rn defined as

∆̃k+1,n = {(x̃1, x̃2, . . . , , x̃n) ∈ [0, 1]n : x̃1 + x̃2 + . . . + x̃n = k + 1}. (4.18)

The hypersimplex ∆̃k+1,n is therefore an (n − 1)-dimensional slice of the n-dimensional unit
cube. Importantly, there exists a particular decomposition of the hypersimplex ∆̃k+1,n into
the Eulerian number Ek+1,n−1 of unit simplices labelled by permutations that we will now
describe. Let w = w1 . . . wn be a permutation on [n] = {1, 2, . . . , n}. Following the discussion
of [15], we say that i is a cyclic descent of w if it appears to the left of i − 1 in w where
i − 1 is understood cyclically. That is, i ∈ [n] is a cyclic descent of w if either i ̸= 1 and
w−1(i) < w−1(i − 1) or i = 1 and w−1(1) < w−1(n). The set of all cyclic descents of a
permutation w will be denoted as cDes(w), and the set of all permutations with k + 1 cyclic
descents and with wn = n will be denoted by Dk+1,n. The cardinality of this set provides a
counting of the Eulerian numbers Ek+1,n−1 for general n and k, however, we will focus only
on the case of k = 2 which is relevant to the one-loop chambers for MHV amplitudes.
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r 1 2 3 4 5
Ir(u) {1, 3, 4} {2, 4, 5} {3, 4, 5} {1, 4, 5} {1, 3, 5}
Ir(v) {1, 3, 4} {2, 3, 5} {3, 4, 5} {2, 4, 5} {1, 3, 5}
Ir(w) {1, 2, 4} {2, 3, 5} {1, 3, 4} {2, 4, 5} {1, 3, 5}

Table 3. An example for constructing the sets Ir for the permutations u = 43125, v = 41325
and w = 24135.

In order to make the connection to sign patterns, we define the permutation w(r) to be
the cyclic rotation of w ∈ Dk+1,n with wn = r, and define the following set

Ir(w) := cDes(w(r−1)). (4.19)

An example of these sets for sample permutations for n = 5 and k = 2 is given in table 3.
With these definitions it is straightforward to start from any permutation w and find a sign
pattern in table (4.17) by the following rule

sgnij = (−1)|Ii(w)∩[i,j−1]|−1 for 1 ≤ i < j ≤ n , (4.20)

where [i, j − 1] = {i, i + 1, . . . , j − 1}. Applying this rule to the permutations u, v and w

in table 3 we notice that they correspond to the chambers c
{1}
5,2 , c{6}

5,2 and c
{11}
5,2 respectively.

Using (4.20) for k = 2 and general n we can define a map from w-simplices inside the
hypersimplex ∆̃3,n to one-loop chambers inside the one-loop fiber geometry ∆n,2.

As a final remark, with this labelling of the one-loop chambers, we note that it is easy to
see whether two chambers are adjacent by simply checking whether (a cyclic representative
of) their corresponding permutations differ by a transposition. The adjacency graphs of the
one-loop chambers for n = 5, 6, 7 are displayed in figure 5.

4.4 Canonical forms of one-loop chambers and two-loop fibers

In order to find the two-loop canonical forms Ωn,2,2, we need two ingredients for the fibration
of fibration idea: the canonical forms of the one-loop chambers Ω

[
c
{i}
n,2

]
and the canonical

forms of the two-loop fiber geometries Ω
[
∆{i}

n,2

]
. By exhaustive study of examples for n < 9,

we found that in both cases the geometries have the same property as the one-loop fibers
(and the five-point example studied in section 4.2), namely each vertex is adjacent to exactly
four edges. This suggests that in both cases the canonical forms can be found as the sum
over contributions coming from vertices. Therefore the task of finding the canonical forms
of c{i}

n,2 and ∆{i}
n,2 reduces to the task for finding all their vertices.

Starting with one-loop chambers, to determine the set of vertices of a given one-loop
chamber c

{i}
n,2, we first need to know its set of co-dimension-one boundaries. There are at least

two ways to determine them: one can use the adjacency graphs generated from the adjacency
of the w-simplices, as in figure 5; alternatively, there exists a natural map from the set of
facets of w-simplices to the set of co-dimension-one boundaries of one-loop chambers in the
dual space. Using the latter method, one starts by finding all facets of a given w-simplex,
which can be of the form x̃a = 0, x̃a = 1 or x̃a+1 + . . . + x̃b = 1. The corresponding one-loop
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Figure 5. The adjacency graph for MHV one-loop chambers for n = 5, 6, 7 respectively. Each vertex
corresponds to a one-loop chamber and each edge corresponds to a co-dimension one boundary of the
form (y1 − ℓ∗

ab)2.

chamber will have the boundaries at positions specified by the following rule:

∆̃3,n M̃n,2,1
x̃a = 0 no boundary
x̃a = 1 (y1 − xa)2 = 0

x̃a+1 + . . . + x̃b = 1 (y1 − ℓ∗ab)2 = 0

It is clear from this table that the number of co-dimension-one boundaries of any one-loop
chamber does not exceed the number of facets of an (n−1)-dimensional w-simplex. Therefore,
for a given n, there are maximally n co-dimension-one boundaries for any one-loop chamber.
Knowing the full set of co-dimension-one boundaries, we consider all their possible maximal
intersections, namely we study quadruple-cut solutions associated to any four element subset
of the boundaries. This prescription produces a set of candidate vertices of a given one-loop
chamber. The subset of points which satisfies (3.1), (3.2) and the sign pattern conditions
for the chamber makes up the set of vertices V

(
c
{i}
n,2

)
of the one-loop chamber c

{i}
n,2. Then

the canonical differential form for a given one-loop chamber can be calculated as a sum
over its vertices as

Ω[c{i}
n,2] =

∑
v∈V(c{i}

n,2)

ωv . (4.21)
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Using symbolic algebra software, we have found all vertices of one-loop chambers for n < 9.
Currently, we do not have a systematic way to classify them, and therefore we do not present
detailed results for one-loop chamber differential forms here. However, as we will see in
the next section, after reorganising the results from this section, a very simple formula
can be written for the two-loop integrand, generalising (4.16), that relies on the notion of
one-loop leading singularities.

Having found the canonical forms for one-loop chambers, we can now proceed with
two-loop fiber geometries. For a given point y1 in a one-loop chamber c

{i}
n,2, one notices

that the set of vertices of the corresponding two-loop fiber geometry ∆{i}
n,2 is a subset of

points xa, q+
aa+1bb+1 and q±aa+1by1

. Therefore, to determine the vertex set V(∆{i}
n,2) we simply

choose a representative point y1 ∈ c
{i}
n,2 and check which points among {xa, q+

aa+1bb+1, q±aa+1by1
}

simultaneously satisfy the conditions (3.1), (3.2) and are non-negatively separated from y1.
Knowing the full set of vertices V(∆{i}

n,2) we can write the canonical form as

Ω[∆{i}
n,2] =

∑
v∈V(∆{i}

n,2)

ωv, (4.22)

where for v = q+
aa+1bb+1 we take ωv = ω+

aa+1bb+1 and for v = q±aa+1by1
we take ωv = ω±

aa+1by1
.

As before, the vertices xa do not contribute to Ω
[
∆{i}

n,2

]
.

As for the one-loop chambers, one can find the explicit set of vertices contributing to
formula (4.22) for a fixed two-loop fiber ∆{i}

n,2. In our case-by-case explorations we found
that there exists a very natural way of organising them in terms of box and chiral pentagon
contribution as

Ω[∆{i}
n,2] =

n∑
a=1

ω2
a−1aa+1y1 +

∑
(y1−ℓ∗

ab
)2>0

ωaa+1bb+1y1 , (4.23)

where the second sum is over all (a, b) for which ℓ∗ab is positively separated from y1 ∈ c
{i}
n,2.

From this expression it straightforward to arrive at the explicit vertex expression in (4.22)
by using formula (4.10).

With the results for the canonical forms of the one-loop chambers (4.21) and their
corresponding two-loop fibers (4.23), we now have all the ingredients that contribute to the
two-loop fibration of fibration formula for the MHV integrands

Ωn,2,2 = Ωn,2,0 ∧
∑

i

Ω
[
c
{i}
n,2

]
∧ Ω

[
∆{i}

n,2

]
. (4.24)

Since we do not know yet a systematic way of writing the canonical forms for one-loop
chambers, this result is still not completely satisfactory. We will remedy this in the next
section by rewriting the answer in terms of one-loop leading singularities.

4.5 One-loop leading singularities

In our fibration of fibration approach we made a choice of the ordering of loop variables, and
in particular, we consider the second loop geometries parametrised by y2 to be fibered over
the first loop parametrised by y1. Knowing the answer for the two-loop integrand (4.24), it
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leads to the natural question of finding all residues of Ωn,2,2 when y2 is completely localised.
There are three types of such residues:

• composite residues Resy2=xa Ωn,2,2 when y2 is localised at one of the vertices xa of the
null polygon,

• residues Resy2=q+
aa+1bb+1

Ωn,2,2 when y2 is localised at one of the quadruple-cut vertices
of the one-loop fiber geometry,

• residues Resy2=q+
aa+1bby1

Ωn,2,2 which corresponds to the remaining vertices of the two-
loop fiber geometry.

To expose these residues, it is natural to reorganise (4.24) and collect terms corresponding to
the vertices of the two-loop fiber to arrive at a form for the two-loop integrand given by

Ωn,2,2 =
∑

v∈V(2)
n,2

Ov ∧ ωv , (4.25)

where V(2)
n,2 contains all vertices that are allowed for the two-loop fiber geometry for given n.

We refer to the prefactors Ov as one-loop leading singularities corresponding to point v. As
already demonstrated in (4.15) for the five-point example, the one-loop leading singularities
will generically be given by differences of one-loop amplitudes evaluated for null-polygons
with a lower number of points involving both the xa and ℓ∗ab. First, using (4.23) for the
canonical form of the two-loop fibers into (4.24) we find

Ωn,2,2 = Ωn,2,1 ∧
n∑

a=1
ω2

a−1aa+1y1 +
∑

(y1−ℓ∗
ab

)2>0

∑
i∈Cab

Ω
[
c
{i}
n,2

] ∧ ωaa+1bb+1y1 , (4.26)

where in the first contribution we used the fact that ω2
a−1aa+1y1 is present in (4.23) for all

chambers, and Cab is the set of all chambers for which ℓ∗ab is the vertex of the two-loop fiber
∆{i}

n,2. The second term in (4.26) can be further simplified, leading to a surprisingly simple
formula for two-loop integrand for MHV amplitudes

Ωn,2,2
Ωn,2,0

= Ω(1)
n,2 ∧

n∑
a=1

ω2
a−1aa+1y1 +

∑
1≤a<b≤n
|a−b|>1

(
Ω(1)
|xab|,2(xab) + Ω(1)

|xba|,2(xba)
)
∧ ωaa+1bb+1y1 ,

(4.27)

where xab = {xa+1, . . . , xb, q+
aa+1bb+1}, xba = {xb+1, . . . , xa, q+

bb+1aa+1}, |xab| is the cardinality
of the set and Ω(1)

n,2 = Ωn,2,1/Ωn,2,0 is the one-loop canonical form with the tree-level contribu-
tion removed. The one-loop leading singularities can then be easily extracted from (4.27)
by expanding the chiral pentagon contributions. Note the similarities of this formula to the
chiral pentagon expansion [11] of the one-loop integrand which reads

Ωn,2,1
Ωn,2,0

=
n∑

a=1
ω2

a−1aa+1x +
∑

1≤a<b≤n
|a−b|>1

ωaa+1bb+1x, (4.28)

where now the arbitrary point x is taken to be the loop momentum y1 and generically each
term is weighted by a sum of one-loop integrands with a lower number of points.
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5 Conclusions and outlook

At one loop the idea of fibrations introduced in [9] relied upon splitting the space of tree-level
kinematics into equivalence classes called tree-level chambers. The defining feature of the
tree-level chambers was that for any point inside it the resulting one-loop fibers (i.e. the region
to which the first loop momentum is constrained) are combinatorially equivalent. This led to
a representation of the one-loop integrand in planar N = 4 SYM as a fibration over tree-level,
in which each term takes a factorised form. In this paper we have extended this construction
beyond one loop and introduced the concept of fibrations of fibrations in order to study the
two-loop integrand for MHV amplitudes. Extending the original fibration idea, the fibration
of fibration asks for the one-loop fiber itself to be split into equivalence classes called one-loop
chambers. The significance of the one-loop chambers is that their corresponding two-loop
fibers, the region to which the second loop momentum is constrained when the tree-level data
and the first loop momentum are fixed, are combinatorially equivalent. This led to the main
result of the paper, a new formula for the two-loop integrand (4.2) as an iterated fibration over
the tree-level kinematics and the position of the first loop momentum. Our result required a
full understanding of how the one-loop fiber decomposes into one-loop chambers, and made a
connection to the work of [15] where similar decompositions of the hypersimplex and m = 2
amplituhedron were considered. We have also presented simple all-multiplicity formulae for
the canonical forms of the two-loop fibers as a sum over box and chiral pentagon integrals,
and provided examples of how the canonical forms of the one-loop chambers and two-loop
fibers can both be calculated as a sum over their vertices. Finally, by collecting terms coming
from the same box or chiral pentagon, we were able to give a new explicit formula (4.27) for
the two-loop MHV integrand to all n in terms of one-loop leading singularities.

There are many interesting avenues of future exploration originating from our work.
First, it would be interesting to further explore the connection between the one-loop chambers
defined here and the results of [15]. An interesting question to ask in this direction would be
whether the canonical forms of the one-loop chambers can be calculated directly from the,
much simpler, canonical differential forms of their corresponding w-simplices, for example
using the notion of push-forwards of canonical forms [18]. It would also require one to construct
an explicit map from the w-simplices to one-loop chambers, which is currently not known.
Furthermore, due to the connection between the m = 2 momentum amplituhedron, a toy
model for the momentum amplituhedron Mn,k,0, and the hypersimplex [19], it would further
be interesting to explore the connection between the w-simplices and one-loop chambers to
chambers of the m = 2 momentum amplituhedron.

A more pressing question is how to extend our results for the two-loop integrands to
higher k. Since for k > 2 the tree-level kinematic space is decomposed into multiple tree-level
chambers, then expanding our results beyond MHV amplitudes is exactly the place where
we will see the idea of fibration of fibration in full force. It will be particularly interesting
to see whether for higher k the canonical forms of the one-loop chambers and the two-loop
fiber geometries can still be calculated as a sum over their vertices.

Another important direction is to explore the fibration of fibration framework at higher
loops. We point out that the four-point MHV integrand would already be an interesting but
accessible case to study, since there is only one one-loop chamber in this case. Preliminary
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investigations show that the two-loop fiber decomposes into 68 two-loop chambers, suggesting
the three-loop integrand can be written in the schematic form

Ω4,2,3 = Ω4,2,1 ∧
68∑

i=1
Ω[two-loop chamberi] ∧ Ω[three-loop fiberi]. (5.1)

An alternative target for higher loop investigations would be to consider the negative geometries
of [20, 21] that allow for some of the mutual positivity conditions between loop momenta to
be relaxed. As a starting point, one could consider the mutual positivity conditions encoded
by trees in loop space for all MHVn in the fibration of fibration formalism.

Looking beyond N = 4 sYM, the null-cone geometries have already been studied in
the ABJM theory at one loop [10]. It is therefore natural to address the problem of finding
higher loop geometries in the fibration of fibration framework also there. It might require
one to get a better grasp of the two-loop case beyond MHV amplitudes, however the ABJM
theory provides another playground, often simplified because of the fact that it is a three-
dimensional theory, that is worth exploring. Moving beyond the realm of scattering amplitudes,
another interesting positive geometry where the ideas from this paper could be applied is
the correlahedron [22], which encodes the correlation functions of stress-energy multiplets in
N = 4 sYM. Recently, multi-loop correlahedron canonical forms were studied as fibration
over the tree-level kinematics [23]. It would be interesting to study the results presented
there from the fibrations of fibrations perspective.
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