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MultiwavelengthRaman/high spectral resolution lidars thatmeasure backscatter coefficients at 355, 532, and 1064 nm
and extinction coefficients at 355 and 532 nm can be used for the retrieval of particlemicrophysical parameters, such as
effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from in-
version algorithms. In this study,we carry out a correlation analysis inorder to investigate thedegree of dependence that
may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate
if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion
scheme so that the inversion results can be improved.Wemade the simplifying assumption of error-free optical data in
order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data
need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which
hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution
function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient
above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the
volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares
of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for
particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by
extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.
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1. INTRODUCTION

Several approaches for the retrieval of particle microphysical
parameters from multiwavelength lidar measurements were devel-
oped in the past two decades [1–5]. Since we deal with an ill-
posed, ill-conditioned problem, the derived solutions oscillate, and
they are unstable to the point that we may obtain nonphysical
results. One of the major sources of instability is the wide ranges
of particle radii and complex refractive indices (CRI) that need to
be considered. With regard to realistic aerosol conditions in the
atmosphere, we think we need to consider the following domains

in our study: the radius domain needs to be [0.01; 20] μm, and
the domains of the real and imaginary part of the CRI need to be
[1.2; 2] and [0; 0.1], respectively. Even the use of advanced math-
ematical methods such as regularization, e.g., Tikhonov’s regulari-
zation [6], does not guarantee that we find physically meaningful
solutions unless we introduce additional constraints in the solution
space that follows from data inversion. In a previous study, we
showed that we can stabilize the solution space if we use whole
sections of optical data (OD) profiles rather than OD sets at indi-
vidual height bins, as input in our inversion scheme [7].
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If the profiles of the OD do not change, or in other words if
the profile gradient is close to 0, we expect that the correspond-
ing profiles of the particle microphysical parameters (PMP) do
not vary significantly either. On the contrary, if the OD profiles
vary with measurement height, i.e., the “gradient” profile dif-
fers from zero, we expect that the PMPs vary with height too.

Certainly, compensation effects are possible. For example,
the backscatter coefficient decreases if the imaginary part of
the CRI increases, and it increases if the real part increases.
Theoretically, if the real and imaginary parts increase (decrease)
simultaneously, the lidar ratios (LRs) may remain constant, and
we may not observe any vertical variation of the optical profiles,
i.e., there may be no gradients in the lidar profiles. We do not
consider those cases in our study for the moment, but we will
investigate those cases in future.

In particular, simulations with synthetic OD (SOD) and data
collected during field measurements show that the particle effective
radius, which is a mean property of a given particle size distribu-
tion (PSD), and the extinction-related Ångström exponent are re-
lated to each other in an inversely proportional fashion [8]. Profiles
of the extinction-related Ångström exponent can be measured
with the type of multiwavelength lidar we are using, e.g., [9].
These profiles serve as the basis of our sensitivity study presented
in this contribution. Currently such profiles are mainly used for a
qualitative assessment of whether effective-radius profiles retrieved
with inversion algorithms are reasonable. For instance, in a first
approximation, we expect that the effective radius drops if the ex-
tinction-related Ångström exponent increases, e.g., [10,11].

Aside from such qualitative ways of using relationships be-
tween the particle size and extinction-related Ångström exponents,
there are attempts on finding interdependencies between particle
concentration and backscatter/extinction coefficients [12,13]. In
Ref. [12], the surface-area and volume concentrations of mineral
dust were retrieved from lidar measurements taken during the
Saharan Mineral Dust Experiment (SAMUM). These parameters
were subsequently analyzed in the context of a correlation study
that involved extinction and backscatter coefficients. In the first
case (surface-area concentration versus extinction coefficients),
the correlation reached R2 � 0.98, whereas in the second case
(volume concentration versus backscatter coefficient), there was
barely any correlation. In addition, it was shown [13] that the
number concentration has only a low correlation with the mea-
sured extinction and backscatter coefficients.

In this contribution, we investigate in a systematic manner
and on the basis of a special look-up table, which correlations
between the lidar OD and PMPs exist, and if these correlations
can be used in our inversion methodology for improving the
retrieval quality of the microphysical data products.

In Section 2, we present the correlation relationships we found
between the PMP and the OD. In Section 3, we show the stat-
istical results for a set of SOD we generated for this study. The
statistical results for the experimental data are shown in Section 4.
Section 5 summarizes our results.

2. ASYMPTOTIC RELATIONS AND REGRESSION
EQUATIONS

Lidar measurements deliver OD that are used for the retrieval
of bulk PMPs (p), such as mean radius (rmean) and effective

radius (reff ), mean width, i.e., geometrical standard deviation
(σ) of a PSD, and number (n), surface-area (s), and volume
(v) concentrations. Solving this problem is related to solving
the Fredholm integral equation of the first kind;Z

rmax

rmin

K g�λ; m; r�f �r�dr � g�λ�; g � α; β: (1)

The OD g�λ� are taken with lidar. In the case considered in
our study, we focus on particle backscatter coefficients mea-
sured at 355, 532, and 1064 nm, and extinction coefficients
measured at 355 and 532 nm. The unknown function f �r�
describes the PSD, and r describes the particle radius on the
domain �rmin; rmax�. The parameter rmin describes the minimum
particle radius, and rmax describes the maximum particle radius
of the investigated PSD. The kernel functions K g�λ; m; r�
are calculated from the respective extinction and backscatter
efficiencies Qg�λ; m; r� for individual particles weighted
with their geometrical cross-section πr2 [14]. The parameter
m � mR − imI describes the particle CRI. The CRI is usually
unknown in experiments, and thus needs to be estimated like
the other PMPs. The extinction coefficients are denoted as
g � α, and the backscatter coefficients are denoted as g � β.
The PMPs can be easily estimated from the solution f .

On the basis of the average theorem, Eq. (1) can be rewrit-
ten as

f �ξ�
Z

rmax

rmin

K g�λ; m; r�dr � g�λ�; (2)

with ξ ∈ �rmin; rmax�. From the physical point of view, we can
treat this transformation as if a given PSD is replaced by the
rectangle function, in other words, by the uniform law defined
on the domain �rmin; rmax� and without changing the particle
optical properties, i.e.,

f �r� � f �ξ� � const: (3)

Depending on the definition of f , i.e., whether the PSD is
represented in terms of number (n), surface-area (s), or volume
(v) concentration, we denote the kernel functions with an extra
superscript: K n

g , K s
g , and K v

g , respectively. In the case of
f �r� � s�r�, the kernel functions represent the optical cross-
section per particle surface-area, i.e.,

K s
g�λ; m; r� � Qg�λ; m; r�∕4: (4)

It is a known fact that for the extinction efficiency [14],
we find

Qa ≈ const → hQai � 2.1 for r →∝ :

That relation works well starting for a particle radius larger
than 1 μm. If the particle radius is r ∈ �0.05; 0.5� μm, we
obtain hQαi ∈ �2; 3�. The symbol h…i means that we are aver-
aging over the respective radius interval.

We considered two asymptotic cases. These two cases de-
scribe small (r → 0) and big (r → ∞) particles, respectively.
Moreover, we work with averaged, or the be more precise, with
integral magnitudes over the size range which is larger than
r − rmin > 0.4 μm for both cases. From the physical point
of view, we can treat both cases as limits for all possible cases,
including particles in the radius interval from 0.5 to 1 μm. In
other words, the radius interval from 0.5 to 1 μm is intermediate
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for the two asymptotic cases. From the mathematical point of
view, if we try to estimate hQαi over the range from 0.05 to 1 μm
(that is wider than 0.05–0.5 μm), we obtain the value of approx-
imately hQαi ≈ 2, which again belongs to the interval [2; 3].

In the case of using the approximation as written in Eq. (3),
the surface-area concentration can be expressed as

s �
Z

rmax

rmin

s�r�dr ≈
Z

rmax

rmin

s�ξ�dr � s�ξ��rmax − rmin�: (5)

The left hand side of Eq. (2) can be transformed on the basis
of the average theorem into

f �ξ�
Z

rmax

rmin

K α�λ; m; r�dr �
shQαi

4�rmax − rmin�
Z

rmax

rmin

dr

�
�

2.1
4
s; r > 1.0 μm

3
4 s; 0.05 μm ≤ r ≤ 0.5 μm :

(6)

The parameter s can then be directly estimated from particle
extinction as

s �
(

4
2.1 α�λ� � 1.9α�λ�; r > 1.0 μm
4
3 α�λ� � 1.3α�λ�; 0.05 μm ≤ r ≤ 0.5 μm

: (7)

Obviously Eq. (7) means that estimating the uncertainty of s
is less than ∼20% if we consider the whole particle radius
range, i.e., r ∈ �0.05;∝�. In fact, we have two limits, i.e.,
1.3 (minimal) and 1.9 (maximal). The mean value between
both limits is �1.9� 1.3�∕2 � 1.6. The uncertainty for the
mean value of 1.6 is �1 − 1.3∕1.6� × 100% ≈ �1.9∕1.6 − 1�×
100% ≈ 20%.

Let us consider the asymptotic relation with respect to vol-
ume concentration. Using the definition of effective radius

reff �
3v
s
; (8)

and Eq. (7), the ratio of volume concentration to effective ra-
dius can be estimated as

v
reff

�
�
0.6α�λ�; r > 1.0 μm
0.4α�λ�; 0.05 μm ≤ r ≤ 0.5 μm : (9)

Finally, we can find an asymptotic relation with respect to
number concentration. Using the definitions of the geometrical
standard deviation

σ2 � 1

n

Z
rmax

rmin

�r − rmean�2n�r�dr; (10)

number concentration

n �
Z

rmax

rmin

n�r�dr; (11)

mean radius

rmean �
1

n

Z
rmax

rmin

rn�r�dr; (12)

and surface-area concentration

s � 4π

Z
rmax

rmin

r2n�r�dr; (13)

we obtain

σ2 � 1

n

Z
rmax

rmin

r2n�r�dr − 2 1
n
rmean

Z
rmax

rmin

rn�r�dr

� 1

n
r2mean

Z
rmax

rmin

n�r�dr � s
4πn

− 2r2mean � r2mean: (14)

From this equation, we find that

4πn�r2mean � σ2� ≡ s; (15)

and in view of Eq. (7), we can derive the asymptotic relation for
the product

n�r2mean � σ2� �
�
0.15α�λ�; r > 1.0 μm
0.11α�λ�; 0.05 μm ≤ r ≤ 0.5 μm :

(16)

The asymptotic relations of Eqs. (7), (9), and (16) show that
intensive parameters (IP), such as s, the ratio of parameters
v∕reff , and the product n�r2mean � σ2�, can be directly estimated
from the lidar extinction measurements (at one wavelength)
with an uncertainty that is less than 20%. This level of uncer-
tainty of 20% allows us to round the coefficients to the tenths
in Eqs. (7) and (9), and to the hundredths in Eq. (16).

For example, we find

n�r2mean � σ2� � 0.13α�λ� � 20%;

where 0.13 � �0.15� 0.11�∕2:
From the statistical point of view, it also means that the IPs p

and the corresponding extinction coefficient α�λ� are linearly
correlated. We find the following regression equations

p � apα�λ� � bp; (17a)

and

p � s; v∕reff ; n�r2mean � σ2�: (17b)

The regression coefficients (RC) in that case are

as ∈ �1.3; 1.9�; av ∈ �0.4; 0.6�; an ∈ �0.11; 0.15�;
(18a)

bp � 0; p � s; v∕reff ; n�r2mean � σ2�: (18b)

In view of Eqs. (8) and (15), we note that av � as∕3,
and an � as∕�4π�.

The regression equation (17) can be extended, as it is
generally accepted that there exists a correlation between the
effective radius reff and the extinction Ångström exponent
(EAE) åα, which is

åα � ln�α�λ1�∕α�λ2��∕ ln�λ2∕λ1�: (19)

That means, the larger the EAE the smaller the particle
effective radius. For small variations of EAE, we can apply the
approximation

reff � ar åα � br ; (20)

and the RC ar and br can be found from the statistical
analysis of a synthetic data bank we used in our study, see
Eqs. (33a)–(33c) and Fig. 1(a).
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We obtain four regression equations, Eq. (17) to Eq. (20)
for the six parameters rmean, reff , σ, n, s, and v. All six para-
meters can be uniquely defined from the lidar data products
considered in our study if six regression equations are available.
Therefore, another two regression equations are needed in or-
der to obtain a closed system. We find the relationship that
links rmean, reff , and σ, and which describes particle radius.

Approximating the number PSD by the uniform law of
Eq. (3), and taking into account the definitions of Eqs. (8),
(10)–(13) and the definition of volume concentration

v � 4π

3

Z
rmax

rmin

r3n�r�dr; (21)

we can show the following new relationships (A)–(E):

(A) The mean particle radius can be written as

rmean �
1

n

Z
rmax

rmin

rn�r�dr ≈ 1

n

Z
rmax

rmin

rn�ξ�dr

� 1

2
�rmax � rmin�; (22)

(B) the standard deviation can be written as

σ2 � 1

n

Z
rmax

rmin

�r − rmean�2n�r�dr ≈
1

n

Z
rmax

rmin

�r − rmean�2n�ξ�dr

� 1

3
�r2mean − rmaxrmin�; (23)

(C) the surface-area concentration can be written as

s � 4π

Z
rmax

rmin

r2n�r�dr ≈ 4π

Z
rmax

rmin

r2n�ξ�dr

� 4π

3
n�ξ��r3max − r3min�; (24)

(D) the volume concentration can be written as

v � 4π

3

Z
rmax

rmin

r3n�r�dr ≈ 4π

3

Z
rmax

rmin

r3n�ξ�dr

� π

3
n�ξ��r4max − r4min�; (25)

(E) the effective radius can be written as

reff �
3v
s
≈
3

4

r4max − r4min

r3max − r3min

: (26)

We can also rewrite Eqs. (22) and (23) as

rmax − rmin ≈
r2max − r2min

2rmean

; (27)

and

rmaxrmin ≈ r2mean − 3σ
2; (28)

respectively, and we obtain the following important relation-
ships for effective radius and geometric standard deviation of
the investigated PSDs:

reff ≈
3σ2 � r2mean

σ2 � r2mean

rmean; (29)

and

σ2 � r2mean ≈
2r3mean

3rmean − reff
� 2θ3r2eff

3θ − 1
; (30)

where θ � rmean∕reff .
The corollaries useful for our study follow from these rela-

tionships:

(A) parameter θ belongs to the interval (1/3; 1) in order to
fulfill the inequalities

r2mean � σ2 > 0

rmean < reff (31a)

[see Eqs. (30) and (29), respectively],

(B)

σ2 � r2mean ≥
1

2
r2eff for ∀ θ ∈ �1∕3; 1�; (31b)

(C)

σ2 � r2mean ≤ r2eff for ∀ θ ∈ �∼11∕30; 1�; (31c)

We stress that Eq. (22) works for atmospheric particle size
distributions in special cases in which the PSD consists of one
mode fraction (or elementary fraction). Any attempt to use
Eq. (22) for multi-modal PSDs is useless because the total mean
radius depends drastically on the intensity of each mode. Besides
that, an in-depth analysis shows that Eq. (29) works for any
PSD if reff < 3rmean. However, there are mathematical laws
describing the behavior of the PSD for which the last inequality
is not valid. If the PSD has a logarithmic-normal shape, then it
can be characterized even for reff > 5rmean if σGauss > 2.

Let us consider any log-normal law with large values of
σGauss ≥ 2 in terms of number and volume PSD. The maximal
values of both PSDs result in totally different mode radii. For
example, if the mode radius of a number PSD is about 0.2 μm,
then it is about 1 μm for the corresponding volume PSDs at
σGauss � 2. In spite of the fact that the logarithmic-normal law
describes a unimodal function, we cannot treat it as a one-
modal PSD that describes either the fine or the coarse mode be-
cause of the rather large fraction of big particles with r > 1 μm.
In this case, Eq. (29) underestimates the actual effective radius
that is estimated with Eq. (8). We can use this particularity as a
flag parameter, indicating that the investigated PSD is quite
“wide” or, in other words, contains a significant fraction of par-
ticles in the coarse mode. Such a flag parameter is important for
the automated, unsupervised inversion method that is being de-
veloped for the world-wide first airborne multiwavelength 3β�
2α system, i.e., NASA Langley’s high-spectral-resolution lidar
(HSRL-2) [9].

3. NUMERICAL SIMULATION

A. Synthetic Optical Data
We used SOD to identify the aforementioned correlation
relationships. We generated the SOD for the HSRL-2 configu-
ration (3β� 2α), i.e., for particle backscatter coefficients mea-
sured at 355, 532 and 1064 nm and extinction coefficients
measured at 355 and 532 nm [4]. We took into account
Eq. (1). We predefined values for f and m. We used the log-
arithmic-normal law for describing f . We selected a wide range
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of values for the mean radius, i.e., rGauss ∈ �15 nm; 335 nm�
with a stepsize of 20 nm. With regard to the mode width,
we used σGauss ∈ �1.35; 2.55� with a stepsize of 0.1. We selected
the following values for the real and imaginary parts: mR ∈
�1.3; 1.7� and mI ∈ �0.0; 0.05� with a stepsize of 0.025 and
0.005, respectively. With regard to the imaginary part, we used
extra values close to 0: 5e − 4, 1e − 3, 2e − 3, 3e − 3, 4e − 3, and
7.5e − 3. We used all possible combinations of the four param-
eters (rGauss, σGauss, mR , mI), and in that way we created 63,869
sets of 3β� 2α data for the SOD bank.

Figure 1 presents the statistical analysis of the SOD bank.
We see that reff is nearly inversely proportional to åα [Fig. 1(a)].
The range of EAE varies from −0.5 to 4. For example, if
åα > 2, which means that δreff < 0.05 μm, we find for the
RC, ar � −0.038, and br � 0.18. For åα ∈ �1; 2�, the RCs
are ar � −0.08, and br � 0.26, and the threshold is
δreff ≤ 0.07 μm. The analysis of all entries of the SOD bank
shows that these two parameters vary in the intervals:

ar ∈ �−10; −0.038� and br ∈ �0.18; 0.5�: (32)

In practice, the following relations are useful:

reff �
8<
:
−0.038åα � 0.18� 0.05 μm; 2 < åα < 4 (33a)
−0.082åα � 0.26� 0.07 μm; 1 < åα < 2 (33b)
−0.193åα � 0.37� 0.08 μm; 0.5 < åα < 1 (33c)

:

The linear regression is our idealization to constrain the
solution space. We use the property that the effective radius is
distributed near the trend (regression) line. Only the region
that is enclosed by two lines trend� δreff (where δreff belongs
to [0.05; 0.08]) is useful for our constraints. We accept 0.5 as
the lower boundary of the EAE, where it is still possible to rea-
sonably limit the spread of the effective radius near the trend
line with a threshold value �0.08 μm.

It is important to investigate the statistics of the backscatter-
related Ångström exponent (BAE) åβ for the wavelength pair of
532 and 1064 nm. Figure 1(b) shows that any BAE value less
than 3 results in a wide spread of the effective radius. Even for
the interval (1; 2), the effective radius varies from ∼0 to 0.5 μm.

Lidar measures the EAE and BAE simultaneously.
Therefore, it is valuable to analyze the structure of the SOD
bank with regard to these parameters. We consider three inter-
vals for these two parameters, i.e., low åβ and åα < 0.5, mod-
erately high åβ and åα � 0.5–1.5, and high åβ and åα > 1.5.
The results of this analysis are presented in Table 1. This table
shows the effective radius, the lidar ratio (LR) at 355 nm, and
the CRI intervals within which the particle parameters vary for
the different combinations of åβ and åα in their predefined
intervals.

In particular, Table 1 shows that case #1, according to the
intersection of the intervals åα < 0.5 and åβ < 0.5, can be pre-
sented by particles with any LR from 2 to 1095 sr, any real part
of the CRI from 1.3 to 1.7, any imaginary part of the CRI from
0 to 0.05, as well as a wide range of effective radii exceeding
0.2 μm. With regard to case #9 (åα > 1.5 and åβ > 1.5), the
particle parameters vary much less, i.e., LR and reff are less than
133 sr and 0.12 μm, respectively.

Our SOD bank contains unrealistic values; for example, the
LR can exceed 150 sr (cases #1–8), and it can be as high as
1095 sr (case #1). The effective radius reaches 0.02 μm (cases
#8, 9). Therefore, we constrained our SOD such that more
“natural” aerosol properties are included, i.e.,

– effective radius reff ≥ 0.05 μm,
– high light-absorbing particles with real partmR > 1.4 and

imaginary part mI > 0.001,
– low light-absorbing particles with real part mR ≤ 1.4 and

imaginary parts mI ≤ 0.015.

Table 2 shows the CRI values used in the constrained SOD
bank in more detail. The red and black circles in Fig. 1(b) in-
dicate high and low light-absorbing particles, respectively. All
other cases in Fig. 1(b) are shown by gray circles and are likely
not to occur under realistic atmospheric conditions. In com-
parison to the “complete” SOD, the “constrained” SOD is
about half the size and includes 35,404 data sets.

Two cases in Table 1 deserve special attention. First, in case
#3 in our “constrained” SOD bank, there is no monomodal
PSD that can produce the high EAE (åα > 1.5) and the low
BAE (åβ < 0.5) simultaneously. As we will discuss below, it
is possible for bimodal PSDs. Second, case #2 contains just
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Fig. 1. Statistics of the entries in the synthetic data bank we used in
our study. (a) reff versus EAE. (b) reff versus BAE for the wavelength
pair of 532 and 1064 nm. The red circles describe particles with strong
light absorption and a high real part (mR > 1.4), the black circles de-
scribe particles of low light absorption and low real part (mR ≤ 1.4),
and the gray circles are the remaining cases and describe cases which
(according to literature and our own experience) have not been ob-
served in the atmosphere but are important in order to study the ro-
bustness of our data analysis scheme. (c) s (open circle), v∕reff (gray
circle), and �r2mean � σ2�n (black circle) versus α�355�. (d) rmean (gray
circle) and σ (red square) versus reff . The solid and dotted lines de-
scribe the regression equations y � ax � b with the correlation coef-
ficient R2. The stars show the results for reff (blue stars in plot a and
plot b), s (gray symbols in plot c), �r2mean � σ2�n (black symbols in plot
c), σ (red symbols in plot d), and rmean (gray symbols in plot d) for the
bimodal PSDs. The volume concentration in the coarse mode with
respect to the total volume concentration of the PSD is increasing from
0% to 90%. The effective radius of the coarse mode was kept constant
in that case. Symbol σG denotes σGauss.
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0.2% of all “constrained” data sets in our SOD. All particles
in this case are small (reff ≤ 0.22 μm) and highly light-
absorbing (mI ≥ 0.035).

To the best of our knowledge, we cannot find literature
that shows one-modal atmospheric PSDs for which the BAE
is less than 0.5 and reff < 0.5 μm simultaneously. The region
between 0.25 and 0.7 for the BAE and reff ∼ 0.25 μm is char-
acterized by comparably high values of the imaginary part of the
CRI, i.e., mI ≥ 0.035.

We find a linear correlation with a correlation coefficient of
R2 � 0.995 for s versus α�355� [see Fig. 1(c)]. If we use all
values of our SOD bank, we find for the RC that as � 1.73
and bs � −0.09 ≈ 0. These numbers agree with our theoretical
estimate, see Eq. (18a).

A more thorough analysis of the SOD bank shows the
following variations

as ∈ �1.33; 1.78�; bs ∈ �−0.09; 0.03�: (34)

These values depend, for example, on σGauss. The strong
correlation guarantees that the surface-area concentration can

be directly estimated from the extinction with an uncertainty
that is less than the measurement error.

Furthermore, Fig. 1(c) shows that v∕reff and α as well as
n�r2mean � σ2� and α are linearly correlated, with a correlation
coefficient of R2 � 0.995. We find the following values of the
RCs for the interval σGauss ∈ �1.35; 2.55�:

av ∈ �0.4; 0.6�; bv ∈ �−0.03; 0.01�; (35)

an ∈ �0.11; 0.14�; bn ∈ �−0.05; 0.002�: (36)

These numbers fulfill the conditions in Eq. (18).
We stress the fact that the linear correlations of the IPs of s

and v∕reff and n�r2mean � σ2� versus α, and the RCs given by
Eq. (18) hold true for any distribution law that describes the
PSDs, particularly if the PSDs are mono- and bimodal.
However, the RCs defined by Eqs. (33a)–(33c) are not valid
if we consider correlations of effective radius versus EAE
and BAE for arbitrarily shaped PSDs.

To illustrate, for example, the contribution of coarse-mode
particles in these correlation relations, we calculated the OD
and the IPs of bimodal PSDs. The mean radii of the fine mode
and the coarse mode of these bimodal PSDs were rGauss � 0.1
and 1 μm, respectively. The mode width was σGauss � 1.5, and
the CRI was m � 1.45 − i0.005 for both modes in that study.
We used these parameters to generate five PSDs by considering
different fractions of the coarse-mode number concentration
(respectively, volume concentration). We used 0.05% (33%),
0.10% (50%), 0.15% (60%), 0.20% (67%), and 1.0% (91%)
for the number (volume) concentration of the coarse mode.
The results are shown as stars in Fig. 1.

We see that even relatively large EAEs close to 1 do not only
describe small particles with effective radii of less than 0.25 μm,
see Fig. 1(a) (stars). Indeed, in the case of monomodal PSDs,
the effective radius does not exceed 0.25 μm at åα > 1, whereas
for bimodal PSDs an EAE equal to one leads to reff > 0.5 μm.
The reason for this effect is that the contribution of coarse-
mode particles to the total particle volume concentration of

Table 2. Real and Imaginary Parts of the CRI used in the
Constrained SOD Banka

mR

1.3–1.35 1.35–1.4 1.4–1.45 1.45–1.5 1.5–1.7

0.03–0.05
0.015–0.03

mI 0.01–0.015
0.005–0.01
0.001–0.005
0–0.001

aThe red cells describe particles with strong light-absorption and a
comparably high real part (mR > 1.4). The black cells describe particles of
low light absorption and a comparably low real part (mR ≤ 1.4).

Table 1. Structure of the SOD Bank in Dependence of the EAE and BAE Intervals for the Wavelength Pairs (355, 532) nm
and (532, 1064) nm, Respectivelya

EAE

åα < 0.5 åα � 0.5–1.5 åα > 1.5

case #1 case #2 case #3
reff > 0.2�0.4� μm reff � 0.14 − 0.4�0.14–0.22� μm reff � 0.14–0.19�−� μm
1–1095 (4–269) sr 62–720 (62–155) sr 147–277 (−)sr

åβ < 0.5 mI � 0.0–0.05 mI � 0.02–0.05 (0.035–0.05) mI � 0.015–0.05�−�
mR � 1.3–1.7 mR � 1.3–1.7 (1.525–1.7) mR � 1.3 − 1.5�−�

case #4 case #5 case #6
reff > 0.18 μm reff � 0.08–0.4 μm reff � 0.08–0.22 μm

1–400 sr (4–216) 18–522 (18–219) sr 39–278 (39–154) sr
BAE åβ � 0.5–1.5 mI � 0.0–0.05 mI � 0.0–0.05 mI � 0.0–0.05

mR � 1.3–1.7 mR � 1.3–1.7 mR � 1.3–1.7
case #7 case #8 case #9

reff � 0.18–0.55 μm reff < 0.3 μm reff < 0.12 μm
2–67 (4–67) sr 9–204 (12–72) sr 9–133 (21–109) sr

åβ > 1.5 mI � 0.0–0.05 mI � 0.0–0.05 (0–0.045) mI � 0.0–0.05
mR � 1.4–1.7 mR � 1.3–1.7 (1.4–1.7) mR � 1.3–1.7

aThe values in brackets were obtained for the constrained SOD bank and with the CRIs shown in Table 2.
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the bimodal PSD is much more than the contribution of
coarse-mode particles to the total extinction coefficients at
355 and 532 nm. In other words, the sensitivity of the effective
radius to the fraction of coarse-mode particles is higher than the
sensitivity of the extinction coefficient to that same fraction of
coarse mode particles.

As a result, the RC ar decreases from values of �−0.08� −
�−0.19� to as low as (−0.652) at åα > 0.5. The parameter
br increases from the values of 0.26–0.37 to 1.2. We investi-
gated other bimodal PSDs with coarse modes, which are de-
scribed by rGauss > 1 μm and σGauss > 1.5. The slope of the
regression line depends on the coarse-mode effective radius
(in this case åα ≈ 0) and the fine-mode effective radius, i.e.,
reff < 0.3 μm (in this case åα > 0.5).

Figure 1(c) shows that the star symbols accumulate at the
origin of the coordinate axis. The effective radius of the coarse
mode of the bimodal PSD is about 1.5 μm. The maximal ef-
fective radius in our SOD is 3 μm. The number concentration
is about 1 cm−3 for both cases. As a result the surface-area con-
centration in the first case is much less than s in the second case.
The extinction coefficients in both cases are defined by just
particle size, which is larger for the case with reff � 3 μm.

Another important conclusion can be made if we look at
the stars shown in Fig. 1(b). They represent bimodal PSDs with
an EAE of åα � 0.5–1.5 [see Fig. 1(a)]. If we plot all mono-
modal PSDs with åα > 1 in Figs. 1(a) and 1(b), we would see
that there is not a single point of the BAE that is less than 0.5
(not shown here). This is case #2, shown in Table 1. However,
the position of the stars in these plots occurs quite often in
practice, i.e., the BAE is less than 0.5, and, simultaneously,
the EAE is larger than 1. This set of numbers for the BAE
and EAE is only possible if the PSD contains coarse-mode
particles. As we mentioned, the only exception to this rule
is that the PSD contains strong light-absorbing particles for
which mI ≥ 0.035.

The next point we need to discuss in this section concerns the
regression equation [Eq. (17)] at p � n�r2mean � σ2�. The disad-
vantage of this regression relation is that it allows for a high de-
gree of freedom for each of the individual parameters n, rmean,
and σ2. There are a lot of possible combinations of these
parameters that can lead to the same result for n�r2mean�
σ2�. We want to constrain, for example, (r2mean � σ2) in order
to find a more stable (accurate) solution for n. In that regard, we
can use the inequalities described by Eqs. (31b) and (31c).
However, these two inequalities work only for “narrow” PSDs
and cannot be used for a bimodal PSD. In section 2, we
defined “narrow” PSDs in the sense that Eqs. (29) and (8) deliver
close estimations of an effective radius. In terms of logarithmic-
normal functions, that means σGauss < 2. The analysis of our
SOD bank shows that all PSDs with σGauss ≥ 2(apart from
PSDs with rGauss < 0.05 μm at σGauss ≈ 2) produce EAEs that
are less than 1. The values of σGauss < 2 and åα > 1 could be
treated as definitions of what we denote as “narrow” PSDs or
as fine-mode fraction of the PSD. However, logarithmic-normal
PSDs with σGauss < 2 and rGauss>0.2 μm (which is “narrow”)
can produce EAE values close to 0. It means that an EAE
above one cannot be used as a “universal definition” for the
“narrowness” or monomodality of a PSD.

We are also interested in a flag parameter that indicates the
presence of coarse-mode particles in a PSD. It is a fact that
hQαi → ∼2 for r → ∞. That means that the extinction
values at any wavelength converge to each other for big
particles with a radius larger than 1 μm (they present
coarse-mode particles). Therefore, the “best” flag parameter
we can currently find on the basis of our SOD is the ratio
d � α�532�∕α�355�. This parameter belongs to the interval
[0.19; 1.32] of our SOD bank. However, it narrows to
d ∈ �1; 1.07�, i.e., åα ∈ �−0.17; 0� in terms of the EAE, if we
take into account all the cases for which reff > 1.1 μm. We will
exploit this property of the coarse mode more intensively in the
present study.

We analyzed if rmean and σ are correlated with reff . In view of
Eqs. (29) and (30), we may assume that an increase (decrease)
of rmean and/or σ leads to an increase (decrease) of reff . From a
physical point of view, it is a quite natural assumption that this
effect should happen. The statistical analysis of our data bank
confirms this assumption.

Figure 1(d) shows that σ and reff are correlated with the
values of aσ � 0.22, bσ � 0.027, and R2 � 0.96 for mono-
modal PSDs. The mean and effective radii are correlated with
R2 � 1 in that case, but σG is at a fixed value. Depending on
σG , the RC of the mean radius am changes from 0.17 to 0.84,
and bm is equal to zero. A similarly consistent behavior can be
found for bimodal PSDs, see Fig. 1(d) (stars). However, in that
case, the “slope” (RC) can vary significantly. The important
point is that the values of the RCs, i.e., am and aσ converge
to zero if the investigated PSD is “wide” (we define “wide”
if σGauss > 2 ) or contains particles in the coarse mode. We
can use this fact again as a flag parameter in the automated
inversion software, i.e., we have the option to identify if our
optical input data are affected by a bimodal PSD. We stress
this point, as in general, coarse-mode particles most likely con-
sist of irregularly shaped dust particles for which we do not have
a light-scattering model that allows us to reliably reproduce
measured particle backscatter coefficients.

The second part of our series of papers (part 2, simulation) is
focused on error analysis. However, we can make a preliminary
assessment of how measurement errors may influence the un-
certainty of the PMPs. If we accept that the PMPs and the OD
(obtained from the measurements) are linearly interdependent,
we can substitute the extinction coefficient into Eq. (17) and
the EAE into Eqs. (33a)–(33c) together with their uncertain-
ties. It is clear that we obtain the respective PMPs with the same
uncertainty as the measurement error, apart from the math-
ematical error, which is 20% in the case of s.

Figures 2(a) and 2(b) show the same set of parameters that
are shown in Figs. 1(a) and 1(c), but the EAE and extinction
values are distorted by up to 20%. For example, s and α�355�
are correlated but with a lower correlation coefficient of
R2 � 0.97. The s uncertainty/spread is wider than the one
for the error free case, see Fig. 1(c), but Eq. (17) does not per-
mit for the strong outliers we deal with in practice in some
cases. An effective radius versus a distorted EAE is almost
the same as in the case of an error-free EAE. At least there
is no change of the reff uncertainties that we use in
Eqs. (33a)–(33c).

Research Article Vol. 55, No. 34 / December 1 2016 / Applied Optics 9845



B. Correlation Relationships between CRI and Lidar
Data Products
We investigated our SOD bank with regard to the question if
the CRI is somehow correlated with lidar data products. We use
the results shown in Figs. 1(a) and 1(b) for that purpose. The
figures show the statistics for effective radius versus EAE and
BAE, respectively. As we discussed before, for a fixed BAE, a
wider spread of effective radii is possible in comparison to the
spread that can be found for a fixed EAE. This feature can be
explained by the strong dependence of the BAE on both the
effective radius and the CRI, whereas the EAE only weakly de-
pends on the CRI.

Let us consider the ratio of BAE to EAE (RBE) at the
wavelength pair of 355 and 532 nm (not shown here since
its behavior is very similar to the behavior of the BAE at
the wavelength pair of 532 and 1064 nm) for an arbitrary value
åα. That åα value corresponds to a certain set of effective radii
[see Fig. 1(a)]. Apparently we can find the set of BAE values
corresponding to that set of effective radii. If we fix the
effective-radius value, we can expect that the RBE will depend
only on the CRI.

We can simplify the statistical analysis of CRI versus RBE
for a fixed effective radius if we also consider a fixed value of the
real part of the CRI. The result of this approach is shown in
Fig. 3. It shows the SOD bank statistics of the imaginary part of
the CRI versus the RBE for a few fixed values of effective radii
and real parts of the CRI. We fix the effective radius

– at reff � 0.11 μm which describes small particles of the
fine-mode fraction and an EAE above one (green symbols),

– at reff � 0.22 μm for which the EAE is between zero and
one, and which also describes particles of the fine-mode frac-
tion (green symbols),

– at reff � 0.48 μm for which the EAE is close to 0, and
which describes submicron particles (gray symbols),

– at reff � 2.6 μm for which the EAE is close to 0, and
which describes particles of the coarse mode (red symbols).

In addition we consider real parts of the CRI at 1.4 (square)
and 1.7 (triangle) for each particle size.

We see that the imaginary part and the RBE are linearly
correlated with a correlation coefficient R2 that varies between
0.978 for submicron particles and 0.994 for the smallest par-
ticles (gray, green, and blue symbols). We stress the fact that a
similar correlation exists between the real part of the CRI and
the RBE if we set the imaginary part to a fixed value instead of

setting the real part for “natural” aerosol particles (not shown
here) to a fixed value. With regard to big particles in the coarse
mode, the correlation between the CRI and the RBE is more
complicated (red symbols). Furthermore in this case an
ambiguous relationship appears for mI versus RBE, for exam-
ple, at RBE close to 7.5 and mR � 1.4.

We need to understand if there is any practical value in this
statistical analysis. Indeed, we allow for the fact that effective
radius and real part (or imaginary part) are known simultane-
ously. However, we have other pieces of information which are
presented by dimensionless parameters, i.e., we make use of
relations among two of these parameters; such dimensionless
parameters do not depend on particle concentration.

It is well known that the LR α�λ�∕β�λ� strongly depends on
the CRI. We can use this property in our statistical analysis. For
that reason, Fig. 3 also shows the LR intervals at λ � 355 nm
in the legend for each effective radius and each real part of the
CRI. For example, we find the maximum LR of 55 sr at reff �
0.11 μm and mR � 1.7, whereas the minimal LR is 60 sr at
reff � 0.11 μm and mR � 1.4 (blue symbols). It means that
we do not need to know the real part of the CRI if the LR
is available in our analysis. Furthermore, as we discussed in
the context of big particles, the interdependence mI versus
RBE is ambiguous for some RBE ranges. However, if we take
into account the LR for that respective range, we find that the
LR extremely changes. For example, the LR changes from 250
to 400 sr at a RBE close to 7.5 for mR � 1.4.

On the basis of the statistical analysis of our SOD bank, we
can postulate the following. Let us chose the following set of
parameters of a monomodal PSD:

– effective radius,
– LRs at 355 and 532 nm,
– BAE and EAE at the wavelength pairs of 355

and 532 nm.

The effective radius, the LRs at 355 and 532 nm, and the
BAE and EAE at the wavelength pair of 355 and 532 nm
uniquely define the CRI of aerosols described by monomodal

Fig. 2. Same as Fig. 1(a) and 1(c), but (a) EAE and (b) extinction
coefficients are distorted by up to 20% in the synthetic data bank.
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Fig. 3. Statistics of the SOD bank: correlation between the imagi-
nary part of the CRI and the ratio of BAE to EAE. The triangles and
squares describe the real part of 1.7 and 1.4, respectively. Blue, green,
gray, and red colors describe small particles with reff � 0.1μm and
åα > 1, small particles with reff � 0.22 μm and åα > 1, submicron
particles with reff � 0.48 μm and åα ≈ 0, and big particles with reff �
2.6 μm and åα ≈ 0, respectively.
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PSDs. In other words, there is only one value of CRI which can
produce that set of parameters.

That conclusion has important practical value. In fact, state-
of-the-art Raman lidar and HSRL can provide 3β� 2α OD
sets, and several algorithms of PMP retrievals provide us with
an effective radius, see Ref. [1–5]. Taking into account such
products as LR, BAE, and EAE measured with lidar and an
effective radius retrieved with these available algorithms, we
can put these values into our SOD bank and find the respective
CRI. Of course, we deal with measurements. Therefore, retrieval
errors need to be considered, but we can obtain an estimate of
the uncertainty of the CRI estimation with the help of such
simulation studies. If we consider different errors of the ODs
and effective radii in our SOD bank, it allows us to make such
estimations of the CRI.

We considered the correlation characteristics for our SOD
computed on the basis of Mie theory that can be used only in
the case of spherical particles. The question is if we can find
modified correlation equations in the case of aspherical particles
and if the postulate used in our present study can still be applied.

It is known that extinction coefficients weakly depend on
particle shape. Therefore, Eqs. (7), (9), (16), and (33a)–
(33c) can be applied in the general case of particles of any
shape. At the same time, the postulate takes into account
the LR and BAE. These parameters strongly depend on back-
scatter coefficients that are sensitive to particle shape. First of
all, we can exclude in practical application the analysis of cases
for which non-spherical particles are present. The most
straightforward situation is that we only use data from instru-
ments that measure the (linear) particle depolarization ratio at
least at one wavelength. Modern aerosol lidars usually measure
this parameter at 532 nm and/or 355 and/or 1064 nm. We can
also set a threshold value of the linear particle depolarization
ratio to a maximum value below which we still accept the
OD for data analysis. Such threshold values may be feasible,
as it is not only coarse-mode dust particles that may cause depo-
larization ratios larger than 0. Fine-mode biomass burning par-
ticles and fine-mode dust particles may also be responsible for
small, but non-negligible depolarization ratios.

In our future studies, we will compute our SOD on the basis
of a particle spheroid model [15] in order to investigate if the
postulate can be applied in that special case. In the framework
of this investigation, it will be also important to understand the
significance of using depolarization information for retrievals of
PMPs. However, such a study is way beyond the scope of our
current work because there are too many uncertainties involved
with regard to the light-scattering model that we want to use
[15]. This model is simply not validated for lidar applications
and/or may not even be able to reproduce certain lidar-mea-
sured parameters like the depolarization ratio and the backscat-
ter coefficients.

4. VALIDATION

In the past years, only a few experiments with simultaneous
lidar and in situ measurements were carried out. Results of
the PMP retrievals from OD taken with lidar and in situ instru-
ments are presented in Refs. [2,12,16]. In the following, we
attempt to validate our correlation relationships by taking into

account the statistics we collected during these experiments.
Retrievals of microphysical properties as well as statistical results
for big experiments like Two-Column Aerosol Project (TCAP)
have been obtained in the past several years and data have in
part already been published [9,17]. That means that there exists
a rather robust basis for carrying out validation/comparison
studies in future studies.

In Ref. [12], we investigated in detail the PMP retrievals
from the SAMUM data. The statistics of all retrieval results
were collected in Fig. 15 from Ref. [12]. Figure 15(b) in that
publication shows that the surface-area concentration and the
extinction coefficient at 355 nm are almost linearly correlated
with as ≈ 1.55, bs ≈ 0, and R2 � 0.98. Now, we can explain
this result in view of Eqs. (17) and (18). Besides this explan-
ation, we showed in Fig. 15(a) of Ref. [12] that effective radius
and EAE are approximately linearly correlated with ar ≈ −0.8,
bs ≈ 1.1, and R2 � 0.85. As we discussed before, such a low
value of ar indicates that the underlying PSD is bimodal and
contains a significant contribution of coarse-mode particles.
Therefore, we cannot investigate the CRI with the help of
our SOD bank at the moment.

In Ref. [16], we investigated a measurement case of biomass
burning particles (measurement from 22 July 2004). In the present
contribution, we collect the statistics of the PMP retrieval results.

Figure 4 shows the results for (a) reff versus EAE, s (open
circles), v∕reff (gray bullets), and (b) �r2mean � σ2�n (black bul-
lets) versus α�355�. Also shown in Fig. 4(c) are the correlations
of rmean (gray bullets) and σ (black bullets) versus reff . We see
that all IPs and data points are linearly correlated with high
correlation coefficients of R2 > 0.97 [Figs. 4(a) and 4(b)].
The lowest correlation coefficient R2 � 0.91 exists between
rmean and reff [Fig. 4(c)].

We need to stress the fact that the RCs (see regression
equations in Fig. 4) of all IPs belong to intervals we found
theoretically as well as from the analysis of our SOD bank.
Relatively small values of ar � −0.46 and aσ � 0.19 indicate
that the profile contains aerosol particles that can be described
by a bimodal PSD. At the same time, there are layers where
values of EAE and BAE are close to 1 which points to a mono-
modal PSD (see Fig. 3(a) in Ref. [16]).

We look in more detail at the particle layer in 3.8 km height.
In that height (see Fig. 2 in [16]), we find the following values:

– åα � 0.88 and åβ � 1.55 for the wavelength pair λ �
355 and 532 nm,

– LRs are 41 and 54 sr at λ � 355 and 532 nm, respectively,
– reff � 0.2 μm.

In the following, we list the values from our SOD bank that
are closest to the EAEs, BAEs, and LRs measured with lidar,
and the effective radius that has been retrieved with our
two-dimensional regularization approach [16]:

– åα � 0.84 and åβ � 1.52 for the wavelength pair λ �
355 and 532 nm,

– LRs are 41 and 54 sr at λ � 355 and 532, respectively,
– reff � 0.21 μm.

This result means that the average discrepancy between the
data from our SOD bank (look-up table) and the respective
data from the experiment, defined as
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ρLUT � 1

5

X
p

jpLUT − pexperimentj
pLUT

;

p � åα; åβ�355�;β�532�; α�355�∕β�355�;α�532�∕β�532�; reff (37)

is approximately ρLUT;min ≈ 2%. According to this set of
parameters, we find for the CRI from our SOD bank the
value m � 1.475 − i0.001. This value is close to the value
m � 1.52 − i0.01 that was retrieved with our regularization
approach, and which is within the uncertainties of the real
(�0.08) and imaginary (�0.01) parts that we obtain from
our regularization method.

With the help of our SOD bank, we can explain the reasons
why the regularization approach leads to such large CRI un-
certainties. For example, the next two sets of entries in the
SOD bank with discrepancies [Eq. (37)] closest to ρLUT;min

(ρLUT ≈ 3.5 and 3.6%) give the CRIs m � 1.475 − i0.002,
and m � 1.5 − i0.075. In fact, the SOD bank contains another
30 sets (ρLUT < 10%) of solutions for which the variation of
the effective radius is δreff � 0.21 μm� 8%, the variation of
the real part of the CRI is δmR � 1.5� 0.05, and the variation
of the imaginary part is δmI � 0.001–0.02.

The effective radius was measured in situ. A value of
0.16 μm has been reported [16]. This value is within the
retrieval uncertainty of the effective radius derived with our
regularization approach (�0.1 μm). The SOD bank relates
the value m � 1.6 − i0.025 to reff � 0.16 μm. This result ex-
plains the higher CRI measured in situ (m � 1.55 − i0.02). We
see that the SOD bank shows the following property: the
higher the real part, the larger the imaginary part. This pattern
agrees, for example, with previous research [18] and results
shown in Ref. [19].

Extra information, for instance BAE åβ�532;1064� at the wave-
length pair λ � 532 and 1064 nm, would be useful in order to
decrease the retrieval uncertainty. The measured value of the
BAE for that pair of wavelengths is 1.17. It means that this
value describes particles of case #5 in Table 1, and the particles
in this case can be described by a monomodal PSD. However, if
we take into account the discrepancy of Eq. (37), including
åβ�532;1064�, the structure of the solution space is not changed
in the vicinity of ρLUT;min. In general, in view of the retrieval

uncertainty, we find good agreement between the results ob-
tained from the experiment and from our correlation analysis.

We need to stress that the retrieval results in the experiments
described in Refs. [2,16,12] were obtained by experienced staff
doing manual (hand operated) data analysis, and it took signifi-
cant time to make the in-depth analysis of the solution space. In
contrast, if we use the correlation relationships a priori, as for
example in the automated unsupervised inversion algorithm
[9], we can considerably speed up the analysis of the solution
space, and the results are more accurate. Part 2, “Improved
identification of the solution space of aerosol microphysical
properties derived from the inversion of profiles of lidar optical
data, part 2: simulations with synthetic optical data”, of our
series of articles is devoted to this question.

5. CONCLUSION

We present correlation relationships between particle bulk
parameters and measured optical information. We find that
the linear correlation between particle surface-area concentra-
tion and the extinction coefficient at 355 nm is approximately
R2 ≈ 1. The IPs v∕reff and n�r2mean � σ2� are linearly correlated
with the extinction coefficient α�355� and with the same
correlation coefficient.

With regard to particles of the fine-mode fraction of the
PSD, the linear correlation holds true between the imaginary
part of the CRI and the ratio of the BAE to the extinction-re-
lated Ångström exponent for fixed values of the effective radius
and the real part of the CRI. We find that for particles of any
mode fraction of the PSD, the CRI is uniquely defined by the
EAE and BAE, the LRs at two wavelengths, and the effective
radius of the investigated PSD.

The relationships we find for particle bulk parameters were
validated with an SOD bank that contains 63,869 sets of 3β�
2α data that we generated. We also collected statistics from ex-
periments in which lidar and in situ measurements were carried
out simultaneously. We find agreement between our theoretical
and numerical simulations and the experimental results.

These newly found relationships could be incorporated into
one of the next versions of the automated algorithm [9] in order
to make the analysis of the solution space faster and more
accurate.
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Fig. 4. Statistics of the experimental data taken on 22 July 2004 [15]. (a) reff versus EAE together with linear fit (black line) and regression line
obtained from the SOD bank for åα � 0.5–1 (red line). (b) s (open circles), v∕reff (gray bullets), and �r2mean � σ2�n (black bullets) versus α�355�
together with the linear regression lines. (c) rmean (gray bullets) and σ (black bullets) versus reff together with the linear regression lines.
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