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We evaluate the retrieval performance of the automated, unsupervised inversion algorithm, Tikhonov Advanced
Regularization Algorithm (TiARA), which is used for the autonomous retrieval of microphysical parameters of
anthropogenic and natural pollution particles. TiARA (version 1.0) has been developed in the past 10 years and
builds on the legacy of a data-operator-controlled inversion algorithm used since 1998 for the analysis of data from
multiwavelength Raman lidar. The development of TiARA has been driven by the need to analyze in (near) real time
large volumes of data collected with NASA Langley Research Center’s high-spectral-resolution lidar (HSRL-2).
HSRL-2 was envisioned as part of the NASA Aerosols-Clouds-Ecosystems mission in response to the National
Academy of Sciences (NAS) Decadal Study mission recommendations 2007. TiARA could thus also serve as an in-
version algorithm in the context of a future space-borne lidar. We summarize key properties of TiARA on the basis of
simulations with monomodal logarithmic-normal particle size distributions that cover particle radii from approx-
imately 0.05 μm to 10 μm. The real and imaginary parts of the complex refractive index cover the range from non-
absorbing to highly light-absorbing pollutants. Our simulations include up to 25% measurement uncertainty. The
goal of our study is to provide guidance with respect to technical features of future space-borne lidars, if such lidars
will be used for retrievals of microphysical data products, absorption coefficients, and single-scattering albedo. We
investigate the impact of two different measurement-error models on the quality of the data products. We also obtain
for the first time, to the best of our knowledge, a statistical view on systematic and statistical uncertainties, if a large
volume of data is processed. Effective radius is retrieved to 50% accuracy for 58% of cases with an imaginary part up
to 0.01i and up to 100% of cases with an imaginary part of 0.05i. Similarly, volume concentration, surface-area
concentration, and number concentrations are retrieved to 50% accuracy in 56%–100% of cases, 99%–100% of cases,
and 54%–87% of cases, respectively, depending on the imaginary part. The numbers represent measurement un-
certainties of up to 15%. If we target 20% retrieval accuracy, the numbers of cases that fall within that threshold are
36%–76% for effective radius, 36%–73% for volume concentration, 98%–100% for surface-area concentration, and
37%–61% for number concentration. That range of numbers again represents a spread in results for different values
of the imaginary part. At present, we obtain an accuracy of (on average) 0.1 for the real part. A case study from the
ORCALES field campaign is used to illustrate data products obtained with TiARA.
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1. INTRODUCTION

NASA’s Aerosol-Clouds-Ecosystem (ACE) mission (https://
acemission.gsfc.nasa.gov/whitepapers.html) called for the de-
velopment of active and passive remote sensors for investigating
climate forcing by aerosol particles and clouds. One of the
envisaged instruments is a multiwavelength high-spectral-reso-
lution lidar (HSRL), which in its most sophisticated configu-
ration would be a system that provides profiles of particle
backscatter coefficients and particle linear-depolarization ratios
at 355 nm, 532 nm, and 1064 nm, and extinction coefficients
at 355 nm and 532 nm. NASA Langley Research Center has
been developing two prototype HSRL instruments, dubbed
HSRL-1 and HSRL-2, since 2000. These instruments are
flown on aircraft and serve as research instruments and testing
platforms for a potential space-borne HSRL.

In this contribution, we present a summary of the perfor-
mance characteristics of the Tikhonov Advanced Regularization
Algorithm (TiARA). To our knowledge, TiARA is the world-
wide first autonomous algorithm that allows for the automated,
unsupervised retrieval of particle size distributions (PSDs) and
their microphysical particle parameters based on the analysis
of multiwavelength HSRL data. TiARA works with inversion
with Tikhonov’s regularization [1]. TiARA allows us to infer
uncertainty bars (in terms of bias and noise) from measure-
ments of atmospheric aerosols with HSRL-2. In this first stage
of the algorithm development, we have focused on optimi-
zing TiARA for the case of spherical particle geometry, mainly
for the lack of a light-scattering model that allows for a trust-
worthy description of light-scattering at 180° of non-spherical
particles. Thus, we analyzed backscatter coefficients only at
355 nm, 532 nm, and 1064 nm, and extinction coefficients
at 355 nm and 532 nm, which we denote as “3β� 2α” or
“3 + 2” configuration.

The software has been optimized for fast data processing to
achieve real-time data analysis with regard to the duration of
lidar measurements. The exact data processing times depend
on the number of profiles and the number of individual points
within a profile. Number of profiles and data points depend on
the specifications of the used laser system, e.g., laser power and
laser-pulse repetition rate, which influence signal-to-noise
ratios of the input optical data, as well as other factors such
as lidar return-signal averaging times and height of the observed
atmospheric column.

TiARA has been developed on the basis of our experience we
have collected since 1997 [2] with our data-operator-controlled
(manual) version of the inversion algorithm, e.g., [3–7].
Additional ideas and concepts were presented in, e.g., [8–10].
The initial main driver of developments of multiwavelength
Raman lidar and lidar-data inversion methodology was the
European Aerosol Research LIdar NETwork (EARLINET)
[11] since the late 1990s. Data-analysis concepts were devel-
oped through working with manually operated inversion algo-
rithms. These concepts have been included and automated in
TiARA. Additional concepts had to be developed for TiARA to
ensure reliable data products of high quality.

The general result of simulation studies carried out with the
data-operator version of the inversion algorithm pointed
towards 20% as the threshold for acceptable measurement

uncertainty for retrieving meaningful values of particle effective
radius, volume concentration, and surface-area concentration
[8–10,12]. Meaningful result in that regard was defined as
values that deviate less than 50% from the true values.
Time-consuming manual analysis of the inversion results
allowed us to identify and remove outliers in the final solution
spaces. We present for the first time a detailed analysis of the
retrieval performance with regard to number concentration.

This paper focuses on the main performance features of
TiARA based on an extensive study of results obtained with syn-
thetic optical input data. We obtain, in part, significantly im-
proved performance compared to the data-operator-controlled
inversion algorithm in the case of PSD size parameters.
Retrievals of high-quality complex refractive indices remain a
challenge and will require more sophisticated approaches.
First steps in that direction have recently been published
[13–16]. We discuss the concept of uncertainty analysis we de-
veloped in the context of TiARA, which includes separating bias
(accuracy) and statistical noise (precision) of the inferred data
products.

We further note that first tests of the performance of TiARA
with regard to experimental data focused on comparisons to
airborne measurements of the same data products delivered by
in situ instruments during two major field activities, i.e., the Two
Column Aerosol Project [TCAP; https://www.arm.gov/research/
campaigns/amf2012tcap] and Deriving Information on Surface
conditions from Column and Vertically Resolved Observations
Relevant to Air Quality [(DISCOVER-AQ; https://discover-aq.
larc.nasa.gov/]. Publications by [17,18] discuss in detail the
quality of the data products of TiARA and point to the (in part)
excellent performance characteristics of TiARA with regard to
parameters of particle size distributions, i.e., effective radius and
volume and surface-area concentrations.

In Section 2, we present the theoretical background of
TiARA. Results of simulations with synthetic data show the
main features of TiARA in Section 3. In Section 4, we show
a measurement example taken with HSRL-2. We summarize
the main results in Section 5. The Appendix provides addi-
tional background information on the simulations.

2. INVERSION ALGORITHM

We summarize the general theory of the inversion methodol-
ogy. We have published numerous papers on the manual
inversion in the past 20 years. A summary of that work can
be found in Ref. [19]. In the following text, we introduce a
coherent nomenclature that will be used in future publications.
We explain the new features that were introduced in the
autonomous inversion, e.g., optimized look-up tables, fast data
processing, and tools that are used in uncertainty analysis.

A. Theory
We solve Fredholm integral equations of the first kind
[8,10,19,20] in the inversion of the multiwavelength HSRL
and multiwavelength Raman lidar data. In generalized terms,
these equations can be written as

g�l �λi� �
Z

∞

0

K l �m, r, λi , s�f ��r�dr, (1)
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where g�l �λi� are the true values of the optical data at the
measurement wavelength λi. The subscript l denotes the type
of optical data (β–backscatter and α–extinction).

The terms K β�m, r, λ, s� and K α�m, r, λ, s� describe the
backscatter and extinction kernel functions, respectively, which
depend on the particles’ complex refractive index (CRI)
m � mR − i · mI (mR denotes the real part, i · mI denotes
the imaginary part), on the radius r of the particles, as well
as on their shape properties s. In the following discussion, we
consider only spherical particle geometry. The kernel functions
K l �m, r, λi, s� can be calculated from Mie-scattering theory
[21]. The term f ��r� describes the true particle size distribu-
tion expressed as the number of particles per unit volume be-
tween particle radius r and r � dr. For easier reading, the
reference to the shape property s will be omitted, as we do
not need to introduce a numerical value for it.

The modified version of Tikhonov’s inversion algorithm is
explained in detail by [8,10,12,19,20,22]. Briefly, Eq. (1) can
be rewritten in the following form:

g�p �
Z

rmax

rmin

K p�m, r�f ��r�dr � ϵlimits
p , (2)

where g�p are the true values of the optical data, and subscript
p � �l , λi� summarizes the kind and wavelength of the optical
input data. The terms rmin and rmax denote the lower and upper
integration limits of the particle radii within which the inver-
sion is performed. We denote this radius range as �rmin, rmax�.
The term ϵlimits

p is the mathematical residual error. This error
results from the fact that the reconstruction of the PSD, which
is one of the steps in this data inversion, does not perfectly re-
produce the size limits of the true PSD f ��r�; see Fig. 1. We
will discuss this specific feature in a separate contribution in the
context of uncertainty analysis that not only considers the effect
of measurement uncertainties but also the effects of uncertain-
ties introduced by the mathematical algorithm itself.

Equation (2) has to be solved numerically [1,23–25] for the
investigated size distribution f ��r�. The expression f ��r� is
approximated by a sum that consists of the following linear
superposition of base functions:

f ��r� � f �r� � ϵ�r� �
XNB

j�1

f jBj�r� � ϵ�r�: (3)

The term f �r� is an approximation of the solution of
Eq. (2). The expression f j describes the constants or weight

coefficients, and Bj�r� denotes base functions that, in our case,
have a triangular shape on a logarithmic radius scale [12,20].
These functions have shown to work sufficiently well in
approximating PSDs of monomodal and bimodal shapes
[9,10,12]. NB is the number of base functions. In our algo-
rithm, NB is always equal to or exceeds the number of optical
data. A different concept is followed by [8,9], who prefer to
keep the number of base functions nearly equal to the number
of input optical data.

Figure 1 shows the concept of the reconstruction of the in-
vestigated PSDs. Details are given by [12,20]. Briefly, we use
base functions of triangular shape that are distributed equidis-
tant on a logarithmic radius grid between 10 nm and (in its
latest version) 20 μm. The values f j are the weight factors that
we obtain in Eq. (3). The weight factors allow us to reconstruct
the true PSD in an approximate way. The differences in the
reconstruction quality depend on a large number of factors,
e.g., measurement uncertainties; if the true PSD is mono-
or bimodal; if the main portion (maximum) of the PSD is
located in the size range of Aitken mode particles (radius range
below 50 nm) or accumulation mode particles (radius range
approximately between 50 nm and 500 nm) or coarse mode
(particle radius is larger than 500 nm); the fact that the inte-
gration limits (minimum and maximum particle radii) are not
known; the possibility to reconstruct particle size distributions
with base functions of triangular shape; the number of base
functions used in the reconstruction process; or the value of
the complex refractive index of the particles and whether it
depends on particle size and/or measurement wavelength.

The solution carries the mathematical residual error ϵ�r�,
which is caused by the discretization of the true PSD with
the chosen linear combination of base functions.

Using Eqs. (2) and (3), we can write the optical data as linear
combination, i.e.,

g�p �
XNB

j�1

Apj�m�f j � ϵp: (4)

The expressions Apj and ϵp are calculated from the kernel func-
tions, base functions, and mathematical residual errors as

Apj �
Z

rmax

rmin

K p�m, r�Bj�r�dr, (5)

and

ϵp �
Z

rmax

rmin

K p�m, r�ϵ�r�dr � ϵlimits
p : (6)

We may write the observed optical data as vector g� � �g�p �, the
weight coefficients as vector f � �f j�, and the errors as vector
ϵ � �ϵp�. In that way, we can rewrite Eq. (4) in the following
vector–matrix form:

g� � Af � ϵ. (7)
The rectangular matrix A � �Apj� is the weight matrix, the
elements of which are calculated from Eq. (5).

In the following transformations, it is convenient to rewrite
Eq. (7) as the vector–matrix equation

Af � g: (8)

The unknown vector of the weight coefficients f is connected
by the matrix operator A with the optical data vector g. This

Particle radius, logarithmically equidistant scale
rmin rmax

1

2 3

4

5

Fig. 1. (left) Example of the qualitative reconstruction of a PSD
with five base functions of triangular shape distributed in the radius
interval �rmin, rmax�. The radius interval is denoted as inversion window
in the text. (right) Eight base functions allow us to reconstruct bimodal
size distributions.
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vector contains the error vector Δg, which includes in an ad-
ditive way the measurement error and the mathematical
residual errors.

The operator A is nearly singular (we are dealing with an
ill-conditioned operator); see, e.g., [26]. If we denote the
transposed of matrix A as AT and �ATA�−1 denotes the inverse
of matrix ATA, we obtain the simple solution of Eq. (8) for the
weight factors, i.e.,

f � �ATA�−1ATg: (9)
Equation (9) leads to nonphysical or unstable solutions [26]
because the mathematical problem is ill posed. For that reason,
we consider the following equation instead of Eq. (8) [1,26]:

�ATA � γH�f � ATg: (10)
The expression H is a smoothing matrix operator [26] that de-
scribes the physical constraint that the retrieved PSD does not
show large oscillations within an inversion window. The spe-
cific form of H influences the maximum difference between
the weight factors of successive base functions. γ is the non-
negative regularization parameter or Lagrangian multiplier,
which determines the degree of smoothing of the investigated
PSD along the grid bins, i.e., the strength of the operator H.
We search for a value of γ for which, in simple terms, Eq. (11)
becomes a minimum. An exact description of this standard
method can be found in, e.g., [20].

The matrix C � ATA � γH is symmetrical. We can apply
diagonalization, e.g., [27] and find eigenvectors and eigenvalues.

The above-mentioned near singularity of the operator A
means that the smallest eigenvalue of matrix ATA is much
smaller that its largest eigenvalue—10 orders of magnitude
and even more. More information can be found in Ref. [28].
Regularization allows us to increase the minimum eigenvalue
of matrix C by several orders of magnitude. In this way the
condition number of matrix C decreases, and the solution of
Eq. (10) becomes more stable than the solution of Eq. (9).

B. Mathematical Tools and Methods Used in the
Automated Unsupervised Algorithm
Finding the solution requires the application of several con-
straints. These constraints stabilize the inversion problem and
help us reject mathematical solutions that are physically not rea-
sonable. We use the simplifying assumption of a wavelength-
and size-independent complex refractive index of the aerosol
particles. The effect of this constraint on the quality of the
retrieval products will be investigated in future studies. We as-
sume that retrieving the wavelength dependence of the CRI
likely will require that we combine data from active and passive
remote sensing. The application of the gliding-inversion window
and the grid of a priori chosen CRI values are the constraints
that will be explained in the following subsections.

1. Inversion Window and Grid of CRI
This section serves as an introduction and motivation for iden-
tifying the solution space. The methodology that allows us to
find the solution space is described in detail in Section 2.D.

The rationale for using a gliding inversion window is given
by [12,20]. In summary, the precise position of the investigated
particle size distribution with regard to the particle size range is
unknown unless supplementary information, e.g., from other
particle size distribution measurements, is known. We solve

this challenge by using a gliding inversion window. This
window consists of the linear combination of base functions
of variable positions along the investigated size range and
variable width; see, e.g., [20].

Historically, we started out with 50 inversion windows
[3,20]. We find that the quality of the retrieval can be improved
if we use more inversion windows on a smaller radius search
grid. The automated algorithm uses 91 inversion windows
on the basis of an optimized databank of look-up kernel files
for the processing of each 3 + 2 dataset.

Figure 2 demonstrates the simplified example of how the set
of inversion windows is formed in the automated inversion
algorithm.

This concept requires us to predefine two sets consisting of
several minimal andmaximal particle radii. The two sets we used
in our simulations might have an insignificant overlap. The top
part of Fig. 2 shows a qualitative example of three entries in both
minimal and maximal radii sets. The given example results in
nine inversion windows because each of the three minimal radii
rmin forms a separate inversion window �r�k�min, r

�k�
max� with each of

the three maximal radii rmax [see Fig. 2]. The linear size of the
inversion window, i. e., the difference r�k�max − r�k�min, in our simu-
lations is always more than 0.38 μm.We exclude the narrow in-
version windows because we consider them to be nonphysical.

We discretize the CRI search space; see Fig. 2, shaded area.
The real part of CRI, mR , ranges from 1.325 to 1.8 with step
0.025. The imaginary part, mI, varies from 0 to 0.1i with step
0.003i. We plan to extend the CRI search grid in our future
studies. The real part of CRI, mR , will cover the range from
1.2 to 2 with step 0.025 [see Fig. 2].

Particle
radius

particle radius particle radius

rmin,(1) rmax,(1)

rmin,(2) rmax,(2)

rmin,(3) rmax,(3)

rmin,(4) rmax,(4)

rmin,(5) rmax,(5)

rmin,(6) rmax,(6)

rmin,(7) rmax,(7)

rmin,(8) rmax,(8)

rmin,(9) rmax,(9)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

C
R

I
im

ag
in

ar
y

pa
rt

CRI real part

Fig. 2. (top) Gliding inversion window. We show the arrangement
of the nine inversion windows. (bottom) Grid of the complex refrac-
tive indices. The meaning of the grey-shaded area (real part from
1.325−1.8) is described in the text.
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In this way, we arrive at a set of individual mathematical
solutions. Each solution number k within the complete set
of solutions is characterized by an inversion window �r�k�min, r

�k�
max�,

by a CRI value m�k� � m�k�
R − m�k�

I i, by a vector f �k� of weight
coefficients, and by a vector g�k� of backcalculated optical data:

A�k�jf �k�j � g�k�: (11)

We calculate what we describe as the modified discrepancy
vector [8] using the vectors f �k� and g�k�. We obtain

ρ�k� � g�k� − g, (12)

ρ�k� � A�k�jf �k�j − g, (13)

and the normalized discrepancy value

kρ�k�k � 1

NO

XNO

j�1

kρj�k�k
gj

100%: (14)

The symbol ∥ means that every element of the vector f �k� is
converted into its absolute value, NO is the number of optical
data, ρ�k�j denotes the jth component of vector ρ�k�, and g �k�j
denotes the jth component of vector g�k�.

This expression does not take account of measurement
uncertainties. We expect improved retrieval results if we take
account of this information, too. We are working on an im-
proved uncertainty analysis scheme.

2. Optimized Look-Up Tables
The most time-consuming procedure during the microphysical
parameters retrieval is the calculation of the values of the matrix
A with the help of Eq. (5). According to our estimations, the
direct computation of the light-scattering kernel functions
K p�m, r� consumes more than 90% of the whole inversion
time budget.

In order to reduce computation time, we improved the
efficiency of our algorithm by using look-up tables (LUTs).
The elements K p�m, r� of the LUTs are pre-computed for
the radius range r defined by the gliding inversion window
and the grid of complex refractive indices.

The automated algorithm uses an upgraded version of an
LUT that was used in the manual version of the algorithm
[12,20], which we denote as the “optimized databank.” This
optimized databank contains the pre-integrated values of the
matrix A.

The optimized LUT is based on the following numerical
properties of Eq. (5):Z

rmax

rmin

K l ,n�m, r, λ�B�r�dr �
�
λ

λ̂

�
3
Z λ̂

λrmax

λ̂
λrmin

K l ,n�m, r, λ̂�B̂�r�dr,

(15)
Z

rmax

rmin

K l ,s�m, r, λ�B�r�dr �
λ

λ̂

Z λ̂
λrmax

λ̂
λrmin

K l ,s�m, r, λ̂�B̂�r�dr, (16)

Z
rmax

rmin

K l ,v�m, r, λ�B�r�dr �
Z λ̂

λrmax

λ̂
λrmin

K l ,v�m, r, λ̂�B̂�r�dr, (17)

where λ is the reference wavelength of the LUT, and λ̂ is
another wavelength. The term K l ,��m, r, λ� describes the back-
scatter (l � β), extinction (l � α), absorption, and scattering

number (n), surface area (s), and volume (v) kernel functions.
These 4 kernel functions are calculated from Mie-scattering
theory [12,20,21]. The triangular base functions B�r� and B̂�r�
are defined on the coordinated radii ranges �rmin, rmax� and
�λ̂λ rmin, λ̂

λ rmax�, respectively.
Our three optimized LUTs were created using Eq. (15) for

the number, Eq. (16) for the surface area, and Eq. (17) for the
volume kernel functions [12,20]. Each LUT consists of four
separate files that contain the results of the integration of the
left sides of Eqs. (15)–(17) for the corresponding backscatter,
extinction, absorption, and scattering kernel functions. The
reference wavelength λ is always equal to 355 nm. We split
the covered range of particle radii from 10 nm to 10 μm into
71 logarithmical equidistant grid bins r1,…, r71. These grid
bins allow us to form 69 integration intervals �rj1 , rj1�2�, where
j1 � 1,…, 69. Each interval has three grid bins rj1 , rj1�1, and
rj1�2 that are used to create a triangular base function bj1�r�
[see Fig. 3], and then carry out the integration with the
corresponding kernel function following the left sides of
Eqs. (15)–(17). The complex refractive index m ranges in the
LUTs from 1.2 to 2 with step 0.005 for the real part (mR), and
from 0 to 0.5 with step 0.0005 for the imaginary part (mI).

For the practical purposes of data inversion, we normally
form each of the NB triangular base functions Bj�r� [see
Eqs. (4)–(5)] by using an odd number of optimized LUT
base functions bj1�r�. Figure 3 shows a qualitative example
where three functions bj1�r� were used to build one triangular
base function Bj�r� that mathematically can be expressed as

Bj�r� �
1

2
bj1�r� � bj1�1�r� �

1

2
bj1�2�r�: (18)

The term Bj�r� in Eqs. (5) and (18) should be treated as B̂�r�
on the right-hand side of one of the Eqs. (15)–(17). Thus, the
result of the right-side integration of any of the Eqs. (15)–(17)
can be linearly expressed through the left-side values that were
pre-calculated and stored in the optimized LUT. The other
desired triangular base functions Bj�r� can be formed using lin-
ear combinations of the LUT base functions b1�r�,…, b69�r�,
which allows us to use the optimized LUT in a wide range
of practical situations.

Another difference to the original version of the LUT used
by [12,20] is that we use LUTs not only for backscatter and
extinction but also for absorption and scattering coefficients.
Backscatter and extinction kernels are used for the inversion
itself. We introduced absorption and scattering elements in
order to speed up the computations of absorption and scatter-
ing coefficients, and single-scattering albedo from the retrieved

bj
1
(r) bj

1
+1(r) bj

1
+2(r)

rj
1

rj
1
+1 rj

1
+2 rj

1
+3 rj

1
+4 ln r

Bj(r)

0

1

Fig. 3. Example of the linear combination of three optimized LUT
base functions bj1�r�, bj1�1�r�, and bj1�2�r� into one inversion
triangular base function Bj�r�.
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microphysical parameters. The optimized data bank can be
stored in the operational memory of a personal computer,
which allows us to further reduce data processing time.
Storage of the original LUT that is used for the manual version
of the algorithm is done on a harddrive.

Another new feature of the optimized LUT is that inter-
mediate inversion windows and/or CRIs can be used. We
estimate these intermediate values from the entries of the
matrices A by linear interpolation.

3. Parallelized Routines
The inversion of lidar data allows for efficient parallelization of
the computation steps. We discretize the search space in terms
of CRI and inversion windows, which allows us to compute a
finite set of input parameters. This set of input parameters
forms the set of mathematical solutions.

The analysis of Tikhonov’s regularization curve, computa-
tion of the weight coefficients of the base functions, and com-
putation of the microphysical parameters and their uncertainty
bars can be done for each individual solution independently of
each other. This feature allows us to split the inversion calcu-
lations into independent computational threads, each one com-
puting the mathematical solutions of the subset that has been
selected for that specific thread.

Within one application, each thread can be launched on a
separate core of a multi-core shared-memory system. According
to our experience, the time of calculations for such a sys-
tem decreases almost linearly with increasing number of used
cores. For example, if the inversion code runs in parallel mode
on a 64-core server using all available cores, the computation
time decreases by a factor 63 compared to computations with
a single-core system. We implemented the software on an
AMD Opteron server. It has four CPUs, 64 integer cores,
and 32 floating point cores, and the processing frequency is
2.8 GHz. It takes slightly less than 6 s to analyze one set of
3 + 2 data, including a full uncertainty analysis, as described
in Section 2.C. For comparison, we previously used a laptop
with one Intel CPU, four cores, eight threads, and 2.4 GHz
processing frequency. It took a little more than 22 s for a full
analysis of one 3 + 2 dataset.

Further increases of data processing speed are possible if we
increase the number of cores. The speed of the microprocessors
will increase in the future. We will also further improve the use
of mathematical algorithms in order to increase the speed of
the inversion algorithm. Our code also can be compiled and
executed using standard message passing interface (MPI) libra-
ries. The improvement of performance with the number of
involved cores in this case will strongly depend on the features
of the hardware of employed distributed-core systems.

Finally, we can also increase the data processing speed if we
use important auxiliary information that can be provided by
multiwavelength HSRL or Raman lidar. For example, aerosol
typing [29] is one way of reducing the search space in data in-
version, which automatically increases the data processing speed.

We achieved one of the main goals of our work set out
several years ago. We are able to carry out real-time data analysis
of airborne operation of HSRL-2 in the sense that there is no
difference between the flight time of a research flight and the time
it takes to deliver the final microphysical particle data products.

C. Uncertainty Analysis
1. General Remarks
Error computation is done in a numerical fashion, i.e., we in-
vert the mean value of the optical dataset, and then we distort
the optical data within the error bars. This procedure is time
consuming and affected by conceptual uncertainties. We will
explore these concepts in future work.

The errors that we show in the results section are the com-
bination of uncertainties resulting from uncertainties of the op-
tical data and uncertainties/errors created by the inversion
algorithm. We are working on concepts that will allow us to
separate the uncertainties caused by the mathematically in-
duced errors of the inversion algorithm and the uncertainties of
the optical data. Mathematically induced errors are, e.g., choice
of the grid of the CRI, choice of number and position of the
inversion windows, choice of shape of the base functions,
assumption that the CRI can be kept wavelength and size in-
dependent in the retrievals, correct choice of the regularization
parameter, and choice of regularization method. The error
induced by the choice of the grid of the CRI presents a special
challenge in uncertainty analysis. The CRI in itself is an
unknown quantity in the data inversion scheme.

In this first version of TiARA, we analyze the uncertainty
caused by selecting only those individual inversion results
that are defined by the minimum of the regularization curve
[12,20]. We are aware that this minimum of the regularization
curve may not always provide us with the best possible inver-
sion result of the investigated PSDs.

It is a challenge to process measurement uncertainties in data
inversion in a realistic manner. Measurement uncertainties do not
propagate during the inversion process in a way that allows for
using an analytical expression of the effect of measurement un-
certainties on the final data products. Small measurement uncer-
tainties may lead to large uncertainties of the final data products.

We know of only a few studies in which the authors inves-
tigated the effect of uncertainties in individual measurement
channels on the total uncertainties [30]. The authors found
that uncertainties are additive with respect to the retrieval
scheme they use. [31] used the methodology of optimal esti-
mation to illustrate the propagation of measurement uncertain-
ties in a 3 + 2 lidar system. The authors confirm that the
mathematical system of equations is underdetermined and con-
tains approximately four independent pieces of information.
The authors further find that their retrieval procedure reduces
the uncertainty with respect to the a priori value for all five
retrieved variables. In particular, the comparison of the re-
trieved data products to the desired target parameters is best for
the size distribution parameters and worst for the complex re-
fractive index. [32] explored the limitations of the retrievals
with regard to particle size. Preliminary results indicated signifi-
cantly increased retrieval uncertainties for particle radii below
≈50 nm (see Tables 1–4 in Ref. [32]). These results are
strongly corroborated by the study of [31], who demonstrate
that limited sensitivity to particle radii smaller than 50 nm leads
to greatly increased uncertainties unless the retrieval size range
is constrained to avoid them.

One of the characteristics of ill-posed inverse problems is that
a small amount of uncertainties or even the absence of uncer-
tainties in the input data can lead to large uncertainties/errors
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of the final data products. There remain questions of how to treat
measurement uncertainties in uncertainties analysis, how the er-
ror distribution function affects the quality of the inver-
sion results, and how big measurement uncertainties can be until
the inversion results become meaningless. Studies published in
mathematical literature often use unrealistically low uncertain-
ties, i.e., input data uncertainties often do not exceed 1%.

A description of how to treat measurement uncertainties
in the retrieval process and uncertainty analysis based on the
optimal estimation approach is given in Ref. [33]. [31] does
not carry out an optimal estimation retrieval, but the uncer-
tainty analysis used the optimal estimation method. Table 4
in Ref. [31] shows, on the basis of results for three different
sets of measurement uncertainties of different sizes, how big
measurement uncertainties can be. We currently work on an
improved uncertainty analysis scheme and will consider in that
study also the techniques used in the Generalized Aerosol
retrieval from Radiometer and LIdar Combined data
(GARLIC) and LIdar-Radiometer Inversion Code (LIRIC)
algorithms, e.g., [34].

The formalism that describes accuracy and precision can be
written as

accuracy ≔ kf true − f avek, (19)

precision:σ: (20)

2. Error Models
We use a scheme we denote as “extreme-error model” (EEM),
which has been used for the manual version of the inversion
method in the past 20 years [3]. This method allows us to com-
pute the uncertainty of the data products on the basis of a
very simple assumption: if the slope of the extinction-related
Ångström and/or backscatter-related Ångström exponent
changes, the microphysical parameters also change, though
not necessarily in a proportional way. We are aware that this
extreme-error scheme comes with certain flaws. For example,
it is an intuitive model in which we assume that extreme dis-
tortions of the spectra of backscatter and extinction coefficients
result in proportional distortions of the solution space of micro-
physical parameters. This may not always be true, and we lack
in a theoretical model that would help us in considering im-
provements. However, the model has been used with rather
good success in the past years, e.g., [35], and currently is our
preferred model for uncertainty analysis.

Because of this situation, we introduced for the first time
another model that could be used in future uncertainty analysis.
We call it the “Gauss-distributed-error model” (GEM). The
uncertainty bars have a Gaussian-curve-like shape. We started
exploring if such a model could provide us with a mathemati-
cally sound uncertainty analysis and even replace EEM in
future versions of TiARA. Both uncertainty-analysis methods
will be explained in the following.

Figure 4 is a graphical display of the two error models used
in the simulation studies. Aside from the traditional way of
expressing the uncertainty of the retrieval products in terms
of error bars of one standard deviation, we also explored
whether it is possible to split the uncertainty bars into accuracy
(bias) and precision (noise). A first set of results on the accuracy

of the derived parameters can be obtained from the statistical
analysis of the simulation results; see Section 3.C. We will
further develop this concept of accuracy and precision in future
versions of TiARA.

In the case of the EEM, we used a fixed error level for each of
the five measurement channels. Table 1 shows the basic prin-
ciple of this method. We used in our simulations uncertainty
values of 5%, 10%, 15%, 20%, and 25%; see Table 5.

Figure 4 (top) shows an example of the distortions for
the case of using two extinction coefficients in the EEM. The
number of combinations of the extinction input data is 32.
We consider the three options of correct value, maximum
underestimation, and maximum overestimation for a given un-
certainty, respectively. In the case of the three backscatter co-
efficients, 33 combinations are possible. Figure 4 (bottom)
shows the example of the GEM. We show the spread around
the “correct” optical data point. We define the measurement
uncertainty as the value μ at which this Gauss-error function
reaches its peak value.

For example, run number 1 describes the situation in which
the backscatter and extinction coefficients at 355 nm and
532 nm are overestimated by x%, whereas the backscatter
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Fig. 4. Illustration of (top) extreme-error model (EEM) and (bottom)
Gauss-error model (GEM). The figure is explained in the text.

Table 1. Distortion of Optical Data in EachMeasurement
Channel in the Case of the EEMa

Run Number β355 β532 β1064 α355 α532

1 + + − + +
2 + + − − −
3 + + − + −
4 + + − − +
5 − − + + +
6 − − + − −
7 − − + + −
8 − − + − +

aThe + sign indicates that a data point in one of the five measurement
channels is changed by +x%, where x% denotes one of the following
values: 5%, 10%, 15%, 20%, or 25%. The − sign indicates that a data
point is changed by −x%. Run number denotes the eight different inversion
runs that we carried out for each optical data set.
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coefficient at 1064 nm is underestimated by x%. Theoretically,
except for the case of 0% error, we find 242 combinations that
could be tested for EEM. However, we can remove many of the
scenarios for obvious reasons.

Three of these combinations merely lead to a shift in the
backscatter and extinction spectra, e.g., in the case of 5% error,
there is the case of 0% shift (correct data),�5% shift for all five
data points, and −5% shift for all data points. Some of the dis-
tortions are physically unreasonable, e.g., backscatter coefficients
at 532 nm are lower than backscatter coefficients at 355 nm and
1064 nm, and could be identified in the optical profiles.

With regard to the EEM, we therefore used nine inversion
runs. One run is for the error-free data, and eight runs are for
the distorted backscatter and extinction spectra according
to Table 1. We then average the results of these nine runs,
which gives us the final value of the data product including
uncertainy bars. Based on our experience with the manual in-
version, we know that this number is at the lower limit of error
runs, but still give us statistically meaningful results [36].

With regard to the GEM, the error computation is done for
a set of eight distorted input data, which are within the error
bounds prescribed for each measurement channel according to
Gaussian distribution and the error-free dataset, i.e., we carry
out nine different inversions for each optical dataset as in the
case of the EEM.

We used a random number generator that produced data
uncertainties according to the Gaussian-error distribution func-
tion; see Fig. 3. This was done for each measurement channel
and independently of each other. The mean value of each
optical data point, which is the observed value and which
we denote in the context of this work as correct value, is located
at the μ-position of the Gauss distribution function. The
deviation from the μ-position denotes the measurement uncer-
tainty. If we denote the measurement uncertainty as x%, this
value is reached at the 3-σ position of the error-distribution
function, i.e., σ � x∕3. Accordingly, the distribution function
is defined by its mean value and the geometric standard
deviation σGM, which fully describes the measurement uncer-
tainty around the exact value of the optical data point.

In our simulations, we set the one standard deviation, de-
noted as 1σ in Table 6, and constrain the maximum value
of distortion—about three times larger than 1σ in Table 6.
Following the formalism of EEM, we average the results of
these nine runs, which gives us the final value of the data
product including uncertainty bars.

D. Unsupervised Identification of the
Final Solution Space
1. Method
The ill-posedness of the mathematical problem does not allow
us to select one single solution for each of the final data prod-
ucts. The use of constraints on the one hand reduces the
instability of the inversion problem. On the other hand,
the introduction of constraints allows us to find a match to
the sought microphysical solutions, but we cannot perfectly re-
produce the optical data. This “conundrum” regarding the
identification of the correct solution space results in a multitude
of individual solutions that fulfill the prescribed constraints as
well as the constraint that both, the optical input data and the

microphysical data products need to be reproduced within a
certain range of uncertainty. We use all these individual solu-
tions that we obtain from the inversion for computing the
mean value and the uncertainty bars.

The averaging procedure takes advantage of the fact that
different solutions can have oscillations of opposite sign, and
that, after averaging, the mean oscillations can become much
smaller than the oscillations of individual solutions. In our case,
taking the average of many “good” quasi-solutions smoothes
the mean solution and gives an additional stabilization of the
solution space.

The aim of the unsupervised data analysis is to collect a set
of individual solutions from the complete solution space we
obtain from the inversion of each optical data set. This set of
selected individual solutions then is averaged and forms the
basis of the final inversion results, i.e., mean value and its
uncertainty. One of the challenges we are dealing with is the
selection of the vicinity around the minimum discrepancy,
as it defines what we denote as the discrepancy averaging interval
ρav [8].

We used the discrepancy averaging interval, i.e., we used a
few percentages of individual solutions of the total number
of all solutions. This latter solution space is denoted as initial
solution space, which follows from the inversion of a single data-
set, i.e., all solutions we obtain for all inversion windows and
the grid of refractive indices tested in the inversion. This initial
solution space includes all error runs for each optical input
dataset according to the EEM or GEM method.

The individual solutions of the initial solution space fulfill
the discrepancy as described by [12] in the sense that ρ�k� ≤
ρav � 1% to 5%. The exact value of discrepancy that allows
us to consider the corresponding individual solution part of
the final-averaged solution space depends on various factors.
For example, the input (measurement) uncertainties can be
used as one of the constraints that define the final solution
space. We will use measurement uncertainties as additional
elements of information in future versions of TiARA.

However, the use of this constraint only usually does not lead
to the final solution, which is the average of individual solutions
that fulfill ρ�k� ≤ ρav, for which we obtain a tolerable uncer-
tainty. In fact, even a small value of the discrepancy within this
acceptable value of ρav can be linked to an individual solution
of microphysical parameters that does not make sense from a
physical point of view and thus has to be classified as outlier.

The huge amount of optical data we obtain with airborne
and space-borne lidar requires software that runs in an autono-
mous mode, i.e., we need routines that allow us to identify the
averaging interval automatically. Autonomous mode means
that parameters such as discrepancy averaging interval ρav
and amount of individual solutions N s that need to be averaged
are estimated automatically.

For that reason, we started out with an averaging pro-
cedure [8] and introduced several modifications in order to
allow for the unsupervised data analysis. These modifications
simultaneously take into account the following constraints
imposed on the solution space:

1. The number of solutions that are averaged is N S.
Usually N S does not exceed a few percent of the total number
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of solutions (initial solution space) for a given optical input
dataset. In our simulations, we set N S � 500. That number
is approximately 1% of the total number of solutions of the
initial solution space.

2. The maximum discrepancy δmax is the number that
defines all individual solutions with larger discrepancy and that
is not considered in the averaging process. This maximum dis-
crepancy is correlated with the measurement uncertainty of the
optical input data. Usually this value does not exceed δmax �
10% to 20%.

3. We define threshold uncertainties of effective radius (δr)
and number concentration (δn). Usually, we set these values to
25% and 100%, respectively.

These two constraints are set before the averaging procedure
starts. This procedure involves the following steps:

(a) The initial step is to find the first individual solution
of the final solution space. This first solution can be found
from the minimum value of the discrepancy, defined as ρ�1�,
as it defines the values of the parameters r�1�eff and n�1�t .

(b) After that first step, we select the number concentration
n�2�t and effective radius r�2�eff that belong to δ�2�, which is the
second smallest discrepancy value.

(c) We compare the values of r�1�eff and n
�1�
t and r�2�eff and n

�2�
t .

If the relative deviations of

kr�1�eff − r
�2�
eff k∕r�1�eff × 100% (21)

and

kn�1�t − n�2�t k∕n�1�t × 100% (22)

do not exceed the respective thresholds δr and δn, the 1st and
2nd individual solutions of effective radius are averaged. The
same is done for number concentration. If condition (21)
and (22) are not fulfilled simultaneously, the 2nd individual
solution is ignored.

(d) We continue with this selection procedure. We test the
�k � 1�-th individual solution that has the discrepancy ρ�k�1�.
This discrepancy value is the next nearest to the value of the
discrepancy ρ�k� of the k-th individual solution. We compare
the parameters r�k�1�

eff and n�k�1�
t with the averaged values of the

k previous individual solutions r̄eff and n̄t . These average values
of effective radius and number concentration are defined as

p̄ � 1

k

Xk
j�1

p�k�, p � nt , reff : (23)

If the relative deviations defined by

kr̄eff − r�k�1�
eff k∕r̄eff × 100% (24)

and

kn̄t − n�k�1�
t k∕n̄t × 100% (25)

do not exceed the respective uncertainties δr and δn the 1st,
2nd,…, k-th, and �k � 1�-th individual solutions are averaged.
The same is done for the effective radii and number concen-
trations that belong to these values of δ. If the relative
deviations as described by (24) and (25) are not fulfilled,
the �k � 1�-th individual solution is ignored.

(e) This selection process is continued as long as the num-
ber of averaged solutions is less than N s or the discrepancy of
the next individual solution is ρ�k� ≤ δmax.

(f ) After these routines are carried out, we obtain a subset
of the individual solutions. This subset is constrained by the
number N s and/or the maximum discrepancy δmax. The uncer-
tainty (scatter) of number concentration and effective radius
that arises from the averaged values is limited by δn and δr ,
respectively. Furthermore, we take account of additional con-
straints, i.e., the radius range (rmin, rmax), that we want to use
for the averaging procedure; we check the lidar ratios, the
Ångström exponents, and the spectral slopes of these parame-
ters that follow from the individual solutions we want to in-
clude in the averaging procedure. Additional constraints can
be set (or extracted, obtained) using a priori information about
aerosol types, e.g., [29,37,38].

2. Unsupervised, Automated Data Inversion: Summary
Figure 5 shows the flowchart of the inversion software. The
methods were described in the previous sections. The numbers
in circles in the flowchart refer to text in Appendix A.

Fig. 5. Flowchart of TiARA. The meanings of the numbers in
circles in the flowchart are given in Appendix A.

Research Article Vol. 58, No. 18 / 20 June 2019 / Applied Optics 4989



Table 2 summarizes the data products we present in this
contribution. Additional data products that can be derived with
TiARA are listed in Table 4.

3. TIARA: SENSITIVITY STUDY

A. Preparation of Simulation Data
In this section, we present a summary of the first sensitivity
study carried out with TiARA. The number of simulation
cases is sufficient to show the basic properties of TiARA.
We made several simplifications of the underlying aerosol
properties. We neglected the fact that in real aerosol situa-
tions, particles have a size- and wavelength-dependent com-
plex refractive index. One main simplification is that we
assumed a logarithmic-normal monomodal shape of the in-
vestigated PSDs.

Results of pre-studies regarding bimodal PSDs are presented
in Refs. [14–16]. We did not test bimodal PSDs in our con-
tribution, because a significantly different simulation strategy
other than the one used for simulations of monomodal PSDs
is needed. Both modes (fine and coarse mode) cover a wide
range of parameters (median radius and geometrical standard
deviation in their own domains, respectively). Given the avail-
able computer power, we cannot cover a large enough set
of bimodal PSDs consisting of different combinations of
the fine and coarse modes to derive statistically meaningful
results.

Figure 6 shows the monomodal logarithmic-normal PSDs
we used in our simulations. The mathematical description
has the form

f �r� � 1

r
ffiffiffiffiffiffiffiffi
ln σ

p exp

�
−
�lnr − lnrmed�2

2�lnσ�2
�
: (26)

Monomodal logarithmic-normal PSDs can be characterized by
three parameters. One parameter is the median radius (rmed),
which defines the radius at which half of the particles in this
PSD have radii lower than this radius and the other half of the
particles have a radius larger than this radius. The second
parameter is the geometrical standard deviation (mode width)
σ, which defines the spread of the particle size distribution,
i.e., the number of particles per radius interval between the
minimum-chosen particle radius and the maximum-chosen
particle radius. In that context, the expression ln σ is commonly
referred to as mode width. The third parameter is the number

of particles (per cm3) for which the PSD reaches its maximum.
In our present study, we fixed the number of particles
to 1∕cm3.

We used PSDs in terms of volume concentration represen-
tation in data inversion. Figure 6 shows that our PSDs not only
cover the fine-mode range but also the coarse-mode range. We
define in this study 500 nm particle radius as separation be-
tween fine-mode and coarse-mode particles. This separation
at 500 nm particle radius already allows us to take a first look
at the performance of TiARA for particles in the coarse mode
without explicitly considering bimodal PSDs.

Figure 7 is a graphical display of particle effective radii and
surface-area and volume concentrations tested in our study.
Table 4 in Appendix A presents the numerical values of these
parameters. The optical data were computed from these size
distributions with the assumption of 1 particle per cm3. We
do not need to use other values of particle number concentra-
tion, as this parameter serves only as a multiplication factor of
the extensive properties of the investigated PSDs, i.e., number,
surface-area, and volume concentrations.

The chosen values for median radius and mode width cover
a comparably wide range of particle scenarios. In terms of num-
ber concentration, the PSDs cover the fine-mode fraction;
see Fig. 6, left. The inversion algorithm retrieves the PSDs in
terms of volume concentration. If we convert the number con-
centration to volume concentration, we see that PSDs based
on volume-concentration distribution contain particles above
10 μm radius. That size range covers a significant part of the
coarse mode of PSDs and thus needs to be considered in the

µµ µ µ

Fig. 7. Graphical display of effective radius and surface-area and
volume concentrations of the PSDs that formed the basis for the com-
putation of the optical data used in the simulations. Each symbol rep-
resents one specific combination of median radius and geometrical
standard deviation. The numerical vales of the parameters are given
in Appendix A.

Table 2. Data Products of the Total PSD Inferred with
TiARAa

Parameter

Effective radius
Number concentration
Surface-area concentration
Volume concentration
Imaginary part of the complex refractive index
Real part of the complex refractive index

aUncertainties of the complex refractive index are too high for archiving
purposes.

Fig. 6. PSDs that were tested in our simulation studies.
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reconstruction process. The LUTs developed for TiARA cover
this radius range.

Simulation studies with the manual version of the inversion
software [8,12] showed that measurement uncertainties up to
20% still allow for inferring meaningful results of microphysical
data products. The results presented in this contribution are
based on five different uncertainty scenarios and two error
models. In TiARA’s method of solution space analysis, we
added several new components that were not used in the
manual version, which was first published between the late
1990s and early 2000s. For that reason, we also explored at
which threshold value of measurement uncertainty TiARA
provides unacceptable microphysical data products.

Table 3 shows that we used measurement-channel-
independent uncertainties of 0%, 5%, 10%, 15%, 20%, and
25%. We also simulated four uncertainty scenarios in which
the measurement uncertainties varied among the different mea-
surement channels; see Table 6 in the Appendix. Analysis of these
measurement-channel-dependent simulations is underway.

The case of error-free data was also investigated, as it allows
us to collect information on the possible minimum uncertainty
of the data products. We hypothesize that this uncertainty is
driven by the mathematically induced retrieval uncertainty
of TiARA. The CRI in that case is assumed error free, i.e.,
we assume we know the correct value of the CRI. We will fur-
ther discuss this topic in our next paper, which will detail our
next version of the uncertainty-analysis scheme.

In the following section, we present an example of the in-
version of optical data obtained from a size distribution of a
given geometrical standard deviation. The example serves as
illustration of the general features of TiARA.

B. Example: Case Study
Figure 8 shows effective radius (first and second rows), and
number (third and fourth rows) and surface-area (fifth and sixth
rows) concentrations obtained with EEM. Figure 9 shows
the results for volume concentrations and the complex refrac-
tive index.

For each parameter, we show the results for the case of
error-free optical input data and the case of 15% measurement
uncertainty. Each retrieval result (data point) is shown as mean

value (symbols). Each data point follows from applying the
averaging procedure described before.

The 1-1 lines indicate perfect reproduction of the theoretical
values of the investigated parameters, i.e., the 1-1 line is a mea-
sure of the accuracy of the retrievals. The green lines show that
the retrieved data products would need to be reduced, respec-
tively, increased by 20% in order to be on the 1-1 line. The red
lines indicate that the retrieved data products would need to be
redruced by a factor of two, respectively, doubled in order to
be on the 1-1 line.

In addition, each data point is shown with an uncertainty
bar. Each individual solution (mean value) is affected by a
retrieval uncertainty caused by the mathematically induced
error, which follows from applying the averaging procedure in
the vicinity of minimum discrepancy and the uncertainty
caused by the inversion of imprecise optical input data. This
uncertainty bar can be interpreted as standard deviation of
the individual mean solutions.

The results for surface-area and volume concentrations are
shown on a double-logarithmic scale. We chose this form of
presentation because these two parameters cover a large range
of values. Although the individual uncertainty bars are difficult
to identify, we see that in most cases the uncertainties are
below 50%.

The mean values of effective radius largely remain within the
red sector if the true values of the input optical data are exact,
i.e., we achieve the minimum requirement we expect from
TiARA: the mean values of the inversion results remain within
	50% deviation from the true results. There are some outliers
that seem to occur for the case of low real parts and large imagi-
nary parts. The reason for these comparably strong outliers is
unknown. The retrieved effective radius remains within the
green sector, at least up to an effective radius of 0.5 μm, except
for these few outliers.

50% is the upper value of statistical uncertainty of the mean
value of effective radius. In many cases, this statistical noise is
considerably less. The outliers belong mainly to the lowest real
part tested in this study (1.4) and also show the strongest stat-
istical uncertainty.

15% uncertainty of the optical data reduces the retrieval ac-
curacy. The mean values remain in the red sector if effective
radius is less than 0.5 μm and the imaginary part is ≤0.01.
For stronger light-absorbing particles, i.e., imaginary parts
larger than 0.01, we find cases in which effective radius is over-
estimated by more than a factor of two. Statistical uncertainty
also increases if measurement errors are 15%.

In summary, we find that PSDs with particle effective
radii below approximately 0.5 μm can be retrieved to at
least 50% accuracy and better than 50% precision if par-
ticle absorption is low, i.e., imaginary parts are ≤ 0.01.
Such low values of the imaginary part result in single-
scattering albedo (SSA) at 532 nm >0.9 if, at the same
time, 0.1 μm < reff < 0.5 μm; additional information can
be found in Ref. [36]. If particles are highly light-absorbing,
there is an increasing chance of overestimating particle
effective radius.

The mean value of number concentration for the most
part remains in the red sector. TiARA tends to underestimate

Table 3. Error Scenarios of the Simulation Studiesa

β355 β532 β1064 α355 α532

EEM 5 5% for all 5 input data
EEM 10 10% for all 5 input data
EEM 15 15% for all 5 input data
EEM 20 20% for all 5 input data
EEM 25 25% for all 5 input data
GEM 5, 1σ 5% and 1.7% for all 5 input data
GEM 10, 1σ 10% and 3.3% for all 5 input data
GEM 15, 1σ 15% and 5% for all 5 input data
GEM 20, 1σ 20% and 6.6% for all 5 input data
GEM 25, 1σ 25% and 8% for all 5 input data

aThe numbers 5,…, 25 describe the uncertainty of the input data in percent.
In the case of GEM, we need a second number to describe the uncertainty.
We use 1σ from the center value (0% uncertainty) within which this data
uncertainty of 5% …., 25% is achieved; see Fig. 4 for illustration.
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Fig. 8. Example of retrieval performance for the case of size distributions with a geometrical standard deviation of 1.9 and median radii of 20 nm,
60 nm, 100 nm, 140 nm, 180 nm, 220 nm, 260 nm, and 300 nm (Table 5). We tested all 15 imaginary parts of the complex refractive index of
the investigated particle size distributions (Table 5). We show the results for the imaginary parts 0i, 0.005i, 0.01i, 0.03i, and 0.05i. Each data point
(with error bar) shows the average and standard deviation of multiple solutions obtained in one retrieval. The first row shows the results for effective radius
and 0% data uncertainty. The second row shows the results for 15% data uncertainty and the use of EEM. The results for number concentration are
shown in row 3 (0% data uncertainty) and row 4 (15% data uncertainty). Rows 5 and 6 show the results for surface-area concentration. The colored lines
describe by how much the data values need to increase or decrease to coincide with the 1-1–line (gray line). Green = reduction/increase by 20% (denoted
in the text as green sector); red = reduction/increase by factor 2 (red sector). The squares describe the results of the four real parts tested in the simulations:
1.4 (blue), 1.5 (green), 1.6 (orange), and 1.7 (black). The uncertainty bars for number concentration are turned by 90° for better readability.
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Fig. 9. Same as in Fig. 8 but for (rows 1 and 2) volume concentration, (rows 3 and 4) the real part, and (rows 5 and 6) the imaginary part of the
complex refractive index. Meaning of the symbols and their colors are the same causedas in Fig. 8. Results for volume concentration again are shown
in terms of percent-deviation from the true results. Meaning of the colored lines in the plots that show the results for the real part: reduction/increase
of the mean values by 0.05 (green) and by 0.075 (red) before results coincide with the true values (1-1-line, gray). Meaning of colored lines for the
imaginary part: reduction/increase by 	0.006 (green) and reduction/increase by factor 2 (red) until mean values coincide with 1-1–line (gray).
The uncertainty bars for real and imaginary parts of the complex refractive index are turned by 90° for better readability.
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number concentration if the input optical data are error free;
see Fig. 8. This underestimation seems to grow with the in-
creasing imaginary part of the complex refractive index of the
investigated particles. The statistical error usually is less than
50%—in part, it is significantly less than 50%. The retrieval
accuracy seems to improve with the increasing real part
of the complex refractive index of the investigated particles.
This pattern will be investigated in more detail in future
studies.

A measurement uncertainty of 15% amplifies the feature
of underestimating number concentration. As in the case of
error-free data, the retrieved number concentration tends to
be underestimated stronger as the imaginary part increases.
Statistical uncertainty also increases compared to the case of
error-free optical data. This feature is particularly obvious
for the cases in which number concentration is overestimated.

As noted in previous studies [8,12,13,17,36] we find excep-
tionally accurate inversion results for surface-area concentra-
tion. An explanation for this mechanism has recently been
published [14,15]. Surface-area concentration covered approx-
imately three orders of magnitude in our simulation study. The
results for surface-area concentration are inside the red sector,
even if measurement errors are 15%. The only exceptions from
this result are connected to the lowest values of surface-area
concentration tested in our study. In that case, we significantly
underestimate surface-area concentration if imaginary parts
≤0.01. In contrast, highly light-absorbing PSDs can be re-
trieved comparably accurately.

We are investigating the outliers that we find for low imagi-
nary parts. One reason for this behavior could be that we
cannot resolve in a trustworthy manner PSDs below particle
radii of 50 nm. Such an underestimation would lead to an
underestimation of surface-area concentration. In fact, number
concentration would be underestimated even more in such a
case. We find this underestimation of number concentration
for PSDs that consist of a comparably high share of small par-
ticles below 50 nm radius. We will address this issue in our next
performance test of TiARA. We will use an upgraded version of
LUT tables and an improved solution-space post-processing
scheme [14–16].

We find accurate inversion results of volume concentration
across four orders of magnitude. The quality of the inversion
results seems to decrease for imaginary parts of 0.05i, i.e., the
case of highly light-absorbing particles. We find two outliers in
the plot for the imaginary parts 0.03i and 0.05i. The statistical
uncertainty of the retrieved values is always below 50% except
for these two outliers. In most cases, the statistical uncertainty
is less than 20%–30%.

We will carry out a more detailed analysis to identify what
effect may be responsible for the two outliers. First, the input
lidar ratios are 39,000 sr and 73,000 sr, respectivley. These data
are produced by PSDs with very small mean radii of 0.02 μm
and a real part of 1.7. In this case, the overlap between the
available inversion windows and the PSDs likely is insuffi-
cient. The inversion solution has a minimal discrepancy of
≈1.0e � 4. This value is far too large to count as an acceptable
solution. The next upgrade of TiARA will use an improved
databank and other important modifications. Furthermore,

we will be able to use a bigger set of simulation data, which
hopefully will remove such outliers.

The accuracy of the inversion results slightly worsens for
15% measurement uncertainty if the imaginary part is ≤0.01i.
TiARA tends to overestimate volume concentration. Mean
values still remain within the red sector except for very small
volume concentrations, where we find a similar pattern to the
one described for surface-area concentration, i.e., volume
concentration may be underestimated by more than 50%.
However, as in the case of surface-area concentration, this
underestimation seems to disappear for large imaginary parts,
i.e., >0.01i. TiARA seems to overestimate volume concentra-
tion for large imaginary parts of 0.03i and 0.05i. The statistical
noise also increases significantly.

Figure 9 (center) shows the results for the retrieved real part.
The true value was 1.6 in this simulation case. We used a search
grid from 1.325–1.8 (real part) and 0i − 0.05i (imaginary part)
in our simulations; see Fig. 2. We tested in summary four dif-
ferent real parts: 1.4, 1.5, 1.6, and 1.7. As the final goal of our
algorithm development, we targeted a retrieval accuracy of 0.05
to 0.075 for the real part. With regard to the imaginary part we
aimed at 50% retrieval accuracy as the minimum goal. The
main challenge in that regard lies in retrieving low values of
the imaginary part, which we define as 0.01. We cannot use
negative imaginary parts in our inversion. Based on the current
way of how we select the final solution space, we naturally end
up with an overestimation of the imaginary part. This overesti-
mation is particularly strong if the true value of the imaginary
part of the complex refractive index approaches the value zero,
i.e., no light absorption.

TiARA tends to overestimate the real part by more than
0.075 if the true value is 1.4 and the input optical data are error
free. This overestimation disappears for a larger real part. The
range of retrieved real parts for the different size distributions
(effective radii) seems to vary in dependence on the underlying
imaginary part. For example, in the case of the true value 1.6
(red symbols), we see that all solutions are clustered between
approximately 1.65 and 1.7 if imaginary parts are small. In con-
trast, if the imaginary part is 0.05i the solutions are spread out
between real parts from 1.4 to 1.7. If the true value is 1.4, this
pattern is nearly opposite, i.e., real parts vary across a wide
range of numbers for low imaginary parts. In contrast, retrieved
real parts seem to accumulate between 1.4 and 1.5 if the
imaginary part is 0.05i.

In summary, we find the following pattern of retrieval ac-
curacy: the real part is overestimated, particularly if real parts
are 1.4 or 1.5. Real parts are underestimated if values are
1.6 and 1.7. We assume that this pattern is largely based on
the search space of the real and that TiARA is not sensitive
to retrievals of the real part. Statistical uncertainty is as high
as 	0.1, which is another indicator of the insensitivity of
TiARA with regard to retrieving the real part. Such uncer-
tainties are larger than what we need to achieve with TiARA
in view of the accuracy requirements for SSA; see, e.g., [36].
We are exploring methods that allow us to reduce the uncer-
tainty of the retrieved CRI. Ref. [13] shows that a retrieval
accuracy of at least 0.1 of the real part may be achievable.
This accuracy would already significantly improve the accuracy
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of the data products obtained with TiARA, and particulary
would improve the accuracy of the mean values of the SSA
to approximately 	0.075 or better; measurement uncertainty
of the optical input data, of course, has influence on SSA, too.
An example that illustrates our assumption is given in Fig. 6
of Ref. [36].

In the case of 15% measurement error, TiARA seems to
generally overestimate the real part. The majority of retrieved
real parts is at/above 1.6. We currently have no explanation for
this pattern, i.e., this general overestimation when we move
from error-free to erroneous optical input data. The insensitiv-
ity of TiARA with regard to the real part retrieval might explain
this pattern only in part.

Another reason could be the position of the PSD along the
particle radius grid. The analysis of this pattern, however, goes
beyond the main goal of this paper, which is about identifying
typical patterns and the general applicability of TiARA.
However, these patterns will form the basis for a more refined
analysis of our simulations. We hope that a better understand-
ing of these patterns will help us improve TiARA in future.
First results in that regard have been published in recent years
[13–16,36].

Figures 9 (rows 5 and 6) shows the results of the retrieved
imaginary parts. If the optical data are error free, TiARA over-
estimates the imaginary part. This pattern is particularly strong
for low imaginary parts. If the imaginary part is high, i.e., 0.03i
and 0.05i, accuracy improves. The mean values are within the
red sector. Still, we find on average an overestimation of the
imaginary part in these two cases.

The situation is similar in the case of 15% measurement
error. The imaginary part is largely overestimated if the true
values are 0i, 0.005i, and 0.01i, respectively. However, we find
some (minor) differences compared to the case of 0% measure-
ment uncertainty. The mean value for the most part stays
within 	0.006i if the real part is 1.4 or 1.5. A more detailed
analysis on the basis of a larger set of simulations is needed to
decide if this is a result that can be generalized, i.e., if better
retrieval results for small imaginary parts can be obtained if real
parts are small. We find better retrieval results of the imaginary
part in the case of 0% data error. Accuracy is better than
	0.006i if real parts are large, i.e., 1.6 and 1.7. The underes-
timation of the retrieved values largely disappears if imaginary
parts are 0.03i or 0.05i. Most of the mean values remain in the
red sector.

The statistical uncertainty is mainly in the range of 50% if
the true imaginary parts are 0.03i or 0.05i. If imaginary parts
are smaller (0.005i or 0.01i), the statistical uncertainty is as
high as 100%. If the true imaginary part is 0i, uncertainties
can be as high as −0.02i.

In summary, most of the results we obtained for the imagi-
nary part in this study confirm the findings we obtained with
the manual version of the inversion algorithm (see also results
presented in, e.g., Fig. 6 of Ref [36]): a) retrieval results are
within	50% for highly light-absorbing particles, and b) imagi-
nary parts can be retrieved to 	100% if particles are low light-
absorbing. Imaginary parts of 0i cannot be retrieved at the
moment.

C. Statistics: Histograms
The previous case study illustrated for a few examples of PSDs
what can be achieved with TiARA. It showed its strengths and
weaknesses. As we are interested mainly in the mass production
of inversion results for future space-borne missions, the more
important question is how TiARA performs on a statistical
basis; regardless of this demand, we will strive for improving
inversion results of each individual case, as this, of course, nat-
urally improves the statistical performance of TiARA. The stat-
istical overview in this section allows us to further discuss the
performance of TiARA in more general terms.

In view of the assessment of the impact of data uncertainties
on the inversion results, the following figures also include re-
sults for GEM. We emphasize, that at present, we favor EEM
over GEM in TiARA. EEM is more robust than GEM at the
current status of algorithm development. We gain insight on
the impact of extreme values of the retrieved microphysical
parameters on the mean values of the data products, because
we test extreme distortions of the optical spectra with the
EEM. Knowledge of the possible largest and smallest values
of each data product is valuable information in our uncertainty
analysis and can be achieved with a comparably small number
of error runs (eight). We cannot derive this information (ex-
treme values of data products) from GEM.

The strength of GEM lies in its use of the statistical nature
of uncertainty bars of the optical input data. In this first step of
developing this new scheme of uncertainty analysis, we used
only eight error runs. Our idea was to make the inversion re-
sults we obtained with GEM easier to compare with the results
we obtained with EEM. Based on the current analysis of the
simulation results we obtained with GEM, we realized that
the number of error runs (eight) may not be sufficient to obtain
a statistically significant set of individual solutions that need to
be averaged for the final data products. We will increase the
number of error runs to several hundred per dataset in a future
study. We assume that we will reproduce the Gaussian-like
shape of the distribution curve shown in Fig. 4 in a much better
way. Despite the incompleteness of the simulation with GEM,
we consider it relevant to show some results. The results help in
better understanding the fundamental concepts of using GEM
in future use of TiARA.

Figure 10 shows a statistical overview of the deviation
between the reconstructed microphysical parameters and the
true values for all size distributions tested in this study, includ-
ing the six error levels, i.e., 0%, 5%, 10%, 15%, 20%, and
25%. The figures show how results differ if we use EEM
(gray-shaded columns and numbers in black) and GEM
(green-shaded columns and numbers in green) for generating
the eight erroneous datasets (for each PSD and set of CRI) in
our simulations. The histogram distributions show the percent-
age of simulated cases (eight PSDs, four real parts, 15 imaginary
parts) that deviate by a given percentage from the true results
of effective radius and number, surface-area, and volume con-
centrations. The histogram columns show results for which the
retrieval products deviate ≤50% from the true results. 50%
retrieval accuracy is our priority requirement, though we target
a 20% retrieval accuracy for as many data products as possible
in a future version of TiARA. In the case of real and imagi-
nary parts of the complex refractive index, we show absolute
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deviations from the true results. The histogram columns refer
to these deviations from the true results.

These histogram distributions are complemented by hori-
zontal gray lines (EEM) and green horizontal lines (GEM).
These lines show the percentage of cases that deviate by
≤50% from the true results in the case of effective radius
and number, surface-area, and volume concentrations. For ex-
ample, Fig. 10(aa) shows that nearly 100% of all effective radii
can be retrieved with less than 50% deviation (accuracy) from
the true results. This holds true for both error models—the gray
and the green horizontal lines overlap. The black and green
numbers in each plot extend this analysis. Each number de-
notes how many of all cases deviate less than 	20% from
the true results. The results give an impression of how far
off we are from what we consider as maximum achievable
performance.

In the case of the real part, the horizontal lines and the num-
bers in each plot describe absolute deviations from the true
values (real part). The horizontal lines refer to 	0.075
deviation (accuracy) from the true values. The numbers in the
plots describe the percentage of cases that deviate by 	0.05
from the true values.

With regard to the imaginary part, the numbers in the plots
describe the percentage of cases that deviate 	0.006i from the
true values..

The results derived from EEM and GEM differ. We first
discuss the results for the size parameters, i.e., effective radius
and number, surface-area, and volume concentrations.

From a qualitative point of view, the distribution (spread) of
histogram columns generally is wider for the results obtained
with EEM compared to the GEM results. There is a larger
number of individual simulation cases for which, on average,

Fig. 10. Inversion results for all values of sigma, all median radii, and all real and imaginary parts of the complex refractive index (see Fig. 7 and
Table 5). Each row shows the results for one of the six investigated data products. Each column shows the results for (from left to right): 0%, 5%,
10%, 15%, 20%, and 25% optical data uncertainty. The histograms show percentage deviations (0%–50%) from the true values for the cases
(aa)–(df ) and the absolute errors for cases (ea) to (ff ). We show the results for the EEM (black/hatched columns) and the GEM (green columns).
The gray (EEM) and green (GEM) horizontal lines show the total number of simulation cases for which the respective parameter can be recon-
structed to better than	50% [(aa)–(df )]. The black (EEM) and green (GEM) numbers show the percentage of cases for which the data products can
be retrieved to better than	20%. In the case of the real part [(ea)–(ef )], the horizontal lines (gray and green) represent results for absolute deviations
less than	0.075 from the true values. The numbers represent deviation less than 	0.05. In the case of the imaginary part [(fa)–(ff )], relative
deviations, i.e., horizontal lines, are not defined, as we included the results for imaginary parts of 0i in our analysis. The numbers show the percentage
of simulations for which the retrieved imaginary parts deviate less than 	0.006i from the true values [(fa)–(ff )]. The y axis of all plots is scaled to
100%. Figure 16 in the Appendix provides an overview of the results based on individual scalings for each data product.
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the microphysical data products tend toward larger systematic
deviations from the true values if we apply EEM compared to
GEM. On average, GEM delivers more results that are close
to 0% deviation from the true results compared to EEM.

The inversion results tend to be better, i.e., narrower around
the 0%-deviation point for measurement errors of 10%–15%.
This result however needs to be confirmed in further simula-
tion studies. We again note the exceptionally high retrieval
quality of surface-area concentration. With regard to GEM,
we notice on average a slight underestimation of the size param-
eters for the individual simulations. The exception is surface-
area concentration, which is overestimated by up to 10%.

With regard to the real and imaginary parts, we find the
following results. We systematically overestimate the real part
in all cases considered in our study. Only for the case of high
imaginary parts do we find situations in which we under-
estimate the real part for some cases. If imaginary parts are
large, there is a rather clear systematic behavior with regard
to retrieval quality in dependence on uncertainty of the optical
input data. The retrieval accuracy drops with increasing uncer-
tainty of the input data if we take	0.075 as the threshold value
for the retrieved real part.

We do not find a significant performance difference in
TiARA whether we use the EEM or the GEM in our simula-
tions. If we use 	0.05 as the threshold for the retrieved real
part, we find fewer cases that fulfill this requirement if the
imaginary part is large (0.03i and 0.05i). There is no clear
pattern for smaller imaginary parts.

With regard to the imaginary part, we again notice an over-
estimation of the retrieved values compared to the theoretical
values. The inversion results are larger than the theoretical val-
ues, regardless of the used error model. The number of cases in
which the imaginary part is derived to within	50% of the true
value is comparably high. This number of cases increases with
increasing imaginary part. No results are shown for the cases
of 0i and 0.005i (horizontal gray and green lines) as the error
of 	50% cannot be computed in these cases. I.e., it is not de-
fined for the case of 0iand cannot be computed for the case
of 0.005iin view of the resolution of the grid that was used
for the imaginary part.

We see a slight systematic behavior of the retrieved values
of the imaginary parts with regard to increasing uncertainty
of the optical data. The number of cases that fall within the
50% threshold-level decreases with increasing uncertainty level.
Again, it seems that 15% data uncertainty is an upper threshold
for which a reasonable retrieval performance can be achieved.

If we use the threshold-value	0.006i, we find that on aver-
age 40%–50% of all cases fall within this uncertainty level.
We do not see a clear pattern of retrieval quality in dependence
on the uncertainty of the optical data used as input in the
inversion.

In summary, the uncertainties of the optical input data seem
to have little influence on the retrieval quality of the real and
imaginary parts of the CRI. This pattern points to a possibly
low sensitivity of TiARA with regard to retrieving the CRI. In
contrast, the algorithm is capable of deriving trustworthy values
of particle size parameters, i.e., effective radius and number,
surface-area, and volume concentrations.

Finally, we show the unscaled version of this figure in
Fig. 16 in Appendix D. This figure shows more clearly the
height of the individual histogram columns and the distribu-
tion of the height of the columns. This figure is our first
attempt to illustrate the distribution function of the solution
space with regard to the deviation from the true results.
One goal of future work includes the development of a more
comprehensive uncertainty analysis scheme and to investigate
the properties of the distribution function. We are interested
in properties such as the shape of this distribution function.
For example, we want to find out if a specific shape exists
for all data products, e.g., Gaussian-type distribution or skewed
distribution, and if we can infer in a more straightforward man-
ner systematic and statistical biases of the individual data prod-
ucts from such histogram distributions. We will discuss in more
detail these topics in our follow-up contribution that will deal
with our updated uncertainty analysis scheme.

D. Statistics: Color Maps
Figure 11 summarizes the retrieval results in terms of color
(heat) maps. This style of presentation provides us with a
quicklook version of the performance of TiARA.

We show the results for all investigated size distributions
and all investigated error levels (EEM and GEM) for all micro-
physical parameters. We show the number of simulated cases
(in percent) that deviate by less than 20%, respectively, 50%
from the true values of the size parameters (effective radius and
number, surface-area, and volume concentrations). We show
the results for 	0.05 and 	0.075 deviation from the true val-
ues of the real part of the CRI. We show the results for	0.005i
and 	50% deviation from the true values of the imagi-
nary part.

The map separates the results according to the uncertainty
level of the input optical data and the error model we used. In
one case, we combined all results regardless of the imaginary
part, but the results are separated according to the mode width
that was used for the investigated PSDs. In the other case, we
combined all results regardless of the mode width of the
PSDs, but the results are separated according to the used imagi-
nary parts of the investigated PSDs.

We believe that separation according to the imaginary
part of the CRI is necessary in this figure, as this parameter
is the most sensitive input quantity for calculating SSA. SSA
also depends on the PSD; thus, representation of the simula-
tions according to a quantity related to particle size is also useful
for the analysis of the performance of TiARA. We picked geo-
metrical standard deviation as a first attempt in this type of
data analysis. This parameter represents the variance, which
is one additional quantity we want to provide as data product
in the future.

We look at other ways of presenting our results. These heat
maps can be considered only as our first attempt of presenting
the performance of TiARA in a way that allows for easy com-
parison to performance changes compared to future versions of
the software.

We counted the solutions that fall within 20% and 50%
deviation from the true results. We then defined color-coded
intervals that reflect if, e.g., 68.3% (1-σ standard deviation),
95.4% (2-σ standard deviation), and 99.7% (3-σ standard
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deviation) of all solutions are within the 	20%-interval,
respectively, 	50%-interval of acceptable retrieval quality. Our
goal is to develop a statistically robust framework of uncertainty

analysis, and for that reason, we introduce the concept of
(1, 2, 3)-sigma standard deviations. We are aware of the fact
that such a denotation requires a statistical framework based

0 5 10 15 20 25 0 5 10 15 20 25
0 1 62% 51% 55% 39% 32% 91% 90% 88% 83% 74% 64%

0.005 2 69% 59% 44% 35% 32% 93% 100% 98% 77% 63% 58%
0.01 3 67% 58% 43% 38% 29% 93% 99% 94% 70% 66% 58%
0.03 4 58% 44% 38% 23% 23% 74% 78% 65% 55% 45% 43%
0.05 5 45% 29% 26% 25% 22% 61% 63% 50% 46% 44% 48%
1.5 6 63% 63% 57% 47% 33% 77% 78% 75% 69% 69% 65%
1.7 7 64% 57% 43% 27% 16% 79% 79% 77% 70% 55% 49%
1.9 8 64% 57% 22% 18% 16% 83% 84% 81% 55% 43% 39%
2.1 9 53% 38% 40% 27% 28% 88% 89% 81% 59% 48% 38%
2.3 10 55% 36% 42% 34% 32% 84% 92% 75% 68% 59% 55%
2.5 11 62% 38% 42% 40% 39% 82% 94% 84% 75% 77% 79%

Extreme Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

EFFECTIVE RADIUS
Uncertainy of Optical 

Input Data in Percent 

mI theo

Sigma

0 5 10 15 20 25 0 5 10 15 20 25
58% 63% 68% 56% 54% 55% 91% 90% 90% 89% 88% 91%
55% 60% 65% 59% 66% 60% 93% 96% 96% 96% 91% 93%
55% 54% 57% 63% 68% 58% 93% 97% 99% 97% 95% 88%
54% 54% 51% 47% 51% 43% 74% 78% 75% 78% 78% 73%
44% 51% 41% 33% 34% 32% 61% 63% 65% 58% 54% 55%
65% 61% 75% 62% 55% 57% 77% 75% 84% 77% 77% 75%
62% 66% 60% 52% 55% 51% 79% 79% 76% 70% 74% 75%
63% 57% 65% 56% 62% 51% 83% 81% 84% 87% 82% 80%
49% 56% 48% 45% 51% 45% 88% 93% 88% 86% 82% 77%
43% 51% 47% 51% 55% 50% 84% 92% 89% 94% 85% 86%
38% 48% 44% 43% 49% 42% 82% 88% 89% 86% 87% 88%

Gauss Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

0 5 10 15 20 25 0 5 10 15 20 25
0 44% 38% 37% 41% 40% 31% 74% 69% 61% 69% 63% 64%

0.005 51% 49% 48% 50% 39% 33% 80% 75% 73% 78% 71% 73%
0.01 53% 46% 44% 46% 40% 33% 81% 75% 78% 82% 79% 72%
0.03 51% 52% 41% 37% 21% 18% 89% 88% 86% 71% 61% 49%
0.05 43% 34% 33% 17% 13% 10% 91% 81% 78% 67% 53% 48%
1.5 52% 52% 50% 39% 30% 27% 88% 86% 77% 63% 56% 59%
1.7 49% 41% 40% 46% 36% 23% 87% 78% 67% 72% 75% 74%
1.9 52% 48% 43% 44% 30% 24% 86% 73% 80% 80% 75% 67%
2.1 51% 43% 47% 38% 30% 24% 83% 76% 81% 81% 67% 56%
2.3 45% 46% 34% 30% 25% 22% 81% 77% 76% 73% 57% 56%
2.5 41% 33% 30% 31% 32% 28% 73% 75% 69% 71% 63% 55%

Extreme Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

mI theo

Sigma

NUMBER CONC.
Uncertainy of Optical 

Input Data in Percent 0 5 10 15 20 25 0 5 10 15 20 25
44% 48% 46% 40% 28% 26% 74% 71% 74% 61% 61% 48%
51% 41% 49% 28% 44% 33% 80% 75% 76% 52% 70% 63%
53% 57% 48% 38% 26% 39% 81% 82% 75% 66% 61% 65%
51% 48% 43% 43% 28% 40% 89% 80% 77% 74% 56% 63%
43% 33% 39% 40% 21% 20% 91% 87% 75% 74% 60% 67%
52% 52% 64% 49% 39% 46% 88% 91% 87% 83% 80% 73%
49% 46% 40% 44% 32% 32% 87% 82% 81% 75% 67% 65%
52% 51% 47% 36% 26% 26% 86% 79% 76% 58% 61% 55%
51% 49% 42% 30% 24% 24% 83% 79% 77% 63% 54% 58%
45% 39% 38% 34% 30% 32% 81% 75% 67% 60% 56% 57%
41% 35% 38% 32% 25% 29% 73% 67% 65% 53% 52% 60%

Gauss Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

0 5 10 15 20 25 0 5 10 15 20 25
0 98% 100% 100% 100% 72% 37% 99% 100% 100% 100% 100% 100%

0.005 99% 100% 100% 100% 81% 34% 99% 100% 100% 100% 100% 98%
0.01 100% 100% 100% 99% 84% 43% 100% 100% 100% 100% 100% 99%
0.03 98% 100% 99% 99% 95% 46% 100% 100% 100% 100% 100% 100%
0.05 98% 98% 100% 98% 96% 60% 100% 100% 100% 100% 100% 99%
1.5 96% 97% 99% 98% 80% 40% 98% 100% 100% 100% 100% 100%
1.7 97% 100% 100% 98% 83% 41% 100% 100% 100% 100% 100% 97%
1.9 100% 100% 100% 100% 87% 35% 100% 100% 100% 100% 100% 98%
2.1 100% 100% 100% 100% 91% 46% 100% 100% 100% 100% 100% 100%
2.3 100% 100% 100% 100% 85% 49% 100% 100% 100% 100% 100% 100%
2.5 100% 100% 100% 100% 87% 52% 100% 100% 100% 100% 100% 100%

Sigma

Extreme Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

SURFACE-AREA CONC
Uncertainy of Optical 

Input Data in Percent 

mI theo

0 5 10 15 20 25 0 5 10 15 20 25
98% 98% 100% 99% 96% 99% 99% 99% 100% 99% 97% 100%
99% 99% 97% 100% 99% 99% 99% 100% 98% 100% 100% 100%

100% 98% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100%
98% 98% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100%
98% 97% 98% 99% 96% 97% 100% 100% 100% 100% 100% 100%
96% 90% 95% 98% 90% 96% 98% 99% 97% 99% 97% 100%
97% 99% 98% 99% 97% 98% 100% 100% 100% 100% 99% 100%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Gauss Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

0 5 10 15 20 25 0 5 10 15 20 25
0 58% 56% 49% 56% 41% 28% 90% 89% 87% 83% 74% 68%

0.005 54% 64% 58% 44% 39% 37% 91% 98% 98% 78% 78% 69%
0.01 53% 59% 53% 44% 43% 33% 92% 99% 95% 71% 71% 59%
0.03 50% 58% 43% 37% 33% 31% 74% 77% 64% 54% 62% 53%
0.05 43% 46% 30% 26% 27% 33% 61% 63% 48% 48% 53% 51%
1.5 66% 59% 55% 54% 38% 32% 76% 76% 75% 69% 71% 69%
1.7 61% 58% 57% 46% 45% 39% 79% 79% 78% 71% 66% 55%
1.9 60% 60% 56% 26% 31% 29% 83% 83% 80% 57% 63% 45%
2.1 45% 48% 40% 45% 30% 25% 88% 89% 80% 58% 58% 47%
2.3 45% 58% 37% 39% 39% 33% 85% 92% 76% 70% 68% 62%
2.5 33% 56% 33% 38% 35% 36% 78% 92% 81% 74% 79% 82%

mI theo

Extreme Error Model
< 20% Deviation From True Values < 50% Deviation From True Values

Sigma

VOLUME CONC.
Uncertainy of Optical 

Input Data in Percent 0 5 10 15 20 25 0 5 10 15 20 25
58% 58% 64% 54% 54% 52% 90% 88% 88% 88% 86% 86%
54% 52% 61% 52% 56% 61% 91% 93% 93% 94% 91% 90%
53% 52% 57% 58% 67% 50% 92% 96% 97% 97% 95% 88%
50% 50% 49% 47% 46% 40% 74% 77% 75% 78% 77% 75%
43% 49% 40% 33% 33% 29% 61% 63% 64% 58% 53% 54%
66% 58% 72% 58% 55% 56% 76% 72% 84% 77% 75% 75%
61% 58% 60% 51% 49% 48% 79% 79% 76% 71% 76% 77%
60% 59% 60% 52% 57% 51% 83% 81% 84% 86% 83% 79%
45% 53% 47% 41% 50% 42% 88% 90% 85% 86% 81% 75%
45% 45% 44% 49% 53% 46% 85% 92% 85% 92% 84% 82%
33% 41% 42% 41% 43% 35% 78% 84% 84% 85% 84% 83%

< 50% Deviation From True Values
Gauss Error Model

< 20% Deviation From True Values

0 5 10 15 20 25 0 5 10 15 20 25
0 26% 28% 24% 23% 25% 25% 29% 30% 28% 27% 27% 27%

0.005 29% 30% 28% 26% 26% 26% 36% 47% 38% 36% 28% 29%
0.01 33% 39% 36% 29% 26% 28% 46% 55% 48% 40% 32% 37%
0.03 38% 22% 31% 26% 32% 32% 55% 53% 51% 48% 48% 45%
0.05 43% 36% 31% 32% 29% 29% 67% 55% 43% 43% 53% 53%
1.5 44% 44% 43% 33% 31% 33% 59% 57% 54% 43% 40% 41%
1.7 39% 32% 30% 29% 24% 25% 51% 55% 42% 41% 37% 41%
1.9 35% 31% 27% 25% 27% 26% 48% 48% 43% 36% 36% 41%
2.1 29% 27% 28% 23% 28% 28% 42% 42% 36% 32% 36% 32%
2.3 28% 25% 26% 30% 27% 27% 40% 44% 37% 38% 38% 37%
2.5 29% 27% 26% 23% 28% 28% 39% 42% 38% 42% 38% 37%

REAL PART
Uncertainy of Optical 

Input Data in Percent 
< 0.05 Deviation From True Values < 0.075 Deviation From True Values

mI theo

Sigma

Extreme Error Model

0 5 10 15 20 25 0 5 10 15 20 25
0 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d

0.005 26 30 28 25 25 26 26 33 32 31 35 32
0.01 47 53 52 45 46 41 47 56 54 53 54 50
0.03 62 61 58 54 58 58 62 60 63 59 63 61
0.05 92 90 78 79 84 83 92 88 85 82 87 83
1.5 49 54 54 45 41 40 49 56 56 54 52 51
1.7 48 49 45 42 46 44 48 45 49 49 53 45
1.9 48 44 42 42 41 42 48 50 46 42 49 44
2.1 43 44 40 37 43 41 43 46 47 43 46 44
2.3 41 45 38 38 41 41 41 44 42 39 43 43
2.5 42 45 40 40 43 41 42 42 41 43 43 44

Uncertainy of Optical 
Input Data in Percent 

mI theo

Sigma

Extreme Error Model Gauss Error Model
< 50% Deviation From True Values

IMAGINARY PART

0 5 10 15 20 25 0 5 10 15 20 25
32 38 32 27 28 25 32 49 44 40 41 39
38 52 45 40 39 33 38 53 49 53 50 48
47 53 52 45 46 41 47 56 54 53 54 50
29 24 26 23 19 14 29 25 30 21 28 24
26 23 18 22 21 18 26 29 23 18 18 18
45 48 41 31 32 25 45 49 56 45 36 44
46 44 37 32 34 33 46 44 48 41 42 34
38 37 36 34 36 27 38 48 39 36 47 36
28 31 30 34 30 23 28 45 36 31 33 35
24 33 34 30 29 27 24 31 29 34 35 32
25 34 28 26 23 23 25 37 31 35 35 34

< 0.006 Deviation From True Values 
Extreme Error Model Gauss Error Model

0 5 10 15 20 25 0 5 10 15 20 25
26% 30% 29% 26% 26% 23% 29% 34% 33% 31% 33% 30%
29% 34% 35% 34% 33% 31% 36% 49% 47% 47% 45% 42%
33% 46% 40% 42% 42% 38% 46% 58% 54% 52% 56% 52%
38% 23% 33% 28% 30% 30% 55% 49% 48% 45% 53% 52%
43% 46% 44% 38% 34% 41% 67% 68% 64% 52% 48% 58%
44% 42% 51% 42% 47% 43% 59% 63% 67% 54% 59% 59%
39% 33% 33% 37% 32% 28% 51% 52% 55% 48% 47% 41%
35% 43% 38% 33% 37% 33% 48% 59% 47% 44% 51% 46%
29% 37% 35% 27% 28% 32% 42% 48% 46% 41% 41% 45%
28% 29% 31% 34% 25% 28% 40% 43% 40% 42% 43% 44%
29% 31% 29% 28% 29% 30% 39% 44% 41% 42% 40% 44%

< 0.05 Deviation From True Values < 0.075 Deviation From True Values
Gauss Error Model

Fig. 11. Results for all simulations, separated according to the imaginary part and the geometric standard deviation (mode width) of particle size
distribution. The colors (see color legend at bottom of figure) visualize the number of simulation cases (in terms of percentages) that have a retrieval
uncertainty that is better than 	50%, respectively, 	20% for effective radius and number, surface-area, and volume concentrations, i.e., 	50% and
	20% serve as cutoff values for the simulations that meet these constraints. The numbers in each cell provide the number of cases (in percent relative to
the total number of cases that belong to each cell). With regard to the real part, the colors describe the number of cases that are retrieved to better than
	0.075, respectively,	0.05. Only cases that meet this threshold value are included in the statistics. The imaginary-part retrieval is color coded on the
basis of a retrieval result that is better than	50%, respectively, better than	0.006i. If values cannot be given (not defined) we inserted n/d in the cells.
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on Gaussian-like distributions of data products that can only
in part be achieved at the moment. However, we prefer to
introduce this standardized concept of representation of the
results already at this stage of our research work, as it allows us
to make the results presented in this study comparable to future
performance tests of TiARA. We also avoid more arbitrary
selections of intervals that could be used to reflect the perfor-
mance of TiARA in the main region of our interest with regard
to performance assessment, i.e., accurate retrievals in more
than 50% of all simulation cases.

The cells in the heat maps for which we achieve 68.3%,
95.5%, and 99.7% are shown in green (light, medium, dark)
colors. Cases for which at least 50% of all investigated cases
of effective radius and number, surface-area, and volume con-
centrations fall into the selected uncertainty levels are shown in
orange. If less than 50% of the cases are within the uncertainty
levels, we show the cells in red color. One row of the map
of results related to the imaginary part retrievals has no color.
The values are not defined.

The left part of the map shows the results for the EEM. The
right half of the map shows the results for the GEM. We note
once more that the EEM currently is our preferred method of
uncertainty analysis, as the retrieval results seem to be more
consistent with what we can expect from erroneous simulation
data, i.e., retrieval uncertainties increase on average with in-
creasing optical data input uncertainty. As mentioned before,
the results we obtain with GEM are not conclusive, and we
need to carry out more simulations and analysis of the results
before we will consider switching to this new uncertainty
analysis scheme.

In order to illustrate the utility of Fig. 11, we will present
two specific examples of how to interpret the figure. We select
the SURFACE-AREA map, mI theo, and the row that shows the
value 0.005 for the case: extreme error model: <20% deviation
from the true values.

The term mI theo refers to the correct value of the imaginary
part of the CRI that was used for calculating the optical input
data. We select column 20, which denotes the optical data un-
certainty of 20%. We see a light green cell, and the value 81%
inside. It means that if we take all simulations regardless of the
sigma value and select the simulations for which the true value
of the imaginary part was 0.005i, 81% of all surface-area
concentration retrievals could be retrieved with less than
20% uncertainty.

As another example, we select the IMAGINARY PART,
Sigma map and the row that shows the value 1.9. We use
the map Gauss error model: <50% deviation from true values.
We select the column 5%, which again denotes the uncertainty
of the optical input data. We see an orange cell and the value 50
inside. It means that we take all simulations obtained from
PSDs with a geometrical standard deviation of 1.9 regardless
of the imaginary part (0i, 0.005i, 0.01i, 0.03i, 0.05i); we ob-
tain the imaginary part with less than 50% uncertainty for 50%
of all investigated cases.

With regard to the size parameters, on average, more
cases fall within 50% than 20% retrieval uncertainty. This
result holds true for both uncertainty models. With regard
to the EEM, the retrieval performance on average worsens

significantly stronger if we reduce the threshold from 	50%
to 	20% deviation from the true value, compared to the
results obtained with GEM.

However, we need to take the results of better performance
of GEM compared to EEM with caution. For example, in the
case of <50% Deviation From True Values, it seems counter-
intuitive that the retrieval quality of the size parameters is
independent of the uncertainty of the optical input data.

One explanation for this unusual behavior we obtain with
GEM could be the low number of inversion runs (nine) that
we use for each PSD and error level. As mentioned before, this
number by far is not able to reproduce a Gaussian-shape-like
error curve, i.e., the statistics of the distribution of the errone-
ous input data may be (strongly) biased. For example, it may
happen that the nine inversion runs accumulate around 0%
uncertainty rather than covering the bell-shaped form of the
Gaussian curve in a representative way (Section 3.C.2). This
result shows that we still have insufficient understanding of
how to correctly apply the GEM.

The situation with regard to retrieval quality is different in
the case of the CRI retrievals. With regard to the real part, con-
siderably less than 50% of all cases are retrieved to better than
	0.075, respectively, 	0.05 accuracy. There are only a few
exceptions. With regard to the imaginary part, we see the same
poor retrieval quality.

E. Statistics: Summary of Statistical Analysis
Figure 12 summarizes the main performance characteristics of
TiARA if we take the retrieval uncertainty of 50% deviation
from the true results as benchmark. As noted a few times be-
fore, this value is the primary threshold value we have been
aiming at in this first performance study. Thus, we do not
show the results for 20% deviation from the true results in this
figure. We show the results in dependence on the used error
model and the uncertainty of the optical input data.

With regard to the EEM, we can derive effective radius to
within 	50% in more than 60% of the simulation cases if we
keep the optical data uncertainty below 15%. The exceptions to
this result are strongly light-absorbing particles, in which case,
the retrieval uncertainty is on average larger; see Fig. 11.
Approximately 60% of all simulation cases of number concen-
tration retrievals fall within this threshold of 50%. Surface-area
concentration retrievals are very robust. As mentioned before
(Figs. 10 and 11), the retrieval quality of this parameter seems
to depend little on optical input data uncertainties of up to
25%. The pattern of uncertainty of volume concentration
retrievals with regard to optical data uncertainty is similar to
the patterns we find for effective radius.

Figure 12 once more confirms that the quality of the
retrieval of the real part and the imaginary part of the CRI
is not satisfactory, regardless of the uncertainty of the optical
input data. We find that the quality of the microphysical data
products worsens with increasing measurement error in the case
of the EEM. In that sense, we find at least a pattern we expected
at the start of our simulation work. In contrast, this pattern is
missing if we use the GEM. As noted before, results for the
GEMmay not represent the true statistics in view of the limited
number of error runs for each optical dataset tested in
this study.
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4. ORACLES: MEASUREMENT EXAMPLE FROM
22 SEPTEMBER 2016

We present the results of the inversion of optical data taken with
the HSRL-2 during the ObseRvations of Aerosols above CLouds
and their IntEractionS (ORACLES) mission (https://espo.nasa.
gov/oracles/content/ORACLES_Two-page4_ORACLES_Flyer).
A more comprehensive description of microphysical particle
properties of aerosols observed during ORACLES will be given
in a future presentation.

A. Optical Properties
We used data collected during the flight from 08:00 and 14:40
UTC on 22 September 2016. Smoke from biomass burning
was observed to heights up to 8 km above sea level. There
was considerable variation of particle properties and particle
concentration during the flight.

Figure 13 provides a comprehensive overview on several key
optical properties of the smoke. Particle Angström exponents
provide us with some insight to particle size. Particle lidar ratios

contain information on particle size and light-absorption
capacity.

Particle Angström exponents varied between 1 and 1.5
above approximately 3 km height above sea level during most
of the flight time. These values point to particles in the fine-
mode fraction, i.e., particles below approximately 500 nm
radius. Below approximately 3 km height, particles were con-
siderably larger. We excluded them from our data analysis. The
linear particle depolarization ratios indicated a significant
contribution from non-spherical particles, which most likely
were dust particles.

The lidar ratio at 532 nm is above approximately 65 sr in
most parts of the curtain plot. Maximum values are around
90 sr. These high values of lidar ratios and Angström exponents
above 1 (above approximately 2 km height above sea level) in-
dicate the presence of aerosol pollution with comparably strong
light-absorption capacity. Biomass-burning aerosol particles
likely were the reason for the observed hight lidar ratios.

The ratio of the lidar ratios at 355 nm and 532 nm, respec-
tively, varies around 1. There is a tendency toward values
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Fig. 12. Simulation results based on all PSDs and CRIs and the use of the extreme-error model (squares) and the Gauss-error model (stars). The
symbols represent the sum (expressed in terms of percent of all cases) of all simulation cases for which the shown parameters are within 	50%
deviation from the true results.

Fig. 13. Curtain plots of particle Angström exponents (extinction coefficients measured at 355 nm and 532 nm), lidar ratio at 532 nm, and ratio
of lidar ratios measured at 355 nm and 532 nm. Data are shown up to 8 km height above sea level. The measurement time was from 8:00 UTC to
14:40 UTC. The temporal resolution of the data is 10 s; the vertical resolution is 100 m per data point. Geographical location of the aircraft was
between approximately −22.7°N and −21.21°N and from 12.69°E to 6.85°E. In the case of the lidar ratio, the x-axis range was from −22.7°N to
−22.97°N and from 12.69°E to 13.85°E. Data below approximately 3 km height above sea level were in part excluded from the analysis with TiARA
(see Figs. 14 and 15) because these data points either did not meet the threshold values regarding signal-to-noise ratio needed for a reliable, high-
quality data inversion or contained significant values of the particle linear depolarization ratio. As pointed out in previous publications and also in this
contribution, we lack a reliable light-scattering model that can accurately describe particle backscatter coefficients at 180º that present key input data
for TiARA.
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Fig. 14. Curtain plots of microphysical parameters (left column) and retrieval uncertainties in terms of absolute values of the data products (right
column). We show (first row) number concentration, (second row) effective radius, (third row) surface-area concentration, and (forth row) volume
concentration. The data products do not include results for particles below 50 nm particle radius. Measurement time, measurement location and
height are the same as in Fig. 13. The individual profiles shown in Fig. 13 were averaged into 5 min averages and subsequently used for data
inversion. We applied a 1 min gliding average to each set of 5 min profiles, which allows us to produce the curtain plots of microphysical parameters
in this figure and Fig. 15.
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below 1 (as low as approximately 0.75) in heights below 4 km
and as high as 1.5 above 4 km above sea level. These ratios
corroborate the assumption that comparably strong light-
absorbing particles were observed during the flight.

B. Microphysical Data Products
Figure 14 shows curtain plots of number, surface-area, and vol-
ume concentrations and particle effective radius. We used only
optical data points that fulfilled quality assurance checks,
e.g., optical data with strong signal-to-noise ratio, i.e., uncer-
tainty of the optical data products below 15% and low linear
particle depolarization ratios (to exclude contamination by dust
particles) below 5%.

Total number concentration in large portions of the
plot does not exceed 1000 particles∕cm3. However, particle
concentration significantly increases between approximately
9:30 and 11 UTC in flight levels between 3 km and 5 km
height above sea level. We find number concentrations as high
as 3000 particles∕cm3. After 12:00 UTC, we find another,
though less significant, increase in number concentration,
up to 1500 particles∕cm3. The uncertainty of the retrieved val-
ues of number concentration for the most part of the curtain
plot stays below approximately 250 particles∕cm3. The excep-
tion is the region where we find the significantly increased
values of number concentration. In that region, uncertainties
are as large as approximately 750 particles∕cm3. That
means retrieval errors are on average 25% for the complete cur-
tain plot.

Particle effective radius remains comparably constant above
4 km height between 9:00 and 11:30 UTC. Values are a little
larger than 0.2 μm. Below 4 km height and particularly after
11:30 UTC, mean particle size seems to increase. We find
particle effective radii above 0.4 μm. Retrieval uncertainties ac-
cordingly increase in the portions of the curtain plot that show
larger values of effective radius. The results for effective radius
are rather noisy in these portions. In contrast, the section of
the flight track that contains particles with a comparably con-
stant value of effective radius (around 0.2 μm) shows rather
low uncertainties. Uncertainties of effective radius are less
than 0.04 μm, which translates into a relative uncertainty
below 20%.

Surface-area concentration and volume concentration
behave in a fashion similar to number concentration. Values
remain rather steady during most of the flight except for the
flight time from 9:30–11:00 UTC. During that time, surface-
area concentration increases from average values of less than
300 μm2∕cm3 to as high as 700 μm2∕cm3. As in the case
of number concentration, we find again another slight increase
of surface-area concentration after 12:00 UTC in flight levels
up to 5.5 km height above sea level.

Volume concentration for the most part of the flight stays
below 20 μm3∕cm3 except during the time of the flight that
shows the increase in number and surface-area concentra-
tion. Volume concentration increases to values as large as
50 μm3∕cm3.

On average, the retrieval results show more noise for
surface-area concentration and for volume concentration after
11:30 UTC. Uncertainties on average stay below approx-
imately 20% for volume concentration. With regard to

surface-area concentration, uncertainties are below approxi-
mately 10% in the region of increased number concentration.
Outside this region, we find higher retrieval uncertainties,
which also tend to vary significantly stronger from data point
to data point. Uncertainties increase to 15%–20%.

Figure 15 shows the contribution of particles in the fine-
mode fraction (particle radius below 500 nm) of the number
concentration to number concentration of the complete par-
ticle size distribution. We also show the ratio of the fine-mode
particle effective radius (we considered only particles with
radius below 500 nm in our computation) to effective radius
of the total PSD.

These curtain plots provide us not only with valuable
information on the share of particles in the fine-mode frac-
tion of the retrieved particle size distribution, but also serve

Fig. 15. Curtain plots of (top) ratio of number concentration in
the fine mode fraction of the particle size distribution (particles
with radius between 50 nm and 500 nm) to total number concen-
tration and (bottom) ratio of effective radius of particle size distri-
bution with particles less than 500 nm radius (and above 50 nm)
to effective radius of the complete particle size distribution.
Measurement time, measurement location and height are the same
as in Fig. 13. The spatial and temporal resolutions of the curtain plots
are the same as in Fig. 14.
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as a quality flag parameter. We are quite confident that
we can derive particle effective radius and number, surface-
area, and volume concentrations with comparably high
quality if particle size is below 500 nm radius, as explained
below.

We are aware of the fact that retrieval uncertainties may
increase with particle radius, particularly if particles are above
approximately 1–2 μm radius because of the limited range
of measurement wavelengths. The ratio, particularly that of
number concentration, but also to some extent effective radius,
provides us with a qualitative confidence value on the retrieval
quality. If these ratios of fine-mode number concentration to
total concentration and fine-mode effective radius to total
effective radius are close to the value 1, we likely obtain
comparably low retrieval uncertainties.

We see that the ratio of fine-mode number concentration to
total number concentration is close to 1 for nearly all the data
points that were used for data inversion. There are only a few
outliers, and we assume that these outliers are related mainly
to larger than usual retrieval uncertainties. We are quite con-
fident that most of the particles in this biomass-burning
plume belonged to the fine-mode fraction of the particle size
distributions.

With regard to effective radius, we find a ratio of 0.8 or
larger in the portion of the plume that was observed between
9:00 and 11:30 UTC above 4 km height above sea level. Again,
this result indicates that most particles in this part of the plume
belonged to the fine-mode fraction of the retrieved particle size
distributions. We find similarly large values of this ratio in
many other parts of the curtain plots, although the overall ap-
pearance of the plot indicates more variation of effective radius.
On the one hand, larger retrieval uncertainties may be one rea-
son for the more noisy structure of the plot. On the other hand,
larger effective radius observed after 11:30 UTC may be an-
other reason. Particularly below 4 km height above sea level,
we find stronger variations.

5. CONCLUSION

We presented the main results of extensive simulation studies
carried out with our new, autonomous inversion algorithm,
TiARA. We applied the algorithm to a case of experimental
data collected during ORACLES. The values of the data prod-
ucts obtained with TiARA for the ORACLES case are in a
reasonable range of numbers. Nevertheless, we need to con-
firm the quality of the results with in situ data and a more
detailed uncertainty analysis.

Some of the strengths of TiARA are:

• This methodology works with inversion with regulariza-
tion, which allows for, e.g., great flexibility with regard to the
resolution capacity of the investigated particle size distribu-
tions. We do not need to assume any specific shape of the par-
ticle size distribution.

• TiARA allows for the unsupervised inversion of curtain
plots of optical data acquired with NASA Langley’s airborne
HSRL-2 instrument. TiARA is used for producing several mi-
crophysical particle parameters, i.e., effective radius, and num-
ber, surface-area, and volume concentrations to a level that until

now could be obtained with the data-operator-controlled
version of the inversion algorithm, e.g., Ref. [36].

• Contrary to the manual version of our inversion method-
ology, we include for the first time number concentration as an
additional standard data product in TiARA.

• We managed to test different levels of uncertainties of op-
tical input data. Although such work has been done in previous
publications, it was never based on a statistically significant set
of data. We tested hundreds of scenarios and used a wide range
of data uncertainty levels ranging from 5% to 25%. We con-
sider tests of such a range of uncertainties important, as they
give us a much clearer picture on the maximum acceptable op-
tical data uncertainty above which microphysical data products
become useless. We find that 15% data uncertainty is a thresh-
old value that needs to be considered in future instrument de-
velopment. Of course, lower uncertainties are desirable, as they
could further improve the data products (though no proof of
this claim is available).

• Another important outcome of this study is that data un-
certainties above 20% clearly lead to a reduction of the quality
(uncertainty respectively accuracy/precision) of data products
obtained with TiARA.

• Adding to this finding, i.e., impact of measurement un-
certainties, we find that TiARA performs at least as well as our
manually operated inversion algorithm with regard to a) quality
of retrieved data products, and b) sensitivity to uncertainty of
optical input data.

• We obtain for the first time insight on the uncertainties of
the retrieved data products by making use of the statistical
analysis of a large number of simulations in which we use differ-
ent properties of the investigated particle size distributions, i.e.,
size parameters and complex refractive index. This analysis,
which could not have been achieved with a manual, data-
operator-controlled algorithm, allowed us for the first time
to introduce the concept of bias (or accuracy) and noise (or
precision) in our uncertainty analysis.

• The simulations corroborate findings we summarized in
Refs. [17,18]. In these publications, we showed the quality of
data products (retrieval accuracy of effective radius and volume
and surface-area concentrations) obtained with TiARA for the
case of inversion of experimental data.

Despite these strengths, TiARA still requires improvements
in order to meet the high demands that are required with regard
to an accurate description of atmospheric aerosol pollution. We
mention just a few important points that serve as guidance for
future work.

• TiARA currently has been tested only for particle size
distributions of monomodal shape. Work on bimodal size dis-
tributions is in progress but is affected by extreme challenges. It
is a futile approach to combine two monomodal particle size
distributions into bimodal distributions, particularly in view
of the fact that we must obtain statistically significant results.
The number of bimodal size distributions that can be generated
from the monomodal size distributions used in this study leads
to an amount of bimodal distributions that cannot be processed
in any reasonable time frame, even with supercomputers that
might be available to us.

• We also need to consider that the weighting of each of
the two monomodal size distributions that are needed to create
a bimodal particle size distribution adds another element of
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complexity to the simulations. We thus need to think of smar-
ter approaches to this specific problem of using bimodal particle
size distributions in simulation studies.

• The main challenge of retrieving an accurate and precise
value of the CRI remains an open issue. We made progress in
this work, as we now have a much clearer picture of where we
stand, based on this statistical set of simulations. We also know
from a previous study, [36], what uncertainty of the retrieved
CRI (real and imaginary part) is permitted at maximum to ob-
tain meaningful values of the SSA. Thus, the goal of future
work will be to insert additional tools in TiARA that will help
us to come closer to this ideal situation shown in Ref. [36].

• We assume size- and wavelength-independent CRIs in
the simulations. This assumption is a serious restriction and
likely affects simulations with bimodal size distributions con-
siderably stronger than simulations with monomodal size dis-
tributions. The number of possible scenarios that need to be
tested to obtain statistically significant results is simply too large
if we apply current strategies of simulation studies.

• Despite the fact that we made progress with developing a
robust uncertainty analysis scheme, we are still far from calling
this task fulfilled. We tested two different uncertainty models
(optical input data), i.e., the Gauss-error distribution model
(GEM) and the extreme-error model (EEM). Both methods
have advantages and disadvantages, though it is obvious that
in the future, we must move to GEM. However, our simula-
tions remain inconclusive with regard to the true performance
of GEM, should, in the future, this uncertainty model of op-
tical input data become the method of choice in TiARA. We
are preparing a manuscript that will further elaborate on the
topic of uncertainty analysis. We hope this work will bring
us one step closer to solving this challenge in future versions
of TiARA.

• We explicitly excluded simulations with particle size
distributions in which particles are of non-spherical shape.

• We are still struggling with providing robust error bars
(bias and noise), though we made significant progress in that
regard in this contribution.

• We exclude in our software the possibility of inverting
data that represent particle sizes below 50 nm radius and above
10 micrometers. Although we are working on resolving that
challenge at the larger particle radius range, we have not yet
developed any realistic strategy that would allow us to identify
particles below 30 nm radius, given the available lidar measure-
ment wavelengths of 355 nm, 532 nm, and 1064 nm.

In this simulation study, we targeted a statistically based
uncertainty analysis, which is in contrast to studies on the
uncertainties of inversion results carried out with the data-
operator-controlled inversion algorithm. TiARA has been devel-
oped for the large-scale processing of data from measurements
with airborne and space-borne lidar. Thus, a statistical approach
toward the performance characterization is necessary. We ob-
tained first though very simple results in that regard, because
of the amount of simulation data needed for a statistical analysis.
Based on the statistical analysis of the simulations, we noticed
that there is a systematic shift of the retrieved values of effective
radius and number, surface-area, and volume concentrations
compared to the true values. This shift is comparably small
for surface-area concentration, and larger for the other param-
eters. With regard to real and imaginary parts of the CRI, we

found a significant shift. The spread of the retrieval results
around the true values also differs for the different data prod-
ucts. Surface-area concentration has the smallest spread. The
largest spread is found for real and imaginary parts of the CRI.

We selected a benchmark of 50% retrieval accuracy of
effective radius and number, surface-area, and volume concen-
trations as acceptable performance of this first version of
TiARA. We achieve this goal if the optical input data are error
free. This case also gives us insight into the mathematical
uncertainties caused by TiARA. Simulations with different
uncertainty levels of the input optical data show that satisfac-
tory performance of TiARA on average can still be achieved if
measurement uncertainties are ≤15%.

Retrievals of the CRI are not satisfactory from a statistical
point despite the situation that individual inversion cases
deliver acceptable results. The retrieval accuracy of the real part
needs to be better than 	0.1 and that of the imaginary part
should be better than 50% in order to achieve an accuracy
of approximately	0.05 for SSA [36]. We achieve this accuracy
of the CRI in less than 50% of all cases tested in this study.
Particularly in the case of low light-absorbing particles, i.e.,
the imaginary part is less than 0.01i, deviations between
retrieved and true value are considerably larger than 50%.
For these reasons, we will not use TiARA for the retrieval of
the CRI before simulations indicate an improvement of the
quality of this data product.

Simulations show that EEM is a comparably robust scheme
for inferring uncertainty bars of the data products. As men-
tioned before, we want to use a new model of uncertainty
analysis, i.e., GEM, in future versions of TiARA. In the present
study, we found that simulation results with GEM are still in-
conclusive. For example, retrieval uncertainties do not increase
in a clear way if uncertainties of the optical input data increase.
Other results of this simulation study also suggest that we do not
understand the mechanism of GEM in TiARA well enough to
use it as standard procedure for our uncertainty analysis at the
current stage of algorithm development.

We note that we do not use TiARA for analyzing optical
data of particles with non-spherical geometry if the linear par-
ticle depolarization ratio is larger than approximately 5% [18].
Previous work has shown [32] that linear particle depolarization
ratios below approximately 5% still provide us with reasonable
values of the microphysical data products. We currently work
on developing methods that allow us to invert optical data of
depolarizing particles. A few results have been presented pre-
viously [39,40]. That work was based on using the data-
operator-controlled version of the inversion software.

In future work, we will focus on the following main topics in
order to further improve the performance of TiARA:

• Application of TiARA to experimental data
• Next version of post-processing of inversion results
• Improvements of the quality of the derived CRI
• Improved uncertainty analysis of data products
• Simulations with bimodal particle size distributions

Table 4 shows a more comprehensive list of data products
provided by TiARA. In this contribution, we focussed on key
parameters that can be found in publications that reported
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on the manually operated version of the inversion algo-
rithm, e.g., [4,8].

For example, TiARA provides data products in which we sep-
arate the fine-mode and the coarse-mode fraction of particle size
distributions. We define 500 nm particle radius as the boundary
between fine-mode and coarse-mode particles. In that regard,
TiARA has the potential of providing additional information
other than information on bulk parameters; see, e.g., [41].
TiARA provides detailed information on uncertainty levels that
go beyond the usual concept of uncertainty bars.

The “x” symbols in Table 4 mark the data products pre-
sented in this contribution. The parameters marked by the
“+” symbols can already be produced. We currently analyze
the results of that part of the simulation studies. First results
obtained from experimental data have recently been presented
in Ref. [18].

The data products denoted by the “o” symbols are available
for monomodal PSDs, but we want to include results based on
bimodal PSDs, which have not yet been generated. We are cur-
rently developing automated software that allows us to produce
the result tables. The simulations denoted by the “#” symbol
pose a challenge as we currently use the AERONET light-
scattering model for mineral dust [42]. We are preparing a
publication that summarizes inversion results of optical data
that describe scattering by mineral dust observed during
DISCOVER-AQ California and DISCOVER-AQ Texas.
This contribution will serve as a basis for developing a
methodology suitable for the inversion of data that describe
light scattering by non-spherical particles at 180º.

APPENDIX A: MEANING OF NUMBERS
IN FIGURE 5

The following list provides information on where the individual
parts of the flow chart (Fig. 5) are explained in the main body
of the text:

Table 4. Data Products Inferred with TiARAa

Data Type Total PSD fm PSD cm PSD * **

Reff mp x o o
Number mp x o o
Surf.-area mp x o o
Volume mp x o o
Imag. part mp x o o **
Real part mp x o o **
Scat. coeff. op + o o *
Abs. coeff. op + o o *
SSA op + o o *
Phase funct. op # # # *
Asym. param. mp # # # *
SNS ratio mp o o o

aData products that will be presented in follow-up contributions are marked
by plus signs (+) and circles (o). mp denotes microphysical parameters, and op
denotes optical parameters. The # symbol means that these parameters will use
a novel light-scattering model that can better reproduce particle backscattering
and linear depolarization ratios at 180° scattering direction for non-spherical
particles. *means that wavelength dependence is the effect of particle size and
not the CRI, which is kept wavelength independent in the inversion algorithm.
**means that the inversion algorithm produces this parameter intrinsically,
i.e., it does not need to be calculated from the data products obtained in
data inversion. SNS denotes spherical-to-non-spherical particle ratio.
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1. Sections 2.A and 2.B.1;
2. Section 3.A and Appendix B, optical data gp;
3. Section 3.A and Appendix B, gp;
4. Section 2.B.2; particularly, we refer to the appendix in

reference [16];
5. Section 2.C.2
6. and Sections 2.C.2, 3.A, and Table 3 in the Appendix of

reference C;
7. Sections 2.A and 2.B.1;
8. Section 2.D;
9. see Section 3.2 in reference [9];
10. this post-processing option will be used in the next

version of TiARA;

11. see Section 3.C in Ref. [4];
12. this post-processing option will be used in the next

version of TiARA.

APPENDIX B: SIMULATIONS: INPUT
PARAMETERS

Table 5 lists the input parameters of microphysical parameters
(median radius, geometrical standard deviation, and real and
imaginary parts of the CRI) that were used to compute the op-
tical data with a Mie-scattering algorithm [21]. The optical data
were subsequently used as input for TiARA. The other param-
eters listed in this table show the data products retrieved with
TiARA, i.e., particle effective radius and number, surface-area,
and volume concentrations.

We are in the process of including particle radii below
50 nm into our LUTs, i.e., down to 1 nm. At that point,
we will be able to analyze our simulations for which effective
radii are less than 0.14 μm.

APPENDIX C: SIMULATIONS WITH
CHANNEL-DEPENDENT ERRORS

Table 6 lists scenarios in which measurement uncertainty de-
pends on the measurement channel. These simulations will
provide us with additional insight on the robustness of
TiARA. These simulations target experimental scenarios that

Table 6. Scenarios of Measurement-Channel-
Dependent Optical Data Uncertaintiesa

β355 β532 β1064 α355 α532

EEM A 10 20 15 15 15
EEM B 10 5 15 20 20
EEM C 10 5 15 10 10
EEM D 5 5 5 8 10
GEM A, 1σ 10; 3.3 20; 6.6 15; 5 15; 5 15; 5
GEM B, 1σ 10; 3.3 5; 1.7 15; 5 20; 6.6 20; 6.6
GEM C, 1σ 10; 3.3 5; 1.7 15; 5 10; 3.3 10; 3.3
GEM D, 1σ 5; 1.7 5; 1.7 5; 1.7 8; 2.7 10; 3.3

aThe numbers are given in percent.

Fig. 16. Inversion results as shown in Fig. 10. Results are not scaled to 100%. Meanings of symbols and colors are the same as in Fig. 10.

5006 Vol. 58, No. 18 / 20 June 2019 / Applied Optics Research Article



are more realistic. For example, uncertainties of the optical pro-
files may be different for the different measurement channels.
We note that the four cases listed in this table by far do not
describe the variety of scenarios that may occur under realistic
measurement situations. Nonetheless, we will gain a better
understanding if it is important that specific measurement
channels should have lower measurement uncertainties than
other measurement channels.

Simulations have already been carried out for these scenar-
ios. We will present the results in a future presentation. We will
use the next version of TiARA that will include the improved
data post-processing scheme described in Refs. [14–16].

APPENDIX D: HISTOGRAM DISTRIBUTIONS

Figure 16 shows once more the histogram distributions of the
data products presented in Fig. 10. In contrast to Fig. 10, we
did not scale the results to 100% on the y axis. The shape of the
distribution of the histogram columns can be clearly identified.
As mentioned in the main body of the text, surface-area con-
centration can be retrieved exceptionally well. There seems to
be a comparably well-defined shape of the distribution of the
histogram columns for all data products. The shape in terms of
peak and width varies for the different data products. In the
future, we plan to parameterize these distribution functions.
Parametrization allows us to provide important performance
characteristics of TiARA in a highly compressed way. Thus,
parametrization will also allow us to identify performance im-
provements of future versions of TiARA if they are significant.
Furthermore, the parametrization allows us to compare our
results to a study carried out in Ref. [30]. The authors of that
study for the first time investigated the effects of systematic and
random errors on the retrieval quality of particle microphysical
data products based on their own inversion methodology.
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