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1 Introduction

In recent years we have observed a remarkable revolution in our understanding of basic

principles of quantum field theories. The change of perspective was inevitable after the

discovery of the AdS/CFT correspondence [1] and it was additionally boosted by Witten’s

twistor string theory [2]. The most relevant impact of the latter can be seen in the way

we think about the scattering amplitudes. It led to various new techniques for evaluating

them, where the traditional Feynman’s approach is replaced by purely on-shell methods.

In particular, these new methods avoid introducing off-shell redundancies and, more im-

portantly, they make the simplicity and the symmetry of the final answer manifest. The

prime example where the influence of both the AdS/CFT correspondence and twistor string

theory is most visible is the maximally supersymmetric gauge theory in four dimensions

— N = 4 SYM. For this theory, the on-shell methods were developed even further and

led to a purely geometric description of scattering amplitudes [3, 4]. The emergent picture

allows to calculate them, at least in the planar limit, as “volumes” of an object termed

amplituhedron [5]. Even though clear in concept and simple in definition, the amplituhe-

dron is still waiting to show its true power. One of the reasons is its high complexity: for

a given number of scattering particles, and for a given order in perturbation theory, the

amplituhedron defines a complicated region in a high dimensional space. Then, in order

to evaluate the amplitude, we need to find a differential form which has logarithmic sin-

gularities on all boundaries of this region. At the moment, there is no compact formula

describing this differential form and the usual way to perform calculations is to refer to

triangulations of the amplituhedron, also not known in general. Thus we are left with a

case by case study where our new diagrammatics involves the evaluation of “volumes” of

amplituhedron cells instead of Feynman diagrams. There is, however, a case where we can

take full advantage of the volume concept: the so-called next-to-MHV (NMHV) amplitudes
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at tree level. In this case the “volume” is the true volume of an object dual to the ampli-

tuhedron. Moreover, there exists a formula, proposed by Hodges, which gives a unifying

prescription on how to think of NMHV scattering amplitudes in this way [6]. Although he

still referred to triangulations, we show in this paper that this is not necessary and there

exists a version of his formula treating the amplituhedron as a single object, independently

of its triangulations. For NkMHV amplitudes with k > 1 a similar volume formula is not

known at the moment and in this paper we would like to suggest a possible direction where

to look for it.

There is no doubt that in order to properly and efficiently describe any physical process

it is crucial to find a suitable set of variables. This holds true for the scattering amplitudes

in N = 4 SYM as well. From the perspective of the space-time Lagrangian, the spinor-

helicity variables (λα, λ̃α̇) are the most suitable for the description of massless scattering

in four dimensions. When supplemented by Grassmann-odd variables parametrizing the

R-symmetry, they allow to describe scattering in N = 4 SYM in a very compact way in

terms of superfields

Φ = G+ + ηA ΓA +
1

2
ηAηB SAB +

1

3!
ηAηBηCεABCD Γ̄D +

1

4!
ηAηBηCηDεABCDG

− . (1.1)

Then each superamplitude An({Φi}) = An({λi, λ̃i, ηi}) is labelled by the number of scat-

tering particles n and, when the MHV part is factored out

An({λi, λ̃i, ηi}) = AMHV
n,treePn({λi, λ̃i, ηi}) , AMHV

n,tree =
δ4(
∑
λiλ̃i)δ

8(
∑
λiηi)

〈12〉〈23〉 · · · 〈n1〉
, (1.2)

it admits the following decomposition in various helicity sectors

Pn = PMHV
n + PNMHV

n + PN2MHV
n + · · ·+ PMHV

n , (1.3)

where each PNkMHV
n is a monomial in the η’s of order O(η4k). The spinor-helicity variables

obscure, however, a lot of nice properties of scattering amplitudes. In particular, the

tree-level scattering amplitudes Atree
n are invariant under the superconformal symmetry,

a fact which is not manifest in these variables. In order to improve on that, we can

perform a Fourier transform of the λα variables and end up with Penrose (super-)twistor

variables, that linearize the generators of the superconformal algebra psu(2, 2|4). Moreover,

in the planar sector, N = 4 SYM enjoys an even bigger symmetry. Upon introducing

new dual variables, one can show that tree-level scattering amplitudes are invariant under

another copy of the psu(2, 2|4) algebra [7]. The interplay with the previously mentioned

one gives rise to the celebrated infinite-dimensional Yangian symmetry [8], described by the

algebra Y (psu(2, 2|4)). The super-twistor variables associated to the dual space are called

momentum super-twistors and linearize the action of the dual superconformal symmetry.

Both ordinary super-twistors and momentum super-twistors provide a perfect framework

to describe scattering amplitudes in N = 4 SYM. In particular, they made possible a

major progress after the authors of [9] proposed a description of amplitudes based on

Grassmannian integrals, manifestly Yangian invariant [10–12]. Firstly advocated in super-

twistor space [13] and then in momentum super-twistor space [14], Grassmannian integrals

compute scattering amplitudes as integrals over the set of k-planes in an n-dimensional

space, G(k, n). The connection to the Grassmannian space opened up new ways of studying
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amplitudes and, in particular, showed new connections with combinatorics and geometry.

It eventually led to the formulation of the amplituhedron volume conjecture mentioned

above. The amplituhedron is defined in yet another space which can be derived from the

momentum super-twistor space by bosonizing its Grassmann-odd coordinates. Surprisingly,

although this new set of variables makes geometric properties of amplitudes manifest, it

obscures some of the algebraic ones. In particular, it is not clear how to realize the Yangian

symmetry directly in this space. From the perspective of this paper, this fact is one of the

obstacles to overcome in order to be able to derive a volume formula for k > 1.

When working in the bosonized momentum twistor space, the amplituhedron dif-

ferential form is expressed in terms of a set of positive external data ZAi , i = 1, . . . , n,

A = 1, . . . , k +m, and an auxiliary set of vectors Y A
α , α = 1, . . . , k. Here, n is the number

of particles, k is the next-to-MHV degree and m is an even number, which for true scat-

tering in four dimensions is four. The aforementioned Grassmannian integrals are taken

over matrix elements labelled by the indices α and i, hence the number of integrations

grows with the number of scattering particles. On the other hand, based on the NMHV

case, volume integrals are taken over another Grassmannian, whose coordinates are rather

indexed by α and A; varying the number of particles only affects the domain of integration.

We name the latter space the dual Grassmannian and claim that it gives a natural set of

coordinates in terms of which we can write a volume formula for any k. These two auxil-

iary Grassmannian manifolds arise naturally when studying a particular set of differential

equations, called Capelli differential equations.

In this paper we address the question of finding the volume directly in the dual Grass-

mannian. We analyze the symmetries of the amplituhedron volume form and derive the

differential equations it satisfies. Starting from these equations we are able to derive a novel

dual space representation for the NMHV case and restrict its form for k > 1. The paper

is organized as follows. In section 2 we review the main relevant notions and specifically

the Grassmannian integral and the amplituhedron for tree-level scattering amplitudes. In

section 3 we define a set of differential equations obeyed by the amplituhedron volume. It

consists of invariance and scaling properties, as well as the Capelli differential equations.

A solution to these equations provides a novel formula computing the volume for NMHV

tree-level scattering amplitudes, which we extensively check in the m = 2 and m = 4 cases.

As a byproduct, we get a natural prescription to perform the original Grassmannian inte-

grals. We also restrict the possible form of the volume for k > 1. We conclude by pointing

out the relation between our new formula and the deformed amplitudes.

2 The amplituhedron

As already mentioned in the Introduction, tree-level scattering amplitudes can be calculated

using Grassmannian integrals. In terms of momentum super-twistors ZAi = (λαi , µ̃
α̇
i , χ

A
i ),

we have

Atree
n,k =

1

Vol(GL(k))

∫
dk·n cαi

(12 . . . k)(23 . . . k+1) . . . (n1 . . . k−1)

k∏
α=1

δ4|4

(
n∑
i=1

cαiZi

)
, (2.1)
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where the integral is evaluated along a suitable complex contour and generates tree-level

NkMHV n-point amplitudes. The integration is performed over the complex entries of a

matrix C spanning the Grassmannian G(k, n), i.e. the set of k-planes in the n-dimensional

complex space. The volume factor removes the GL(k) redundancy and (i . . . i + k − 1)

denotes the i-th consecutive maximal minor of C. The contributions coming from this

integral can be matched with certain on-shell diagrams, objects naturally appearing in

positroid stratifications of Grassmannians. This identification led the authors of [4] to relate

scattering amplitudes with the positive Grassmannian: residues of the integral (2.1) are in

one-to-one correspondence with cells of G+(k, n), i.e. the part of the Grassmannian G(k, n)

with all k× k ordered minors positive. This reduces the problem of computing amplitudes

to that of combining cells of the positive Grassmannian. Pursuing the geometrization of

the problem further led to the definition of the amplituhedron.

The amplituhedron is a new mathematical object whose volume is conjectured to

compute the scattering amplitudes of planar N = 4 SYM. In the following we focus on the

tree amplituhedron, i.e. the object computing tree-level amplitudes. To define it one has

to choose positive external data, namely ZAi ∈ M+(n,m + k), where M+(n,m + k) is the

set of n× (m+ k) real matrices whose ordered1 maximal minors are positive:

〈Zi1 . . . Zim+k
〉 > 0 , where

{
i1, . . . , im+k = 1, . . . , n

i1 < . . . < im+k

. (2.2)

The tree amplituhedron is now the space

Atree
n,k;m[Z] :=

{
Y ∈ G(k,m+ k) : Y = C · Z , C ∈ G+(k, n)

}
, (2.3)

where

Y A
α =

∑
i

cαiZ
A
i . (2.4)

Therefore, the tree amplituhedron is a subspace of the Grassmannian G(k,m + k) de-

termined by positive linear combinations of positive external data. One can define an

(m · k)-dimensional canonical (top) form Ω̃n,k;m(Y,Z) on this space, determined by the

requirement that it has logarithmic singularities on all its boundaries. One way to obtain

such form is to triangulate Atree
n,k;m[Z], i.e. to find a set of (m·k)-dimensional cells of G+(k, n)

such that the corresponding regions on the amplituhedron are non-overlapping and cover

it completely. Once one has a triangulation T = {Γa}, the canonical form associated to

each cell Γ is

Ω̃Γ
n,k;m(βΓ) =

m·k∏
r=1

dβΓ
r

βΓ
r

, (2.5)

where (βΓ
1 , . . . , β

Γ
m·k) are positive real coordinates on the cell. One can now express that

form in a coordinate-independent way solving for the βΓ
r variables in terms of the ZAi and

Y A
α ones using equation (2.4), where the cαi’s are to be thought of as functions of the local

1Note that ordered minors are not necessarily consecutive minors.
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coordinates βΓ
r ’s. Finally, the canonical form on the full amplituhedron is the sum of the

forms associated with each cell

Ω̃n,k;m(Y,Z) =
∑
Γ∈T

Ω̃Γ
n,k;m(Y,Z) . (2.6)

To build a connection with the tree-level super-amplitudes one relates the bosonic variables

ZAi with the momentum super-twistors. The components of the former consist of the

momentum twistor variables zai := (λαi , µ̃
α̇
i ) together with the bosonized version of the

fermionic variables χA
i :

ZAi =


zai

φA1 χiA
...

φAk χiA

 , A = 1, . . . , k +m, a,A = 1, . . . ,m , (2.7)

with the φAα’s auxiliary Grassmann parameters used to bosonize the χA
i ’s. The tree-level

“amplitude” for generic m is then calculated by integrating the canonical form in the

following way:

Atree
n,k (Z) =

∫
dm·k φ

∫
δm·k(Y ;Y ∗) Ω̃n,k;m(Y,Z) , (2.8)

where the projective δ-function

δm·k(Y ;Y ∗) =

∫
dk·k ρ β

α (det ρ)mδk·(k+m)(Y A
α − ρβαY ∗Aβ ) (2.9)

localizes the canonical form on the reference point

Y ∗ =

 Om×k
- - -

Ik×k

 . (2.10)

In order to be consistent with the positivity conditions (2.2), at the beginning one has to

regard ZAi as real numbers. Only after the localization of the canonical form, just before

the integration over φAα, the last k components of ZAi have to be analytically continued to

composite Grassmann variables φα · χi.
Triangulating the amplituhedron to derive the canonical form Ω̃n,k;m is not the only

available option. The authors of [15] suggested another method based on a more invariant

approach to the positive geometry without referring to any triangulation. We point out

that there exists yet another way to construct Ω̃n,k;m. First, let us rewrite

Ω̃n,k;m(Y,Z) =

k∏
α=1

〈Y1 · · ·Yk dmYα〉Ω
(m)
n,k (Y,Z) , (2.11)

where
∏k
α=1〈Y1 · · ·Yk dmYα〉 is the integration measure on G(k,m + k) space. Then, we

can give an integral representation of Ω
(m)
n,k (Y,Z)

Ω
(m)
n,k (Y,Z) =

∫
dk·n cαi

(12 . . . k)(23 . . . k + 1) . . . (n1 . . . k − 1)

k∏
α=1

δm+k(Yα −
∑
i

cαiZi). (2.12)
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The integral is taken over a suitable contour, in full analogy with the Grassmannian inte-

gral (2.1). Each residue corresponds to a cell of the tree amplituhedron and, in order to

get the proper expression for Ω
(m)
n,k , we need to take an appropriate sum of them.

Integral (2.12) will be the starting point for our later derivation. In particular, we

begin by considering its properties and symmetries in the case of generic m, n and k. This

allows us to write down a set of differential equations satisfied by Ω
(m)
n,k . We subsequently

solve this system for k = 1 and restrict the form of possible solutions for higher k. In all

cases the answer admits an integral representation over the Grassmannian G(k,m + k).

We term this space the dual Grassmannian and stress that it does not depend on the value

of n, in contrast to (2.12).

3 Capelli differential equations and volume

3.1 Properties of the volume

As we have already mentioned, the tree-level Grassmannian integrals (2.1) defined in mo-

mentum twistor space possess a lot of interesting properties. In particular, they are super-

conformally and dual-superconformally invariant or, equivalently, Yangian invariant. As

was shown in [12, 16] these symmetries uniquely determine, up to the contour of integration,

the form of Grassmannian integrals and in particular fix their measure to be the inverse of

the product of consecutive cyclic minors.2 In this paper we aim at finding the formula for

the amplituhedron volume defined in the bosonized momentum twistor space. It is then an

interesting question to ask whether it is also possible to determine its form directly starting

from symmetries. The answer we provide is positive, at least for the NMHV amplitudes.

For NkMHV amplitudes with k ≥ 2, however, known symmetries of the amplituhedron are

not sufficient to completely fix the expression for the volume. In particular, it is not clear

how to realize the Yangian symmetry directly in the bosonized momentum twistor space,

preventing us from repeating the derivation yielding the Grassmannian measure in (2.1).

Despite this obstacle, let us study the symmetries of the formal integral (2.12) and use

them to derive a formula for the volume.

First of all, the integral (2.12) is GL(m+ k) covariant

n+k∑
a=1

WA
a

∂

∂WB
a

Ω
(m)
n,k (Y, Z) = −k δAB Ω

(m)
n,k (Y, Z) , (3.1)

where we have defined

WA
a :=

{
Y A
a , a = 1, . . . , k,

ZAa−k , a = k + 1, . . . , n+ k.
(3.2)

2This statement is true for Yangian generators with trivial local level-one generators which are relevant

for scattering amplitudes. For a discussion on possible deformations of amplitudes and Yangian generators

see [17, 18].
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This statement is analogous to the level-zero Yangian invariance of the Grassmannian

formula (2.1). Moreover, Ω
(m)
n,k is invariant under rescaling of the variables ZAi

m+k∑
A=1

ZAi
∂

∂ZAi
Ω

(m)
n,k (Y,Z) = 0 , for i = 1, . . . , n , (3.3)

and is a GL(k)-covariant homogeneous function of degree −(m + k) with respect to the

Y A
α variables

m+k∑
A=1

Y A
α

∂

∂Y A
β

Ω
(m)
n,k (Y,Z) = −(m+ k) δβα Ω

(m)
n,k (Y, Z), for α, β = 1, . . . , k. (3.4)

Both scaling and level-zero Yangian invariance were ingredients which allowed to deter-

mine the Grassmannian measure. However, the knowledge of bilinear level-one Yangian

generators was necessary to get a unique answer. Unfortunately at the moment we do

not know what their form would be in the bosonized momentum twistor space beyond the

k = 1 case.3 Nevertheless, it is easy to verify that Ω
(m)
n,k (Y, Z) satisfies other higher-order

differential equations: for every (k+1)×(k+1) minor of the matrix composed of derivatives
∂

∂WA
a

one can check that

det

(
∂

∂WAν
aµ

)
1≤ν≤k+1
1≤µ≤k+1

Ω
(m)
n,k (Y,Z) = 0 , (3.5)

for 1 ≤ A1 ≤ . . . ≤ Ak+1 ≤ m+ k and 1 ≤ a1 ≤ . . . ≤ ak+1 ≤ n+ k. This type of determi-

nant differential equations are usually referred to as the Capelli differential equations. In

the case at hand, we consider the set of all possible Capelli differential equations defined on

the Grassmannian G(m+k, n+k). Interestingly, the Capelli equations (3.5) together with

the invariance property (3.1) and scaling properties of the form (3.3) and (3.4) were studied

independently in the mathematical literature in various contexts. The most understood

case is k = 1, corresponding to the NMHV amplitudes, which leads to the definition of the

so-called GKZ hypergeometric function (on Grassmannians).

In order to establish a connection with the known mathematical literature, we first

rewrite the invariance and scaling conditions in their global form. For given m, k and n

we want to find a function Ω
(m)
n,k (Y A

α , Z
A
i ) with Y A

α ∈M(k,m+ k) and ZAi ∈M(n,m+ k)

satisfying

• GL(m+ k) right covariance:

Ω
(m)
n,k (Y · g, Z · g) =

1

(det g)k
Ω

(m)
n,k (Y, Z) , (3.6)

for g ∈ GL(m+k), where by the right multiplication we mean (W ·g)Aa =
∑

BW
B
a g

A
B .

3It is not even clear whether the amplituhedron measure is Yangian invariant since, in order to derive

the Yangian invariant formula (2.1) from it, we project out many terms when the last k components of ZAi
are taken to be composite Grassmann variables.
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• Scaling, i.e. GL(k)+ ⊗GL(1)+ ⊗ . . .⊗GL(1)+ left covariance:

Ω
(m)
n,k (h · Y, λ · Z) =

1

(deth)m+k
Ω

(m)
n,k (Y,Z) , (3.7)

for h ∈ GL(k)+ and λ = (λ1, . . . , λn) ∈ GL(1)+ ⊗ . . .⊗GL(1)+, where we restricted

all possible transformations to be elements of the identity component of linear groups,

namely GL(l)+ = {h ∈ GL(l) : deth > 0}. The condition (3.7) takes into account

both conditions (3.3) and (3.4).

• Capelli differential equations on the Grassmannian G(m + k, n + k) defined as in

formula (3.5).

Functions satisfying the conditions (3.5), (3.6) and (3.7) for the k = 1 case were

studied intensively by the school of Gelfand [19] and also by Aomoto [20, 21]. In the

context of scattering amplitudes in N = 4 SYM, their relevance was suggested in [22]. For

the k = 1 case, the general solution of the above problem was given in [23] and we will

present it in the following section. It gives the correct result for Ω
(m)
n,1 as an integral over

the Grassmannian G(1,m+ 1). As we will see below, this integral calculates the volume of

a simplex in the projective space G(1,m+ 1) = RPm and can be compared to the volume

formula proposed by Hodges [6]. An important advantage with respect to the latter is that

it can be evaluated without referring to any triangulation of the simplex. For higher k the

problem was studied for example in [24], but to our knowledge a general solution suitable

for the scaling properties (3.7) is not known.

We look for the solution to (3.5), (3.6) and (3.7) written in the Fourier space

Ω
(m)
n,k (Y, Z) =

∫
dµ(tαA, t̃

i
A) ei t

α
A Y

A
α +i t̃iA Z

A
i f(tαA, t̃

i
A) , (3.8)

where the variables tαA and t̃iA are Fourier conjugate to Y A
α and ZAi , respectively. Here

the flat measure dµ(tαA, t̃
i
A) is both GL(m + k) and GL(k) covariant and f(tαA, t̃

i
A) is a

generalized function defined on the product of two matrix spaces:

f : M(m+ k, k)×M(m+ k, n)→ R . (3.9)

In the following section we present the derivation for the k = 1 case to emphasize our

assumptions and prepare for the study of higher values of k.

3.2 Solution for the k = 1 case

For the k = 1 case, relevant for NMHV amplitudes, the index α can take just one value

and (3.8) reduces to

Ω
(m)
n,1 (Y, Z) =

∫
dµ(tA, t̃

i
A) ei tA Y

A+i t̃iA Z
A
i f(tA, t̃

i
A). (3.10)

Then the Capelli differential equations form a system of second-order differential equations.

We distinguish two cases: both derivatives are with respect to ZAi variables or one derivative
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is with respect to a ZAi and another to Y A. Explicitly, they read(
∂2

∂ZAi ∂Z
B
j

− ∂2

∂ZBi ∂Z
A
j

)
Ω

(m)
n,1 = 0 , and

(
∂2

∂Y A∂ZBj
− ∂2

∂Y B∂ZAj

)
Ω

(m)
n,1 = 0 .

(3.11)

When applied to the formula (3.10), they can be translated into the following equations in

Fourier variables:

t̃iAt̃
j
B − t̃

i
B t̃

j
A = 0 and tAt̃

i
B − tB t̃iA = 0 . (3.12)

It is immediate to verify that

t̃iA = −s̃isA, tA = sA , (3.13)

is a solution of (3.12) for any n and transforms the Fourier integral (3.10) into

Ω
(m)
n,1 (Y,Z) =

∫
dsA ds̃

i ei sA Y
A−i sA ZAi s̃iF (s, s̃) , (3.14)

where we integrate over the space Rm+1 × Rn. Therefore, from the perspective of Capelli

differential equations the most convenient and natural variables are not the Fourier ones,

but rather the ones we call sA and s̃i. Every s̃i can be identified with the corresponding

ci in the integral (2.12) for k = 1, while we will refer to sA as dual variables. From the

definition of the amplituhedron we demand that (3.14) localizes on

Y A = s̃iZAi , (3.15)

as in (2.12). This is only possible if the function F (s, s̃) is independent of sA: indeed, upon

integration over sA in (3.14), we would end up with the desired δ-function. Then we can

write a representation of Ω
(m)
n,1 (Y,Z) purely as an integral over dual variables

Ω
(m)
n,1 (Y,Z) =

∫
dsA e

i sA Y
A
F̃ (sAZ

A
i ) , (3.16)

where F̃ (sAZ
A
i ) is the Fourier transform of the function F (s̃). Notice that the integrand

depends on the external data only through the n combinations sAZ
A
i .

Let us observe that in the k = 1 case the fact that Ω
(m)
n,k satisfies the Capelli differential

equations and scaling properties directly implies that it is also invariant under the level-one

Yangian generators of the form

ĴAB =
∑
a<b

(
WA
a

∂

∂WC
a

WC
b

∂

∂WB
b

− (a↔ b)

)
+ (m+ 1)Y A ∂

∂Y B
. (3.17)

When supplemented by (3.1), i.e. the level-zero Yangian invariance condition, it implies

the full Yangian invariance for k = 1. This statement is however not true for k > 1.

This ends the study of the Capelli differential equations. Now we need to supplement it

by the invariance and scaling properties, which will constrain possible forms of the function

– 9 –



J
H
E
P
0
3
(
2
0
1
6
)
0
1
4

F̃ (sAZ
A
i ). After careful analysis we find that it has to be a homogeneous (generalized)

function of degree zero in each of its variables. The space of homogeneous generalized

functions is a well studied one. Following [25], we find that for each integer number l

there are exactly two independent homogeneous generalized functions of degree l. For

l = 0, one can pick as a basis the Heaviside step functions θ(x) and θ(−x). This yields the

general solution

Ω
(m)
n,1 (Y,Z) =

∫
dsA e

i sA Y
A
∏
i

(
Ci θ

(
sAZ

A
i

)
+Di θ

(
−sAZAi

))
, (3.18)

where Ci and Di are arbitrary complex numbers. The existence of various solutions can

be linked with the ambiguity in choosing the integration contour of the Grassmannian

integral. By direct calculation we find that the solutions relevant for scattering amplitudes

are the ones with either all Di = 0 or all Ci = 0. In the first case we end up with

Ω
(m)
n,1 (Y,Z) =

1

im+1

∫
dsA e

i sA Y
A
∏
i

θ(sA Z
A
i ) . (3.19)

As we will show shortly, this is the correct formula for the volume. Before we do it, let us

rewrite (3.19) in a way that resembles the formula found by Hodges. First, let us observe

that (3.19) is GL(m+ 1) covariant and use this to fix m+ 1 of the Zi’s to form an identity

matrix, namely, {Z1, . . . , Zm+1} = Im+1. Then

Ω
(m)
n,1 (Y,Z) =

1

im+1

+∞∫
0

(
m+1∏
A=1

dsA

)
ei sA Y

A
n∏

i=m+2

θ(sA Z
A
i ) , (3.20)

where we used m+ 1 of the θ-functions to restrict the domain of integration. Furthermore,

we can perform a change of variables s→ s′ such that

s1 = s′1 , sA = s′1s
′
A , for A = 2, . . . ,m+ 1 , (3.21)

and compute the integral over s′1 explicitly, to end up with

Ω
(m)
n,1 =

+∞∫
0

(
m+1∏
A=2

dsA

)
m!

(s · Y )m+1

n∏
i=m+2

θ (s · Zi) . (3.22)

Here we introduced the compact notation s ·Wa := W 1
a + s2W

2
a + . . .+ s1+mW

1+m
a , where

Wa can be either Y or one of the Zi’s. Formula (3.22) is the most important formula of this

section! Let us remark that this integral is taken over the m-dimensional real projective

space RPm. A few comments are in order here. First of all, for positive external data

and for Y A inside the amplituhedron, namely (2.3), this integral is finite for any number

of points n. It follows from the fact that in this case the poles of the integrand always

lie outside the integration region. Additionally, the behaviour at infinity guarantees the

convergence. Moreover, one can compare the integral (3.22) with the one found in [6] by

Hodges. Then the elements of the projective space over which we integrate can be identified
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with the elements of dual momentum twistor space. We prefer to think about them rather

as elements of the dual Grassmannian, as we explained in the introduction. This intuition

has a natural generalization to higher k.

Before we show in detail how the formula (3.22) evaluates the volume of the ampli-

tuhedron, we comment on the relation of our formula to the formal expression (2.12). Let

us consider again the integral (3.19), write the Fourier representation of θ-functions and,

subsequently, integrate over all sA:

Ω
(m)
n,1 (Y,Z) =

in−m−1

(2π)n

∫
dsA ds̃

i ei sA Y
A−i sA ZAi s̃i

∏
i

1

s̃i + iεi

=
1

(−2πi)n−m−1

∫ ∏
i

ds̃i

s̃i + iεi
δm+1

(
Y A − s̃iZAi

)
, (3.23)

with all εi > 0. Here we integrate all variables over the real line, whereas (2.12) was

computed along some complex contour evaluating the proper sum of residues. The iε-

prescription with all εi positive was already advocated by Arkani-Hamed, see e.g. [26], and

from our discussion we see that it has a natural origin in the dual space.

Let us spend a few words on the general structure of formula (3.22) and describe

how to deal with the θ-functions constraints. First of all, the integrand depends on the

number of particles only through the θ-functions shaping a domain of integration where no

singularities are present. Indeed,

s · Y = s · (ciZi) = ci (s · Zi) > 0 , (3.24)

since s · Zi > 0 and Y is inside the amplituhedron, i.e. ci > 0. Furthermore, positivity of

the external data implies that the domain is convex. Recall that the GL(m+ 1) covariance

of the integral (3.19) allows us to fix m + 1 variables {Z1, . . . , Zm+1} = Im+1. From now

on, we will work in this particular frame and only at the end of our calculation we will

rewrite the results to be valid in general. For the n-point integral Ω
(m)
n,1 , let us denote the

integration domain, defined by the θ-functions in (3.22), by

D(m)
n :=

n⋂
i=1

{s · Zi > 0} =

n⋂
i=m+2

{s · Zi > 0} ∩ {s > 0} , (3.25)

where {s > 0} means that all sA’s are positive, as dictated by the aforementioned fixing.

We observe that

Ω
(m)
n,1 = m!

∫
D(m)
n

ds (s · Y )−(m+1) = Ω
(m)
n−1,1 −m!

∫
D(m)
n−1∩{s·Zn≤0}

ds (s · Y )−(m+1) , (3.26)

which will be extensively used later on. We also denote by `Zi the (m− 1)-dimensional

subspace s · Zi = 0 defined by the θ-functions.

In the following subsections we present a detailed analysis of the volume integral for

k = 1. Although the scattering amplitudes in planar N = 4 SYM correspond to the case
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Figure 1. Domain of integration for three points.

m = 4, we find it advantageous to study formula (3.22) first in the two-dimensional toy

model with m = 2. In this case it takes the explicit form

Ω
(2)
n,1 =

+∞∫
0

ds2

+∞∫
0

ds3
2

(s · Y )3

n∏
i=4

θ (s · Zi) . (3.27)

Later on, we will discuss the formula for m = 4

Ω
(4)
n,1 =

+∞∫
0

ds2

+∞∫
0

ds3

+∞∫
0

ds4

+∞∫
0

ds5
4!

(s · Y )5

n∏
i=6

θ (s · Zi) , (3.28)

which is related to the physical scattering amplitudes.

3.3 Volume in the m = 2 case

For any number of points n, a possible representation of the volume Ω
(2)
n,1 is given by [3]

Ω
(2)
n,1 =

n−1∑
i=2

[1 i i+ 1] , (3.29)

where the R-invariants are defined as

[i j k] :=
〈i j k〉2

〈Y i j〉〈Y j k〉〈Y k i〉
. (3.30)

We will verify that formula (3.27) exactly reproduces this result.

For three points there are no θ-functions and we have to evaluate the following integral

Ω
(2)
3,1 =

+∞∫
0

ds2

+∞∫
0

ds3
2

(Y 1 + s2Y 2 + s3Y 3)3 , (3.31)

where the region of integration is simply the positive quadrant in two dimensions, as in

figure 1.
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Figure 2. Domain of integration for four points.

As discussed in (3.24), the integrand does not have poles inside D(2)
3 . By performing the

integral we simply find

Ω
(2)
3,1 =

1

Y 1Y 2Y 3
. (3.32)

There is a unique way to lift this formula to the case of generic Z’s by rewriting it in terms

of GL(3)-invariant brackets with the proper scaling:

Ω
(2)
3,1 =

〈123〉2

〈Y 12〉〈Y 23〉〈Y 31〉
= [123] . (3.33)

This agrees with the formula (3.29).

For four points the formula (3.27) reads now

Ω
(2)
4,1 =

+∞∫
0

ds2

+∞∫
0

ds3
2

(Y 1 + s2Y 2 + s3Y 3)3 θ
(
Z1

4 + s2Z
2
4 + s3Z

3
4

)
. (3.34)

Demanding positivity of the external data, we see that the components of ZA4 must satisfy

Z1
4 > 0, Z2

4 < 0 and Z3
4 > 0. Then, the θ-function simply describes a half-plane in the

(s2, s3) plane above the line `Z4 : s · Z4 = 0, which has positive slope and intersects the

positive s2 semi-axis, see figure 2. It is straightforward to evaluate the integral (3.34)

explicitly, however, in order to make contact with results known in the literature, it is

useful to think of the domain D(2)
4 in two different ways, depicted in figure 3. On the one

hand, we can split the integration region as in figure 3a, leading to the local (internal)

triangulation [3]

Ω
(2)
4,1 = {3}+ {4} , (3.35)

with

{i} :=
〈12i〉〈i− 1 i i+ 1〉

〈Y 12〉〈Y i− 1 i〉〈Y i i+ 1〉
. (3.36)

Alternatively, we can obtain it as the difference of D(2)
3 with the region shown in figure 3b:

this choice produces an external triangulation, agreeing with the terms coming from BCFW
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Figure 3. Two ways of obtaining the four-point integral.

s2

s3

D(2)
5

`Z5

`Z4

(a) Integration domain.

s2

s3

`Z4

`Z5

{4}{3} {5}

(b) Local triangulation.

s2

s3

−[145]

−[134]

`Z4

`Z5

(c) BCFW triangulation.

Figure 4. The domain D(2)
5 and the two ways of constructing it.

recursion relations4

Ω
(2)
4,1 = [123] + [134] . (3.37)

When the number of points is increased, the presence of more θ-functions guarantees

that the domain of integration shrinks, as was already advocated in [15]. Let us show it on

the five-point example. For concreteness, let us choose the following positive configuration

ZA4 = (1,−1, 1) , ZA5 = (3,−2, 1) , (3.38)

determining the integration domain in figure 4a. As before, we can construct both an inter-

nal and an external triangulation (figure 4b and 4c, respectively), yielding the known result

Ω
(2)
5,1 = {3}+ {4}+ {5} = [123] + [134] + [145] . (3.39)

From these examples, we see an elegant pattern emerging. For m = 2, the second

summand in (3.26) is in fact just an integral over the wedge

D(2)
n−1 ∩ {s · Zn ≤ 0} = {s · Zn−1 > 0} ∩ {s · Zn ≤ 0} , (3.40)

4In order to be able to perform the integral over the region in figure 3b one needs to additionally

assume that the integrand does not have any pole there, since it is not ensured by the geometry of the

amplituhedron.
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Figure 5. Generic domain of integration for n points. We marked in red the wedge which evaluates

to (minus) the R-invariant [1 n− 1n].

depicted as the red area in figure 5. It evaluates to the following R-invariant∫
{s·Zn−1>0}∩{s·Zn≤0}

ds (s · Y )−3 = −[1n− 1n] . (3.41)

This gives a relation between the volume integral (3.22) and the BCFW decomposition

of amplitudes for k = 1. However, as we pointed out, there is no need to perform this

triangulation in order to evaluate the integral (3.22). This fact is even more relevant in

the m = 4 case, where the BCFW triangulation is more complicated.

3.4 Volume in the m = 4 case

For any number of points n, the volume Ω
(4)
n,1 is given by [3]

Ω
(4)
n,1 =

∑
i<j

[1 i i+ 1 j j + 1] , (3.42)

where the R-invariants are defined as

[i j k lm] :=
〈i j k lm〉4

〈Y i j k l〉〈Y j k lm〉〈Y k lm i〉〈Y lm i j〉〈Y m i j k〉
. (3.43)

In the following we will check that formula (3.28) yields this result.

The simplest NMHV amplitude for m = 4 is for five particles. This case is similar to

the three-point volume for m = 2, since there are no θ-functions in the integrand of (3.28):

Ω
(4)
5,1 =

+∞∫
0

ds2

+∞∫
0

ds3

+∞∫
0

ds4

+∞∫
0

ds5
4!

(Y 1 + s2 Y 2 + s3 Y 3 + s4 Y 4 + s5 Y 5)5 . (3.44)

The domain of integration is just the region of the four-dimensional real space where all

coordinates are positive. The usual argument ensures that the integrand is completely well

defined, namely, it has no poles in D(4)
5 . Computing the integral, we find

Ω
(4)
5,1 =

1

Y 1Y 2Y 3Y 4Y 5
, (3.45)
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which lifts to the non-fixed form

Ω
(4)
5,1 =

〈12345〉4

〈Y 1234〉〈Y 2345〉〈Y 3451〉〈Y 4512〉〈Y 5123〉
= [12345] , (3.46)

i.e. the correct result.

For six points the formula (3.28) reads

Ω
(4)
6,1 = 4!

+∞∫
0

ds2

+∞∫
0

ds3

+∞∫
0

ds4

+∞∫
0

ds5
θ(Z1

6 + s2 Z
2
6 + s3 Z

3
6 + s4 Z

4
6 + s5 Z

5
6 )

(Y 1 + s2 Y 2 + s3 Y 3 + s4 Y 4 + s5 Y 5)5 . (3.47)

To simplify the discussion, we can again choose a particular positive configuration of ex-

ternal data. Let

ZA6 = (1,−1, 1,−1, 1) , (3.48)

so that the θ-function defines the hyperplane `Z6 : 1 − s2 + s3 − s4 + s5 = 0. Solving the

constraint, we can rewrite (3.47) as

Ω
(4)
6,1 = 4!

+∞∫
0

ds3

+∞∫
0

ds5

1+s3+s5∫
0

ds2

1−s2+s3+s5∫
0

ds4 (s · Y )−5 , (3.49)

which can be easily evaluated and agrees with the correct result for six-point NMHV

amplitude (3.42). In order to relate the integral (3.49) term-by-term with the BCFW

recursion result

Ω
(4)
6,1 = [12345] + [12356] + [13456] , (3.50)

let us observe that

[12345] = 4!

+∞∫
0

ds3

+∞∫
0

ds5

+∞∫
0

ds2

+∞∫
0

ds4 (s · Y )−5 , (3.51)

[12356] = −4!

+∞∫
0

ds3

+∞∫
0

ds5

+∞∫
0

ds2

+∞∫
1−s2+s3+s5

ds4 (s · Y )−5 , (3.52)

[13456] = 4!

+∞∫
0

ds3

+∞∫
0

ds5

+∞∫
1+s3+s5

ds2

0∫
1−s2+s3+s5

ds4 (s · Y )−5 . (3.53)

It is enough to focus on the integration regions in the (s2, s4) plane since the remaining two

variables are integrated over (0,+∞) in all cases. Then, the domain of [12345] is simply

the positive quadrant, whereas those of [12356] and [13456] are depicted in figure 6: here

we solve the condition defining the hyperplane `Z6 as s4 = −s2 + a, where a = 1 + s3 + s5

is guaranteed to be positive. Figure 7 shows that the various domains correctly add up to

the integration region of Ω
(4)
6,1, as in (3.49).

For higher number of points the relation to BCFW recursion is more obscure since

one has to study the full four-dimensional space in order to identify proper triangles. In
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Figure 6. Two contributions to the region of integration for Ω6,1.

= − +

D(4)
6

Figure 7. Domains of integration for six points and m = 4.

particular, adding new particles does not simply correspond to removing a single triangle as

in figure 5, since (3.40) does not hold anymore. This can be traced back to the difference

between formulas (3.29) and (3.42): for m = 2 we always add one R-invariant when

increasing the number of particles by one, while for m = 4 we need n−4 new contributions.

However, thanks to formula (3.28), we can be cavalier about this, since the volume can be

computed directly without any reference to triangulations.

3.5 First look at higher-helicity amplituhedron volumes

Encouraged by the success of finding the volume formula for k = 1, we would like to

see whether it is also possible to apply a similar approach to NkMHV amplitudes for

k > 1. Solutions of several higher-order systems of Capelli equations supplemented by

invariance and certain scaling properties can be found in the literature [24]. Their integral

representations in terms of dual Grassmannian variables are finite and can be computed

for any value of the parameter n. Unfortunately, these cannot be interpreted as amplitudes

due to scaling properties different from (3.7). However, let us proceed in a similar spirit as

for k = 1 and try to find what we can learn about the possible form of the solutions.

First of all, similarly to the k = 1 case, the Capelli equations introduce two sets of

natural variables and a general form of the solution can be written as

Ω
(m)
n,k (Y, Z) =

∫
dsαA ds̃

i
α e

i sαA Y
A
α −i sαA Z

A
i s̃

i
α F (s, s̃) . (3.54)
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Then, demanding that all Y A
α localize on hyperplanes defined by ZAi , namely

Y A
α = s̃iαZ

A
i , (3.55)

we get again that the function F (s, s̃) is independent of sαA and we can provide a represen-

tation purely in terms of dual Grassmannian coordinates:

Ω
(m)
n,k (Y,Z) =

∫
dsαA ei s

α
A Y

A
α F̃ (sαA Z

A
i ) . (3.56)

The function F̃ (sαA Z
A
i ) depends on k · n variables and the formula (3.4) implies that it

depends on them through their SL(k)-invariant combinations

{i1, . . . , ik} = det((s · Z)i1 , . . . , (s · Z)ik) , (3.57)

where the compact notation (s·Z)i is to be understood as in formula (3.56). Finally, we can

use the scaling (3.3) and (3.4) to further restrict possible functions. It turns out, however,

that this does not fix the final answer uniquely, since for k > 1 we can form non-trivial

cross-ratios from the brackets (3.57) and F̃ (sαA Z
A
i ) could be in principle any function of

these cross-ratios. In order to proceed further we should supplement known symmetries

by an equivalent of the level-one Yangian invariance. However, at the moment the form of

level-one generators is not known in the bosonized momentum twistor space.

3.6 Deformed amplituhedron volume

Finally, we would like to comment on possible natural deformations of the equations we

studied so far, analogous to those introduced in the context of amplitudes in [17, 18]. For

k = 1 this amounts to more general scaling properties and the formula (3.3) is replaced by

m+1∑
A=1

ZAi
∂

∂ZAi
Ω

(m)
n,1 (Y, Z) = αi Ω

(m)
n,1 (Y,Z) , for i = 1, . . . , n , (3.58)

with
n∑
i=1

αi = 0 . (3.59)

Let us remark that we only modify the weight of the variables Zi to match the deformed

top-cell Grassmannian integral in [22, 27]. In the context of scattering amplitudes the

complex numbers αi are related to the inhomogeneities of the integrable spin chain, as

explained in [28, 29]. Indeed, the level-one Yangian generators (3.17) get modified by local

terms with inhomogeneities. In this generalized case, the solution to (3.1), (3.5) and (3.58)

can be also found in [23] and reads

Ω
(m)
n,1 (Y,Z) =

∫
dsA e

i sA Y
A
∏
i

(sA Z
A
i )αi+ , (3.60)

where

xα+ =

{
xα, x ≥ 0

0, x < 0
. (3.61)
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The integral (3.60) is a GKZ hypergeometric function and its properties were studied in

e.g. [23]. Importantly, it is convergent for αi close to zero and can be evaluated explic-

itly. One notices that in the limit αi → 0 the integral (3.60) smoothly approaches the

integral (3.19).

4 Discussion and outlook

In this paper we present a new approach to finding the volume of the tree amplituhedron

based on its symmetries. This leads us to the novel formula (3.22) for the tree-level NMHV

amplitudes allowing their evaluation without any reference to triangulations. In particular,

the symmetries fix the volume formula to be an integral over the dual Grassmannian, which

can be identified with the dual bosonized momentum twistor space. This suggests a natural

generalization to higher-k amplitudes, leading to a natural framework where to write the

volume as an integral over a dual Grassmannian. In that case, however, we do not have

enough symmetry to fix the final formula completely. This calls for further studies and in

particular it raises the question on how to realize the Yangian symmetry directly in the

bosonized momentum twistor space.
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multiformes, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975) 271.

[21] M. Kita and K. Aomoto, Theory of hypergeometric functions, Springer-Verlag (2011).

[22] L. Ferro, T.  Lukowski and M. Staudacher, N = 4 scattering amplitudes and the deformed

Graßmannian, Nucl. Phys. B 889 (2014) 192 [arXiv:1407.6736] [INSPIRE].

[23] I.M. Gelfand, M.I. Graev and V.S. Retakh, General hypergeometric systems of equations and

series of hypergeometric type, Uspekhi Mat. Nauk SSSR 47 (1992) 3.

[24] T. Oshima, Capelli Identities, Degenerate Series and Hypergeometric Functions, in

Proceedings of a symposium on Representation Theory at Okinawa (1995), pg. 1–19.

[25] I. Gel’fand and G. Shilov, Generalized Functions: Properties and operations, Academic Press

(1964).

– 20 –

http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1095
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2987
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
http://dx.doi.org/10.1007/JHEP03(2010)036
http://arxiv.org/abs/0909.0483
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0483
http://dx.doi.org/10.1007/JHEP07(2010)027
http://dx.doi.org/10.1007/JHEP07(2010)027
http://arxiv.org/abs/1001.3348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3348
http://dx.doi.org/10.1007/JHEP12(2010)010
http://dx.doi.org/10.1007/JHEP12(2010)010
http://arxiv.org/abs/1002.4622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4622
http://dx.doi.org/10.1007/JHEP03(2010)020
http://arxiv.org/abs/0907.5418
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5418
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0250
http://dx.doi.org/10.1007/JHEP08(2015)030
http://arxiv.org/abs/1412.8478
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8478
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.022
http://arxiv.org/abs/1002.4625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4625
http://dx.doi.org/10.1103/PhysRevLett.110.121602
http://arxiv.org/abs/1212.0850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.0850
http://dx.doi.org/10.1007/JHEP01(2014)094
http://arxiv.org/abs/1308.3494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3494
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.012
http://arxiv.org/abs/1407.6736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6736


J
H
E
P
0
3
(
2
0
1
6
)
0
1
4

[26] N. Arkani-Hamed, The amplituhedron, scattering amplitudes and ΨU , New geometric

structures in scattering amplitudes,

http://people.maths.ox.ac.uk/lmason/NGSA14/Films/Nima-Arkani-Hamed.mp4.

[27] T. Bargheer, Y.-t. Huang, F. Loebbert and M. Yamazaki, Integrable Amplitude Deformations

for N = 4 Super Yang-Mills and ABJM Theory, Phys. Rev. D 91 (2015) 026004

[arXiv:1407.4449] [INSPIRE].

[28] R. Frassek, N. Kanning, Y. Ko and M. Staudacher, Bethe Ansatz for Yangian Invariants:

Towards Super Yang-Mills Scattering Amplitudes, Nucl. Phys. B 883 (2014) 373

[arXiv:1312.1693] [INSPIRE].

[29] N. Kanning, T. Lukowski and M. Staudacher, A shortcut to general tree-level scattering

amplitudes in N = 4 SYM via integrability, Fortsch. Phys. 62 (2014) 556 [arXiv:1403.3382]

[INSPIRE].

– 21 –

http://people.maths.ox.ac.uk/lmason/NGSA14/Films/Nima-Arkani-Hamed.mp4
http://dx.doi.org/10.1103/PhysRevD.91.026004
http://arxiv.org/abs/1407.4449
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4449
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.015
http://arxiv.org/abs/1312.1693
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1693
http://dx.doi.org/10.1002/prop.201400017
http://arxiv.org/abs/1403.3382
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3382

	Introduction
	The amplituhedron
	Capelli differential equations and volume
	Properties of the volume
	Solution for the k=1 case
	Volume in the m=2 case
	Volume in the m=4 case
	First look at higher-helicity amplituhedron volumes
	Deformed amplituhedron volume

	Discussion and outlook

