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Abstract

Building on the work of Von Neumann, Burks, Codd, and
Langton, among others, we introduce the first examples of
asynchronous self-reproduction in cellular automata. Re-
liance on a global synchronous update signal has been a
limitation of all solutions since the problem of achieving
self-production in cellular automata was first attacked by
Von Neumann half a century ago. Our results obviate the
need for this restriction.

We introduce a simple constructive mechanism to trans-
form any cellular automata network with synchronous up-
date into one with the same behavior but whose cells may be
updated randomly and asynchronously. This is achieved by
introduction of a synchronization substratum which locally
keeps track of the passage of time in a local neighborhood
in a manner that keeps all cells locally in-step.

The generality of this mechanism is guaranteed by a gen-
eral mathematical theorem (due to the author) that allows
any synchronous cellular automata configuration and rule
to be realized asynchronously in such a way the the be-
havior of the original synchronous cellular automata can
be recovered from that of the corresponding asynchronous
cellular automaton. Thus all important results on self-
reproduction, universal computation, and universal con-
struction, and evolution in populations of self-reproducing
configurations in cellular automata that have been obtained
in the past carry over to the asynchronous domain.

1. Introduction and Motivations

From the beginnings of the study of self-reproduction in
artificial systems initiated by John Von Neumann in 1948,

the primary formal model has been synchronous cellular au-
tomata in which configurations develop that eventually may
include an unbounded number of copies of the original. The
models constructed by Von Neumman and his successors
have amply demonstrated that self-reproduction is indeed
possible in artificial systems. Furthermore, Von Neumann’s
work on his automata models even anticipated the important
transcription (“blind copying”) and translation (“‘executabil-
ity”’) properties of genetic material later found for DNA.

The different possibilities for achieving self-
reproduction have implications for our understanding
of the origin of life, the nature of organic life, and for the
possibilities of life as it may exist elsewhere in the universe.
Szathmary (1999) offers a first classification of replicators
applicable to natural and artificial systems. Moreover,
self-reproduction is a prerequisite for any independent
evolutionary process. Self-reproduction and self-repair (or
self-maintenance) are often closely related in biology, and
an understanding of self-reproduction can thus contribute
to our ability to create self-repairing, self-maintaining
hardware and software. Sending information, instructions
on how to build copies of desired structures using local
materials, into an environment rather than sending all
necessary materials into that environment represents more
economical methods of space exploration and colonization.
See the NASA report edited by Freitas and Gilbreath
(1980) for further potential examples and applications of
self-reproduction to space science, e.g. self-replicating and
self-maintaining lunar factories.

However the need for an assumption of synchronous up-
date in these spaces may be questioned. In building an arti-
ficial self-reproducing entity is it really necessary to have a
single global synchronization signal that reaches all parts of
the entity simultaneously (or at least within a well-defined
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tolerance)? If local parts of the configuration are ready to
change their state, is it realistic and practical to assume that
they must wait until all other parts of the cellular space are
also ready to update their states?

In this paper we free all cellular automata models of
self-reproduction (as well as all cellular automata models
of evolution, universal computation, and universal construc-
tion) from the need for synchronous update. This is accom-
plished by an elegant simple mechanism that allows one to
construct an asynchronous cellular automaton that is capa-
ble of emulating the behavior of a given synchronous cel-
lular automaton. State updates in the asynchronous model
may be produced by any asynchronous update mechanism
whatsoever (e.g. updates may be random, sequential, lo-
cally Poisson-distributed, partially simultaneous, etc., or
even synchronous). This result for cellular automata is a
special case of a more general theorem for automata net-
works with inputs due to the author (Nehaniv, 2002 (ac-
cepted)).

Here we describe the construction for making any cel-
lular automata computation asynchronously realizable, give
examples that illustrate how the use of “local time” frees
the cellular automata from the need for global synchroniza-
tion, and display the first examples of self-reproduction in
cellular automata.

2. Preliminaries on Cellular Automata

Cellular automata were introduced by J. Von Neumman
and S. Ulam to model natural physical and biological phe-
nomena, in particular, for Von Neumann’s pioneering stud-
ies of self-reproduction.

A graph T is a set of nodes V' and a set of edges E.
An edge e € FE is an unordered pair of nodes {v,v'} C
V. The neighborhood of a node is the set of nodes directly
connected to it in the graph by an edge. That is, node v is
a neighbor of v' if {v, v’} is an edge in the graph. We shall
write v’ € nbhd(v) if node v’ is a neighbor of node v.

A deterministic finite state automaton A is finite set of
states (), a finite set of inputs X and a transition function
0:Q xX — Q.

A cellular automaton is a finite or infinite network of
identical deterministic finite state automata and a graph
structure such that:

(1) each node has the same (finite) number of neighbors,
(2) at each node we have a fixed ordering on the neigbhor
nodes (e.g. north, south, east, and west if there are exactly
four neighbors to every node), and

(3) the next state of an automaton at node v is always the
same function ¢ of its current state and the current states of
its neighbors. (Thus the ordered list of states at neighbor
nodes is the input to the automaton at node v.)

We shall denote the ordered list of the states of the neigh-
bors of node v by (quw)wenbhd(v)-

Although cellular automata are more general, for our
purposes, we may assume that the graph can be realized in
some N-dimensional Euclidean space, for example as the
set of points with integer coordinates, with edges connect-
ing points that differ by at most exactly 1 in exactly one
position (“the Von Neumman neighborhood”) or, alterna-
tively by at most 1 in each coordinate (‘“the Moore neighbor-
hood”). For example, in a two-dimensional case the point
(2,3) has neighbors (1,3), (3,3), (2,4), and (3,3) if our cellu-
lar automaton uses a Von Neumann neighborhood, and has
additional neighbors (1,2), (1,4), (3,2), (3,4) if we instead
have a cellular automaton with Moore neighborhoods. We
may allow “wrapped around” or a “toroidal topology” by
identifying nodes which differ by a fixed vector. For ex-
ample, in a 25 X 50 node toroidal topology with Von Neu-
mann neighborhood, node (1,1) has neighbors (1,2), (2,1),
(25,1) and (1,50) since (25,1) is identified with node (0,1)
and (1,50) is identified with (1,0).!

Such cellular automata network topologies are specific
examples, but the methods presented here and the support-
ing mathematical results apply to all cellular automata net-
works regardless of the details of their particular topologies.

In addition there is usually assumed to be a quiescent
state gy € (Q in the local finite state automata such that if the
automaton at node v is in state go and all the its neighbors
are in state qg, then in the next time step the automaton at
node v will still be in state gy. (We will not have a strictly
quiescent state in our asynchronous cellular automata.)

A configuration is any assignment of local state values
to the set of automata at nodes in a finite subgraph of I'.

2.1. Synchronous vs. Asynchronous Update Rules

Usually a cellular automaton A is required to update the
state of the finite automata at all of its nodes simultaneously
and in discrete steps. Thus, for all discrete times ¢ > 0, if at
discrete time step ¢ each node v is in some state ¢, (¢) then
at the next discrete time step ¢ + 1 node v is in its next state
gv(t + 1). In the notation introduced above,

Qv (t + 1) = 6(Qv (t), (qw (t))wEnbhd(v))'

Thus the new state ¢, (¢ + 1) at node v is given by the local
update rule as a function of g, (t), the current state of v, and
the (finite) list (qw (%)) wenbra(v) Of all current states gy, (t)
of all nodes w in the neigborhood of v. In this case of glob-
ally simultaneous update, we say that the cellular automaton
is synchronous. The global state of the cellular automaton
A at time ¢ is comprised of the states g, (¢) of all its nodes

'We remark that these definitions of Von Neumann and Moore neigh-
borhoods, and that of toroidal topology, are applicable to any dimension
N.
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at time ¢ and can be regarded as a function from nodes V' to
local states ().

If the updates of the local component automata are
not required to take place synchronously, but each one
will be updated to its next state an unbounded number of
times as (locally discrete) time goes on, then we speak
of an asynchronous automata network. The updates are
otherwise unconstrained, e.g. they may be deterministic,
non-deterministic, random, sequential, etc., or even syn-
chronous. For further discussion of the relevance of syn-
chronous and asynchronous cellular automata to the mod-
elling of biological systems see for example (Schonfisch
and de Roos, 1999). Prior to this paper, all published mod-
els of self-reproduction in cellular automata have used only
synchronous cellular automata update rules.

Following the general method and theorem of (Nehaniv,
2002 (accepted)), which also applies to more general types
of automata networks than cellular automata, for each syn-
chronous cellular automaton A on graph I', we construct
another particular cellular automaton A’ on the same graph.
Moreover, if the local finite automata in A have n states
then component automaton in A" at each node v will have
3n? states. The author’s theorem guarantees that if A’ is
updated by any asynchronous method whatsoever, for each
time ¢ in the computation of A, the global state of A at ¢
is completely determined by a “continuous spatio-temporal
section” of the behavior of A’ (see below).

This mathematical theorem implies that all computations
that can be carried out on any synchronous automata net-
work can be recovered from the computation of an asyn-
chronous automata network with no constraints on how the
updates actually occur in the latter.

3. Background on Self-Reproduction in Cellu-
lar Automata

3.1. Models of Self-Reproduction

Von Neumann’s original (1966) description of self-
reproduction in cellular automata requires that the self-
reproducing configuration be capable of universal compu-
tation (in Turing’s sense) and of universal construction —
loosely speaking, the ability to fill any compact area in
the cellular space with any desired pattern. These proper-
ties were required in addition to the ability to make a copy
of oneself, but could also be used to support this ability.
Namely, universal construction (as the ability to fill any
compact region of the cellular space with arbitrary config-
urations) guarantees that a copy of the self (including its
‘instruction tape’ which is present in many examples) can
be constructed. His design of a self-reproducing universal
computer and constructor was infeasibly large and has never

been fully implemented and executed through a reproduc-
tion cycle on a computational device.

Langton’s (1984) definition requires that a copy is con-
structed but not that either of Von Neumann’s conditions be
met. Langton implemented and studied the first example
of feasible self-reproduction in cellular automata, using an
8-state cellular automaton with an initial configuration of
86 cells, that produces a first offspring after 151 time steps
and then proceeds to fill up available space with copies.
To avoid trivialities while avoiding the complexity of Von
Neumann’s model, Langton’s criterion (1984, 1986) was
proposed as a necessary condition on self-reproduction and
requires that information is treated in two ways: as instruc-
tions that are executed (‘translation’) and as data which are
blindly copied (‘transcription’). These properties are also
present in and abstracted from Von Neumann’s and later
Codd’s (1968) examples, and by that time also known to be
characteristic of biological self-reproduction. Subsequent
examples of Byl (1989) and Reggia et al. (e.g., Reggia, Ar-
mentrout, Chou, and Peng (1993), Lohn and Reggia (1997))
simplified the self-replicating loop of Langton with fewer
states or less cells in the initial configuration.

Subsequently, various researchers kept Langton’s re-
quirement for self-reproduction, but have added more and
more computational power to the relatively small self-
reproducing cellular automata configurations (in compari-
son to Von Neumann’s solution). These trends are surveyed
by Lohn (1999), who also describes the evolution of cellular
automata rules that support self-reproduction (see also Lohn
and Reggia (1997)). A fairly complete and up to date an-
notated bibliography with links to various relevant on-line
resources can be found at Moshe Sipper’s Artificial Self-
Replication page.

H. Sayama (1998b, 1999) has constructed variants
of the self-reproducing Langton loop which exhibit self-
dissolution once they can no longer reproduce, thus freeing
up space for reuse by progeny, and most interestingly, an-
other similar variant called “evo-loop” which exhibits heri-
table variability in loop size and is subject to evolution via
interaction among descendants of a common ancestor act-
ing as a selective force (Sayama 1998a, 1999). Heritability,
variability, and differential survival in an environment with
limited resources are present in his evo-loop when run in
finite spaces. Thus evo-loop appears to be the first convinc-
ing example of an evolutionary process occurring in cellular
automata.

4. Self-Reproduction, Individuality, and the
Heritability of Fitness

What constitutes self-reproduction?
The definition is not uncontroversial. We have already
mentioned that Von Neumann required universal computa-
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tion and universal construction in order to exclude trivial-
ities, such as the example of spreading activation. Lang-
ton abstracted the properties of inherited information being
both copied and executed.

E. F. Moore (1962) defines a configuration C' to be ca-
pable of self-reproducing n offspring by time t if starting
from the initial conditions of the entire cellular space at time
t = 0 such that the set of all nonquiescent cells of the space
is an array whose configuration is a copy of C there is a
time ¢’ > ¢ such that at time ¢’ the set of all nonquiescent
cells will then be contained in an array whose configuration
includes at least n copies of C'.

Lohn and Reggia (1997) give the following definition:

“A configuration C is self-replicating if the fol-
lowing criteria are met. First, C' is a structure
comprised of more than one nonquiescent cell
and changes its shape during its self-replication
process. Second, replicants of C', possibly trans-
lated and/or rotated, are created in neighbor-
adjacent cells by the structure. Third, there must
exist a time ¢ such that C can produce ¢ or more
replicants, for any positive integer i, for infinite
cellular spaces (Moore’s criterion). Fourth, if the
self-replication begins at time ¢, there exists a
time ¢ + At (for finite A¢ > 1) such that the first
replicant becomes isolated from the parent struc-
ture.”

The issue of exactness of the copy is problematic since
it is not desirable to exclude the possibility of variability.
Variability among offspring is certainly present in biolog-
ical systems, and, as Darwin showed us, is necessary for
evolvability. Vitdnyi (1973) introduced sexual reproduc-
tion in celluar automata and Sayama (1998b), mentioned
above, has demonstrated variability and (deterministic) evo-
lution occurring in cellular automata. Encoding of heritable
information in the shape of a configuration or using self-
inspection might represent another feasible mode of encod-
ing heritable variation in self-reproduction (cf. Laing 1977,
Ray 1992, Morita and Imai 1997, Nehaniv 2002).

A discussion of the difficulties in formulating a rigorous
definition of self-replicating or self-reproduction is given by
Nehaniv and Dautenhahn (1998), who point out that even
in accepted cellular automata models of self-reproduction
there are rarely two copies of the original configuration
present at exactly at the same time when reproduction is
generally accepted to have occurred (e.g. in the Von Neu-
mann or Langton models), and it is certainly not the case
when the first offspring has been produced. The various
copies of the configuration may be at different stages in
their “lifecycles” and not have exactly the same configu-
ration of states. Nehaniv and Dautenhahn (1998) suggest
looser criteria on identity of copies to allow ‘species’ of

non-exact copies to be acknowledged as offspring, and also
loosen the restriction on the presence of copies all at the
same time (e.g., offspring that have to grow into adults are
still regarded as offspring even though they are never in ex-
actly the same state of development as the parent.) Ade-
quate formal definitions of “member of the same species”
and of “individual” are still lacking in the sciences of the ar-
tificial, including the study of self-reproduction in artificial
systems. Although these concepts are clearly fundamen-
tal to biological evolution, even within biology there is still
on-going controversy and current research into appropriate
definitions for these concepts.

Coming back to Darwin’s ideas, some meaure of heri-
tability of fitness is required for evolution to occur. With
self-reproduction, the similarity of offspring to the par-
ents and the similarities of the environments in which the
replicators find themselves is enough to account for this.
However, beyond the level of simple replicators, heritabil-
ity of fitness requires more explanation, e.g. in consider-
ing multicellular lifeforms with differentiated cell types,
subunits which are themselves replicators comprise popu-
lations within the body that are potentially subject to evo-
lutionary pressures (Buss, 1987; Maynard Smith and Sza-
thmary 1995, Michod 1999, Michod and Roze 1999). For
example, cancer is an example in which reproduction and
evolution occur at the lower cellular level at the expense of
the higher organismal one. Guaranteeing that the offspring
are similar to the parent by suppression of freedom at the
lower level in exchange for benefits is the first functionality
required of any higher unit of fitness such as a multicellular
organism. The latter must employ mechanisms to balance
the tendency of the lower level to defect by sufficient ben-
efits from cooperation in the higher level unit, in order to
persist over evolutionary time (Michod and Roze 1999).

In asynchronous self-reproduction the very fact that the
relative synchronization of the entire state of the “organ-
ism” is uncertain contributes to this problem of heritability
of fitness.

5. Construction of Equivalent Asynchronous
Models

The construction of the local automata of the asyn-
chronous cellular automaton A’ from local automata of the
synchronous cellular automaton 4 is extremely straight-
forward: Suppose the local automaton of A has states
Q ={q,-.-,qn—1} with go quiescent and update function
0:QxX = Q.

The states of the local automaton in A’ are the 3n? states
Q x Q x {0,1,2}.

For r € {0,1,2}, we say the neighborhood of a node
v in the asynchronous cellular automaton A’ is ready(r)
if none of v’s neighbors is in a state with third component
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equal to r + 2 (mod 3).2 Recall that we write w € nbhd(v)
if w is a node in the neighborhood of v.

The update rule of this local automaton is given as
follows: suppose node v is in state (g, q’,r) with ¢ and ¢’
in @, and r € {0,1,2}, and has neighborhood with list of
states (quw, @y, Tw)wenbhd(v)> then, if r = 0, the next state
of node v is

6I((q7 qla O)v (qwa q:ua Tw)wenbhd(v))

(0(¢; (¢2)wenbha(v)), ;1) if the neighborhood of
= v is ready(0)
(g,4',0) otherwise,
qw if node w is in a state of the
form (qy, ¢.,,0)
where ¢ =

q,, if node w is in a state of the

form (quw, ¢l,,1).

(Since the neighborhood is ready(0), these are the only
possibilities. Note the use of the original local transition
function § of the synchronous cellular automaton A in this
case in the definition of §'.)

For the remaining cases with r € {1, 2}, the next state is

6'((¢:9"7), (qu; ¢ Tw)wEnbhd(v))

(¢,¢',7 + 1(mod 3)) if the neighborhood of v
= is ready(r)
(q7 qla T) otherwise.

The state (g, q’, ) can be thought of as encoding the fol-
lowing information: The first coordinate ¢ shows the “visi-
ble” state of the corresponding network A at this node. The
second coordinate ¢' is “hidden” and is used to remember
the most recent old state of this node, in case any neighbor
needs to refer to it. The third coordinate is used to locally
synchronize updates of the visible and hidden nodes.

The above rule ¢’ only allows a local state of A’ to
change if no node in the neighborhood will get more than
one step behind if the update were to be made, otherwise it
allows no change at all to the current state. The important
ready(0) and r = 0 case occurs exactly when the asyn-
chronous cellular automaton is locally ready to emulate the
transition of the synchronous cellular automata at this local
node using the local transition function of A. Intuitively,
the third component of a node v’s state can locally distin-
guish ‘present’, ‘future’, and ‘past’ for neighboring nodes,
respectively, by whether they have modulo 3 value equal to,
one more than, or one less than the value of the third com-
ponent of v’s state.

2For any integer n, “n (mod 3)” denotes the least nonnegative integer
k such that n — k is divisible by 3. Of course k£ must then be one of
{0,1,2}.

5.1. Properties of the Emulation

The asynchronous cellular automaton has two important
properties established with detailed mathematical proofs in
the main theorem of (Nehaniv, 2002 (accepted)):

Suppose the synchronous cellular automaton A is started
in configuration C' with node v in state C'(v) and all other
cells quiescent. Also suppose that asynchronous cellular au-
tomaton A’ is started with each node v of the configuration
active in state (C'(v), C'(v),0) and all other nodes in state
(40, 90,0).

Freedom from Deadlocks. At each node v of the asyn-
chronous network, if the state of v has third component
r € {0,1,2} eventually the neighborhood of v will be
ready(r), and the third component will change value to
r + 1 (mod 3).

Existence of Continuous Spatio-Temporal Sections.
The state ¢, (0) at time 0 of node v of A is equal to the
first component of the state of node v of A’ in its initial
configuration. By mathematical induction, one shows that
the state g, (t) of node v in A at time ¢ is equal to the first
component of the state of node v in A’ on the #"* time that
the third component of node v becomes 1.

The latter property implies that it is possible to com-
pletely recover the behavior of A from the behavior of A’
by simply recording the first components in the initial con-
figuration of A" and recording the first component of each
node v whenever its local automaton makes a transition so
that the third component changes from 0 to 1.

5.2. Temporal Waves

To an observer, time as it occurs in the synchronous cel-
lular automata may seem to pass at different rates in dif-
ferent parts of the asynchronous cellular space. In fact, lo-
cally all neighboring cells are guaranteed to show a visible
state (first component) that occurs at most one unit of time
in the past or future relative to the corresponding state in
the synchronous automaton. Thus, time of the synchronous
cellular automaton is emulated in a manner such that it can
never get very far out of sync locally in the emulating asyn-
chronous cellular automaton.

This results in waves of temporal update in the cellular
space with continuous wavefronts all in the same state of
temporal synchronization (i.e., all with the same third com-
ponent) representing the same moment in the synchronous
cellular automaton.

This is illustrated below with an asynchronous version of
John Conway’s famous “Game of Life”.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (EH’02)
0-7695-1718-8/02 $17.00 © 2002 IEEE



ASYNCHRONOUS GAME OF LIFE 5.3. Asynchronous Example: Conway’s Game of

. Life and Universal Computation
Initial State:

Let us apply the construction to Conway’s (synchronous)
Game of Life. A local automaton in synchronous Life has

ﬁ i nmn two possible states (quiescent (0) or alive (1)) and the fol-
lowing transition function: if a cell is quiescent and has ex-

b actly 3 neighbors that are alive, its next state is alive. If a

cell is alive, and it has either 2 or 3 live neighbors (not in-

b cluding itself) then it stays alive, otherwise it becomes qui-

escent. It has been shown that, in principle, universal com-
putation can be implemented in a infinite two-dimensional
(synchronous) cellular automaton running Conway’s rule
(for an enjoyable yet highly readable and detailed overview

Progress of Gliders in Asynchronous Life. see chapter 1 of Sigmund (1995)).
Note that the upper left hand glider is Figure 1 (top panel) shows an initial configuration of
not recognizable as one due to small local some well-known structures in Conway’s Game of Life as

temporal variation in its cells: an initial configuration for the corresponding asynchronous

cellular automtaton: Three gliders which move across the
space, a stable 2 x 2 box, and a blinker (a row of 3 cells,
H I that becomes a column of 3 cells, then a row of 3 cells, and
SO on).

The next panel shows the state of the world a few time
b steps later, the shading indicates the synchronization state
of the cell in the space, while the darker cells of various
b shades are live cells in various stages of temporal synchro-
nization. Contiguous cells of the same shade are in sync
and reflect the same instant of time in the synchronous cel-
lular automaton. The third panel down shows the state of
Further Progress of Gliders in Asynchronous the system a little later.

Life. All their parts are nearly in the The possibilty of implementation of Conway’s Game of
same spatial-temporal section; all three Life in an asynchronous cellular automaton as illustrated
gliders are now recognizable again: here entails that universal computation is possible in a two-
dimensional asynchronous cellular automata running the
modified rules.

="

6. Self-Reproduction in Asynchronous Cellular
" Automata

d Using this method it is now straightforward to con-
d struct asynchronous cellular automata that exhibit self-
reproduction. Taking any of the models of Von Neumann,
Codd, Langton, Byl, Reggia et al., Sayama, etc., we merely
apply the construction above. Now we give the first imple-
mented example of self-reproduction in asynchronous cel-
lular automata by applying our construction to Langton’s
self-reproducing loop.

Figure 1. Temporal Waves and Progression
of 3 Gliders, with Box, and Blinker in Asyn-
chronous Game of Life. Contiguous regions
of the same shade are “temporal wavefronts”
that represent the same moment in a spatio-
temporal section giving the global state of the
corresponding synchronous cellular automa-
ton.

6.1. Asynchronous Langton Loop

Using the rule of Langton (1984) for a synchronous cel-
lular automaton exhibiting self-reproduction, we derive by
the method above an asynchronous cellular automaton with
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Figure 2. Asynchronously Self-Replicating
Loop Soon after Starting Reproduction Cycle.

Figure 3. Asynchronously Self-Replicating

192(= 3 x 8?) states possible in the local automata at each Loop after First Reproduction

node. Using random asynchronous update of the nodes we
achieved an implementation of self-reproduction in an asyn-
chronous cellular automaton. Figure 2 shows the state of
the cellular automaton near the beginning of the first repro-
duction cycle: a sheath of cells encloses an asynchronously
counterclockwise circulating stream of instructions to ex-
tend a construction arm and turn left. The instructions
are copied as they flow through a fork in the sheath. Af-
ter this stream has been executed four times, an offspring
asynchronous loop is present in the cellular space (right
in Figure 3). Figures 4 and 5 show the state of the space
at later times when more descendants of the original loop
are present. As with Langton’s synchronous loop, an asyn-
chronous loop which has no more space to reproduce in
eventually “dies”, leaving a configuration of inert cells.

The rules and initial configuration for Langton’s syn-
chronous self-reproducing cellular automaton model are
given in (Langton, 1984) and are widely available electroni-
cally in various synchronous implementations easily down-
loadable from the internet. From these rules and config-
uration, the reader can reproduce our experimental results
(implemented here in java) using the explicit method given
above in the previous section.

7. Discussion and Conclusions Figure 4. Asynchronously Self-Reproducing

Loop after 7 Descendants have been Pro-

We have demonstrated the systematic implementation of duced; Original Loop No Longer Active.

asynchronous cellular automata that fully emulate the be-
havior of any synchronous cellular automata. This was
used to give the first examples of self-reproduction in asyn-
chronous cellular automata.
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Figure 5. Asynchronously Self-Reproducing
Loop after 24 Descendants have been Pro-
duced; Original Loop and Some Other De-
scendants No Longer Active. (100 x 100
Torus Topology).

Similarly, implementing the asynchronous version of
Sayama’s evo-loop we also have created the first instance
of evolution in a population of self-replicators in an asyn-
chronous cellular automaton (Nehaniv, 2002 (submitted)).

Universal computation and universal construction can be
implemented in asynchronous cellular automata by apply-
ing our construction to Von Neumann’s self-reproducing
configuration. Universal computation can also be realized
by our method of implementing Conway’s Game of Life
using asynchronous cellular automata as discussed above.

In general, most results about synchronous cellular au-
tomata carry over automatically now to the asynchronous
realm. Thus these methods free those using cellular au-
tomata models of computation, self-reproduction, and evo-
lution from the restriction of synchronous global update.
With asynchronous (e.g. random) update, the same results
are attained as guaranteed by the theorem of (Nehaniv, 2002
(accepted)).

Fault-tolerance and self-repair in the asynchronous cellu-
lar automata is a natural next direction to explore. A gener-
alization of the methods presented here to cellular automata
networks of variable size and shape, i.e. allowing dynamic
growth or changing topology of the cellular space, would
also a desirable development.
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