Multiwavelength detection of an ongoing FUOr-type outburst on a low-mass YSO
During the pre-main-sequence evolution, Young Stellar Objects (YSOs) assemble most of their mass during the episodic accretion process. The rarely seen FUOr-type events are valuable laboratories to investigate the outbursting nature of YSOs. Here, we present multiwavelength detection of a high-amplitude eruptive source in the young open cluster VdBH 221 with an ongoing outburst, including optical to mid-infrared time series and near-infrared spectra. The initial outburst has an exceptional amplitude of >6.3 mag in Gaia and 4.6 mag in Ks, with a peak luminosity up to 16 L⊙ and a peak mass accretion rate of 1.4 × 10-5 M⊙ yr-1. The optical to infrared spectral energy distribution of this object is consistent with a low-mass star (0.2 M⊙) with a modest extinction (AV < 2 mag). A 100-d delay between optical and infrared rising stages is detected, suggesting an outside-in origin of the instability. The spectroscopic features of this object reveal a self-luminous accretion disc, very similar to FU Orionis, with a low line-of-sight extinction. Most recently, there has been a gradual increase in brightness throughout the wavelength range, possibly suggesting an enhancement of the mass accretion rate.
Item Type | Article |
---|---|
Additional information | ©2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ |
Keywords | astro-ph.sr, astro-ph.ga, stars: pre-main sequence, infrared: stars, be, stars: protostar, accretion, accretion discs, astronomy and astrophysics, space and planetary science |
Date Deposited | 15 May 2025 15:25 |
Last Modified | 31 May 2025 00:42 |