Galmoss: A package for GPU-accelerated galaxy profile fitting

Chen, Mi, Souza, Rafael S. de, Xu, Quanfeng, Shen, Shiyin, Chies-Santos, Ana L., Ye, Renhao, Canossa-Gosteinski, Marco A. and Cong, Yanping (2024) Galmoss: A package for GPU-accelerated galaxy profile fitting. Astronomy and Computing, 47: 100825. pp. 1-11. ISSN 2213-1337
Copy

We introduce galmoss, a python-based, torch-powered tool for two-dimensional fitting of galaxy profiles. By seamlessly enabling GPU parallelization, galmoss meets the high computational demands of large-scale galaxy surveys, placing galaxy profile fitting in the CSST/LSST-era. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on 8289 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, galmoss completed classical Sérsic profile fitting in about 10 min. Benchmark tests show that galmoss achieves computational speeds that are 6 × faster than those of default implementations.

picture_as_pdf

picture_as_pdf
1-s2.0-S2213133724000404-main.pdf
subject
Published Version
Available under Creative Commons: BY 4.0

View Download
visibility_off picture_as_pdf

Submitted Version
lock

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads