Cloud Structure of Three Galactic Infrared Dark Star-forming Regions from Combining Ground- and Space-based Bolometric Observations

Lin, Yuxin, Liu, Hauyu Baobab, Dale, James E., Li, D., Busquet, Gemma, Zhang, Zhi Yu, Ginsburg, Adam, Galván-Madrid, Roberto, Kovács, Attila, Koch, Eric, Qian, Lei, Wang, Ke, Longmore, Steve, Chen, Huei Ru and Walker, Daniel (2017) Cloud Structure of Three Galactic Infrared Dark Star-forming Regions from Combining Ground- and Space-based Bolometric Observations. ISSN 0004-637X
Copy

We have modified the iterative procedure introduced by Lin et al., to systematically combine the submillimeter images taken from ground-based (e.g., CSO, JCMT, APEX) and space (e.g., Herschel, Planck) telescopes. We applied the updated procedure to observations of three well-studied Infrared Dark Clouds (IRDCs): G11.11-0.12, G14.225-0.506, and G28.34+0.06, and then performed single-component, modified blackbody fits to each pixel to derive ∼10″ resolution dust temperature and column density maps. The derived column density maps show that these three IRDCs exhibit complex filamentary structures embedded with rich clumps/cores. We compared the column density probability distribution functions (N-PDFs) and two-point correlation (2PT) functions of the column density field between these IRDCs with several OB-cluster-forming regions. Based on the observed correlation between the luminosity-to-mass ratio and the power-law index of the N-PDF, and complementary hydrodynamical simulations for a 104 molecular cloud, we hypothesize that cloud evolution can be better characterized by the evolution of the (column) density distribution function and the relative power of dense structures as a function of spatial scales, rather than merely based on the presence of star-forming activity. An important component of our approach is to provide a model-independent quantification of cloud evolution. Based on the small analyzed sample, we propose four evolutionary stages, namely, cloud integration, stellar assembly, cloud pre-dispersal, and dispersed cloud. The initial cloud integration stage and the final dispersed cloud stage may be distinguished from the two intermediate stages by a steeper than -4 power-law index of the N-PDF. The cloud integration stage and the subsequent stellar assembly stage are further distinguished from each other by the larger luminosity-to-mass ratio (>40 ) of the latter. A future large survey of molecular clouds with high angular resolution may establish more precise evolutionary tracks in the parameter space of N-PDF, 2PT function, and luminosity-to-mass ratio.

picture_as_pdf

picture_as_pdf
Lin_2017_ApJ_840_22.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads