
 

1 

 

 

 

 

Abstract—Number plate localisation is a very important stage in an Automatic Number Plate Recognition (ANPR) system and is 

computationally intensive. This paper presents a low complexity with high detection rate number plate localisation algorithm based 

on morphological operations together with an efficient multiplierless architecture based on that algorithm. The proposed 

architecture has been successfully implemented and tested using    a Mentor Graphics RC240 FPGA (Field Programmable Gate 

Arrays) development board equipped with a 4M-gate Xilinx Virtex-4 LX40. Two database sets sourced from the UK and Greece 

and including 1000 and 307 images respectively, both with a resolution of        , have been used for testing. Results achieved 

have shown that the proposed system can process an image in 4.7 ms whilst achieving a 97.8% detection rate and consuming only 

33% of the available area of the FPGA. 

1. Introduction 

Automatic Number Plate Recognition (ANPR) systems allow users to track, identify and monitor moving vehicles by 

automatically extracting their number plates.  These systems are rapidly becoming used for a vast number of applications 

including, automatic congestion charge systems, access control, tracing of stolen cars, and identification of dangerous drivers [1]. 

The fundamental requirements of an ANPR system are image capture using an ANPR camera and processing of the captured 

image. The image processing part, which is a computationally intensive task, includes three stages: Number Plate Localisation 

(NPL), Character Segmentation, and Optical Character Recognition (OCR). NPL is the stage where the Number Plate (NP) is 

localised in the input image from the ANPR camera. The character segmentation stage is an important pre-processing step before 

applying OCR, where each character from the detected NP is segmented before recognition so that only useful information is 
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retained for recognition. In the last stage, optical character information will be converted into encoded text by pre-defined 

transformation models. 

ANPR is a computationally intensive task and often has to be under real-time constraint, the common hardware choice for its 

implementation is often high performance workstations. However, the cost, compactness and power issues that come with these 

solutions motivate the search for other platforms. Recent improvements in low-power high-performance Field Programmable Gate 

Arrays (FPGAs) and Digital Signal Processors (DSPs) for image processing have motivated researchers to consider them as a low 

cost solution for accelerating such computationally intensive tasks [2]. Current ANPR systems generally use a separate camera and 

a stand-alone computer for processing.  By optimising the ANPR algorithms to take specific advantage of technical features and 

innovations available within new FPGAs, such as low power consumption, development time, and vast on-chip resources, it will be 

possible to replace the 3GHz roadside computers with small in-camera dedicated platforms. In spite of this, costs associated with 

the computational resources required for complex algorithms together with limited memory have hindered the development of 

embedded vision platforms [2]. 

This paper presents a speed and area-efficient architecture based on a low complexity NPL algorithm suitable for FPGA 

implementation. The proposed algorithm is mainly based on open and close morphological operations. A MATLAB 

implementation of the proposed algorithm was used as a proof of concept prior to the hardware implementation, and the proposed 

architecture implemented and verified using the Mentor Graphics RC240 FPGA development board equipped with a 4M Gates 

Xilinx Virtex-4 LX40. For comparison purposes two different databases, including a public one, were used.  The first one 

contained 1000 images with UK number plates while the second one , taken from an online database, contained 307 images with 

Greek number plates with a resolution of 640×480[3]. For the UK database, some images were collected by the authors with the 

rest provided by CitySync Ltd. [4] who are one of the leading UK providers of ANPR solutions. The images were grouped into six 

different sets based on different criteria such as distance and illumination conditions. These will be discussed later. 

The remainder of this paper is organised as follows: related work is reviewed in Section 2 while section 3 describes the 

morphological based algorithm. The proposed NPL architecture is then described in Section 4, the MATLAB and analysis of the 

experimental results are in Section 5 while Section 6 is concerned with FPGA implementations and discussion of the experimental 

results.  Section 7 then concludes the paper. 
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2. Related Work 

To date, most ANPR research has been software based, the commonly used platform for this purpose often being high performance 

computer workstations located at the roadside connected to an ANPR camera. Recently researchers have started to consider the use 

of compact embedded hardware devices to replace these expensive computer workstations that can also be placed within an ANPR 

camera housing. However the issue of the necessary high levels of performance requirement set against limited memory resources 

associated with embedded hardware devices still needs to be addressed [2]. 

Table 1 summarises the most recent software based ANPR systems. Generally, NPL algorithms reported in previous research are 

mainly classified into three classes: edge detection based algorithms [5], [6], colour-based algorithms [7], [8] and texture-based 

algorithms [9], [10], [11]. The algorithms based upon combinations of edge statics and mathematical morphology showed good 

results. These methods try to find a rectangle shaped liked region from a vertical edge density map. A disadvantage of this method 

is that it cannot deal with the complex images, since they are too sensitive to unwanted edges. In spite of this, after combining with 

morphological operations that eliminate some unwanted edge information, the NPL rate is relatively high and fast [12]. 

Colour-based algorithms for NPL use prior knowledge of NP (e.g. plate background and text colour) and for this reason are country 

specific. Image transformations (e.g. Gabor filter and wavelet transform) are major tools for texture analysis   and are normally 

computationally expensive and slow for images with large resolution.  

Table 1. Existing Software Based ANPR Systems 

ANPR System Character Set System Part Image Type 
NPL 

Rate (%) 
NPL Speed (ms) 

[6] China NPL Greyscale 99.6 100 

[7] Taiwan Whole ANPR system  Colour 97.9 N/A 

[8] China NPL Colour 95.1 400 

[10] Korea NPL Colour 92.7 1280 

[11] Taiwan NPL Greyscale 97.3 180 
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Recent improvements in the computing power of FPGAs and DSPs have motivated researchers to consider them as an alternative 

solution to implement ANPR systems. These devices can be used as a low-cost System-on-chip solution that allows the FPGA or 

DSP-based processing unit to be placed within an ANPR camera housing to create ‘intelligent cameras’– namely cameras that 

record and process images for sending back to a server. Table 2 summarises the most recent FPGA and DSP based ANPR systems. 

A variety of algorithms have been used is these systems. This includes AdaBoost, Support Vector Machine (SVM) [2], [13], Gabor 

filter [14], morphological operation [15] and background modelling and pixels classification [16]. These algorithms are either 

computationally expensive (i.e. high execution time) or they have a low detection rate. The only work that involves the use of only 

one FPGA to implement the first stage of an ANPR system is the work presented in [16]. Results show that it has the fastest 

processing speed to locate NP with a relatively low detection rate compared to other existing work. 

Table 2 Existing FPGA and DSP-based ANPR systems 

 

Generally, the software based ANPR systems have a higher detection rate compared to hardware based systems, however the 

processing time of the former is higher than the latter. The design and implementation of hardware based ANPR systems is limited 

by the hardware architecture and the available resources. Efficient methods and techniques to implement ANPR algorithms should 

be considered to map them on the chosen hardware.  

ANPR 

System 

Character 

Set 
System Part 

Image 

Type 
Hardware Platform 

NPL 

Rate 

(%) 

NPL Speed 

(ms) 

[3] Australia NPL Colour 
TI C6414 DSP and  Altera 

FPGA 
96 141.62 

[13] Australia 
Whole ANPR 

system 
Greyscale TI C64 DSP and PC N/A <50 

[14] Turkey 
Whole ANPR 

system 
Greyscale 

FPGA Virtex IV and Video 

board 
91.70 N/A 

[15] US 
Whole ANPR 

system 
Greyscale FPGA Virtex II Pro and PC N/A N/A 

[16] Japan NPL Greyscale FPGA Virtex II pro 87 9.25 
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The work presented in this paper focuses on developing a low complexity and relatively stable NPL algorithm suitable for a single 

FPGA implementation. The innovations introduced in this paper can be summarised as follows: 1) a novel NP feature extraction 

and enhancing method based on two morphological open operations and an image subtraction operation. 2)  a novel efficient FPGA 

architecture and its implementation.  

3. Number Plate Localisation Algorithm 

A NP image is normally recorded as a pattern with high variations of contrast.  This feature is used to locate the plate and have been 

found to be relatively robust to changes in lighting conditions and view orientation.  Most of the previous work based on 

morphological operations have used edge detection to extract the edge information around the NP region followed by 

morphological operations as a fusion tool to connect the pixels together in that region. After that a Connected Component Analysis 

(CCA) labelling algorithm is used for the NP region selection. However, the edge detectors are based on matrix multiplication and 

the entire image needs to be scanned, which increases the computing cost of the algorithm. Therefore, in this paper, we are using a 

morphological open operation and image subtraction to replace the edge detection operator, which reduces the computation 

complexity whilst maintaining a satisfactory detection rate.   

The proposed algorithm is mainly based on two open and a close morphological operations, the first open morphological operation 

is used to extract the features of the NP, the second open operation is used to remove noise, the close operation is then used to fuse 

the pixels in the NP region together. 

The proposed algorithm consists of two major stages: 

1. Morphological operations for extracting plate features;  

2. Selection of candidate regions. 

Fig. 1 shows a block diagram of the proposed NPL system. 
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Fig. 1. Proposed NPL system. 

3.1 Plate Feature Extraction 

The proposed algorithm mainly utilises three morphological operations to minimise the pixels of the non-plate region and to 

enhance those of the plate region. The original RGB image is first converted into a greyscale image, which will be used as an input 

to the following block where the first morphological open operation will be used. 

The morphological open operation is an erosion followed by a dilation and the opposite operation (i.e. close operation) is a dilation 

followed by an erosion. The shape of the morphological operations is based on a suitable structuring shape employed as a probe 

called the Structuring Element (SE) [17]. Open    and close    operations can be performed as shown in (1) and (2) respectively 

where I denotes a greyscale input image,   denotes a dilation operation and   denotes an erosion operation: 

                                             E      E                                                                                     (1) 

           E      E                                                                                      (2) 

When applying the morphological open operation on a greyscale image, pixels will be ‘averaged’ in the area of SE. When applying 

it on a binary image, pixels will be erased if the SE area is not fully filled by pixels with value ‘1’.  

UK NPs normally consists of black characters on a white background. This feature causes the pixel values to be highly variant in 

the NP region. On the contrary, the margin area of the NP region normally consists of a constant colour, in particular the 
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windscreen glass and engine hood. Therefore, if applying a morphological open operation with enough large SE on greyscale car 

image, characters can then be removed from the NP region while the remaining features of the rest of image will be kept. By 

performing a subtraction between the original greyscale image and the resulting image after the open operation image, the output 

will be a highlighted plate region image.  

The size of SE is decided based on the gap between two neighbouring characters on the NP. Due to the variant distances between 

the car and the camera, the size range of NPs ( a b ) in the used databases is between 1  1   (pixels) and        (pixels). Let 

maxhd (pixels) and minvd (pixels) denote the maximum distance between the two neighbouring characters on the horizontal and the 

minimum distance between the character and boundary of the NP respectively. They both depend on the size of the NP and the 

shape of neighbouring characters (See Fig. 2). 

YT 58 FSZ

H
ei

g
h

t 
=

 a

Width = b

dhmax
dvmin

 

Fig. 2. An NP example. 

On the other hand, the size of SE ( 1 2S S ) is determined by maxhd and minvd , where
1 min1 vS d  ,

max 2 maxh hd S d   ,   as a 

variable that is calculated based on experiment results.  

For the UK database, images were randomly taken from different real-world environments with variant NP sizes (note that details 

of this database are given in Section 5).  Based on the above description on how the SE size is selected and tests performed using 

the UK database and then validated with the on-line public Greek database, the size of the used SE for the open operation was set to 

    . Fig. 3 shows the used ‘rectangle’ shaped  E. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Origin

SE=

  

Fig. 3. A ‘rectangle’ shaped  E with size       . 

This       E has an origin pixel point, which is the centre of the whole  E. The origin point is mainly used for marking the  E’s 

location when the morphological operation is performed. 
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A morphological open operation with this      SE is performed on an original greyscale image, which will generate a background 

image (Non-NP region). The background image is subtracted from the original greyscale image and the result of this operation is a 

highlighted NP region. Fig. 4 illustrates this process. 

+ -

Greyscale Image Background image

Highlighted Plate Region

Opening with a 

3×30 rectangular SE

 

Fig. 4. The process for highlighting the plate region. 

In order to further eliminate Non-NP regions, the highlighted plate region image is binarised. Let 
ming and

maxg denote the 

minimum and maximum pixel value of the highlighted NP region in the database respectively, the best threshold bT should 

adaptively change from 
ming to maxg when different images are applied, however, this process requires extra memory to store the 

entire image, before analysing the best bT for each input image. For FPGA implementation, this slows down the processing speed 

and increases hardware usage. Therefore, the proposed algorithm uses a fixed threshold 
fT  to replace bT . if 

minfT g , all the 

highlighted NP regions should be kept after image binarisation. For the used databases
min 60g  , therefore the value of the fixed 

threshold 
fT is 60. Although the fixed threshold can benefit hardware implementation, a lower threshold value will increase the 

noise level. To overcome this problem, an extra morphological open operation is used to remove the noise. Fig. 5(b) shows the 

result after noise removal. 

Diamond Shaped 

Open Operation

Rectangle Shaped 

Close Operation

(a) Binarised Image (b) Image after Open Operation (c) Image after Close Operation
  

Fig. 5. The process of image binarisation and enhancement. 
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For the process shown in Fig. 5 ‘diamond’ and ‘rectangle’ shaped  Es are used for the last morphological open and close 

operations. The two SEs are shown in Fig. 6.  

0   0    1    0   0  
0   1    1    1   0
1   1    1    1   1
0   1    1    1   0
0   0    1    0   0

 

R

(a) ‘diamond’  shaped SE with R=2 

and 3×3 ‘rectangle’ shaped SE 

Origin

(b) A 3×13 ‘rectangle’ shaped SE

1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

SE=

Origin

1  1  1 

1  1  1 

1  1  1

Origin

  

Fig. 6. The ‘diamond’ shaped and ‘rectangle’ shaped  Es. 

 

Fig. 6  a  shows a ‘diamond’ shaped  E, where the matrix has a radius R 2 and all 1’s are inside the ‘diamond’. When this special 

structure is used during the open operation on a binary image only diamond-shaped regions filled by 1s will be kept. This operation 

is very useful in erasing net-shaped and narrow lines surrounding the plate area. This SE can efficiently erase most of the unwanted 

information, as can be seen in Fig. 5 (b). However, in order to reduce hardware usage, the ‘diamond’ shaped SE has been replaced 

by a     ‘rectangle’ shaped  E for hardware implementation. As can be seen from Fig. 6 (a) the difference between the ‘diamond’ 

shaped  E and the ‘rectangle’ one is that the first has an extra four corners. Although the open operation can effectively remove 

noise, some pixels in the NP region can also be eliminated. Therefore, the system needs an extra operation to fully fill the plate 

region to connect the pixels. A morphological close operation is used for this purpose. Fig. 6  b  shows a ‘rectangle’ shaped  E for 

this close operation, where the matrix has   1  ‘rectangle’ shaped 1s. Any non 1 pixels in this rectangle region will be changed to 

1, which means all the parts in this region will be fused together. As can be seen from Fig. 5(c), the plate region can clearly be 

identified as it is a group of connected pixels which can be easily extracted using some known geometrical conditions (e.g. Width 

/ Height ratio). 

3.2 Selection of Candidates Plate Region  

The output image from the previous stage consists of a set of groups of connected pixels. A labelling algorithm CCA is used to 

mark these pixels. In the proposed work, the CCA uses a ‘ -connectivity’ method, and labels them using different numbers. Once 

all the groups of pixels have been determined, each pixel is labelled based on the group it belongs to. Therefore, a set of potential 

candidates can be selected from the image using the known geometrical conditions, which mainly consist of the width, height and 

ratio of the plate region. Let P denote the extracted plate region with the size H×W, the first criterion is the ratio R between the 
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height and width of P (i.e. R = W/H). The second criterion is the range of H and W. The third criterion is the area of P. Ranges for 

H, W and R were selected to be relatively large enough to cover most of the possible sizes of the plate region in the databases.  

Basically, there are two selection conditions (Condition 1 and Condition 2) used for this purpose. For both conditions, the width, 

height, area and ratio of the NP are considered. Condition 1 is stricter than Condition 2 where some of the candidates may not meet 

Condition 1 but can meet Condition 2. The maximum and minimum coordinates of the rectangular plate regions that pass one of the 

conditions are returned. Normally, the strictest condition (i.e. Condition 1) is perfectly suited for selecting candidates from good 

condition images (e.g. daytime and clear images); while Condition 2 can be used for selecting candidates from bad quality images 

(e.g. far view, blur and complex background images). Fig. 7 shows a block diagram that illustrates the selection process. 

Labeled

Image

Group of Pixels 

with Label i

Geometrical

Condition 1

Met?

No

i++

Geometrical

Condition 2

Met?

Yes

Yes

No

i++

i > imax and “no 

successful 

candidate” ?

No

Yes

Successful 

Condiates

i = 0

Group of Pixels 

with Label i

Successful 

Condiates

i > imax 

Yes
End

i ∈ [0 imax]

 

Fig. 7. Flowchart of selection process. 

 

The final Number plate will be extracted from original greyscale image. Fig. 8 shows the selected Number plate. 

Selection of 

Plate Region

 

Fig. 8. Selection of Number plate. 
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4. Proposed Number Plate Localisation Architecture 

Morphological operations based architecture consists mainly of an image reader, three morphological operations and CCA. 

Therefore, this architecture can be designed using the following modules: 

- Memory Reader Module; 

- Converter Module; 

- Morphological Operations Module; and  

- CCA Module. 

The structure of the proposed architecture is shown in Fig. 9. 

Memory Reader 

Module

Converter 

Module

Morphological 

Operations 

Module

CCA Module
Converter 

Module

Morphological 

Operations 

Module
 

Fig. 9. Morphological operations based system. 

4.1 Memory Reader and Converter Module 

The first module in the proposed architecture is the memory reader and converter. The memory reader part of the module is used to 

read the RGB values for each pixel from the original RGB image which has a size of         and to assign a position coordinate. 

Fig. 10 shows a block diagram of the memory reader. 

RGB Image on The 

External Memory

 

RGB Pixel

Coordinate 

Generator

Pixel StreamMix

 

Fig. 10. Block diagram of memory reader. 
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The converter part of the module is used for the standard RGB (24 bits) to greyscale conversion (8 bits) using (3): 

 
77 155 29

256

R G B
Y

    
  (3) 

This module is also used for the greyscale to binary conversion using a fixed threshold 
fT out of 255 (i.e. 

fT = 60), which means all 

values less than 
fT  will be treated as ‘ ’ and values larger or equal to 

fT  will be treated as ‘1’. 

4.2 Morphological Operations Module 

The morphological operations module consists of the morphological open and the morphological close sub-modules. According to 

the equation (1) and (2), the morphological open operation and the morphological close operation can be divided into two 

sub-filters respectively, i.e. the morphological dilation and the morphological erosion sub-filters, where the order in each case 

decides whether the morphological operation is open or close. The greyscale dilation calculates the maximum pixel value in a 

specific SE. On the contrary, the greyscale erosion calculates the minimum value in a specific SE. 

The proposed algorithm uses      rectangle shaped SE, however, for efficient hardware implementation where parallelism can be 

exploited, this rectangular shaped SE has been decomposed into two small rectangle SEs with the sizes 1    and   1. Fig.11 

shows the block diagram of a proposed pipelined dilation filter. 

Stage 0 Stage 1 Stage 2 Stage 28 Stage 29
Stream of 
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Line Buffer 0 (8 bits * 640)

Line Buffer 1 (8 bits * 640)

Maximum        

(8 bits × 30)
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8

Maximum        

(8 bits × 3)

8

8
8 8

8

8

8

8

8

8
To The Next Filter

8

 

Fig. 11. The block diagram of a pipelined dilation filter. 
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First of all, the value of current input pixel is simultaneously passed into the internal buffers “ tage  ” and “Line Buffer  ” then 

after every clock cycle it is passed to the next stage until it reaches “ tage 29” and then the maximum pixel value of the current 30 

pixels in the 30 stages is calculated. In the meantime, the values of the pixels from two consecutive lines of the greyscale image (i.e. 

640 pixels per line) are stored in the two line buffers in order to calculate the maximum value from three consecutive pixels from 

the same column. The first origin of SE (1   ) is the fifteenth pixel of the first line, so the first coordinate of output should be kept 

consistent with the coordinate of the fifteenth pixel instead of the coordinate of the current input pixel. 

The structure of the erosion filter is similar to the dilate filter. The only difference is that the minimum value of the pixels is 

calculated instead of the maximum one.  Fig.12 shows the block diagram of a pipelined erosion filter. 

Stage 0 Stage 1 Stage 2 Stage 28 Stage 29
Stream of 

Pixels

Line Buffer 0 (8 bits * 640)

Line Buffer 1 (8 bits * 640)

Minimum         

(8 bits * 30)

8

8

Minimum         

(8 bits * 3)

8

8
8 8

8

8

8

8

8

8
To The Next Filter

8

 

Fig. 12. The block diagram of the pipelined erosion filter. 

In the proposed architecture, there are three different  Es used for the three morphological operations  i.e. ‘rectangle’ shaped SEs: 

   ,   1 ,     ) which can be easily implemented using the block diagrams shown in Fig. 11 and Fig.  12 by simply changing the 

number of stages (i.e. if the size of SE is    , it requires three stages . The ‘diamond’ shaped  E has been replaced by the 

‘rectangle’ shaped  E     ) in order to use the same block diagrams shown in Fig. 11 and 12 which reduces the hardware 

complexity. 
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4.3 CCA Module 

The CCA module is used to mark and select a candidate plate region from the entire binary image. Generally, the pixels of the input 

pixel stream are divided into several groups or blobs by the CCA module. The grouping is based on the pixels’ connectivity.  Fig. 

13 demonstrates this procedure. 

P1.L

P1.A

P1 P2.L

P2.A

P2

P3.A

P3.L P3

Blobs (index of X)

Blobs (index of Y)

PixelStreams In

PixelStreams Out   

Fig. 13. The block diagram of CCA. 

The grouping is performed as follows. The binary stream is scanned from left to right starting from the top line. For instance, a 

comparison between the current pixel “P1” from Fig. 13, its upper pixel “P1A” and left pixel “P1L”, which have already been 

grouped, is performed. All pixels with value ‘ ’ will be assigned to one group with an index ‘ ’. If the value of “P1” is ‘1’ and the 

indexes of its neighbours are the same and not ‘ ’ then “P1” will be assigned the same index as its neighbours. If the indexes of the 

two neighbours are different and not ‘ ’, then the indexes of this pixel and its upper neighbour “P1A” will be the same as its left 

neighbour  i.e. “P1L” . If the indexes of the two neighbours are different and one of them is ‘ ’, then the index of this pixel will be 

the non-zero index of its neighbour. If the pixel value is ‘1’ but the indexes of its neighbours are both ‘ ’, the index of a new group 

will be assigned to this pixel. Finally, the coordinates of each rectangular shaped group are recorded for the selection of candidates. 

Once the whole image is scanned, the selection of a candidate region is performed using the selection process shown in Fig. 7 

which is mainly based on the geometrical relationship of the NP region. 

5. MATLAB Implementation and Results 

The proposed algorithm was first tested in a MATLAB environment using a database of 1000 images containing UK NPs and 

verified using an on-line public database of 307 images containing Greek NPs. The resolution of all used images is        . The 

UK number plate database consists of six different sample sets and the on-line Greek database consists of three different sample 
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sets, which are taken from natural scenes obtained in various illumination conditions and different distances between the camera 

and vehicles. The three sample sets from the Greek database are similar to the first three sample sets from the UK database. 

Therefore, for the purpose of performance testing of the proposed algorithm, all samples sets from both databases were grouped 

into six sets. The first three sample sets are: 

- Sample Set 1 - day time colour: this set contains 631 images from the UK NP database and 136 from the Greek one. The 

NP regions in this sample set are clear and normal size. 

- Sample Set 2 - day time close view:  this set contains 70 images from the UK NP database and 122 from the Greek one. 

The size of the NP regions in this sample set is large and the images contain less complex background environment 

information. 

- Sample Set 3 - day time with shadows: this set contains 68 images from the UK NP database and 49 from the Greek one. 

The NP regions and the backgrounds contain shadows. 

The remaining three sample sets are:  

- Sample Set 4 - day time moving vehicles: this set only contains 140 moving vehicle images from the UK NP database. 

- Sample Set 5 - day time far view: this set contains 75 images from the UK NP database. The size of the NP regions in this 

sample set is small and the images contain more complex background environment information.  

- Sample Set 6 - night time infrared:  this set contains 17 images from the UK NP database, which are taken from an infrared 

camera at night time. 

Table 3 shows images from each sample set and the size range of the NP, where the lowest and highest height/width of NP are 

18/160 and 60/300 respectively in the databases. Therefore, the expected H, W and R values should fall in the following regions:

18 30H  , 60 300W  and 2 9R  . 
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Table 3. The Samples of Used Database 

 

Sample set 1 

(Day time 

colour) 

Sample set 2 

(Day time close 

view) 

Sample set 3 

(Day time with 

shadows) 

Sample set 4 

(Day time moving 

vehicles) 

Sample set 5 

(Day time far 

view) 

Sample set 6 

(Night time 

infrared) 

NP 

sizes 

30×160 up to 

40×220 

42×230 up to 

60×300 

26×120 up to 

42×230 

30×160 up to 

38×200 

18×160 up to 

30×160 

30×160 up to 

38×200 

UK 

      

Greek 

   

N/A N/A N/A 

 

Table 4 shows the MATLAB implementation results in terms of NPL rate using all sample sets. 

Table 4. Successful NPL Rate by Sample Sets (MATLAB Implementation Results) 

Database Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5 Sample set 6 Overall 

UK 

database 

619/631 

(98.1%) 
69/70 (98.6%) 66/68 (97.1%) 

135/139 

(97.1%) 

73/75 

(97.3%) 

17/17 

(100%) 

979/1000 

(97.9%) 

Greek 

database 

133/136 

(97.8%) 

120/122 

(98.3%) 
48/49 (97.9%) N/A N/A N/A 

301/307 

(98.0%) 

 

The proposed algorithm has an overall 97.9% NPL rate when tested using the UK images and 98.0% when using the Greek images. 

The NPL rate is high for sample sets 1, 2 and 6 compared to sample sets 3, 4 and 5, which is due to the fact that the scenes in the 
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latter sample sets contain more complex background environments. Generally, the proposed algorithm shows a similar NPL result 

and a relatively stable performance for both databases.  

Although the two geometrical conditions have effectively improved the NPL rate, some images still cannot be handled 

successfully. Generally, there are two main failed data image sets (see Table 5): (1) Images with more than one successful 

candidate including the NP itself. (2) Images with no successful candidate. The main reasons for the first set are environment 

background and NP selection conditions. Since various illumination conditions and the range of NP size is very large (1  1   to 

      ), two selection conditions cannot fully cover all NPs. In some cases, the false candidates in some images are very similar in 

size to the true candidates in other images in the database which cannot be excluded. In order to overcome this problem, a 

validation process should be added before character segmentation for cases where there is more than one successful candidate. For 

the second set, there are no successful candidates due to the length of the distance between the camera and the car which results in 

very small NP images and an increase in the background noises. In this situation the NP feature cannot be extracted properly by the 

proposed morphological operations.  

Table 5. Failed Images in Both Database (MATLAB Implementation) 

 (1) (2) 

Original 

Image 

      

Image 

before 

CCA 
      

Detected 

NP 
 

   

No successful 

candidate 

No successful 

candidate 
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6. FPGA Implementation and Results 

The proposed architecture for NPL has been simulated in PAL Virtual Platform (PALSim) [18]. After simulation, the architecture 

has been successfully implemented and verified using the Mentor Graphics RC240 FPGA development board equipped with a 

4M-gate Xilinx Virtex-4 LX40 [19]. Handel-C and PixelStreams, which is a library that can be used for rapid development of video 

image streaming applications, have been used for the hardware description of the proposed architecture [20]. 

The original RGB image is first stored in an external memory on the RC240 board. The external memory data width is 32 bits, 

which means every pixel value (24 bits) can be saved on a single memory location. In Fig. 10 each RGB pixel is combined with its 

corresponding position coordinate and synchronisation information and then sent to the filter blocks previously outlined in Fig.1 

running in parallel. Every clock cycle one data pixel is passed from one block to the next.  

Both UK and Greek databases have been used for testing and validating the FPGA implementation. The results show a similar 

performance compared to the software implementation in terms of NPL rate where the entire overall rate is 97.8%. Table 6 shows 

the FPGA implementation results when using all sample sets. 

Table 6. Successful NPL Rate by Sample Sets (FPGA Implementation Results) 

Database Sample set 1 Sample set 2 Sample set 3 Sample set 4 Sample set 5 Sample set 6 Overall 

UK database 
618/631 

(97.9%) 

69/70 

(98.6%) 
66/68 (97.1%) 

134/139 

(96.4%) 

73/75 

(97.3%) 

17/17 

(100%) 

977/1000 

(97.7%) 

Greek 

database 

133/136 

(97.8%) 

120/122 

(98.3%) 
48/49 (97.9%) N/A N/A N/A 

301/307 

(98.0%) 

 

6.1 Hardware Usage, Running Frequency and Power Consumption 

Due to the low complexity of the proposed algorithm, the proposed architecture requires only 33% of the on-chip FPGA resources. 

Table 7 summarises the required on-chip resources. 
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Table 7. Usage of FPGA on-chip Resources 

 Used Available Utilisation 

Occupied Slices 6,195 18,432 33% 

LUTs 8,871 36,864 24% 

Block Rams 18 96 18% 

 

The 33% on-chip resource usage leaves 67% to be used for implementing the next stage of an ANPR system (i.e. NP Segmentation 

and OCR). The maximum running frequency is 86 MHz and the number of clock cycles needed for one image to be processed is 

401247. The execution time for processing one frame can be roughly calculated using the following equation:                                          

 
c

T
f

  (4) 

Where T is the execution time in ms; C is the number of clock cycles needed for one image; and f is the maximum running 

frequency. 

Based on Equation (4), the proposed architecture can process one image and produce a result in 4.7 ms. This means that the 

proposed architecture satisfies the minimum requirement for real-time processing. The result achieved in terms of maximum 

running frequency and area used for implementing this important part of an ANPR system shows that there is enough room to 

implement the whole ANPR system on one FPGA. 

The consumption power of the designed circuit has also been analysed using Xilinx XPower [21], and the results obtained are 

shown in Table 8. 

Table 8. Estimation of Power Consumption 

Name of Power Value of Power (mW) 

Total Quiescent Power 416 

Total Dynamic Power 212 

Total Power 628 
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The total power consumption of FPGAs consists of quiescent and dynamic components. Table 9 shows that the total power 

consumption of the proposed architecture is 628 mW which is lower than the power consumption of a typical PC if it is used as the 

processing unit in an ANPR system. 

6.2 Comparison with Existing Work 

A comparison of the experimental computational speed and NPL rate with existing PC, DSP and FPGA based implementations of 

NPL is shown in Table 9. 

Table 9. Performance Comparison 

 Platform 
Processor Clock 

Speed (MHz) 

Image 

Resolution 

(pixels) 

NPL Time 

(ms) 

NPL Rate 

(%) 

Proposed System 

on FPGA 
FPGA Virtex-4 86 640×480 4.7 97.8% 

Proposed System 

on PC 
PC 2300 640×480 143 97.9% 

[6] PC 1700 768×534 100 99.6% 

[2] 
DSP C6414 and     

FPGA 
600 352×288 141.62 96% 

[16] FPGA Virtex II 72.062 256×256 9.25 87% 

 

The proposed system outperforms existing ones as it shows a higher NPL rate and faster NPL speed with higher resolution 

compared to the databases used in systems [2] and [16] on the table. Although the testing databases used for the three methods are 

different, the proposed system has been tested and verified using a large local database and an on-line public database and shows 

stable results. However, it should also be noted that the databases used in [2] and [16] are not available as they are not public 

databases. 

However based on the results published, when compared to system [6], the proposed work has a faster NPL speed but slightly 

lower NPL rate. This is due to the fact that fixed measures of distance and angle, based on prior knowledge, have been used for the 

algorithm used in [6], which is based on edge detection and morphological operations. This prior knowledge boosts the results to a 
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high level of accuracy which is not the case for the proposed algorithm which uses images taken from different distances and angles 

more reflective of real life recordings. 

The proposed method in [2] uses a DSP for NPL implementation and a FPGA for buffering video frames between a video input 

processor and the DSP. Although the DSP frequency is 600MHz, the processing time for one image is higher than the one for the 

proposed system. This is due to the fact that the proposed architectures is fully parallelised and requires less clock cycles which 

significantly increases the NPL speed. 

By comparing the results of the PC and FPGA-based implementations of the proposed algorithm, it can clearly be seen that the 

latter outperforms the former with a 30-time speed-up with close accuracy; therefore, the proposed FPGA-based system can be 

used as a viable solution to replace software based solutions where cost, size and energy consumption will be reduced. 

7. Conclusion 

An ANPR system can be divided into three main image processing stages: NPL, NP segmentation and character recognition. All 

three stages are computationally intensive tasks. Recently, FPGAs have become a viable solution for performing computationally 

intensive tasks. Owing to the importance and the use of ANPR systems in law enforcement, an efficient NP localisation algorithm 

has been proposed in this paper for FPGA implementation. The algorithm is based on morphological operations and is 

multiplier/divider-free and requires only 33% of the available on-chip resources of a Virtex-4 FPGA. Parallel building blocks have 

been used for the FPGA implementation and the whole system runs with a maximum frequency of 86 MHz and is capable of 

processing one         image in 4.7 ms with a localisation rate of 97.8%. 

The 33% resource usage of the FPGA in implementing NP localisation leaves 67% of the FPGA area free for the remaining parts of 

an ANPR system (i.e. NP Segmentation and character recognition). This allows the entire ANPR system to be implemented on a 

single FPGA that can be placed within an ANPR camera housing to create a stand-alone unit thus drastically improving energy 

efficiency whilst removing the need for the installation and cabling costs associated with bulky PCs situated in expensive, cooled, 

waterproof roadside cabinets. 

 

 



 

22 

 

 

 

References 

[1] Juan, J. and Xu, J.: ‘Research of overall program on highway toll collection system’, Proc. Int. Conf. Information Science and 

Technology, March, 2011, pp. 1218-1221 

[2] Arth, C., Leistner, C. and Bischof, H.: ‘TRIcam: an embedded platform for remote traffic surveillance’, Proc. IEEE Conf. 

Computer Vision and Pattern Recognition, 2006, pp. 125-125 

[3] Anagnostopoulos C. N. E., Anagnostopoulos I. E., Psoroulas I. D., Loumos V., and Kayafas E.: ‘License plate recognition 

from still images and video sequences: A survey’, IEEE Trans. Intell. Transp. Syst. 9(3), 2008, pp. 377–391 

[4] CitySync Limited, http://www.citysync.co.uk/ , accessed Jan 2012. 

[5] Vargas M., Toral S.L., Barrero F., Cortés F.: ‘A License Plate Extraction Algorithm Based on Edge  tatistics and Region 

Growing’, Lecture Notes in Computer Science, 2009, 5716/2009, pp. 317-326. 

[6] Bai, H. and Liu, C.: ‘A hybrid license plate extraction method based on edge statistics and morphology’, Proc. 17th Int. Conf. 

Pattern Recognition, 2004, 2, pp. 831-834 

[7] Chang, S., Chen, L., Chung, Y. and Chen, S.: ‘Automatic license plate recognition’, IEEE Trans. Intell. Transp. Syst., 2004, 5, 

pp. 42-53 

[8] Wang, F., Man, L., Wang, B., Xiao, Y., Pan, W. and Lu, X.: ‘Fuzzy-based algorithm for color recognition of license plates’, 

Journal of Pattern Recognition Letters, 2008, 29, (7), pp.1007-1020  

[9] Kim, K. I., Jung, K., Park, S. and Kim, H.: ‘Support vector machines for texture classification’, IEEE Trans. Pattern Anal. 

Mach. Intell.,2002, 24, pp. 1542-1550 

[10] Kim, K. I., Jung, K. and Kim, J. H.: ‘Color texture-based object detection: an application to license plate localization’,  Patten 

Recognition with Support Vector Machines, Lecture Notes on Computer Science, 2002, 2388/2002, pp. 321-335 

[11] Wang, Y., Lin, W. and Horng, S.: ‘A sliding window technique for efficient license plate localization based on discrete 

wavelet transform’, Expert Systems with Applications, Apr. 2011, 38, pp. 3142-3146 

http://www.citysync.co.uk/


 

23 

 

 

 

[12] Anagnostopoulos C., Alexandropoulos T.,   Loumos V. and Kayafas E.: ‘Intelligent traffic management through MPEG-7 

vehicle flow surveillance’, Proc. IEEE Int. Symp. on Modern Computing, 2008, 9, pp. 377–391 

[13] Clemens, A., Florian, L. and Horst, B.: ‘real-time license plate recognition on an embedded DSP-platform’, Proc. IEEE 

Computer Vision and Pattern Recognition Conf., 2007, pp. 1-8. 

[14] Cancer, H., Gecin, H. S. and Alkar, A. Z.: ‘Efficient embedded neural-network based license plate recognition system’, IEEE 

Trans. Veh. Technol., 2008, 57, pp. 2675-2683 

[15] Bellas, N., Chai, S. M., Dwyer, M. and Linzmeiser, D.: ‘FPGA implementation of a licence plate recognition SoC using 

automatically generated streaming accelerators’, Proc. 20th Int. Conf. Parallel & Distributed Processing Symposium, April, 

2006, pp. 8 

[16] Kanamori, T., Amano, H., Arai, M., Konno, D., Nanba, T. and Ajioka, Y.: ‘Implementation and evaluation of a high speed 

license plate recognition system on an FPGA’, Proc. 7th IEEE Int. Conf. Computer and Information Technology, 2007, pp. 

567-572 

[17] Shih, F. and Wu, Y. ‘Decomposition of arbitrary gray-scale morphological structuring elements’, Pattern Recognition, Dec. 

2005, 38, pp.  2323-2332 

[18] PAL User Manual, Mentor Graphics Corporation. Jan. 2010.   

[19] RC240 Datasheet, Mentor Graphics Corporation, Jan. 2010.  

[20] PixelStreams User Manual, Mentor Graphics Corporation, Jan. 2010.  

[21] Xpower Tutorial: FPGA Design, Xilinx, July 2002. 

 

 


