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Abstract
Phase space is the unity of position and momentum configuration space. It allows for
an effective description of dynamical systems and is particularly useful when it comes
to studying chaos theory and statistical mechanics.

After the advent of quantum physics early in the 20th century, E. Wigner [91],
J. E. Moyal [62] and H. J. Groenewold [31] introduce a quantum theory in phase
space. Despite the apparent added complexity of the mathematics involved in this new
framework, the underlying classical and quantum equations show many similarities.
The probability distribution in classical physics becomes the Wigner distribution, a
probability distribution usually featuring negative values.

In 2013, O. Steuernagel and D. Kakofengitis, inspired by the work of H. Bauke [7]
and E. Wigner [91], identified the quantum analogue of the classical phase space flow:
the Wigner current J [83]. This Wigner current allows the visualisation of quantum
dynamics through a quantum fluid dynamics perspective in phase space.

This thesis is written by collection of five articles. They are prefaced by an in-
troduction into the basics of quantum phase space theory and its link with both
classical phase space dynamics and the standard Schrödinger approach, followed by
the articles published during this PhD.

Article 1 shows the importance of the integral form of the Wigner current. We
use it to derive the Ehrenfest’s theorem, as well as to refute some propositions made
within the community.

Article 2 shows that, using the Wigner current, an Eulerian and Lagrangian point
of view do not always give the same results for the quantum case. We demonstrate
that the negativities of the Wigner distribution, sign of quantumness of the system,
are created by the Wigner velocity field singularities. The Wigner velocity field is the
quantum analogue of the classical phase space velocity field.

In Article 3, we see that even though Wigner distributions of quantum systems
feature spotty structures which saturate on scales aZ [97], the construction of a su-
peroscillating Wigner distribution allows one to generate much smaller structures, of
the order of aZ/α with α a positive constant potentially very large.

In Article 4, we introduce the concept of quantum shear suppression in phase
space. The Wigner current features an effective quantum “viscosity”, suppressing
classical dynamics fine details. This viscosity is the mechanism by which the Zurek
scale is enforced dynamically onto the state in phase space.

In Article 5, we apply the previous ideas to Kerr-type oscillators. Its Wigner
current is derived, and using it we show that its values are conserved on a ring during
the time evolution of the Kerr oscillator. The shear suppression is also studied.
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Introduction to phase space
dynamics

The mathematical space we will use in this thesis is phase space. Before studying
quantum phase space, we will review classical mechanics and its key features. These
concepts will prove useful for the understanding of the articles following this intro-
duction.

0.1 Liouvillian mechanics

Liouvillian mechanics describes the evolution of conservative classical systems. This
theory takes place in phase space, and is particularly useful when it comes to the
study of dynamical systems, as it naturally includes each state of a system as a point
in phase space.

In order to describe the evolution of a classical system in phase space, one has to
define the probability density ρ(x, p, t). The time evolution of ρ for a 1-D system is
given by Liouville’s equation

dρ

dt
= ∂ρ

∂t
+ dx

dt

∂ρ

∂x
+ dp

dt

∂ρ

∂p
= ∂ρ

∂t
+ v ·∇ρ = ∂ρ

∂t
+∇ · j = 0, (1)

with j = ρv = ρ

 p
m

−∂xV

 the classical phase space current, and v its velocity field,

which encodes Newton’s law.

Connecting this to the Hamiltonian formalism, the time evolution of ρ can be
written as

∂ρ

∂t
= −{ρ,H} , (2)
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with {•, •} the Poisson bracket defined by {f(x, p), g(x, p)} = ∂f
∂x

∂g
∂p
− ∂f

∂p
∂g
∂x
. This

equation is usually referred to as the classical Liouville equation.

0.2 Quantum theory

Quantum theory describes atomic and subatomic systems. Despite their rigorously
identical predictions, different representations of quantum theory exist.

0.2.1 The Schrödinger representation

The most famous one is undoubtedly the Schrödinger representation, in which the
main mathematical tool used is the wavefunction |Ψ〉, containing all the system’s
information (assuming the system is a pure state). |Ψ〉’s time evolution in Schrödinger
representation is described by its eponymous equation

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉 , (3)

with Ĥ the Hamiltonian operator of the system.
The wavefunction |Ψ〉 is an object acting in a generalization of the Euclidean

space: the Hilbert space.

Using the wavefunction |Ψ〉 of a pure state, one can define the density operator
ρ̂ = |Ψ〉 〈Ψ|. The time evolution is then described by the von Neumann equation

∂ρ̂

∂t
= − 1

i~
[
ρ̂, Ĥ

]
. (4)

0.2.2 The Wigner representation

This representation is the one used in this thesis. The Hilbert space wavefunction |Ψ〉
is converted to a Wigner distribution W (x, p, t), a quantum phase space distribution
and closest analogue of the classical probability distribution.

This framework, underrated for decades, will prove to be very useful in the fol-
lowing studies. It allows one to directly visualize quantum dynamics in phase space,
and brings new insights on the connections between classical and quantum physics.

The Wigner distribution is defined as the Fourier transform of the non-diagonal
terms ρ(x− y, x+ y, t) = 〈x− y| ρ̂ |x+ y〉 (also called coherence terms) of the density
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operator [91].
For a 1-D system, the Wigner distribution W is defined by

W (x, p) = 1
π~

ˆ ∞
−∞

dy 〈x− y| ρ̂ |x+ y〉 e
2ipy
~ . (5)

Despite being called a probability distribution, W generally features patches of
negativities across phase space, which do not have any classical equivalent. For this
reason, the Wigner distribution is often called a quasi-probability distribution. The
distribution W is normalized to unity and real-valued.

With the Wigner distribution, one can directly visualize the quantum state’s be-
havior over time. One of the main advantage of this distribution is its ability to
give information of both the position and momentum of a system. Integrating over
the position space leads to the quantum probability distribution in momentum space´
dxW (x, p) = |Φ(p)|2 = P (p), while an integration over the momentum space gives

the quantum probability distribution in position space
´
dpW (x, p) = |Ψ(x)|2 =

P (x).
Additionally, in quantum phase space, none of the operators used in the Schrödinger

representation are needed. Observables are calculated using well-defined functions of
x and p.

0.2.3 Hudson’s theorem

Hudson’s theorem is an important theorem regarding the emergence of negativities
in quantum phase space [41].

This theorem states that for a continuous non-relativistic quantum system, the
Wigner distribution of a pure state is strictly positive if and only if the state is gaus-
sian.

This means that a Wigner distribution which is not gaussian features negative
patches in phase space.

0.2.4 Time evolution: Star-product and Moyal bracket

Star-product and commutators

In quantum phase space dynamics, the Hilbert operators of the Schrödinger represen-
tation are mapped into phase space as real functions of x and p. One can define a phase
space analogue of the operator product in Hilbert space: the star-product [62, 31].
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The star-product maps the non-commutativity of Hilbert space operators onto their
equivalent functions in the Wigner representation.

The star-product of two real-valued functions f(x, p) and g(x, p) is defined by

f(x, p) ? g(x, p) = f(x, p)e i~2 (
�
∂x

�
∂p−

�
∂p

�
∂x)g(x, p) (6)

= f(x, p)
∞∑
l=0

(
i~
2

)l ( �
∂x

�
∂p −

�
∂p

�
∂x

)l
g(x, p). (7)

�
∂i is the derivative with respect to i = {x, p} acting on the left side function f , and
�
∂i the derivative acting on the right side function g.

Both the standard Hilbert commutator and its phase space analogue share similar
properties: they are non-commutative, they can be used to time-evolve an initial
state, and they lead to the same expectation values.
Using the star-product, one can define the quantum phase space commutator

[f, g]? = f ? g − g ? f. (8)

Moyal bracket and quantum Liouville equation

We can now study the time evolution of the Wigner distribution, using the Moyal
bracket [62].

The Moyal bracket {{•, •}} of two functions α(x, p) and β(x, p) is defined using
the quantum phase space commutator

{{α, β}} = 1
i~

[α, β]? = 1
i~

(α ? β − β ? α) . (9)

Applied to Eq. (4), it gives us the quantum version of the Liouville equation called
the quantum Liouville equation:

∂W (x, p, t)
∂t

= −{{W (x, p, t), H(x, p)}} (10)

= − 1
i~

(W (x, p, t) ? H(x, p)−H(x, p) ? W (x, p, t)) (11)

= −2
~
W (x, p, t) sin

(
~
2(

�
∂x

�
∂p −

�
∂p

�
∂x)

)
H(x, p). (12)

In the Taylor expansion of the sine function in Eq. (12), the Moyal bracket is such
that the first order term of the equation corresponds to the classical Poisson bracket
introduced earlier, see Eq. (2). The other terms are quantum corrections.
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0.3 The Wigner current

The Wigner current allows us to use a fluid dynamics perspective in quantum phase
space. It can feature stagnation points, like in classical fluid mechanics, and reveals
hidden topological order in quantum dynamics [83]. It can also be “viscous”, as
described in Article 4.

0.3.1 Formal definition

The Wigner current J is the quantum equivalent of the classical phase space current
j [see Eq. (1)].

In the quantum mechanical case, that is for a Hamiltonian H(x, p) = T (p)+V (x),
with T the kinetic term and V the potential term, the current J is defined by splitting
the Hamiltonian in the quantum Liouville equation:

∂W

∂t
= −{{W,H}} = −{{W,T}} − {{W,V }} . (13)

The time evolution of the Wigner distribution can then be written as the diver-
gence of the Wigner current J ,

∂W

∂t
= −∇ · J = −∂xJx − ∂pJp, (14)

with ∂xJx = {{W,T}} and ∂pJp = {{W,V }}.

The components of J are

J =
 Jx

Jp

 =

 p
M
W

−
∞∑
l=0

(−1)l( ~
2 )2l

(2l+1)! ∂
2l+1
x V ∂2l

p W

 . (15)

As we can see, despite the simplicity of the Jx component, the Jp component is a
series of derivatives acting on both V (x) and W (x, p, t). This form is similar to the
one originally introduced by Wigner in his paper [91]. Taking the zeroth order of J
gives the classical phase space current defined in Eq. (1).

But using the very definition of the Wigner function [see Eq. (5)], one can write
the evolution equation as:
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∂tW = − 1
π~

ˆ
dy 〈x− y| 1

i~
[ρ̂, Ĥ] |x+ y〉 e2ipy. (16)

It follows that one can write J as an integral [44]:

J =
 p

mπ~

´∞
−∞ dy 〈x− y| ρ̂ |x+ y〉 e 2ipy

~

−1
π~

´∞
−∞ dy

(
V (x+y)−V (x−y)

2y

)
〈x− y| ρ̂ |x+ y〉 e 2ipy

~

 (17)

Note that this integral form is more general than Eq. (15) and does not require
an analytical potential.

0.3.2 Connection with the Schrödinger probability current

AsW is directly linked to the position (respectively momentum) quantum probability
in Hilbert space via integration over the momentum (respectively position) space,
such integration of J ’s time evolution equation also gives the time evolution of the
quantum probability current of the Schrödinger representation,

ˆ ∞
−∞

(∂tW + ∂xJx + ∂pJp) dp = ∂tP (x, t) + ∂xĵΨ(x, t) = 0, (18)

with ĵΨ(x, t) the quantum probability current defined by

ĵΨ(x, t) = ~
2im (Ψ∗(x, t)∂xΨ(x, t)−Ψ(x, t)∂xΨ∗(x, t)) . (19)

Similarly, the quantum probability current in momentum is obtained by integrat-
ing the continuity equation over the position space.
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Article 1

Wigner’s representation of
quantum mechanics in integral
form and its applications
by

D. Kakofengitis, M. Oliva, O. Steuernagel [44]

1.1 Abstract

We consider quantum phase-space dynamics usingWigner’s representation of quantum
mechanics. We stress the usefulness of the integral form for the description of Wigner’s
phase-space current J as an alternative to the popular Moyal bracket. The integral
form brings out the symmetries between momentum and position representations of
quantum mechanics, is numerically stable, and allows us to perform some calcula-
tions using elementary integrals instead of Groenewold star products. Our central
result is an explicit, elementary proof which shows that only systems up to quad-
ratic in their potential fulfil Liouville’s theorem of volume preservation in quantum
mechanics. Contrary to a recent suggestion, our proof shows that the non-Liouvillian
character of quantum phase-space dynamics cannot be transformed away.

1.2 Motivation and introduction

Wigner’s representation of quantum mechanics in phase-space [91] is equivalent to
Heisenberg’s, Schrödinger’s and Feynman’s [95]. The description of the time evolu-
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tion of Wigner’s phase-space distribution function W uses Moyal brackets [62], the
quantum analogue of classical Poisson brackets. The similarity of the Moyal form
with classical physics explains its popularity.

Moyal’s bracket is defined as an infinite series of derivatives, which can make it
cumbersome to use and also numerically unstable. It has limited applications because
it assumes that the potential can be Taylor expanded. The integral form of quantum
phase-space dynamics [91, 5] is an alternative to Moyal’s form, it also applies to
piecewise or singular potentials and displays symmetries between momentum and
position representation not obvious when using Moyal’s formulation only.

We recently showed that in anharmonic quantum systems the violation of Li-
ouville’s volume preservation can be so large that quantum phase-space volumes loc-
ally change at singular rates [68]. These singularities are of central importance; they
are responsible for the generation of quantum coherences.

Here, we investigate a recent suggestion by Daligault [20], who provided a recipe
that might enable us to “transform away” the violation of Liouville’s theorem in
anharmonic quantum-mechanical systems.

We illustrate the power of the integral form of Wigner’s representation, which
allows us to give an elementary proof that Daligault’s suggestion amounts to a specific
modification that makes the dynamics classical and is incompatible with his stated
aim of finding a Liouvillian system that reproduces quantum dynamics.

Our proof shows that the singularities, reported in Ref. [68], cannot be removed
to make quantum phase-space dynamics divergence-free.

1.3 Wigner’s distribution and its evolution

In Wigner’s representation of quantum mechanics [91, 38] Wigner’s phase-space distri-
bution is the “closest quantum analogue of the classical phase-space distribution” [97].
It is defined as

W (x, p, t) = 1
π~

´
dy %(x− y, x+ y, t)e 2i

~ py , (1.1)

= 1
π~

´
ds %̃(p− s, p+ s, t)e− 2i

~ xs ; (1.2)

here, ~ = h/(2π) is Planck’s constant, integrals run from −∞ to +∞:
´

=
´∞
−∞,

and % and %̃ are the density operator in position and momentum representation,
respectively.

Wigner’s distribution W is set apart from other quantum phase-space distribu-
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tions [38] by the fact that only W simultaneously yields the correct projections in
position and momentum (%(x, x, t) =

´
dp W and %̃(p, p, t) =

´
dx W ) as well as

state overlaps |〈ψ1|ψ2〉|2 = 2π~
´ ´

dx dp W1 W2, while maintaining its form (1.1)
when evolved in time. Additionally, the Wigner distribution’s averages and uncer-
tainties evolve momentarily classically [76, 6].

In this work we consider one-dimensional conservative systems in a pure state
with quantum-mechanical Hamiltonians

Ĥ(x̂, p̂) = p̂2

2M + V̂ (x̂) . (1.3)

The Wigner function’s time evolution arises, in analogy to Eq. (1.1), from a Wigner-
transform [which can be implemented as a fast Fourier transform (FFT)] of the von
Neumann equation i~∂%̂

∂t
= [Ĥ, %̂] as [91, 38]

∂tW =− p

M

1
π~

ˆ
dy ∂x%(x− y, x+ y, t)e 2i

~ py

+ i

π~2

ˆ
dy [V (x+ y)− V (x− y)]× %(x− y, x+ y, t)e 2i

~ py , (1.4)

also known as the quantum Liouville equation.
Throughout, we write partial derivatives as ∂n

∂xn
= ∂nx .

If the potential V can be globally Taylor expanded, the integrals (1.4) yields the
Moyal bracket {{·, ·}} [62]

∂W

∂t
= {{H,W}} = 1

i~
(H ? W −W ?H) (1.5)

= 2
~
H sin

(
~
2
(←−
∂x
−→
∂p −

←−
∂p
−→
∂x
))

W . (1.6)

Here we use Groenewold star products (?) [31], defined as f ? g = fe
i~
2 (←−∂x−→∂p−←−∂p−→∂x)g;

the arrows indicate whether derivatives are executed on f or g.
Equations (1.4) or (1.6) can be written as the continuity equation [91]

∂tW + ∇ · J = ∂tW + ∂xJx + ∂pJp = 0 . (1.7)

Comparing Eqs. (1.7) and (1.4), we identify the Wigner current J =
(
Jx
Jp

)
, with
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position component

Jx = p

Mπ~

ˆ
dy %(x− y, x+ y, t)e 2i

~ py = p

M
W , (1.8)

and momentum component

Jp =− 1
π~

ˆ
dy

[
V (x+ y)− V (x− y)

2y

]
× %(x− y, x+ y, t)e 2i

~ py . (1.9)

If the potential can be Taylor expanded, the explicit form of the components of Wigner
current J in Eq. (1.6) is [91, 81, 23, 83]

J = j +

 0
−
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V (x)

 . (1.10)

Here, with v =
(
p/M
−∂xV

)
, j = Wv is the classical and J − j are quantum terms.

1.4 Features and applications of the integral form

The integral form (1.4) is more general than the Moyal expression since it does not
rely on V being analytic.

A numerical implementation of the integral form can use fast Fourier transforms.
In the case of potentials featuring high order Taylor terms, high order numerical
derivatives can render Eq. (1.10) poorly convergent [83].

In Ref. [83] we showed (note typographical errors in Eqs. (4) and (5) of [83]) that
the p projection of Jx yields the quantum probability current  in position space,

ˆ
dp Jx = ~

2iM

ˆ
dy %(x− y, x+ y, t)∂yδ(y)

=
∑
k

Pk
~

2iM (Ψ∗k∂xΨk −Ψk∂xΨ∗k) = (x, t) , (1.11)

where we used Dirac’s δ and wrote the density matrix as %(x, x′, t) = ∑
k PkΨk(x, t)Ψ∗k(x′, t),

a statistical mixture of pure states. Additionally,
ˆ

dx Jx = p

M

ˆ
ds %̃(p− s, p+ s, t)δ(s) = p

M
%̃(p, p, t) . (1.12)

Analogously to Eq. (1.11), the quantum probability current ̃ in momentum space [83],
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is

ˆ
dx Jp = − 1

π~

¨
dy dx

[
V (x+ y)− V (x− y)

2y

]
× %(x− y, x+ y, t)e 2i

~ py

= 1
i
√

2π~3

ˆ p

−∞
dp′
ˆ
dp′′

[
Ṽ ∗(p′′ − p′)%̃(p′′, p′)− Ṽ (p′′ − p′)%̃(p′, p′′)

]
= ̃(p, t) ,

(1.13)

(where Ṽ (p) = 1√
2π~

´
dx V (x)e− i

~px), while

ˆ
dp Jp = −

ˆ
dy

[
V (x+ y)− V (x− y)

2y

]
× %(x− y, x+ y, t)δ(y)

= −%(x, x, t)dV
dx

. (1.14)

We would like to emphasize that the quantum terms of Eq. (1.10) do not contribute
in Eq. (1.14).

Averaging over Eqs. (1.12) and (1.14), reproduces Ehrenfest’s theorem [95]
¨

dx dp Jx = 〈p̂〉
M

= d〈x̂〉
dt

(1.15)

and
¨

dx dp Jp = −
〈
dV̂

dx

〉
= d〈p̂〉

dt
. (1.16)

Where applicable, the Moyal bracket formalism [95] yields the same results. Note the
various subtleties associated with the interpretation of Ehrenfest’s theorem [6, 76].

1.5 When is quantum mechanical time evolution
Liouvillian?

To investigate whether quantum phase-space dynamics is Liouvillian we determine
the divergence of its quantum phase-space velocity field w [23, 89, 20]. w is the
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quantum analogue of the classical velocity field v (Eq. (1.10)):

w = J

W
= v + 1

W

 0
−
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

 . (1.17)

To rephrase the continuity equation (1.7) in terms of w, we switch to the Lagrangian
decomposition [23, 89, 20]

dW

dt
= ∂tW + w ·∇W = −W∇ ·w . (1.18)

Note that w is singular at zeros of W since, generally, zeros of W do not coincide
with zeros of its derivatives. This implies, among other things, that the concept of
trajectories in quantum phase-space cannot be applied to the dynamics of anharmonic
systems [68].

Problems associated with the singularities have been observed multiple times [77,
89], they badly affect numerical quantum phase-space studies [89].

It would therefore be intriguing to be able to transform such problems away,
as suggested by Daligault [20]. He speculated that it might be possible to add an
auxiliary field δJ to J in Eq. (1.7) which would not modify the dynamics since it is
assumed to be divergence-free. Yet, this auxiliary field might yield a modification to
the velocity field such that their sum fulfills Liouville’s theorem: ∇ · (w+ δw) = 0. If
possible, we could deploy the machinery of classical phase-space transport equations
to solve quantum problems.

We now prove that we cannot get rid of the non-Liouvillian character of quantum
phase-space dynamics in anharmonic systems in the way Daligault suggested.

To do this, we need to establish when J obeys Liouville’s theorem, i.e., when the
divergence of J ’s velocity field vanishes everywhere in phase-space. With w = J/W

we have

∇ ·w = ∂x

(
Jx
W

)
+ ∂p

(
Jp
W

)
= ∂x

(
p

M

)
+ ∂p

(
Jp
W

)
= ∂p

(
Jp
W

)
= 0. (1.19)

Integrating gives us
´ p
−∞ dp

′ ∂p′
Jp(x,p′,t)

W
= Jp

W
= C(x) which implies

´
dp Jp = C(x)

´
dp W =

C(x) %(x, x, t). With −dV
dx
%(x, x, t) = C(x) %(x, x, t), from (1.14), it follows that ∇ ·

w = 0 implies
Jp + δJp = −W ∂

∂x
[V (x) + δV (x)] . (1.20)

We have shown that the application of Daligault’s recipe filters through in a very
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specific form: the dynamics becomes classical and the shift only affects the poten-
tial (since the goal is to not affect the time evolution of W ). Strictly speaking, in
Eq. (1.20), we should write δV (x,W (x, p, t)) to remind ourselves of Daligault’s as-
sumption that δJp depends on W . But to yield Liouvillian dynamics δV must not
depend on p; hence δV (x,W (x, p, t)) = δV (x).

For systems in which the potential can be globally Taylor expanded, Eq. (1.20)
shows us that quantum terms must not be present in Eq. (1.10). To fulfill Liouvillian
behavior for all times the potential V might be of “harmonic” form: V = Vharmonic =
K
2 x

2 + ax+ b with arbitrary real K, a, and b and, therefore, δV = 0.
Alternatively, the auxiliary field has the trivial form δJ = j − J which subtracts

all the quantum parts in Eq. (1.10), so that the potential assumes the form V + δV =
Vharmonic. This is neither what Daligault intended nor is it helpful, in fact, it is not
even permissible since such a field would not fulfill the condition ∇ · δJ = 0.

One might wonder whether there is some other option, perhaps the anharmonic
quantum terms J − j in Eq. (1.10) are present but the initial state W0 has some
special form that cancels all anharmonic terms yet does not force the trivial form
V + δV = Vharmonic on us.

This cannot be though: if Jp+ δJp fulfills Eq. (1.20), the dynamics is classical and
anharmonic, shearing the phase-space distribution. Since a Wigner distribution can
be expanded in the coherent-state basis, we assume, without loss of generality, that
the initial stateW0 is a coherent state. Classically shearing a phase-space distribution
bends it out of shape while keeping it positive, this violates the constraint that a pos-
itive Wigner distribution has Gaussian form [41]: anharmonic positivity-preserving
classical dynamics is incompatible with quantum phase-space dynamics.

Generalizing Daligault’s recipe slightly: might modifications to the Jx component
help? We doubt it, if the system is Hamiltonian; even if not quantum mechanical but,
say, of the classical Kerr-oscillator type, one would, according to Eq. (1.18), still end
up with Liouvillian dynamics: d

dt
W = 0. W cannot change sign, Daligault’s recipe

could never give us quantum dynamics, i.e., negativity formation in phase-space [68].
In their monograph on the Wigner representation, Zachos et al. [95] argue that

anharmonic quantum systems cannot fulfill Liouville’s theorem since the difference
between the Moyal and Poisson brackets is nonzero for anharmonic quantum systems.
In light of Daligault’s speculation that a mapping to another system might exist, that
reproduces the same dynamics and fulfills Liouville’s theorem, we feel the above proof
with the explicit use of J is needed to settle the matter.

Figure 1.1 shows that the divergence ∇ ·w becomes singular when W = 0. This
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Figure 1.1: A, Singularities of ∇ · w coincide with zeros of W . J depicted by
arrows (red for clockwise and green for inverted flow [83]), together with the zeros of
the Jx and Jp components (green and blue lines, respectively), is superimposed on
top of a color plot of 2

π
arctan(∇ · w). The inset shows the corresponding Wigner

distribution for the first excited state of an anharmonic Morse oscillator [19] with
potential V (x) = 3[1 − exp(−x/

√
6)]2. The red crosses and yellow bars mark the

locations of the flow’s stagnation points, with Poincaré-Hopf indices [83] ω = +1
and −1. Parameters: ~ = 1 and M = 1. The black dashed line marks the zero
contour of the Wigner distributions (compare inset); here the divergence ∇ · w is
singular [68].
B, Integrated Fieldlines of J cross Wigner Distribution Contours. Thin colored lines
display fieldlines of J , displayed together with normalized current J/||J || (black
arrows), and its stagnation points, for the same state as depicted in A. W ’s zero
contour, around the negative (light cyan-colored) patch at the center, is highlighted
by a thick black line. Many fieldlines, for this first excited state, cut across the Wigner
distribution’s contours and enter and leave the negative area.
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follows from Eq. (1.17). It indicates qualitatively that, since quantum states al-
most always have zero-lines [41], there will almost always be regions of singularities
of ∇ · w. In this sense, the attempt to transform away non-Liouvillian behavior of
quantum dynamics appears futile. Instead, such divergences explain certain numerical
problems [68] and emphasize how very different quantum and classical phase-space
dynamics are: whereas classical dynamics constitute one extreme (∇ ·w = 0 always),
quantum dynamics (for anharmonic systems) constitute another (|∇·w| =∞, almost
always, somewhere in phase-space).

Since Eq. (1.7) features singular divergence of the velocity field one should perhaps
stress quantum dynamics from the continuity equation point of view rather than
referring to quantum Liouville equations.

1.6 Conclusion

We showed that the integral form of Wigner’s representation of quantum mechanics
should be consulted as an alternative to Moyal’s formulation. It is more general
than Moyal’s form. If high order derivatives are present in Moyal’s form, the integral
form tends to converge better in numerical calculations, which can be implemented as
FFTs. It can make mathematical manipulations more transparent than Moyal’s form,
and it displays symmetries between position and momentum configuration space more
clearly.
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Article 2

Anharmonical quantum systems do
not feature trajectories
by

M. Oliva, D. Kakofengitis, O. Steuernagel [68]

2.1 Abstract

Phase space dynamics in classical mechanics is described by transport along trajec-
tories. Anharmonic quantum mechanical systems do not allow for a trajectory-based
description of their phase space dynamics. This invalidates some approaches to quan-
tum phase space studies. We first demonstrate the absence of trajectories in general
terms. We then give an explicit proof for all quantum phase space distributions with
negative values: we show that the generation of coherences in anharmonic quantum
mechanical systems is responsible for the occurrence of singularities in their phase
space velocity fields, and vice versa. This explains numerical problems repeatedly
reported in the literature, and provides deeper insight into the nature of quantum
phase space dynamics.

2.2 Introduction and motivation

The phase space dynamics of classical conservative mechanical systems is described
by the transport equations of Hamiltonian flow, along trajectories. For quantum
mechanical systems this is only true for harmonic potentials, anharmonic quantum
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mechanical systems do not transport quantum phase space distributions along tra-
jectories.

This important fact is not appreciated by all: a number of incorrect schemes to
model quantum dynamics using phase space trajectories have been devised [55, 15,
56, 36, 52, 77, 63, 53, 72, 21, 73, 20, 89, 94, 12, 79], leading to confusion [92, 54, 81,
93, 51, 49, 22, 80]. The schemes’ failures have, in some quarters, given phase space
representations of quantum mechanics an undeservedly poor standing [1].

Here we revisit the basic features of quantum dynamics in phase space [78, 95, 39]
in order to identify concepts of classical dynamics that cannot be applied to quantum
systems (recent reviews on quantum-classical methods can be found in [60, 32, 47]).
Our analysis deepens our understanding of the behaviour of quantum dynamics in
phase space. We show how the generation of quantum coherences renders quantum
dynamics in phase space very different from classical dynamics.

In Section 2.3 we explain how phase space trajectories arise from solutions of first
order differential equations as integral curves describing the transport of a density
distribution.

In Section 2.4, we emphasize that quantum phase space-based studies [78, 39, 95] of
quantum dynamics are no more involved than methods using von Neumann’s equation
to propagate the density matrix.

Section 2.5 emphasizes that a priori it is not clear whether quantum dynamics can
be described using trajectories.

In Section 2.6 we show that anharmonic systems are described by evolution equa-
tions which are higher order differential equations, these generally do not permit a
trajectory description but create quantum coherences; we additionally emphasize that
harmonic systems cannot generate quantum coherences.

We explicitly prove in Section 2.7 that quantum phase space distributions with
negative values (such as Wigner’s distribution) cannot feature trajectories because
the quantum analog of Hamilton’s phase space velocity field becomes singular. We
show why such singularities are needed to create quantum coherences.

The singularities affect numerical performance badly, see reference [61], in Sec-
tion 2.8 we explain why, using a simple toy system.

Several misconceptions and incorrect conclusions drawn from ill-fated applications
of the trajectory concept are reported in the literature. Some are examined in Sec-
tion 2.9 in order to explain how they fail and to further illuminate differences between
classical and quantum dynamics; before we conclude.
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2.3 Continuity equation, trajectories, classical phase
space flow and Liouville’s theorem

The transport of a density ρ(r, t), where the initial density ρ(r, 0) and its current j
encode the boundary conditions, is governed by a continuity equation

∂tρ(r, t) + ∇ · j(r, t) = 0 . (2.1)

Here we write ∂
∂t

= ∂t, r =
(
x
p

)
parametrizes locations in phase space and ∇ =

(
∂x
∂p

)
;

we denote vectors in bold face, and ‘·’ stands for scalar product.
A time-dependent solution for ρ of the Eulerian type (integrated over a time-

differential dt while keeping the position r fixed), is of the form

ρ(r, t+ dt) = ρ(r, t)− dt∇ · j. (2.2)

From a fluid dynamics perspective, the Eulerian approach tends to be in conservation
form and its solutions therefore well behaved numerically.

2.3.1 Trajectories through Lagrangian decomposition

If the current factorizes as

j(r, t) = ρ(r, t)v(r, t), (2.3)

where v is the velocity field, the continuity equation (2.1) can be rewritten in La-
grangian decomposition [23, 89, 20]

d

dt
ρ = ∂tρ+ v ·∇ρ = −ρ∇ · v . (2.4)

If equation (2.4) is of first order in the derivatives, linear in ρ, and all quantities are
mathematically well behaved, its solution allows for a trajectory-based description,
in Lagrangian (or co-moving) transport form [20, 89]

ρ(rt, t) = e−
´ t
0 dτ∇·v(rτ ,τ) ρ(r0, 0) , (2.5)

where trajectories are functions rt, parameterized by time t, arising through integra-
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tion of v starting from r0

rt(r0) = r0 +
ˆ t

0
dτ v(rτ , τ). (2.6)

Trajectories are integral curves describing the transport of a density distribution.
From a fluid dynamics perspective, the Lagrangian approach tends not to be in

conservation form and its solutions therefore poorly behaved numerically.
From a mathematical perspective, solution (2.5) is found using the method of

characteristics (also known as Lagrange-Charpit method) which requires the govern-
ing equation (2.4) to be of first order in its derivatives of ρ. For example, diffusion
equations are of second order and do not admit trajectory-based solutions.

2.3.2 Liouvillian flow in conservative classical mechanical sys-
tems

The natural setting for the dynamics of a mechanical particle is its phase space [64].
In this work we discuss a particle with mass M moving in one dimension x only. The
associated two-dimensional phase space is parameterized by vectors r =

(
x
p

)
, subject

to a conservative hamiltonian H = p2/(2M) +V (x). In this case, the particle’s phase
space velocity

v(r) = d

dt
rt =

(
p/M

−∂xV (x)

)
, (2.7)

encapsulates Newton’s laws, and features volume preserving or ‘Liouvillian’ dynam-
ics: ∇ · v = 0. As a function of r only, v is independent of time t and state ρ(r, t).

The Liouvillian nature of classical Hamiltonian current implies with∇·j = v ·∇ρ,
that the total derivative (2.4) is zero: the value of ρ, while the dynamics sweeps it
along its trajectories, stays constant ρ(rt(r0), t) = ρ(r0, 0). In this case, solution (2.5),
viewed as the function ρ(r, t), through relabelling r = rt, simplifies to the pull-back
form

ρ(r, t) = ρ

(
r −
ˆ t

0
dτ v(rτ ), 0

)
. (2.8)
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2.3.3 A simple system with non-Liouvillian flow that features
trajectories

A free particle slowed down by friction ṗ = −γp is a classical system violating Li-
ouville’s theorem. With pt = p0 e

−γt and xt = x0 + (1 − e−γt)p0/(mγ), Kramer’s
evolution equation ∂tρ = [−p/m∂x+γp∂p+γ]ρ, where the diffusive Brownian motion
term has been neglected, yields the trajectories-based solution of transport form (2.5)

ρ(x, p, t) = exp[γt] ρ0(x− p

γm
(eγt − 1), p eγt) . (2.9)

The coefficient function exp[γt] keeps this distribution normalized while the dynamics
shrinks volumes uniformly across phase space: ∇ · v = ∇ · (p/m,−γp) = −γ.

2.4 Wigner’s quantum phase space distribution

Attempts to understand and numerically approximate quantum dynamics of anhar-
monic systems has frequently relied on the concept of phase space trajectories in a
way unsuitable for this task [55, 15, 56, 36, 52, 77, 63, 53, 72, 21, 73, 20, 89, 94, 12, 79].
This seems to be the reason for the fatigue expressed by fellow researchers who per-
ceive the ‘Wigner method’ (and other phase space methods) as unsuitable for finding
ways of reducing computational complexities [1].

We have not found a rigorous explanation for the supposed unsuitability of Wigner’s
representation of quantum mechanics. In the general case it is not justifiable since
“All calculation methods scale in proportion to the volume of phase space that the
molecular encounter occupies. Therefore, phase space is a common denominator by
which different methods of calculation can be compared and the feasibility of the cal-
culation estimated.” [48]

Recent work shows that the propagation of the Wigner distribution is suitable
for the study of quantum dynamics of anharmonic systems [13] and that its study
provides new valuable insight [47].

A quantum state’s density matrix %(x, x′, t) = 〈x|%̂(t)|x′〉, can equivalently be
described by Wigner’s phase space-based quantum distribution W (x, p, t) [91, 38, 95,
17], both are based in spaces of equal dimension:

W%(x, p, t) ≡
1
π~

ˆ ∞
−∞

dy e−
2i
~ py〈x+ y|%̂(t)|x− y〉 . (2.10)
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W can numerically be generated quickly through fast Fourier transforms of %.
W is real-valued (unlike %), non-local (through y), and normalized´∞
−∞

´∞
−∞ dx dp W (x, p, t) = 1.

Generally, the Wigner distribution has negative patches [41], like many other quan-
tum phase space distributions [38], this will be important for part of our discussion,
in Section 2.7.

Specifically, Wigner’s distribution is set apart from other quantum phase space
distributions [38] by the fact that only Wigner’s simultaneously yields the correct
projections in Schrödinger’s position %(x, x, t) =

´∞
−∞ dp W (x, p, t) and momentum

representation %̃(p, p, t) =
´∞
−∞ dx W (x, p, t), while maintaining its form (2.10) when

evolved in time and giving the overlap between states in the simple form |〈ψa|ψb〉|2 =
2π~
´∞
−∞ dx

´∞
−∞ dp Wa Wb. Finally, the Wigner distribution’s averages and uncer-

tainties evolve momentarily classically [76, 6]. W is considered the “closest quantum
analogue of the classical phase-space distribution” [97].

For specificity we choose Wigner’s distribution for our discussions of quantum
phase space behaviour. Most of our results apply to other quantum phase space
distributions as well; the proof in section 2.7 explicitly applies only to those [38] that
have negative patches in phase space.

2.5 Trajectories in quantum systems

Note that by trajectories we mean integral curves that obey the equations of motion,
we neither discuss paths (which do not have to follow equations of motion) nor center-
of-mass trajectories as discussed by Heisenberg [34].

A priori it is not clear that one must not use trajectories for quantum phase space
descriptions of anharmonic systems.

Heisenberg’s uncertainty principle is at times interpreted to mean that quantum
mechanics does not allow for a trajectory-based description. This interpretation is
incorrect:

Phase space trajectories are a fruitful mathematical device for the description of
quantum dynamics of a system if the potential is of the quadratic form (2.14). This
statement applies to non-dissipative systems, even driven ones. For such systems the
trajectory-description (2.8) (for W rather than ρ) applies. Using trajectories, which
in this case follow the classical law (2.7), is in fact simpler and, in this sense, even
superior to the use of standard Schrödinger wave function propagators, see Takabayasi
in Ref. [85] p. 352.
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Bohm’s representation of quantum theory uses configuration space trajectories [58,
37] and these have experimental relevance [46].

The concept of paths has been fruitful in path-integral formalisms applied to
configuration or phase space.

Semiclassical methods employ classical trajectories along which quantum objects
are carried [35, 88, 8].

When trajectory techniques can be implemented for quantum dynamical phase
space studies they permit us to launch large numbers of trajectories while allowing
us to efficiently parallelize computer code [61, 89].

In what follows, we will, however, see that in anharmonic quantum systems the
divergence of the velocity field in phase space is non-zero. One might still hope to
describe the propagation of W in phase space by Eq. (2.5) [or Eq. (2.19)]. But it
turns out that the divergence of the quantum mechanical velocity field in phase space
is singular, see Section 2.7 and Fig. 2.2 (c). This cannot be avoided [44], and therefore
we can explicitly prove, by contradiction, that trajectories do not exist globally for
systems whose phase space distributions can develop areas with negative values, see
Section 2.7.

2.6 Time evolution of the Wigner distribution

The time evolution of W (x, p, t) = W (r, t) is given by the Eulerian continuity equa-
tion [91]

∂tW (r, t) = −∇ · J(r, t) . (2.11)

Generally, the Wigner current J has an integral representation [91, 38, 5, 44], but for
potentials V (x) that can be Taylor-expanded, giving rise to finite forces only, J is of
the Moyal form [91, 62]

J =
(
Jx
Jp

)
= j +

 0
−
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

. (2.12)

Here, with j = Wv, J − j are the ‘quantum correction’ terms.
Fieldlines of Wigner current are well defined and their depiction has helped to

reveal the topological charge conservation of J ’s stagnation points [83, 43].
In analogy to the classical Euler solution (2.2), the integration of the continuity

22



equation (2.11) yields

W (r, t+ dt) = W (r, t)− dt∇ · J , (2.13)

which is in conservation form.

2.6.1 Formation of coherences and negativities of the Wigner
distribution

The primary difference between classical and quantum states is the ability of a quan-
tum particle to form non-local coherences (to be present in both holes of a dou-
ble slit [25, 35]). Precisely these nonlocal coherences in configuration space are re-
vealed by the Wigner distribution’s negative patches [25] in phase space, and vice
versa [57, 97, 30]. Coherences or negative patches can only be generated in anhar-
monic systems. Harmonic systems (and their isomorphic partners [82]) are of the
quadratic form

Ĥquadratic(x̂, p̂) = p̂2

2M + K

2 x̂
2 + ax̂+ b (2.14)

(here K, a and b are any real constants). They can feature negative patches of the
Wigner distribution only if these are inserted into the initial condition, W0(r), but
they cannot generate them, see Eq. (2.19) below.

2.7 Singularities in the velocity field are needed:
trajectories are ill-defined

We now prove that the Lagrangian transport form is ill-defined in the quantum case.
Following references [23, 89, 20] we rewrite continuity equation (2.11) for W in La-
grangian decomposition (2.4)

dW

dt
= ∂tW + w ·∇W = −W∇ ·w . (2.15)
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Here, the quantum phase space velocity field w [23, 89, 20], corresponding to the
hamiltonian velocity field v, is

w = J

W
= v + 1

W

 0
−
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

 . (2.16)

w is singular at zeros of W since, generally, zeros of W do not coincide with zeros
of its derivatives [43].

For time-differentials dt, the formal solution of Eq. (2.15), written in pull-back
form, like Eq. (2.8), has the transport form [20, 89]

W (r, t+ dt) = e−dt∇·w W (r − dt w, t) , (2.17)

where the transport shift can be expressed via a translation using the convective
operator w ·∇

W (r − dt w, t) = e−dt w·∇ [W (r, t)] . (2.18)

We emphasize that the Lagrangian decomposition, although technically correct,
splits up the well behaved expressions in the continuity equation (2.11) and in this
way creates singularities in the evolution equation (2.15) and the exponents of its
solution (2.17) and (2.18).

Following references [20, 89] we formally extend the integration in time for the
transport form (2.17). To this end we temporarily assume that globally W > 0 in
order to remove singularities in w in Eq. (2.16) and that, additionally, W and V are
of such a form that |∇ · w| < ∞. We formally arrive at the integrated transport
form [20, 89]

W (rt, t) = e−
´ t
0 dτ∇·w(rτ ,τ) W (r0, 0) . (2.19)

Trahan and Wyatt deduced [89] “two important non-crossing rules that follow directly
from Eq. [(2.19)]: (i) a trajectory cannot cross a surface on which the density is zero;
(ii) the sign of the density riding along the trajectory cannot change.”

Hudson’s theorem [41], however, shows that for anharmonic systems the Wigner
distribution can at best be positive everywhere in phase space for one point in time
only. Time evolution in an anharmonic potential immediately introduces zero-lines
of W somewhere in phase space. At W ’s zeros the Picard-Lindelöf theorem is violat-
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ed, integrals (2.6), (2.17), (2.18) and (2.19) do not exist globally. Therefore, the
Lagrangian transport solution and trajectories rt do not exist across phase space.

In other words, Eq. (2.19) proves that bounded magnitude of ∇ ·w precludes sign
changes in W along streamlines of w.

This leads to one of our central results: the singularities of w are needed to
create the negativities of W , i.e., they are needed to create quantum coherences (Sec-
tion 2.6.1).

2.7.1 The phase space velocity w is non-linear in W

In general, an evolution equation with higher order derivatives does not allow for
trajectory-based solutions since it is neither of first order in derivatives nor lin-
ear in W , see Section 2.3.1. Forcing such an equation into Lagrangian decompo-
sition (2.15) leads to equations (2.16) which burden us with spurious non-linearities
inW : while J(Wa)+J(Wb) = J(Wa+Wb), in general w(Wa)+w(Wb) 6= w(Wa+Wb)
and left and right hand side of Eq. (2.15) are also non-linear in W . This argument
carries over to evolution equations [86, 90] of other quantum phase space distributions.

2.8 Short time integration of Eulerian and Lagrangian
evolution equations –an analytically solvable
case–

We now demonstrate that application of the Lagrangian decomposition (2.15) creates
misleading analytical and numerical results, whereas the Eulerian approach gives
correct results.

We use the harmonic oscillator groundstate W0(r) = (~π)−1 exp[−(x2 +p2/~2)] as
a globally positive initial state for a quartic oscillator V (x) = Kx4, K > 0. Since it is
not an energy eigenstate and all states have at least one zero at infinity, it immediately
develops negativities [41].

We find that even in this case, where initially singularities of w and ∇ · w are
absent, the Lagrangian approach fails, see Fig. 2.1.

A first order difference approximation of continuity equation (2.11), using a finite
value for ∆t, applied to W0(r), according to the Eulerian equation (2.13) gives the
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single-step propagation approximation

W (r,∆t) ≈ W0(r) −∆t ∇ · J (2.20)

=
[
1 + ∆t

(
−~2Kx∂3

p + {4Kx3∂p −
p

M
∂x}

)]
W0(r) . (2.21)

Eq. (2.21) is illustrated in Fig. 2.1 (a). It confirms the immediate formation of neg-
ativities and that even the single-step approximation of the Eulerian equation (2.13)
gives tolerable results. Repeated iteration of Eq. (2.21) yields successively better
approximations of the true dynamics, see Fig. 2.1 (b).

We now show that the growth of the magnitude |∇ · w|, at small values of W
(even if W0 > 0 everywhere), is so explosive that it renders the Lagrangian approach
misleading, for any non-zero time-step ∆t. We repeat calculation (2.21) using the
transport form (2.17). In this case, for the same initial state W0, we get the La-
grangian single-step propagation approximation

W (r,∆t) ≈ W0(r −∆t w) [1−∆t 8~−2K x p] , (2.22)

where w =
 p/M

−4Kx3 + ~2Kx W−1 ∂2
pW

 . (2.23)

Equation (2.22) is incorrect, see Fig. 2.1 (c), it puts the Wigner distribution’s
negative patches into the wrong sectors in phase space and creates deep gashes in
them, see Fig. 2.1 (d); these violate probability conservation.

We cross-checked these results, see Fig. 2.1 (b), using standard numerical Schrödinger
function solvers, the ‘QuTiP’ programming suite [42] and a split-operator technique [13],
confirming that only the Eulerian equation (2.21), see Fig. 2.1 (a), and iterations
thereof, see Fig. 2.1 (b), give acceptable results.

Fig. 2.1 (d) shows that even for our initially positive state W0, the behaviour
of w is responsible for the stark deviation of the ill-defined Lagrangian transport
form (2.17) from the correct Eulerian continuity equation’s solution.
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2.9 Misconceptions associated with phase space tra-
jectories

2.9.1 There are no Wigner trajectories

In reference [55] Lee and Scully consider energy eigenstates (of the Morse poten-
tial) and argue that “In terms of the Wigner distribution, it means that each phase
space point should move in such a way that the Wigner distribution does not change
in time. This consideration leads to the concept of ‘Wigner trajectories’, trajecto-
ries along which phase space points of the Wigner distribution move. For the case
under consideration, Wigner trajectories must be trajectories along the surfaces on
which the Wigner distribution takes on the same value, i. e., trajectories along the
equi-Wigner surfaces. These Wigner trajectories are ‘quantum-mechanical’ trajecto-
ries in the sense that they represent paths of phase space points that move according
to the quantum-mechanical equation of motion. They describe the exact quantum-
mechanical dynamics in a phase space, whereas classical trajectories obviously yield
only an approximate description of quantum dynamics”[55].

It has been suspected before that this concept might be flawed, see e.g. [77, 22],
here we provide a simple proof and a counterexample.

To disprove Lee and Scully’s assertion that for energy eigenstates of quantum
systems J ·∇W = 0, note that for eigenstates ∇ ·J = −∂tW = 0, so, with w = J/W

∇ ·w = W∇ · J − J ·∇W

W 2 = −J ·∇W

W 2 . (2.24)

Therefore Lee and Scully implicitly assume that the flow is Liouvillian which we
showed previously [44] to imply that no quantum terms are present in Eq. (2.12)
for J . This is incorrect for the Morse oscillator they studied [55].

We confirm our conclusion by a plot of fieldlines of J (to which the velocity fieldw,
where it exists, is tangential) in Fig. 2.2 (b). This shows that Wigner current crosses
W ’s contours, in other words, J ·∇W 6= 0.

2.9.2 The Non-Crossing Rules do not apply

We have shown in Section 2.7 that the non-crossing rules by Trahan and Wyatt are
artefacts of the use of the Lagrangian form (2.15).

Daligault also seems to invoke non-crossing rules when he states that for a re-
gion V0 where the Wigner distribution has negative polarity, and ∇ · w < 0, “the
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trajectories lying in this volume would condense and eventually collapse into a volume
of zero volume. From the practical viewpoint, the set of initial trajectories modelling
the whole initial region V0 would eventually describe a tiny volume.” [20]

Lee and Scully’s argument [55] for ‘Wigner trajectories’, see section 2.9.1 above,
also amounts to invocation of a non-crossing rule.

Section 2.9.1 and Fig. 2.2 (b) prove assertions based on Liouvillian flow and non-
crossing rules incorrect. Instead of trajectories-based on the velocity field w, fieldlines
of Wigner current J should be used, they are singularity-free and cross zero-contours
of W [83, 43].

2.9.3 Misconceptions due to incorrect decomposition of the
continuity equation

In equation (2.12) for J the l = 0-term is the classical force term rendering the
dynamics, if truncated here, Liouvillian (∇ · w = 0). The classical form also is
degenerate in the sense that the current is zero wherever W is zero [43].
In the anharmonic quantum case this is typically not the case, since (lines of) zeros
of the Wigner distribution do not imply that the current stagnates. Instead, this
degeneracy in J is lifted due to the quantum terms, of order l ≥ 1 [43]. This implies
that zeros of W are zeros of Jx but not of Jp. The quantum terms in (2.12) shift the
lines of zero of Jp away from those of Jx. Only where those lines intersect do stagnation
points of the current exist [43], see Fig. 2.2 (b) and (c). The stagnation points of the
current therefore straddle the boundaries of negative regions of W where the current
gets inverted [83, 43]. These stagnation points have special importance because they
are topologically protected [83], and they display very large local variations of the
direction of the current for non-zero values of the momentum p, a feature alien to
classical Hamiltonian flows. These aspects of the stagnation points of Wigner current
were found recently [83, 43] although precursors were observed in quantum phase
space studies of Husimi’s function [81].

Incorrect use of Newton trajectories In reference [12] continuity equation (2.11)
is decomposed into its classical term [with v from Eq. (2.7)] and quantum term Q

∂tW + v ·∇W = −∂pJp − ∂pW∂xV = Q . (2.25)
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This is an incorrect decomposition, the correct Lagrangian decomposition is given in
equation (2.15). The authors then formally integrate this equation propagating their
solutions along classical Newtonian trajectories (2.6), supposedly fully taking into
account all quantum effects [12, 79]. This is only correct for quantum-mechanical cases
whose hamiltonians have potentials up to second order in position x [85, 76, 12, 83, 82],
in which case Q = 0. In the anharmonic case, the approach of references [12, 79] does
not allow for the directional modifications of the current that is so characteristic for
quantum dynamics (see [83, 43] and Fig. 2.2): the Newton trajectory approach is
incorrect.

Incorrect total derivative decomposition Carruthers and Zachariasen [15] de-
composed Wigner current according to dW

dt
= −∂pJp, the correct expression is dW

dt
=

−W∂pwp, see equation (2.15).

The ṗ = ∂pJp/∂pW decomposition error Lee [52] and Lee and Scully [55, 56, 53]
incorrectly decomposed J using the analogy with classical physics. Imposing the
Liouvillian form

∂tW + p

M
∂xW + ṗ ∂pW = 0 , (2.26)

they concluded that, in the quantum case, ṗ = ∂pJp/∂pW . Their formal integration
of this equation leads to incorrect results such as those detailed in Section 2.9.1.

This decomposition was criticized by Daligault [20], criticized and yet adopted
by Sala et al. [77] and by Henriksen et al. [36] (who later concluded though that,
based on numerical work, “These studies showed a fatal degradation of the distribu-
tion function” [61]). Decomposition (2.26) was also adopted by, e.g., Muga et al. [63],
Razavy [72, 73], Dias and Prata [21], Zhang and Zheng [94], and reported by Lan-
dauer [51].

2.9.4 Can the non-zero divergence of the current be trans-
formed away?

In Reference [44] we established that Wigner current obeys Liouville’s theorem only
for systems with potentials at most quadratic in x.

Daligault asks whether one can find a transformation “that would render Hamil-
tonian [divergence-free] quantum fluid dynamics in phase space” [20]. Reference [44]
proves this is not possible. Here we give an additional argument:
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The idea of ‘transforming away’ the divergence in w amounts to transforming
away the quantum terms in J [44] and is ill-conceived: according to equation (2.19),
a divergence-free velocity field would not allow for a change of the value of W along
a fieldline of J . Since fieldlines are defined in all of phase space, negativities and
quantum coherences could never form.

Based on an analysis different from Daligault’s, Sala et al. [77] argue that the
‘Wigner trajectories’ of Lee and Scully, see section 2.9.1, exist, that these trajectories
follow the contours of W , and that along them dW

dt
= 0. They modify and reinforce

this statement by saying that “Liouville’s theorem in the form of area preservation
of a given contour of moving phase points is obeyed as long as the defined contour
does not touch any of the singularities. The singularities are not only responsible for
“destruction" of trajectories. They can also “create" them."[77]

We found here that for anharmonic oscillators w is divergence-free only on lines
(of measure zero) in phase space, see Fig. 2.2 (c). In other words, quantum phase
space dynamics of anharmonic systems is non-Liouvillian almost everywhere in phase
space. We have (other than for harmonic oscillator eigenstates and high-temperature
thermal states) not seen evidence of fieldlines of J following W ’s contours. The
reported observation of the “creation or destruction” of trajectories at a singularity
of w might be due to careless numerics using an adaptive integrator.

2.9.5 There are no quantum potentials in phase space

The concept of Wigner trajectories was also used for the introduction of the concept
of a “quantum potential” Ṽ [52] or “quantum force” F̃ [72, 73]. The underlying idea
is to identify the term ṗ in Eq. (2.26) with ṗ = F̃ = −∂xṼ . Being based on an
erroneous identification of terms in Eq. (2.26), it gives rise to incorrect and peculiar
results such as a force with singularities [72, 73].

2.9.6 What about positive phase space distibutions?

Proof (2.19) applies to all phase space quantum distributions with negative values,
i.e., to the entire continuum of gaussian smeared distributions of which Husimi’s
Q-function is the (positive semi-definite) limit [38].

Certain technical issues are tamed by using positive distributions such as Husimi’s
Q-function [40] or some thermal Wigner distributions, but we doubt it changes the
fundamental inadmissibility of the trajectory concept for positive distributions: to use
trajectories one would have to find a transformation that removes the quantum terms
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in (2.12) in order to render the equations first order in their derivatives and linear
in W (Section 2.7.1). But the quantum terms are always present for anharmonic
systems [38, 86, 90].

Particular non-trivial anharmonic systems with special states and special sym-
metries, admitting transformations to Lagrangian forms that simplify treatment,
might exist. In general (and in light of failed attempts to find such transforma-
tions for W [44]) suggestions [1] that evolution equations of non-negative quantum
distributions for anharmonic systems might admit trajectory-based representations
appear implausible.

2.10 Conclusions

Quantum phase space dynamics has frequently been cast into Lagrangian form in
order to represent its transport along trajectories. For anharmonic quantum me-
chanical systems this leads to a phase space velocity field w with singularities and
singular divergence ∇ · w. For anharmonic quantum systems transport-solutions,
using trajectories, are mathematically ill-defined: trajectory-based approaches have
to be avoided.

The occurrence of singularities of ∇ ·w in the anharmonic quantum case is needed
and responsible for the generation of negativities in Wigner’s quantum phase space
distribution and thus for the generation of quantum coherences. This realization
provides a deeper understanding of the differences between quantum and classical
phase space dynamics (for which ∇ ·w = 0). It also explains the frequently reported
poor performance of numerical schemes employing trajectories in phase space.

Instead of studying quantum phase space dynamics from a Lagrangian trajec-
tory approach it should primarily be studied from an Eulerian approach centered on
Wigner’s quantum phase space current J . J -fieldlines always exist and they reveal
intriguing detail [83, 43].

An interesting open question [1] is: how stable are entangled-trajectories meth-
ods [23, 24, 22]?
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(a) (c)

(b) (d)

Figure 2.1: Initially positive Wigner distribution W evolved in Eulerian form (a)
and (b) or Lagrangian form (c) and (d). (a), the single step propagation of W0
with ~ = 1,M = 1, V = x4, and ∆t = 10−2, using the Eulerian solution (2.21),
shows correct formation of negativities as blue patches in phase space. However,
due to the crude nature of the first order difference approximation (2.20) of the
∆t-step employed in this illustration, spurious negative classical transport patches
form, shown in yellow. (c), essentially the same scenario as (a) (for explicitness we
chose a longer time of ∆t = 5 × 10−2) is displayed using the Lagrangian transport
form (2.22): deep, unphysical gashes form due to the singularities in w in (2.23). (b),
using a twelve step iteration of the Eulerian solution (2.21), while reducing the time
step per iteration to 10−2/12, we end up with a better approximation than in (a):
W ’s negativities (blue patches) persist and develop fringes, whereas the unphysical
(yellow) classical patches recede. This is confirmed by an exact numerical integration
(brown overlay). (d), the transport shift form (2.18), for the same scenario as (c),
displays unphysical formation of humps highlighted in green, their positions confirm
that the singularities of w create the deep gashes in (c).
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Figure 2.2: (a) The Wigner distribution for the first excited state of an anharmonic
Morse oscillator [19] with potential U(x) = 3(1 − exp(−x/

√
6))2 (parameters: ~ = 1

and M = 1) is depicted by its black contour lines in (b). W ’s thick zero contour
(black line in (a)) separates the negative central patch from the surrounding positive
area in (b): Red crosses and yellow bars mark the locations of J ’s stagnation points,
with Poincaré-Hopf indices [83] ω = +1 and −1, respectively. Integrated fieldlines
of J are depicted as thin white lines, displayed together with normalized current
J/J (white arrows). J -fieldlines, cut across the Wigner distribution’s contours and
enter and leave the negative area. (c) shows 2

π
arctan |∇ · w| and illustrates that

w is Liouvillian only on lines in phase space (cyan coloring) while featuring singular
behaviour whereW = 0 (thin black line). Red arrows depict regular and green arrows
inverted [83] current J.
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Article 3

Structures far below sub-Planck
scale in quantum phase space
through superoscillations
by

M. Oliva, O. Steuernagel [65]

3.1 Abstract

In 2001, Zurek derived the generic minimum scale aZ for the area of structures of
Wigner’s quantum phase distribution. Here we show by construction, using super-
oscillatory functions, that the Wigner distribution can locally show regular spotty
structures on scales much below Zurek’s scale aZ . The price to pay for the presence
of such structures is their exponential smallness. For the case we construct there is
no increased interferometric sensitivity from the presence of patches with superoscil-
latory structure in phase-space.

3.2 Introduction

Based on the concept of interferences in phase-space [78], Zurek established that the
minimum scale aZ for the area of structures of quantum phase distributions can, for
one-dimensional quantum systems, be as small as aZ ≈ ~2/A, where A is the action
representing the area of support of a system’s Wigner distribution [91]. This was
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surprising [97], since Heisenberg’s uncertainty principle was interpreted to limit the
area of spots in phase-space to approximately ~/2.

When a bandwidth-limited signal contains segments which oscillate faster than
what its spectrum suggests, it “superoscillates" [9].

Superoscillations have first been noticed in physics in the framework of weak
measurement by Aharonov et al. [2], and then studied in detail by Aharonov et
al. [3], Berry et al. [9, 11], and others [14]. They have since been used experimentally,
for example in super-resolution microscopy [75].

Translated to quantum phase-space: Wigner distributions can show regular spotty
structures much below Zurek’s scale aZ ; but such states cannot obviously be exploited
for higher resolution in measurements.

3.3 Zurek’s fundamental phase-space tiles

The Wigner distribution of a “Schrödinger’s cat" state of squeezed states G(x, p) =
(π~)−1e−x

2/ξ2− p
2ξ2

~2 , with squeezing parameter ξ, is

W (x, p) = G(x−∆x, p) +G(x+ ∆x, p)
2 (3.1a)

+G(x, p) cos
(2p
~

∆x
)
. (3.1b)

Zurek’s compass state is a coherent sum of two Schödinger’s cat states rotated
by π/2 with respect to each other. Starting from such compass states, Fig. 3.1 (a),
Zurek showed that “Wigner functions can, and generally will, develop phase-space
structures on scales as small as, but not generally smaller than" [97]

aZ = h

P
× h

L
= h2

A
. (3.2)

Here, P and L are the phase-space distances between the squeezed states along
the momentum and position axes respectively.

The Zurek scale aZ is, e.g., the phase-space area of one fundamental tile [97]
(“Zurek tile") associated with a compass state, highlighted in Fig. 3.1 (a).
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Figure 3.1: (a) shows a cross state [97] for L = P = 6 and ξ = 1 (atomic units
[a.u.], ~ = 1, are used in all figures), the green frame borders its Zurek tile with
area aZ . (b), (c) and (d) are obtained using N = 8, α = 10, ξ = 1

4 , ∆x = 3 and
~ = 1. (c) shows the squared wave function Ψ(x)2 and its sign changes due to the
complex coefficients in Ψ(x) [Eq. (3.5)]. (b) shows WΨ(0, p), and (d) the logarithm
of |WΨ(0, p)| near the origin, in a panel of width h/L ≈ 0.26, in which the two red
dashed lines bracket superoscillatory structure of length h/L

α
= h/L

10 [see Eq. (3.7)].

3.4 The superoscillating cross-state

Inspired by Zurek’s compass state, we construct a “cross-state" featuring superoscil-
lations in quantum phase-space. This state features small patches with regular struc-
tures on scales much smaller than aZ , Fig. 3.2.

We use the superoscillating function [3, 9, 11]

f(x) = (cos(x) + iα sin(x))N , α > 1, N ∈ N. (3.3)

For α = 1, f(x) = eiNx is a regular plane wave. For α > 1 and N � 1, f(x)
becomes superoscillatory [see Fig. 3.1 (d)]
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f(x) =
N∑
j=0

Cj(N,α)ei(N−2j)x, (3.4)

where Cj(N,α) = (−1)j
(
N
j

)
(α + 1)N−j(α− 1)j/2N are the Fourier coefficients [3].

To map f(x) of Eq. (3.4) into phase-space, we use a superposition of suitably
pairwise-displaced squeezed states S(x) = (πξ2)−1/4 e−x

2/(2ξ2) [see Eq. (3.1)], to form

Ψ(x) = Φ0(x) + 1√
2

N/2∑
j=−N/2
j 6=0

(−i)jΦj(x), (3.5)

where Φj(x) = Kj S(x− j∆x), Kj =
√
|Dj| /

∑N/2
l=0 Dl

and Dj =

CN/2 if j = 0

CN/2+j + CN/2−j if j 6=0
.

Here, N is even and Ψ contains N + 1 spikes, see Fig. 3.1 (c). The associ-
ated Wigner distribution WΨ contains a suitable combination of plane wave terms
[Eq. (3.1b)] to emulate f(x) of Eq. (3.4), see Fig. 3.1 (d).

An incoherent sum of two such Wigner distributions, rotated by π/2 with respect
to each other, forms the desired cross-state W+(x, p) = [WΨ(x, p) + WΨ(−p, x)]/2.
This balanced mixed state features superoscillatory structures within Zurek tiles, on
sub-Zurek scales [Fig. 3.2 (a)-inset, (b) and (c)].

One could use a coherent sum to form a cross, but this would lead to greater
complexity in Fig. 3.2, which is unnecessary to illustrate our construction.

3.5 Substructures within Zurek tiles

The area of sub-Planck structures of non-superoscillating states is limited by aZ [97].
Now we show that regular structures on scales much smaller than aZ can exist.

The local expansion of Eq. (3.3) around the origin has the local superoscillatory
plane wave form

f(x) = eN ln[cos(x)+iα sin(x)] ≈ eiNαxeNα
2x2/2. (3.6)

Therefore, the superoscillating Wigner distribution WΨ contains interference terms,
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Figure 3.2: (a) Cross-state W+(x, p) = [WΨ(x, p) + WΨ(−p, x)]/2 for N = 4, α = 6,
ξ = 1, and ∆x = 6 (~ = 1, a.u.). In (a)’s inset and panels (b) and (c), red (positive)
and blue (negative) regions depict superoscillatory structures contained within Zurek
tiles (green frames). (b) and (c) show ln |W+(x, p)| and demonstrate the scaling with
aSO, see Eq. (3.7). State parameters N = 12, ξ = 1

4 , ∆x = 3, with α = 10 in (b),
and α = 16 in (c), respectively.

equivalent to expression (3.1b), proportional to cos(2p
~
N∆x

2 α) = cos(pL~α). Thus for
W+, analogously to Zurek’s scale aZ in the cross state Fig. 3.1 (a), superoscillatory
structures with α-fold reduced length scales, Fig. 3.1 (d), yielding areas on the scale
of

aSO ≈
h/P

α
× h/L

α
≈ aZ
α2 (3.7)

arise.
For these superoscillatory structures to show, the ‘overspill’ from the two adjacent

squeezed states Φ−1 and Φ+1 has to be so small that their Wigner distributions obey

WΦ−1(0, 0) +WΦ+1(0, 0)� |WΨ(0, 0)|. (3.8)
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3.6 Conclusion

We remind the reader of the fact that a quantum wave function cannot be strictly
“bandwidth-limited", simultaneously in position and momentum. Our Wigner dis-
tributions are confined by a finite area A in phase-space, yet they feature regular
sub-Zurek scale structures, in this sense they are superoscillating.

Zurek’s compass states provide interferometric sensitivity at the Heisenberg limit.
As Fig. 3.1 (c) illustrates, our superoscillating states change, under tiny displacements
in x, p and t, in essentially the same way as regular compass states; they therefore
do not perform better at the detection of small shifts or rotations.

At this stage, the formation of structures below the Zurek scale using superoscil-
lations in phase-space is primarily a surprising curiosity. Superoscillating regions are
known to be tiny in extent and amplitude [11, 3, 14]. This is why our superoscillating
states cannot show sensitivity below the Heisenberg limit.

We have shown, to paraphrase Zurek’s statement cited above, that phase-space
structures are frequently as small as, but not generally smaller than aZ . Yet, super-
oscillating states can generate localized small patches with regular structures on very
much smaller scales.

An interesting open question raised by the existence of sub-Planck and sub-Zurek
scale phase-space structures concerns their potential effects on simulations. Possibly,
grids finer than commonly assumed for numerical calculations [48] have to be used.
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Article 4

Dynamical shear suppression in
quantum phase space
by

M. Oliva, O. Steuernagel [67]

4.1 Abstract

Classical phase space flow is inviscid. Here we show that in quantum phase space
Wigner’s probability current J can be effectively viscous. This results in shear sup-
pression in quantum phase space dynamics which enforces Zurek’s limit for the min-
imum size scale of spotty structures that develop dynamically. Quantum shear sup-
pression is given by gradients of the quantum terms of J ’s vorticity. Used as a
new measure of quantum dynamics applied to several evolving closed conservative
1D bound state systems, we find that shear suppression explains the saturation at
Zurek’s scale limit and additionally singles out special quantum states.

4.2 Main text

The differences between quantum and classical evolution are best investigated in
phase space [29]. It is known that quantum evolution in phase space does not obey
Liouville’s theorem of volume conservation [62, 68] and that there is no velocity field
in quantum phase space [68] (and therefore no flow). It is less clear why there is no
quantum chaos [98, 16, 99, 29, 28].
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Here we show that the effective viscosity of quantum phase space dynamics entails
a shear suppression mechanism which fundamentally differentiates quantum from
classical dynamics. This observation explains, amongst other things, the absence of
quantum chaos.

We consider dynamics in 1D closed conservative systems with spatial coordinate x
and momentum p. As initial states we use displaced Gaussians

W0(x, p, x0, p0) = (π~)−1 exp[−(x− x0)2 − (p− p0)2/~2]

which are positive [41] and therefore ‘classical’.
A classical probability distribution ρ(x, p, t) evolves, after sufficient time t, thinly

stretched out threads, see Fig. 4.1 (c). Generally, structures of ρ become progressively
finer as time progresses [97], particularly chaotic systems develop very fine structures
quickly [10, 97, 64, 18].

Wigner’s quantum phase space distribution W (x, p, t) [91, 38] is the closest quan-
tum analogue [97, 68] of the classical phase space distribution ρ. Quantum evolution
creates negative regions (blue, delineated by dashed lines at W = 0, see Fig. 4.1)
[in all figures atomic units ~ = 1 and M = 1 are used (see Section 4.3.5)]. These
negative regions represent the existence of quantum coherences [25, 57, 97, 68] and
Section 4.3.6.

Interference in phase space [78] is a property built into quantum phase space
functions, such as W , through the Wigner-Moyal mappings [91, 62] between Hilbert
space operators and their quantum phase space images [71, 33]. This interference
limits the fineness of spotty structures that W can have to Zurek’s phase space area
scale [97]

aZ = h

P

h

L
= 2π
Kx

2π
Kp

(4.1)

(see Fig. 4.1 (b) and Fig. 4.1 (d) ). Here h is Planck’s constant, and length L

and momentum P are W ’s spread in phase space and thus the area LP (measured
in units of action) to which it is confined. The maximal wave-numbers associated
with W ’s structures in x and p are, respectively, Kx = P/~ and Kp = L/~ [97] (see
Ref. [65] for exceptions). Over time states develop spotty structures which saturate
on the Zurek scale aZ [97].

Here we show that the adherence to Zurek’s scale limit in the evolution is best
understood in terms of the viscosity of the Wigner current J [91, 83, 44, 68].
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(a)

(c)

(b)

(d)

Figure 4.1: Comparison between classical and quantum distributions in phase space.
For short times quantum evolution resembles classical evolution, compare (b) to (a).
But for long times, since quantum evolution creates less fine structures than classical
evolution [8, 97], their outcomes differ very substantially, contrast (d) with (c). A
weakly excited initial state W0(x, p, 1.5, 0) is propagated in the soft potential VV =
31x2/10 − x4/81 for time t = 50, under, (a), classical evolution and, (b), quantum
evolution. Similarly, the state W0(x, p, 2, 0) is propagated in the hard potential VU =
(x/2)4 for time t = 25, under, (c), classical and, (d), quantum evolution.

J is the quantum analogue of the classical phase space current j = ρv which
transports the probability density ρ(x, p, t) according to Liouville’s continuity equa-
tion ∂tρ = −∇·j. Here v is the classical phase space velocity v = (p/M,−∂xV (x)),M
the mass of the particle and V (x) the potential.

Over time ρ gets sheared since v creates non-zero gradients of its angular velocity
across energy shells. The classical Hamiltonian phase space flow is inviscid as v is
independent of ρ. Thus no terms suppress the effects of the angular velocity gradients,
and so, as time progresses, non-singular probability distributions in phase space get
sheared into ever finer filaments (see Fig 4.1 (c) ).

We define classical phase space shear as (see Section 4.3.5)

s(x, p;H) = ∂∇̂H (−∇× v) = ∂∇̂H (∂pvx − ∂xvp) , (4.2)

using the directional derivative across energy shells ∂∇̂H , formed from the normalized
gradient ∇̂H = ∇H/|∇H| of the Hamiltonian H.

The sign convention with the negative curl in s in Eq. (4.2) was chosen to yield
a positive sign for clockwise orientated fields since this is the prevailing direction of
the classical velocity field v. This choice yields s > 0 for hard potentials (potentials
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(e)

Figure 4.2: Polarization of the vorticity δ and inversion of this polarization. The
comparison between (c) and (d) shows polarization inversion. (a), sketch of hard
potential VU = (x/2)4 together with probability distributions P (x, t) = |Ψ(x, t)|2
(black curve) of state evolved in VU from initial Gaussian state P (x, 0) (grey curve)
at initial center position x = 2. The Wigner distribution W of a Glauber coherent
state Ψ(x, 4.7) in (a) is shown in (b). White contours of W [the origin (x, p) =
(0, 0) is labelled by a white cross] are overlaid with colors [legend given in sidebar
(e)] representing values of Tanh[50 δ(HU)], (c), and Tanh[50 δ(HV)], (d). For the
hamiltonians HV and HU the same potentials as in Fig. 4.1 are used.

for which the magnitude of the force increases with increasing amplitude), since they
induce clockwise shear, see Fig. 4.1 (c), s = 0 for harmonic oscillators and free
particles, and s < 0 for soft potentials (potentials for which the magnitude of the
force decreases with increasing amplitude), since they induce anti-clockwise shear,
see Fig. 4.1 (a).

The quantum continuity equation is [91, 68]

∂tW = −∇ · J = −∂xJx − ∂pJp, (4.3)

where ∇ = (∂x, ∂p) is the gradient operator. Wigner’s current J does not factorize
like j [68]. It has an integral representation, see [91, 44] and Section 4.3.4. If
the potential V (x) is smooth such that it can be expanded into a Taylor series, the
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Figure 4.3: Π(t;H) levels off over time as systems saturate. Π’s time evolution
for, (a), initial state W0(x, p, 9, 0), for the hard potential VU = x4/500, and, (b),
W0(x, p, 3, 0), for the soft potential VV = 31x2/10 − x4/81. In accord with our sign-
convention for Eq. (4.2) Π(t;HU) drops over time whereas Π(t;HV) rises, until the
system saturates.

integral for J can be determined explicitly as [91, 31, 62]

J(x, p, t) = j + JQ = Wv +
(

0
Jp − jp

)
(4.4)

=W

(
p
M

−∂xV

)
+

 0
−
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

 . (4.5)

J ’s zeroth-order term in l is the classical term j = Wv (e.g. Jp|l=0 = −W∂xV ).
Terms of order l ≥ 1 are the quantum correction terms JQ = J − j. They are
only present for anharmonic potentials [44], which is why only anharmonic potentials
create coherences. Harmonic systems’ phase space dynamics is classical, see [68, 44]
and Section 4.3.6.

The reaction of quantum dynamics to classical shear s has to reside in JQ. To
extract it we form the vorticity of JQ

δ(x, p, t;H) = −∇× JQ = ∂pJ
Q
x − ∂xJQp . (4.6)

δ’s sign distribution shows a pronounced polarization pattern, see for example Fig. 4.2 (c):
specifically, on the positive main ridge of W (Fig. 4.2 (d) ) δ tends to be positive on
the inside (towards the origin) and negative on the outside. Because of this the out-
side is being slowed down while the inside speeds up. This polarized distribution of δ
therefore counteracts the classical shear (sVU > 0) and can suppress it altogether.

The same applies to other positive regions of W , whereas for its negative regions
the current J tends to be inverted [83, 43] just as δ’s polarization pattern.
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Switching the governing potential from hard, VU, to soft, VV (using the same state
but different dynamics), reverses the classical shear, see Fig. 4.1. Accordingly, a
reversal of the polarization pattern of Fig. 4.2 (c) occurs in Fig. 4.2 (d).

The distribution of δ’s polarization can be picked up with the directional deriva-
tive ∂∇̂Hδ(t;H). This we multiply with W , because negative regions of W invert
the current J [83], and because we want to weight it with the local contribution of
the state. The resulting measure for weighted shear polarization is π(x, p, t;H) =
W (t) ∂∇̂Hδ(t;H). Its average across phase space is W ’s shear polarization

Π(t;H) = 〈〈π(t;H)〉〉 =
¨ ∞

−∞
dxdp π(x, p) . (4.7)

Initially |Π(t)| rises on average and after a while levels off and settles, see Fig. 4.3.
We emphasize that the levelling-off behaviour of Π(t) is in marked contrast to the

classical case: in simple bound state systems the states never saturate, instead, for
long enough times 〈〈∂∇̂H (−∇×j)〉〉 ∝ t since ρ(t) gets stretched out linearly into ever
finer threads, see Fig. 4.1 (a) and Section 4.3.9.

In the quantum case the evolution’s shear shrinks structures ofW in size, butW ’s
minimal structures are forced to saturate due to the existence of Zurek’s scale.

When a state saturates, the gradients in the quantum terms of J become so
large that they strongly quantum-suppress the classical shear inherent in J . Where
minimal structures of W have formed, this quantum shear suppression prevents finer
minimal structures from developing: J ’s effective viscosity enforces the saturation of
states at the Zurek scale.

When this happens Π(t) has settled, see Figs. 4.3, 4.4 and 4.6.
To make explicit the connection between shear suppression Π(t) and the saturation

of systems at the Zurek scale we define W ’s spatial frequency contents Ω as

Ω(t) =
˜
dkxdkp |

≈
W (kx, kp, t) kxkp|˜

dkxdkp |
≈
W (kx, kp, t)|

< 2KXKP , (4.8)

where
≈
W (kx, kp) is the 2D Fourier transform ofW (x, p). Since a state cannot only

consist of structures at the Zurek scale Eq. (4.8) obeys the inequality Ω < Ωmax =
8π2

az
= 2KXKP , compare Eq. (4.1) and Section 4.3.8.

Fig. 4.4 demonstrates that for simple systems changes of the shear polarization Π(t)
can go hand-in-hand with those of the spatial frequency contents Ω(t). This estab-
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Figure 4.4: Shear suppression Π(t) and frequency contents Ω(t) can evolve similarly.
A gaussian state W0(x, p, 3, 0) is evolved in a hard potential VU = 31x2/10 + x4/81.
While Ω(t) rises (here, Ωmax = 182.5), as W develops fine structure, Π(t) drops, since
we consider a hard potential VU. Both curves Π(t) and Ω(t) level off at the time
where W ’s fine structures saturate at the Zurek scale. Here the oscillations around
the respective mean values for saturated systems are due to the formation of special
(partial revival) states [4, 74], for details see Fig. 4.6 and Section 4.3.3.

lishes that shear suppression constitutes the mechanism by which quantum dynamics
conforms with interference in phase space.

Interestingly, both measures single out special states: those states for which the
values of Π and Ω deviate from the typical saturated system states’ values. In the
case of weakly excited single well bound state systems the special states happen to
be partial-revival states [4, 74], see Fig. 4.6. Some details of Fig. 4.4 can be under-
stood from the observation that even partial-revival states feature more symmetric
interference patterns, which lowers their frequency contents Ω, when compared with
odd partial-revival states.

We emphasize that Π and Ω can measure aspects of the dynamics very differently
from each other, see Section 4.3.11 for an illustration.
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Figure 4.5: Fourier spectra Π̃(ω) and Ω̃(ω) of the time series Π(t) and Ω(t) in Fig. 4.4.
Note that Π(t) provides a smoother spectrum than Ω(t). Cutting out Π̃’s central band
(Π̃0 within white corridor) allows us to smooth Π(t); see Fig. 4.6.

Figure 4.6: Smoothed Π(t) picks out special states. The inverse Fourier transform
of the central band Π̃0(ω) (highlighted in Fig. 4.5) yields a (thick red) smoothed
curve Π0(t) of Π(t) (gray curve). Deviations of Π0(t) from the settled value (≈
−0.7) singles out ‘unsaturated’ special states: the evolution shows an approximate
recurrence of the initial state at time T ≈ 1154. Pronounced peaks and troughs at
intermediate times identify fractional revival states, see [4] and Section 4.3.3, with
special n-fold symmetries.

The spectrum Π̃(ω) of Π(t) is smoother than the spectrum Ω̃(ω) of Ω(t), see
Fig. 4.5. Valuable information is more easily accessible through Π than Ω since this
smoothness allows us to cut out frequency bands without sensitive dependence on
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the cut location. Additionally, Π provides information more readily than the typi-
cally used wave function overlap P(t) = |〈Ψ0|Ψ(t)〉|2. This is because P(t) depends
sensitively on its initial state Ψ0 but also because the spectrum of P(t) is noisier and
does not have a central peak that provides accessible information in the manner that
Π̃0 does, see Section 4.3.2 for details

Our theory can be applied to Kerr-Hamiltonians, driven and dissipative sys-
tems [27] and higher-dimensional continuous systems [91]; it remains to be seen
whether it can be applied to discrete systems [87].

To conclude, quantum dynamics in phase space can be effectively viscous; we
have traced this back to the behaviour of the quantum corrections in Wigner’s phase
space current J . Quantum suppression of classical shear generates shear polariza-
tion patterns that characterize the difference between quantum and classical phase
space dynamics. J ’s viscosity limits the fineness of structures formed in quantum
phase space dynamics. The quantification of shear polarization patterns using Π(t)
provides new insight into the character of quantum phase space dynamics. Addi-
tionally, studying the time series of Π we find that it sensitively displays features of
the dynamics, picks out special quantum states, does not rely on arbitrarily chosen
reference states, can be frequency filtered and provides information on the dynamics
in a robust way.

For the study of the dynamics of continuous quantum systems we expect that the
shear suppression polarization Π(t) will prove to be a valuable alternative to the wave
function overlap probability P(t).
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4.3 Supplementary material

4.3.1 Fast oscillations and frequency filtering

Figure 4.7: Frequencies for potential VV with parameters of Fig. 4.3 (b). Panel (a), Π
contains high frequency components at twice the frequency of the center-of-mass
oscillation of the distribution W , as evidenced by comparison with panel (b) showing
〈x̂〉〈p̂〉 and panel c showing the overlap probability P(t). For times greater than
130 the dispersion of the state into a distribution with several humps creates higher
harmonics frequency side-bands Π̃n, compare Figs. 4.9 and 4.6 (b).

4.3.2 Comparison of shear polarization Π with overlap P

In Figs. 4.9-4.12 we apply essentially the same filtering procedure as was used to gener-
ate Fig. 4.6 (e). Comparing the respective spectra explains differences between Π̃(ω)
versus P̃(ω), and thus Π(t) versus P(t):

The Pn(t)-curves show that characterization of the behaviour of the system’s dy-
namics is easier to achieve using Πn(t) than Pn(t), compare Fig. 4.9 (b) (and 4.6 (e) )
with 4.10 (b), or Fig. 4.11 (b) (and 4.13 (e) ) with 4.12 (b).

The reason for this observation is the presence of structure in the zero-frequency
band Π̃0(ω), highlighted in Figs. 4.6 (d) and 4.13 (d); this structure can provide
us with a useful smoothed signal Π0(t), see Figs. 4.6 (e) and 4.13 (e). In contrast
to Π̃0(ω), P̃0(ω) is mostly concentrated into a single isolated peak, see Figs. 4.10 (a)
or 4.12 (a), and, as a consequence, P0(t) flatlines, see Figs. 4.10 (b) or 4.12 (b).
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Figure 4.8: Frequencies for potential VU with parameters of Fig. 4.3 (a). Panel (a), Π
contains high frequency components at twice the frequency of the center-of-mass
oscillation of the distribution W , as evidenced by comparison with panel (b) showing
〈x̂〉〈p̂〉 and panel (c) showing the overlap probability P(t), compare Fig. 4.13 (b).

Additionally, the weights of the spectral bands Π̃n(ω) drop with increasing band
index n, see Figs. 4.9 (b) (and 4.6 (b) ), or Figs. 4.11 (b) (and 4.13 (b) ). Higher
order bands can be truncated without losing too much information. In contrast, the
weights of the spectral bands P̃n(ω), see Figs. 4.10 (a) or 4.12 (a), remain similar
across several frequency bands n. For useful information, bands with high index n
have to be retained. Their associated time-signal therefore suffers from complexity-
overload, contrast Fig. 4.10 (b) with 4.9 (b), or 4.12 (b) with 4.11 (b).

The signals Pn(t) display spurious negativities, see Figs. 4.10 (b) or 4.12 (b),
because they are filtered before being back-transformed. The probabilities P(t) are
of course positive at all times, see Figs. 4.7 (c) and 4.8 (c).
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Case of soft potential VV

Figure 4.9: Smoothing of Π(t) through frequency filtering for potential VV with param-
eters of Fig. 4.3 (b). Panel (a), harmonic frequency bands of the Fourier image Π̃(ω)
of Π(t) are color-labelled. We progressively remove higher harmonics and retain only
the n lower order bands Π̃n grouped in pairs around the central band Π̃0 at zero
(red color). (b), when back-transforming Π̃n we arrive at smoothed curves Πn of Π,
color-labelled by the highest retained frequency band in (a) above. Panel (b) shows
that the Πn-curves pick out special states of the corresponding recurrence order n at
recurrence times T/n and their multiples, compare Fig. 4.6.
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Figure 4.10: Smoothing of P(t) through frequency filtering for potential VV with
parameters of Fig. 4.3 (b). Panel (a), shows harmonic frequency bands of the
Fourier image P̃(ω) of P(t) and panel (b), the back-transformed images of P̃n, yield-
ing smoothed curves Pn of P , compare Figs. 4.6, 4.9 and 4.13. (b), when back-
transforming groups P̃n(ω) we arrive at smoothed curves Pn(t) of P(t), color-labelled
by the highest retained frequency band from (a) above; P0(t) flatlines. The dashed
lines of panel (b) have been carried over from Fig. 4.6 (e). Their slight time offset is
due to the fact that Pn only measures the overlap with the initial state, whereas Π
is a global measure.
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Case of hard potential VU

Figure 4.11: Smoothing of Π(t) through frequency filtering for potential VV with pa-
rameters of Fig. 4.3 (b). Panel (a), harmonic frequency bands of the Fourier im-
age Π̃(ω) of Π(t) are color-labelled. We progressively remove higher harmonics and
retain only the n lower order bands Π̃n grouped in pairs around the central band Π̃0
at zero (dark green color). (b), when back-transforming Π̃n we arrive at smoothed
curves Πn of Π, color-labelled by the highest retained frequency band in (a) above.
Panel (b) shows that the Πn-curves pick out special states of the corresponding re-
currence order n at recurrence times T/n and their multiples, compare Fig. 4.13.

53



Figure 4.12: Smoothing of P(t) through frequency filtering. For the parameters of
Fig. 4.3 (a) with hard potential VU: (a), harmonic frequency bands of the Fourier
image P̃(ω) of P(t) are color-labelled. We progressively remove higher harmonic
bands and retain the group P̃n(ω) of all n lower order bands. The smallest such
group is the central band P̃0(ω) around zero (dark green colour). (b), when back-
transforming groups P̃n(ω) we arrive at smoothed curves Pn(t) of P(t), color-labelled
by the highest retained frequency band from (a) above; P0(t) flatlines. The dashed
lines of panel (b) have been carried over from Fig. 4.13 (e). Their slight time offset
is due to the fact that Pn only measures the overlap with the initial state, whereas
Π is a global measure.
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4.3.3 Identification of special states

Just like For the soft potential VV = 31x2/10 − x4/81 the identification of special
states, see Fig. 4.6, can be performed for the hard potential case, VU = x4/500,
illustrated in Fig. 4.13 below:

Figure 4.13: Smoothed Π(t), picks out special states. For the same hard potential VU
and state, as in Fig. 4.3 (a): (a), Π(t) contains high frequency components, (b), which
are grouped into harmonic bands. (d), the central band (highlighted in green) is cut
out and its inverse Fourier transform gives, (c) and (e), smoothed profiles Π0(t) of Π(t)
in (a). (c), the close-up of Π(t) and Π0(t) near t = 0 shows the symmetry with respect
to the ‘most unsettled’ initial state, compare Fig. 4.3 and main text. (e), when Π’s
value deviates most from the longtime average we find that the evolution has led
to an approximate recurrence of the initial state at time T ≈ 750. One observes
several pronounced peaks and troughs at intermediate times where fractional revival
states [4] with special n-fold symmetries are found.
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4.3.4 Some properties of W and J

Wigner’s phase space quantum distribution [91, 38]

W%(x, p, t) ≡
1
π~

ˆ ∞
−∞

dy e−
2i
~ py〈x+ y|%̂(t)|x− y〉 (4.9)

is real-valued and normalized
˜∞
−∞ dx dp W (x, p, t) = 1. W is set apart from other

quantum phase space distributions [38] as the closest quantum analogue of the clas-
sical phase space distribution [57, 97], here we therefore only investigate W .

By constructionW is non-local in y and subject to Fourier-limits; the same applies
to the components of J :

Jx = p

Mπ~

ˆ
dy %(x− y, x+ y, t)e 2i

~ py = p

M
W, (4.10)

and its momentum component is

Jp = − 1
π~

ˆ
dy

[
V (x+ y)− V (x− y)

2y

]
× ρ(x− y, x+ y, t)e 2i

~ py (4.11)

4.3.5 Unit-free formulation of vorticity

To quantify the vorticity of v in phase space, we form −∇× v = ξ
τ
∂
∂P vX −

τ
ξ
∂
∂X vP =√

MK ∂
∂P vX −

1√
MK

∂
∂X vP . This form is firstly inspired by the curl operator and can

secondly be justified by the fact that shear stress in classical fluids is proportional
to its transverse velocity derivatives, see Chap. 41, Vol. II of [26]. In this second
interpretation the minus sign arises from the symplectic structure of phase space.

We then use the coordinate transformations x = (MK/~2)1/4X = ξX and p = τP ,
where τ = 1/(~ξ) to switch to unit-free systems (~ = 1, M = 1 and K = 1).
This, e.g., maps a harmonic oscillator Hamiltonian, given in physical units, Ĥ =
− ~2

2M
∂2

∂X 2 + K
2 X

2, to the isomorphic, unit-free system Ĥ = −1
2
∂2

∂x2 + x2

2 (with circular
phase space trajectories [43]); applied to v it yields Eq. (4.2).

4.3.6 Structure formation and coherences

We study one-dimensional systems, continuous in position x and momentum p, the
generalization to higher dimensional continuous systems is straightforward [91].
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It is known that forced oscillators with Hamiltonians of the form Ĥ = −α(t) ~2

2M
∂2

∂X 2 +
γ(t)X̂ + β(t)X̂ 2, with real functions α, β and γ, have classical solutions in the sense
that trajectories for the transport of their Wigner distribution can be given [85, 68].
This implies that systems described by such Hamiltonians cannot create or remove
quantum coherences, or, what is the same [25, 57], they cannot create or remove [44,
68] Wigner distribution negativities.

Such systems can stretch and otherwise deform Wigner distributions through clas-
sical dynamics [50]. But, such changes do not concern us here since they do not create
or modify coherences or negativities of the quantum state. The measures we devise
here are designed to ignore classical-only [44, 68, 85] state transformations.

4.3.7 On the term ‘viscosity’

The fact that quantum dynamics does not generically allow for structure formation
in phase space below Zurek’s scale aZ is due to the fact that the quantum terms in J

somewhat suppress its shear.
We do not mean to imply that the dynamics is dissipative; even in classical,

creeping Stokes flow the fluid’s dynamics is approximately reversible although its is
dominated by its viscous behaviour.

Also, the quantum dynamics allows for fractional and full revivals, in this case
structures are reversibly removed in phase space and the system becomes dynamically
‘unsettled’.

Partly, this is poorly captured by the term viscous, it should only be understood
as a superficial description, yet we use the term viscous since no better term seems
to exist.

4.3.8 Derivation of inequality for frequency content Ω in Eq. (4.8)

For states bound in a single well one can estimateW ’s extent in phase space according
to Zurek’s arguments [97]:
assuming that W is spread over a spatial distance L and momentum distance P and
is in its entirety structured at the associated Zurek scale as given by Eq. (4.1), it
follows that its frequency spread in kx is roughly 2Kx = 2P/~ and in kp is roughly
2Kp = 2L/~; this is easily confirmed analytically.
Furthermore, assuming that

≈
W (kx, kp) is confined to an ellipse with semi-axes Kx

and Kp in phase space (rather than the exact energy contour associated with the
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hamiltonian H) we can bound Ω by assuming that all the weight of
≈
W (kx, kp) is

concentrated on this elliptical rim alone. This yields the desired inequality

Ω =
˜
dkxdkp |

≈
W (kx, kp, t) kxkp|˜

dkxdkp |
≈
W (kx, kp, t)|

<

˛
dϕ|Kx cos(ϕ)Kp sin(ϕ)| = Ωmax = 2KxKp = 8π2

aZ
.

(4.12)

4.3.9 Remarks on measures δ, π and Π

The main structural difference between a classical shear measure such as s and the
quantum measure π is, that the latter is based on the difference J − j.

The reason is somewhat subtle and deserves further discussion:
Classical shear s is only based on the hamiltonian and therefore distinguishes

between hard and soft potentials, this case distinction does in general not carry over
to the behaviour of the current j.

After sufficiently long times quantum and classical distributions become stretched
out such that they are sharply peaked in the direction perpendicular to their stretch-
ing. Thus large gradients result in the direction of ∇̂H , see Fig. 4.1, irrespective of
which potential generated the distribution.

A measure such as δ therefore becomes dominated by the contribution from the
derivatives due to the shape of the distribution and insensitive to the distinction
between hard and soft potentials. Using the difference J − j happens to reinstate
the distinction between hard and soft potentials.

For the interested reader this is further explored in the next Subsection.

Classical current shear polarization scales with t1

Consider the derivatives in σ = ∂∇̂H (−∇ × j). For sufficiently long times and suffi-
ciently smooth anharmonic potentials the terms containing second order derivatives
of ρ become dominant and

˜
σ dxdp ∼ t, where the proportionality constant is posi-

tive in the case of bound systems since it is given by an average over the hamiltonian’s
gradient (which in bound systems is positive):

For long times the state stretches into a filament that grows linearly in length
with time, since in the conservative case the ‘angular’ velocity difference between
two energy shells is constant; additionally narrowing the filament’s width inversely
with time this scales up curvatures, associated with the second derivatives of ρ in σ,
quadratically in time. This growth with t3, upon integration, is compensated for by
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the narrowing in width ∝ t−1 which in turn has the side effect of picking up a linearly
shrinking sample ∝ t−1 of the (smooth) variation of H(x, p) (its averaged gradient)
across energy shells. The upshot of this is that the above integral is linear in t; this
can be confirmed numerically.

With the proportionality constant positive, we find, that the distinction between
hard and soft potentials disappears for classical shear measures such as σ(j) = σ(ρv)
as well as their quantum counterpart σ(J) which is why we use

π(x, p, t;H) = W (t) ∂∇̂Hδ(t;H)

which is a function of JQ = J −j, this choice reinstates the distinction between hard
and soft potentials.
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4.3.10 Comparing polarization patterns for ‘hard’ and ‘soft’
potentials

i m
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Figure 4.14: Polarization of deviation vorticity δ. (a), sketch of hard [VU = x4/16]
and, (b), soft potential [VV = 31x2/10 − x4/81] together with probability distribu-
tions P (x, t) = |Ψ(x, t)|2 (black curves) of states evolved under these potentials from
initial Gaussian states P (x, 0) (grey curves) at initial center positions, (a), x = 2
and, (b), x = 1, respectively. The Wigner distributions associated with Ψ(x, t) in
(a) and (b) are shown in (c) and (d), respectively. (e)-(h), contours of the Wigner
distributions of (c) or (d) overlaid with a color bar with (m)’s colors representing
values of Tanh[50 δ(H)], where δ(H), see Eq. (4.6), is specified in the head of each
framed panel. Small panels (i)-(l) highlight two regions where W > 0 [using color
while the non-highlighted background is kept gray] to highlight polarization inversion
when the Hamiltonian is switched [see main text after Eq. (4.6)]. For reference, the
origin (x, p) = (0, 0) is labeled by a white cross.

We note that our soft potential, VV = 31x2/10 − x4/81, used in Figs. 4.1 and 4.3,
is formally open for large values of x but we restrict its use to ‘safe’ values |x| < 10
which allows us to ignore quantum tunneling out of its central well.
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4.3.11 Π(t) and Ω(t) can evolve differently from each other

Figure 4.15: For a system more complicated than the single well potentials considered
in the main text, shear suppression Π(t) and frequency contents Ω(t) can evolve dif-
ferently. For a double well potential VW = −x2

2 + x4

200 with an initial Gaussian stateW0
located at (x0, p0) = (−9.9, 0) Π(t) shows a pronounced maximum and minimum at
times tb ≈ 3.7 and tc ≈ 5.4. Ω(t) is insensitive to this system’s special dynamic
behaviour.
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Article 5

Quantum Kerr oscillators’
evolution in phase space: Wigner
current, symmetries, shear
suppression and special states
by

M. Oliva, O. Steuernagel [66]

5.1 Abstract

The formation of quantum coherences is of central importance in the study of quantum
systems and their dynamics.

Here we consider closed 1D Kerr-type oscillators. These are anharmonic and can
therefore create coherences [44]. Additionally, their dynamics has circular symmetry
in phase space. This makes them the simplest continuous system to create coherences.
Therefore, they are particularly suited to help us understand aspects of non-classical
effects in quantum dynamics.

Wigner’s distribution W [91, 38] is the closest quantum analog [97, 68, 38, 57, 87]
of the classical phase space distribution ρ. In continuous 1D systems the creation of
quantum coherences is represented by the creation of negative regions of the Wigner
distribution [35, 25, 57, 97, 68]. The formation of such negative regions in the Wigner
distribution is easily monitored numerically.

The evolution of W is governed by the associated Wigner phase space current J
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Figure 5.1: Probability distributions in phase space. (a), we start from a weakly excited
coherent state |α〉 = |7/12〉 which is positive everywhere. (b), after time t = 60 under
classical time evolution, ρ(t) has formed a highly sheared and tight spiral. (c), after
the same time the quantum evolution yields a Wigner distribution W (t) which has
much less fine detail but negativities (blue). The green line superimposed on panel (c)
traces out the Wigner distribution profile on a ring around the origin with radius r = 1
which passes through an area with pronounced negativity. Fig. 5.2 displays evolution
on this ring [Λ = 1

2 , see Eq. (5.4); in all figures ~ = 1, M = 1 and k = 1].

(strictly speaking J is a probability current density). Generally, phase space-based
approaches are suitable for comparison of quantum with classical dynamics [8, 97, 67].
Specifically, J allows us to adopt a geometric approach[83, 43, 44, 68, 67] to studying
quantum dynamics.

We introduce Kerr oscillators, their Wigner distribution W , and their associated
Wigner current J in section 5.2. In Section 5.3 we show that there are no trajectories
and no phase space flow for anharmonic systems such as Kerr oscillators. In Section
5.4 we investigate how pulses in phase space smear out classical spirals [Fig. 5.1 (b)].
We find that pulses in phase space steepen and lengthen dynamically. This analysis
is aided by the system’s circular symmetry and the fact that the probability on circles
in phase space is conserved. In Section 5.5 we show that using Wigner current J ’s
effective ‘viscosity’ [67] allows us to contrast classical with quantum dynamics and
pick out special quantum states.

5.2 Wigner distributions and Wigner current of
Kerr oscillators

A one-dimensional system’s Wigner distribution W%(x, p, t) [91, 38] (x denotes po-
sition, p the associated momentum, and t time), for a quantum state described by
a density matrix %̂, is defined as the Fourier transform of its off-diagonal coher-
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ences %(x+ y, x− y, t) (parameterized by the shift y)

W%(x, p, t) = 1
π~

ˆ ∞
−∞

dy 〈x+ y|%̂(t)|x− y〉 e− 2i
~ py, (5.1)

where ~ = h/(2π) is Planck’s constant. By construction W is normalized and non-
local (through y). Unlike %̂, W is always real-valued but, generically, W features
negativities [91]. Since W% is %̂’s Fourier transform, W and %̂ are isomorphic to
each other, allowing us to describe all aspects of the quantum system’s state and its
dynamics using the Wigner representation of quantum theory [95].

Time evolution of the Wigner distribution

For conservative Kerr systems the time development of W is given by the Moyal-
bracket {{., .}} [62, 95]

∂tW (x, p, t) = {{H,W}} (5.2)

≡ 2
~
H(x, p) sin

(
~
2(
←
∂ x
→
∂ p −

←
∂ p
→
∂ x)

)
W (x, p, t). (5.3)

Here, ∂x = ∂
∂x
, etc.; the arrows over the derivatives indicate whether they act on

(point towards) Hamiltonian or Wigner distribution.
The Hamiltonian of anharmonic single-mode oscillators of the Kerr type has the

form

ĤΛ =
(
p̂2

2M + k

2 x̂
2
)

+ Λ2
(
p̂2

2M + k

2 x̂
2
)2

, (5.4)

with the oscillator massM and spring constant k. Such Hamiltonians describe electro-
magnetic fields subjected to Kerr non-linearities χ(3) (here Λ2 ∝ χ(3)) [96, 69, 59, 70].
This system is fully solvable since wave functions of the harmonic oscillator are solu-
tions to the Kerr Hamiltonian with eigen-energies En = ~

√
k
M

[(n+ 1
2) + Λ2(n+ 1

2)2].
Its quantum recurrence time is

TΛ = π

|Λ|2 . (5.5)

Following Wigner [91], we cast expression (5.3) in the form of the phase space
continuity equation

∂tW + ∇ · J = 0 , where ∇ =
(
∂x
∂p

)
is the gradient, and J =

(
Jx
Jp

)
(5.6)
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denotes the Wigner current in phase space [83]. J is the quantum analog [23, 7] of the
classical phase space current j = ρv [64] which transports the classical probability
density ρ(x, p, t) according to Liouville’s continuity equation ∂tρ = −∇ · j.

J reveals details [83, 43] about quantum systems’ phase space dynamics previ-
ously thought inaccessible due to the supposed ‘blurring’ by Heisenberg’s uncertainty
principle. From now on we will consider M = k = 1 only. Then [for a derivation
see Eqns. (5.22) and (5.23) in the Appendix 5.6], with r = (x, p) = r(cos θ, sin θ),
r =
√
x2 + p2 and ∆ = ∂2

x + ∂2
p , J can be written as

J =
(
p

−x

)[
1 + Λ2

(
x2 + p2 − ~2

4 ∆

)]
W

=
(
r sin θ
−r cos θ

)[
1 + Λ2

(
r2 − ~2

4 (∂2
r + 1

r
∂r + 1

r2∂
2
θ )
)]

W . (5.7)

J is tangent to circles concentric with the origin of phase space. This circular sym-
metry allows us to consider an approximation of the dynamics on such individual
circles, an observation we make use of below. For future reference we split J into its
classical j and quantum terms JQ

J = j + JQ = Wv −
(
p

−x

)(
~2Λ2

4 ∆

)
W, (5.8)

here v =
(
p
−x

)
(1 + Λ2r2) is the classical phase space velocity. The quantum terms JQ

are only present for anharmonic potentials [44], which is why only anharmonic po-
tentials create coherences. Harmonic systems’ phase space dynamics follows v and is
classical, see Refs. [68, 44].

5.3 No trajectories or flow in quantum phase space

Inspired by classical mechanics, there have been several attempts to treat quantum
phase space evolution as a flow along trajectories [68]. Such attempts are ill-fated [68]
as we will explain now. They use the formal factorization J = Ww to define a
‘quantum phase space velocity’ w = J/W , then the continuity equation (5.6) assumes
the form [89, 20, 68]

∂tW + w ·∇W +W∇ ·w = 0 . (5.9)
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Here the convective term w·∇W describes the transport that carriesW along with the
current (following fieldlines in phase space) without changing its values. In contrast,
the current divergence term W∇ · ~w changes values of W . This is best seen by
formally rearranging Eq. (5.9) for the total derivative

dW

dt
= ∂tW + w ·∇W = −W∇ ·w . (5.10)

Treating a continuity equation in this form is known as its Lagrange decomposition.
This decomposition has to be treated with extreme caution, since it essentially splits
the well behaved and finite term ∇·J into the two individually singular terms w·∇W

and W∇ ·w. Some implications are discussed below. For the Kerr system this total
derivative is

dW

dt
= −Λ2~2

4

[
p

(
(∂xW )
W

− ∂x
)
−x

(
(∂pW )
W

− ∂p
)]

∆W

= −Λ2~2

4 W∂θ

(
∆W

W

)
, (5.11)

and the convective transport term in Eq. (5.10) is

w ·∇W =
(

Λ2
[
−r2 + ~2

4W∆W

]
− 1

)
∂θW. (5.12)

Since the divergence ∇·w is non-zero, the quantum evolution does not preserve phase
space volumes [62, 44, 68].

One could still describe quantum evolution by phase space transport if the magni-
tude of this divergence were finite across the entire phase space [68]. Indeed, modelling
quantum phase space dynamics through such transport along trajectories has been
attempted many times; in this context it has been considered an undesirable feature
of w that it is a singular quantity when W is zero (see Ref. [68] for details). But
zeros in W are unavoidable [41]:

The singularities in ∇ ·w are a fundamental and necessary feature to create nega-
tive regions in W and thus to create quantum coherences. Such singularities are
not a flaw. A velocity field w with positive divergence that is bounded from above,
B > ∇ · w > 0, will by itself not be able to generate negativities. The associated
expansion of phase space volumes can only reduce the initial value W (0) > 0 of a
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density towards zero, since Eq. (5.10) implies that [89, 68]

W (t)|comoving > W (0) exp(−Bt) > 0 (5.13)

for all times. Trahan and Wyatt noticed this and concluded that “the sign of the
density riding along the trajectory cannot change” [89].

But this interpretation is incorrect. WhenW = 0 the velocity w and its divergence
is singular, Eq. (5.11) cannot be integrated since w’s singularities render integrals and
associated bounds such as (5.13) ill-defined [68]. Therefore, in anharmonic quantum
systems neither trajectories nor transport along flow lines exist [68] (References [7]
and [83], refer to Wigner ‘flow’ but were written before this was realized).

Because of the singular volume changes associated with Eq. (5.11), we feel the
quantum Liouville equation (5.6) should be called Wigner’s continuity equation in-
stead.

We are forced to conclude that a trajectory-based approach to quantum phase
space evolution creates contradictions such as singular w and singular phase space
volume changes. This highlights the stark differences between classical and quantum
dynamics in an illuminating manner. The singularities in w and phase space vol-
ume changes are needed to violate inequality (5.13) thus allowing for the creation of
quantum coherences and negative regions in W [44, 68].

5.4 Pulses in Quantum phase space

In the classical case the probability (of ρ) on a classical trajectory of a conservative
system is conserved over time. It can be checked that the probability (of W ) on a
classical trajectory is not conserved for typical anharmonic quantum systems.

The quantum Kerr system is an exception as its evolution preserves probability
on rings around the origin:

‰
dθ ∂tW = −

‰
dθ ∇ · J = 0, (5.14)

since ∇ · J = r∂θ([v(r) − Λ2 ~2

4 ∆]W ). Additionally to the circular symmetry dis-
played in Eq. (5.7), this probability conservation on circles is the primary reason why
considering the Kerr dynamics on circles is suitable.

The classical velocity profile v(r) leads to the formation of fine detail in the classi-
cal evolution: in the case of a Gaussian initial state, the state becomes wrapped into
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a single tightly wound spiral, see Fig. 5.1 b. The quantum evolution shows this ten-
dency of spiral wrapping as well, but while the formation of fine detail is suppressed
through “viscous” behaviour (see Section 5.5), negativities of the Wigner distribution
emerge.

To study this in more detail, consider W on a ring of radius r, as displayed in
Fig. 5.2.

The quantum ‘cross-talk’ terms ∂2
r+ 1

r
∂r in Eq. (5.7) couple the current on adjacent

rings. We can cast these terms aside if we may assume that the Wigner distribution’s
azimuthal curvature ∂2

θW is much greater than its radial curvature and gradient.
Making this assumption temporarily, the velocity on a ring is approximately

w(r, θ) ≈ r

[
1 + Λ2

(
r2 − ~2

4r2
1
W
∂2
θW

)]
. (5.15)

This approximation is obviously poor when W ≈ 0, but Eq. (5.15) is still useful
for the discussion that follows.

In Figs. 5.2-5.4 the full evolution is portrayed, not its approximate behaviour of
Eq. (5.15). The axis ‘−θ’ is chosen in Figs. 5.2-5.4 since classical evolution proceeds
clockwise, in the direction of negative values of θ.

The effect of the θ-curvature term, retained in Eq. (5.15), is primarily twofold: for
a Wigner distribution on a circle, forming a hump, the hump’s leading and trailing
edges, having positive curvature, get delayed. Conversely, the negative curvature of
the peak of the hump accelerates its center, see Fig. 5.2. This lengthens the pulse,
making the tail trail, and sharpens its front since the center catches up with the front,
see Fig. 5.2. This sharpening in turn spawns oscillations that project forward from
the pulse, see Fig. 5.2 and discussion in Ref. [27].

A narrower pulse, as portrayed in Fig. 5.3, develops more pronounced oscillations.
Additionally, in Fig. 5.3, Λ is chosen formally complex such that Λ2

− < 0. This creates
“backwards” dynamics when contrasted with a positive Kerr-nonlinearity, compare
Figs. 5.2 and 5.3: in Fig. 5.3 the pulse lengths to the ‘right’ and steepens and spawns
oscillations to the ‘left’; in ‘reverse’ to Fig. 5.2.

In Fig. 5.4, two pulses on a ring interfere with each other. Here, like in Fig. 5.2,
the overall effect is that the quantum terms speed the pulses up.
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5.5 J ’s viscosity and special states

In the preceding Section 5.4 we discussed motion on a ring. Here we consider cross
talk between motion on neighbouring rings.

Over time classical Hamiltonian phase space flow shears ρ since v creates non-
zero gradients of its angular velocity across energy shells. This flow is inviscid as v is
independent of ρ, thus no terms suppress the effects of the angular velocity gradients,
and, as time progresses, non-singular probability distributions in phase space get
sheared into ever finer filaments [see Fig 5.1 (b)].

The associated classical phase space shear has been derived in Ref. [67] as

s(x, p;H) = ∂∇̂H (−∇× v) = ∂∇̂H (∂pvx − ∂xvp). (5.16)

Here the directional derivative across energy shells ∂∇̂H , is formed from the normalized
gradient ∇̂H = ∇H/|∇H| of the Hamiltonian H. Because of the Kerr system’s
circular symmetry ∇̂H = ∂r.

The sign convention using the negative curl in s in Eq. (5.16) is designed to yield a
positive sign for clockwise orientated fields since this is the prevailing direction of the
classical velocity field v. This choice yields s > 0 for hard potentials [potentials for
which the magnitude of the force increases with increasing amplitude, i.e., Λ2 > 0],
since they induce clockwise shear, see Fig. 5.1 (b). s = 0 for harmonic oscillators [i.e.,
Λ = 0], and s < 0 for soft potentials [for which the magnitude of the force decreases
with increasing amplitude, i.e., Λ2 < 0] since they induce anti-clockwise shear.

The reaction of quantum dynamics to classical shear s has to reside in JQ of
Eq. (5.8). To extract it we form the vorticity of JQ [67]

δ(x, p, t;H) = −∇× JQ = ∂pJ
Q
x − ∂xJQp . (5.17)

δ’s sign distribution shows a pronounced polarization pattern, see Fig. 5.5.
Specifically, for a system with clockwise shear Fig. 5.5 (b) illustrates that δ(HΛ+)

[with Λ2
+ = +(1/4)2] tends to be positive on the inside [towards the origin] and nega-

tive on the outside of the positive main ridge of W [see inset of Fig. 5.5 (a)]. Because
of this, the outside is being slowed down while the inside speeds up. This polarized
distribution of δ therefore counteracts the classical shear [sHΛ+

> 0] and can suppress
it altogether [67]. The same applies to other positive regions of W , whereas for its
negative regions the current J tends to be inverted [83, 43] inverting δ’s polarization
pattern, see Ref. [67] and Fig. 5.5 (b).
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When the same state W is governed by a Hamiltonian HΛ− with anti-clockwise
shear [67] [i.e. (Λ−)2 < 0] δ(HΛ−) tends to be the sign-inverted form of δ(HΛ+) (for
Kerr systems we find δ(HΛ+) = −δ(HΛ−) if |Λ+| = |Λ−|). This is illustrated in
Fig. 5.5 (c), where Λ2

− = −(1/4)2 is negative, whereas in Fig. 5.5 (b) Λ2
+ = +(1/4)2

is positive.
The distribution of δ’s polarization can be picked up with the directional deriva-

tive ∂∇̂Hδ(t;H) = ∂rδ(t;H). This we multiply with W , because negative regions
of W invert the current J [83], and because we want to weight it with the local con-
tribution of the state. The resulting local measure for weighted shear polarization
is [67] π(x, p, t;H) = W (t) ∂rδ(t;H). Its average across phase space is W ’s shear
polarization [67]

Π(t;H) = 〈〈π(t;H)〉〉 =
¨ ∞

−∞
dxdp π(x, p, t;H) . (5.18)

Fig. 5.6 illustrates that Π(t) initially drops and after a while levels off.
We emphasize that the levelling-off behaviour of Π(t) is in marked contrast to

the classical case: for long enough times, in simple bound state classical systems
non-singular states ρ(t) get stretched out linearly [67] into ever finer threads, see
Fig. 5.1 (b), therefore 〈〈∂r(−∇ × j)〉〉 ∝ t [67]. The quantum evolution counteracts
this classical shear s resulting in values of the shear suppression Π which are opposite
in sign to those of s [67] (for the Kerr system sign[s]=sign[Λ2]).

Moreover, starting from an initial Gaussian state, the magnitude |Π(t)| initially
grows the more the evolution stretches out the state into finer structures. Eventually
quantum shear suppression stops classical shear from creating finer structures in phase
space [67]: |Π(t)| levels off.

In other words, the quantum evolution is effectively ‘viscous’. This ‘viscosity’ is
the mechanism by which quantum evolution enforces that W can typically not form
structures below the size scale identified by Zurek [97]. Therefore Π(t) settles when
the state has formed structures at the Zurek scale. This can e.g. be quantified by
monitoring the phase-spatial frequency content of W as a function of time, for details
see [67].

Yet, quantum evolution is not truly viscous, it allows for revivals. Interestingly,
these are picked up by the deviation of Π(t) from the local time average. For the Kerr
system, the special states for which this deviation is largest are (fractional) revival
states [74, 70], see Fig. 5.6.

We emphasize that such revival states are traditionally picked up through the
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overlap of the evolved state with a suitably chosen reference state (such as a Gaussian
initial state) [74], instead, our measure Π(t) does not depend on a reference state,
this makes it more versatile then the use of wave function overlaps.

We note that graphs of Π(t) for anharmonic systems that do not have the sym-
metry of the Kerr system carry high frequency oscillations [67], whereas, due to the
symmetry of the Kerr system, such oscillations are absent here. Generally, for other
anharmonic systems without circular symmetry, graphs as smooth as those for Π(t)
obtained in Fig. 5.6 require frequency filtering [67].

Additionally to the symmetries identified above, also in this regard are Kerr oscil-
lators the simplest possible continuous quantum systems that alter quantum coher-
ences.

To conclude, quantum dynamics that generates coherences in continuous systems
is most easily studied in phase space and using Kerr systems, since these have special
symmetries. The two new symmetries we have identified are circular phase space
current J , Eq. (5.7), and probability conservation for W on rings, Eq. (5.14). These
imply the absence of high-frequency components in Π(t) of Eq. (5.18), see Fig. 5.6.
We also have identified a quantum speed-up of the propagation of wave function
pulses in phase space and we demonstrate that the dynamics of the Kerr system is
‘effectively viscous’. This can be quantified, explains the emergence of Zurek’s scale
for the formation of minimum structures in quantum phase space, and can be used
to pick out special quantum states.

The geometric nature of our approach helps us to guide the understanding of the
generation of coherences in quantum dynamics and the formation of negativities ofW
and will hopefully help pave the way to devise new strategies to protect coherences,
for related ideas see Ref. [27].

5.6 Appendix

The Hamiltonian of anharmonic single-mode oscillators of the Kerr type has the
form (5.4)

HΛ =
(
p2

2M + k

2x
2
)

+
(

Λ p2

2M + λ
k

2x
2
)2

, (5.19)

with Λ = λ. Here we keep the two parameters Λ and λ distinct to allow us to tune
the system’s non-linearities independently and help with keeping track of terms in
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the derivation of the form of J .
The Wigner distribution of the Kerr oscillator obeys the phase space continuity

equation (5.3) [84, 59, 45]

∂tW (x, p, t) = {{H,W}} = 2
~
H(x, p) sin

(
~
2(
←
∂ x
→
∂ p −

←
∂ p
→
∂ x)

)
W (x, p, t) (5.20)

=
− Λ2 ~2

4M2p∂
3
x + λ2~2k2

4 x∂3
p −

{
Λλkxp

2

M
+ λ2k2x3

}
∂p

−Λλ~
2k

4Mp∂x∂
2
p + Λλ~

2k

4 x∂p∂
2
x +

{
Λ2 p

3

M2 + Λλkx
2p

M

}
∂x


+ p

M
∂x − kx∂p

W (x, p, t). (5.21)

The square brackets bracket the terms arising from the Kerr Hamiltonian’s anhar-
monic part whereas the terms p

M
∂x − kx∂p stem from the harmonic oscillator contri-

bution p2/(2M) + kx2/2.
The associated Wigner current components (5.6) are

Jx =
[
~2
(
−Λ2 1

4M2p∂
2
x − Λλ k

4Mp∂2
p

)
+
{

Λ2 p
3

M2 + Λλkx
2p

M
+ p

M

}]
W (x, p, t)

(5.22)

and Jp =
[
~2
(
λ2k

2

4 x∂
2
p + Λλ k

4Mx∂2
x

)
−
{
λ2k2x3 + Λλkxp

2

M
+ kx

}]
W (x, p, t).

(5.23)

The curly brackets in Eqns. (5.22) and (5.23) contain the classical Hamiltonian
current terms, the round brackets the quantum terms.

To justify this assignment, note that the first term in Jp is of the form ~2

4·3!∂
3
xV ∂

2
pW [91,

83] and thus has to be assigned to Jp, while the first term of Jx is its ‘partner’ term
for the position case. What remains somewhat ambiguous is whether the second
terms in (5.22) and (5.23) have been assigned correctly. To highlight this ambiguity
consider

J (σ)
x = Jx + σΛλ~

2k

4M
[
x∂p∂x + p∂2

p

]
W (x, p, t) (5.24)

and J (σ)
p = Jp − σΛλ~

2k

4M
[
x∂2

x + p∂x∂p
]
W (x, p, t), (5.25)
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parameterized by the interpolation parameter σ with 0 ≤ σ ≤ 1. This interpolation
fulfills the continuity equation (5.6) since the σ-dependent terms are divergence-free
for 0 ≤ σ ≤ 1.

To remove the ambiguity we can use Wigner current plots. We notice that the
field plots of J (σ 6=0) do not ‘make sense’, see Fig. 5.7: J (σ=0) of Eqns. (5.22) and
(5.23), or (5.7) is the correct Wigner current expression.
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Figure 5.2: Time evolution of W (θ) on a ring with fixed radius r = 1.0 for initial
coherent state |α〉 = |7/12〉 over time t = 0 to TΛ/4 = 4π = 12.56 [Λ = 1

4 ]. The darker
and thinner the curves, the more time has elapsed. The curves move clockwise on the
ring, towards increasing values of ‘−θ’. The quantum evolution leads to a speed-up
over the classical evolution (the classical phase angle vt is subtracted). Additionally,
under quantum evolution the pulse widens and steepens at the front, this triggers the
formation of oscillations with negative regions in front of the pulse which eventually
catch up with the main pulse from ‘behind’.

Figure 5.3: Time evolution of W (θ) on a ring with fixed radius r = 1.6 for initial
coherent state |α〉 = |5/4〉 over time t = 0 to TΛ−/4 = 12.56. Here the Kerr-
nonlinearity is negative, Λ2

− = −1/16, therefore the Wigner distribution is wrapped
anti-clockwise and the center-of-gravity of the pulse falls behind the classical motion
(vt has been subtracted). Contrast with Fig. 5.2.

Figure 5.4: Time evolution of W (θ) on a ring with fixed radius r = 1.6 for ini-
tial squeezed vacuum state (squeezing parameter = 1/3) over time t = 0 to
TΛ+ = π

4 = 0.785. Here the Kerr-nonlinearity is positive, Λ2
+ = 1, therefore the

Wigner distribution’s center-of-gravity moves ahead of the classical motion (vt has
been subtracted): at time t = T1

4 (its recurrence time is shortened by T1
4 because the

squeezed state is symmetric w.r.t. the origin) the original pulse reforms and is rotated
forward, similar to Fig. 5.2.
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Figure 5.5: Polarization of the vorticity δ and inversion of this polarization. (a), the
Wigner distribution W of a Gaussian initial state centered on x = −4, p = 0 and
evolved to t = 40 using ĤΛ+ = Ĥ1/4. Its contours, for emphasis the zero contour is
shown as black-green dashed lines, are also employed in (b) and (c). The inset for W
in (a) is reproduced showing the effects of, (b), clockwise shear [δ(HΛ+)] and, c, anti-
clockwise shear [δ(HΛ−)]. Comparing (b) with (c) demonstrates polarization inversion
of δ associated with shear inversion of the system, here Λ2

+ = +(1/4)2 = −Λ2
−.
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Figure 5.6: Π(t) picks out special states. Deviations of Π(t) from the settled value
(≈ −115) single out special states: the evolution shows recurrence of the initial state
at time TΛ+ = 16π ≈ 50.3 (Λ+ = 1/2). Pronounced peaks and troughs at intermediate
times identify fractional revival states [4] with special n-fold symmetries.

pp p p

x x x

Figure 5.7: Wigner distribution, incorrect and correct Wigner current pattern for
state (|0〉+ |1〉)/

√
2. With Λ = λ the dynamics of this superposition state is isomor-

phic to that of the harmonic oscillator, except for an extra phase due to the Kerr
oscillator’s different energy spectrum. The incorrect expression J (σ=1) for the cur-
rent (middle panel) does not respect this isomorphism, it breaks the system’s circular
symmetry and is therefore discarded. The correct expression J (σ=0) for the current
is depicted in the right panel. The region represented by green coloring is that where
W < 0, this leads to current inversion [83]. For the Kerr system the only point of
stagnation [83] of the current is the coordinate-origin. When the current stagnates
elsewhere in phase space, it forms lines of stagnation [43].
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Conclusion

In this thesis, many aspects of the Wigner current and quantum phase space dynamics
are explored.

We show the integral form of the Wigner’s representation of quantum mechanics is
a valuable alternative to Moyal’s formulation. It is in general numerically more stable,
can make mathematical manipulations more transparent, and displays symmetries
between position and momentum more clearly than Moyal’s form.

For anharmonic quantum systems, converting the evolution equation into a La-
grangian form leads to singularities in the phase space velocity field, rendering the
trajectory-based methods ill-defined. In quantum systems, the divergence term ∇ ·w
is not equal to zero like in classical systems, but is instead non-zero, and can even
feature singular values. This is needed for the generation of negativities in Wigner
functions.

By creating a superoscillating Wigner function, it is shown that it is possible to
create arbitrarily small structures below the sub-Planck scale.

A new quantum phase space measure is designed, based on the Wigner current,
which calculates the suppression of the classical shear in quantum systems. It can
be used to follow the dynamics of the system, and is able to dynamically pick up
fractional revival states without knowing the initial state of the studied system.

It is shown that the concepts studied here, such as dynamic shear suppression,
can be applied to Kerr oscillators.

Since the Wigner current has classical Liouvillian phase space current as its clas-
sical counterpart, the two can be compared to provide new understanding on the
nature of quantum dynamics and its relationship with classical dynamics. This is
well illustrated by the idea of viscosity applied to quantum systems, or how Wigner
current invalidates the concept of trajectories in quantum phase space.

Wigner current sheds new lights on previously hidden aspects of quantum dy-
namics. I expect this present work constitutes the beginning of a much wider future
research field that will be explored further.
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