Numerical investigation of micro solid oxide fuel cell performance in combination with artificial intelligence approach

Taleghani, Parastoo, Ghassemi, Majid and Chizari, Mahmoud (2024) Numerical investigation of micro solid oxide fuel cell performance in combination with artificial intelligence approach. Heliyon, 10 (24): e40996. pp. 1-17. ISSN 2405-8440
Copy

The current study presents a multiphysics numerical model for a micro-planar proton-conducting solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations, including continuity, momentum, mass transfer, chemical and electrochemical reactions, and energy equations. Furthermore, The numerical model results are used in artificial intelligence (AI) models, the K-nearest neighbour (KNN) and, artificial neural network (ANN), to predict the current density and power density of the H-SOFC. The results show that increasing the air-to-fuel (A/F) ratio decreases the current density and overall cell power. In particular, improvements in power and current density observed in H-SOFC when the A/F ratio is set to 0.5, resulting in a respective increase of 2 % and 7 % compared to the initial state at A/F = 1. With an error rate of less than 1 % and an R-score of around 99 %, the ANN model shows good agreement with the numerical results.


picture_as_pdf
PIIS2405844024170272.pdf
subject
Published Version
Available under Creative Commons: BY 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads