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ABSTRACT
There are many pertinent open issues in the area of star and planet formation. Large
statistical samples of young stars across star-forming regions are needed to trigger
a breakthrough in our understanding, but most optical studies are based on a wide
variety of spectrographs and analysis methods, which introduces large biases.

Here we show how graphical Bayesian networks can be employed to construct a hi-
erarchical probabilistic model which allows pre-main sequence ages, masses, accretion
rates, and extinctions to be estimated using two widely available photometric survey
databases (IPHAS r’/Hα/i’ and 2MASS J-band magnitudes). Because our approach
does not rely on spectroscopy, it can easily be applied to homogeneously study the
large number of clusters for which Gaia will yield membership lists.

We explain how the analysis is carried out using the Markov Chain Monte Carlo
(MCMC) method and provide Python source code. We then demonstrate its use on
587 known low-mass members of the star-forming region NGC 2264 (Cone Nebula),
arriving at a median age of 3.0 Myr, an accretion fraction of 20 ± 2% and a median
accretion rate of 10−8.4 M�/yr.

The Bayesian analysis formulated in this work delivers results which are in agree-
ment with spectroscopic studies already in the literature, but achieves this with great
efficiency by depending only on photometry. It is a significant step forward from pre-
vious photometric studies, because the probabilistic approach ensures that nuisance
parameters, such as extinction and distance, are fully included in the analysis with a
clear picture on any degeneracies.

Key words: stars: pre-main sequence, methods: data analysis, astronomical data
bases: surveys, accretion, open clusters and associations: individual: NGC 2264

1 INTRODUCTION

Large uncertainties remain with respect to the mechanisms
and timescales of star and planet formation. While it has
been established that young solar-like stars stop accreting
and lose their protoplanetary discs on a timescale of ∼1 to
10 Myr (Haisch et al. 2001; Fedele et al. 2010), there is no full
understanding of the interplay between the various physical
mechanisms which affect disc evolution (Williams & Cieza
2011).

Large statistical samples of young stars are needed to
make the breakthrough in our understanding. Whilst such
samples have recently become available through infrared
photometry which traces circumstellar dust (Evans et al.

? E-mail: geert@barentsen.be

2009), they are not available for emission-line studies which
traces material in the gas phase. Understanding the evolu-
tion of the gas with respect to the dust is of critical im-
portance for testing competing models of disc evolution and
planet formation (e.g. Najita et al. 2007; Owen et al. 2011;
Espaillat et al. 2012).

Existing gas emission-line studies have mostly relied on
spectroscopy, which could only be obtained for limited num-
bers of stars in nearby star-forming regions (e.g. Gullbring
et al. 1998; Natta et al. 2004; Herczeg & Hillenbrand 2008).
Moreover, it is often hard to inter-compare the results from
different regions, because they have been obtained using a
variety of spectrographs and analysis methods which com-
plicate the analysis.

The increasing availability of data from large photomet-
ric surveys allows samples to be obtained across star-forming
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2 Barentsen et al.

regions which are both larger and more homogeneous. For
example, the INT Photometric Hα Survey (IPHAS) cov-
ers 1800 deg2 of the Northern Galactic Plane using r’/i’
broad-band and Hα narrow-band filters (Drew et al. 2005;
González-Solares et al. 2008). This survey is particularly rel-
evant to star formation studies, because Hα photometry al-
lows a statistical appraisal of gas accretion rates to be made
for massive clusters at large distances (De Marchi et al. 2010;
Spezzi et al. 2012).

So far, we have used the IPHAS survey to study pre-
main sequence stars in just one star-forming region: IC 1396
in Barentsen et al. (2011), hereafter Paper I. We used Hα
narrow-band photometry to identify T Tauri stars and esti-
mate their accretion rates, whilst simultaneously estimating
ages and masses from the (r’-i’)/r’ colour-magnitude plane.

Before we can apply our methodology to the entire
IPHAS (and future VPHAS) Galactic Plane region, we first
need to develop more powerful tools. Whilst the results of
Paper I were in good agreement with independent spectro-
scopic measurements, the method suffered from the draw-
back that a fixed amount of extinction was assumed for all
objects, as there is no straightforward method to obtain this
parameter simultaneously with ages, masses and accretion
rates from colour-magnitude or colour-colour diagrams. The
increasing sophistication of models and the so-called “data
deluge” from surveys requires more powerful inference tools
to be adopted, as there are limitations to the information
content to be extracted from two-dimensional diagrams.

The generic mathematical solution to the problem of
understanding which parameter-space regions match a set
of observations is called Bayesian inference. The theoretical
principles of the method have been understood for decades,
but the widespread adoption in astrophysics has only taken
off in recent years owing to the advances in both algo-
rithms and computing power. So far, the Bayesian frame-
work has become the favoured tool for e.g. the determina-
tion of cosmological parameters (Trotta 2008), the analysis
of transit light curves (Ford 2005; Kipping et al. 2012) or
the determination of meteor rates (Barentsen et al. 2011b).
The approach has also been explored for estimating ages
and extinctions for main-sequence stars (Pont & Eyer 2004;
Jørgensen & Lindegren 2005; Bailer-Jones 2011). In the con-
text of star formation, the method has recently been used to
perform a dynamical membership analysis of the Sco OB2
association (Rizzuto et al. 2011) and to assess the accuracy
of pre-main sequence models (Gennaro et al. 2012). How-
ever, the method has so far not been used to tackle the
common problem of estimating the basic parameters of in-
dividual pre-main sequence stars.

In this paper we show how Bayesian inference can be
used to simultaneously determine extinction, stellar ages
& masses and accretion rates for known members of a
star-forming region. We will demonstrate the method on
NGC 2264, which is one of the best-studied regions within
the IPHAS survey area and has a very complete member-
ship list (Dahm 2008; Sung et al. 2008). We note that the
future Gaia astrometric survey is expected to yield accu-
rate membership lists for hundreds of clusters (Bailer-Jones
2009), therefore our strategy to re-analyse a large sample of
known cluster members in a homogeneous way is likely to
become an increasingly important tool.

In §2 we motivate our approach and specify the model.

In §3 we explain the application to NGC 2264 and in §4 we
present the results. In §5-§7 we discuss the outcome, present
future extensions and summarise the conclusions.

2 METHOD: BAYESIAN INFERENCE

Our aim is to determine ages, masses and accretion rates
from IPHAS r’/i’/Hαmagnitudes, while simultaneously con-
straining the extinction by adding 2MASS J-band magni-
tudes to the dataset. We employ Bayesian Inference for this
purpose. In §2.1 we describe the motivation for the method,
in §2.2-2.3 we explain the formalisms and implementation,
while in §2.4-2.5 we explain the practical use.

2.1 Motivation

2.1.1 Characteristics of T Tauri stars

In the current picture of star formation, solar-like stars are
thought to assemble the majority of their mass during the
first few 105 years after the initial collapse of their parent
molecular cloud (Evans et al. 2009). Within ∼1 Myr the en-
velope of gas and dust clears and the newly formed stars be-
come visible at optical wavelengths, from which point they
are commonly called T Tauri stars. These objects continue
to grow by accreting material from a circumstellar accre-
tion disc, which does not exceed 10-20% of the stellar mass
and is dispersed within a few million years (Hartmann 2008;
Haisch et al. 2001; Fedele et al. 2010).

Mass accretion is thought to take place along magnetic
field lines which connect the disc to the star. Infalling gas
is essentially on a ballistic trajectory, falling on to the stel-
lar surface at near free-fall velocities, thereby producing hot
impact shocks which generate excess UV and optical con-
tinuum emission (Calvet & Gullbring 1998; Gullbring et al.
2000). The accretion energy released in these shocks also
heats the infalling gas, which in turn produces strong Hα
emission.

This is illustrated in Fig. 1, where we show literature
spectra of four T Tauri stars of a similar spectral type (late
K), shown in order of accretion rates which have been esti-
mated from the UV/optical continuum excess emission. The
spectra illustrate that the Hα line strength is correlated with
the blue excess, both thought to be a result of the release
of accretion energy. In contrast, the r’ and i’ bands appear
least affected by accretion and are thus the most appropri-
ate tracers for stellar age and mass. Hence, in our past study
of IC 1396 (Paper I) we used the (r’-i’)/r’ plane to estimate
ages and masses from model isochrones, whilst using the
(r’-i’)/(r’-Hα) plane to estimate Hα equivalent widths and
accretion rates.

We note that at exceptionally high accretion rates
(∼> 10−6 M�/yr) there is evidence for accretion-induced con-
tinuum veiling to occur in the r’ and i’ bands, which may
affect the age and mass estimates. The source of the ex-
cess emission at these wavelengths is not well understood at
present (Fischer et al. 2011). The effect is small and will be
ignored in what follows, because our study includes only ob-
jects with lower accretion rates. We will return to this topic
at the end of the paper however (§5.3).
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Figure 1. Top panel: spectra of four T Tauri stars of similar

spectral type (late K) as published by Bertout (1989) shown in
order of decreasing accretion rates as determined by Hartigan et

al. (1995). The most notable features are (i) blue continuum ex-

cess and line veiling below ∼6000 Å; (ii) hydrogen Balmer lines in
emission; (iii) Ca II H/K and Infrared Triplet (IRT) lines in emis-

sion. The bottom spectrum is a weak-lined T Tauri star (WTTS)

which does not show signs of ongoing mass accretion. Bottom
panel: filter transmission curves for the IPHAS r’/Hα/i’ filters.

The 2MASS J-band filter is located beyond the range of the spec-
tra near 12 000 Å.

2.1.2 Solving the degeneracy between age, mass,
extinction and Hα emission

The results obtained in Paper I were in good agreement
with spectroscopic measurements from the literature. How-
ever, the method suffered from the drawback that a fixed
amount of extinction was assumed for all objects, because
optical colour-colour diagrams show a well-known degen-
eracy between reddened high-mass (early-type) stars and
unreddened low-mass (late-type) stars. This may surprise
some readers, because the (r’-i’)/(r’-Hα) plane is known for
being able to break this degeneracy due to the strong dif-
ference in the Hα line strength between early- and late-type
stars (Drew et al. 2008). However, this property cannot be
exploited when Hα is in emission.

The degeneracy is illustrated in Fig. 2, where we plot
the colour simulations from Paper I to show the intrinsic po-
sition of the main sequence as a function of reddening (thick
and thin solid lines). These solid curves do not overlap or
intersect, i.e. there is a handle on the degeneracy. However,
when increasing levels of Hα emission are added (dashed
lines), reddened early-type stars with Hα in emission be-
come entangled with unreddened late-type stars.
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Figure 2. Position of the unreddened and reddened main se-
quence (thin and thick lines) in the IPHAS (r’-i’)/(r’-Hα) plane,

shown from early O to late M-type stars. We also mark the po-

sition of the main sequence for increasing levels of Hα emission
(dashed lines, indicated by their Hα EWs in units Å). The fig-

ure illustrates the degeneracy between reddening, spectral type
and Hα emission in this plane. These simulations are taken from

Paper I.

To resolve this degeneracy, we require additional
colour(s) to be added to the IPHAS dataset. Our best-
available option is to add the near-infrared J-band magni-
tude from the 2MASS survey (Skrutskie et al. 2006), because
the (r’-i’)/(i’-J) plane can be shown to break the degener-
acy between reddening and spectral type for K- and M-type
objects, which constitute the vast majority of T Tauri stars
(Martin 1997). At the same time, the J-band is not com-
monly affected by excess emission from a circumstellar disc,
unlike the 2MASS H- and K-bands at longer wavelengths
(Meyer et al. 1997).

However, adding the J-band magnitude to our sample
does not allow us to simply read the extinction for every
object from the (r’-i’)/(i’-J) diagram straight away, as these
colours do not depend on mass and extinction alone. For
example, the Hα-line falls inside the r’-band, such that ob-
jects with Hα in emission show an r’-band excess ranging
between -0.05 mag (EWHα

∼= -50 Å) and -1.0 mag (EWHα
∼=

-1000 Å), albeit depending on the spectral type (Paper I). In
addition, the colours also depend on the stellar age as pre-
main sequence stars tend to rise in effective temperature as
they approach the main sequence.

Whilst adding the J-band data should offer us sufficient
information to constrain the four parameters of interest, the
problem remains how these constraints can be inferred in
practice?

2.1.3 Inferring parameters from photometry

The traditional method used to estimate stellar parameters
from photometry is to place the observed objects in two-
dimensional colour/magnitude diagrams, together with the
output of evolutionary models. Such an approach is use-
ful when the number of free parameters is small. However,
when the number of dimensions in the parameter or observ-
able space increases, there is no obvious way to decide which

c© 2012 RAS, MNRAS 000, 1–18
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plane/parameter-combinations should be employed. For ex-
ample, our r’/Hα/i’/J dataset can be used to construct no
less than 15 different colour-colour diagrams and 24 colour-
magnitude diagrams, all of which depend to some extent on
all of our parameters of interest.

We could devise an ad-hoc algorithm to make use of all
the available information, for example: we could iteratively
fit model parameters in multiple planes until a certain con-
vergence criterion is met. We can also employ a range of
data modelling methods to help us link observations to pa-
rameters (e.g. Neural Networks, Principal Component Anal-
ysis). However, it is unclear how the results obtained by
such methods depend on ad-hoc choices made in the design
of the algorithms (e.g. the structure of the Neural Network).
Moreover, there is no clear way for these methods to obtain
meaningful error bars which take full account of all known
sources of uncertainty (Ford 2005).

A better approach is to obtain maximum likelihood es-
timates using expectation-maximisation (EM) algorithms.
These methods require the user to define a predictive model
which estimates the likelihood of an observation given a set
of model parameters. The model is then optimised to find
the set of parameters which are most likely to explain the
observed data (in the special case of a Gaussian likelihood
model this is χ2-fitting).

While EM presents a significant improvement over ad-
hoc methods, it suffers from the drawback that only a single
“best-fit” point estimate is provided, regardless of whether
or not a unique solution exists. This is a particular concern
in astronomy, where model uncertainties and data sparsity
imply that there is often a “family” of likely solutions which
occupy degenerate or multi-modal regions in the parameter
space. This problem is often solved by keeping one or more
of the degenerate “nuisance” parameters fixed, but such as-
sumptions invariably reduce the ability of the model to cap-
ture reality.

Rather than focusing on finding a “best-fit” estimate,
it is better to employ the predictive model to infer the full
probability distribution for all possible solutions. This ap-
proach is called Bayesian inference (though we note that
some authors prefer the term probabilistic inference to dis-
tinguish the approach from best-fit EM methods which also
employ the Bayes’ theorem.)

Obtaining the full distribution may seem impractical at
first sight, because point estimates are useful for plotting
and tabulation. However, a full distribution can be reduced
to a point estimate by computing the expectation value or
median, which, unlike the maximum likelihood, take full ac-
count of the distribution (that is, an expectation value min-
imises the variance, while the median minimises the mean
absolute error.) Moreover, knowledge of the full distribution
allows meaningful confidence intervals and covariances to be
quantified and visualised, by marginalising over the nuisance
parameters.

In what follows we provide a formal description of the
method and explain how it is applied to our problem.

2.2 Solution: Bayesian inference

2.2.1 Formalism

The basic idea is to create a parameterised model which is
able to reproduce the data and its uncertainty, and then
compare that model for different sets of parameters against
the observations in a probabilistic way.

Let θ = {θ1, . . . , θn} represent a set of unknown model
parameters and let d = {d1, . . . , di} represent a set of ob-
served data. We can construct a likelihood model P (d|θ)
which computes the probability for an observation to occur
under a given a set of parameters. Such a model can be
computed using the best-available knowledge, and is limited
only by scientific complexity and computing power.

Of course our aim is not to understand which observa-
tions are expected given the parameters, but inversely, which
of the various possible sets of parameters best explain a given
observation. This is expressed by the function P (θ|d), called
the posterior distribution, which can be linked to the likeli-
hood model using the chain rule from probability theory:

P (θ|d) · P (d) = P (θ,d) = P (d|θ) · P (θ), (1)

which leads to the well-known theorem by Bayes:

P (θ|d) =
P (d|θ) · P (θ)

P (d)
, (2)

where P (θ) is called the prior, which encodes any a priori
knowledge about the parameters which we wish to include
in our model (including the allowed physical bounds). The
denominator, P (d), may be thought of as a normalising con-
stant which does not effect the shape of the posterior distri-
bution and can be ignored, i.e.:

P (θ|d) ∝ P (d|θ) · P (θ), (3)

or simply:

P (θ|d) ∝ P (θ,d). (4)

Thus, the key to identify the regions in the parameter space
which explain a set of observations is the ability to compute
the joint probability distribution P (θ,d).

2.2.2 Constructing the joint distribution

P (θ,d) can be thought of as the model which defines how
the theoretical parameters and observations relate to each
other. We now explain how this model is formulated for our
application.

First, let us define the set of unknown variables θ and
the set of observables d. The free parameters of principal
interest in our work are mass (M∗), age (τ), mass accretion
rate (Ṁacc) and extinction (A0). For syntactic convenience,
we add a set of additional variables which help us formulate
the model, such as a star’s intrinsic spectral energy distri-
bution (SEDint). Their meaning is explained in Table 1:

θ = {M∗, τ , Ṁacc, A0, SEDint, Rin, LHα, (5)

EWHα, d, SEDapp}. (6)

We note that the additional variables are either determined
by the four free parameters of interest, or they are so-called
nuisance parameters which will be constrained by a strong
prior assumption (e.g. in what follows the distance d will be
constrained by a strong prior based on literature estimates).

c© 2012 RAS, MNRAS 000, 1–18
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M∗ Stellar mass (M�)

τ Stellar age (Myr)

Ṁacc Accretion rate (M� yr−1)

Rin Inner disc truncation radius (R∗)
SEDint Modelled intrinsic SED {Mr’, MHα, Mi’, MJ}
LHα Excess Hα luminosity (L�)

EWHα Hα emission Equivalent Width (Å)

d Distance (pc)
A0 Extinction parameter (mag)

SEDapp Modelled apparent SED {mr’, mHα, mi’, mJ}
SEDobs Observed SED {r’, Hα, i’, J, σr′ , σHα, σi′ , σJ}

Table 1. Notation.

d

L(Hα)

M∗ Rin

A0

Ṁacc

SEDint

SEDapp

SEDobs

EWHα

τ

Figure 3. Bayesian network representing the dependencies be-

tween the variables in our inference model. Nodes which are not
directly connected represent variables which are conditionally in-

dependent of each other given their parents.

For the observed data of a star, we adopt the SED as
characterised by the four apparent magnitudes and their un-
certainties:

d = SEDobs = {r’, Hα, i’, J, σr′ , σHα, σi′ , σJ}. (7)

Having defined θ and d, we now formulate P (θ,d). This
is a complex distribution with a high number of dimensions.
It would be tedious to construct a single function which
computes its value for all possible combinations of θ and d.
We can greatly reduce the complexity however by exploiting
the fact that many of the variables can be assumed to have
(conditional) independence relationships.

A convenient and concise way to represent the depen-
dencies amongst variables is to use a directed acyclic graph
(i.e. a graph with no loops), often referred to as a proba-
bilistic graphical model or a Bayesian network. These terms
are synonyms for a syntactic method whereby variables are
represented by nodes in a graph, and dependencies between
those variables are represented by arrows. Intuitively, an ar-

row from variable A to B indicates that A has a direct influ-
ence on B. Formally, the Bayesian Network is constructed
as follows: (Russell & Norvig 2009)

(i) each node corresponds to a variable from θ or d;
(ii) a set of arrows connect pairs of nodes. If there is an

arrow from node A to node B, then A is said to be a par-
ent of B. Pairs of nodes which are not directly connected
by an arrow represent variables which are assumed to be
conditionally independent of each other given their parents;

(iii) the graph should not have directed cycles, this would
be a sign of recursive reasoning.

The Bayesian network for our model is shown in Fig. 3.
For example, the graph shows arrows pointing from M∗ and
τ to the intrinsic SED, which represents our assumption that
we only need to know M∗ and τ to infer SEDint, i.e.:

P (SEDint | θ,d) = P (SEDint | M∗, τ) (8)

We may use this property to simplify the formulation of
P (θ,d) as follows. Let (n1, . . . , nk) be the set of all variables.
The chain rule allows us to write its joint distribution as a
product of conditional probabilities:

P (n1, . . . , nk) =

k∏
i=1

P (ni | ni+1, . . . , nk). (9)

Given the specification of a Bayesian network over all nodes
ni, Eqn. 9 may be simplified using the property of condi-
tional independence:

P (n1, . . . , nk) =

k∏
i=1

P (ni | Parents(ni)), (10)

where Parents(ni) is the set of nodes which have an ar-
row pointing to ni in the network, and Parents(ni) ⊆
{ni+1, . . . , nk}. The last condition can always be satisfied
by pre-ordering the nodes in a way that is consistent with
the partial order given by the network.

P (θ,d) can now be written as the product of a series of
lower-dimensional distributions:

P (θ,d) =

k∏
i=1

P (ni | Parents(ni)) (11)

= P (M∗) · P (τ) · P (Ṁacc) (12)

· P (Rin) · P (d) · P (A0) (13)

· P (SEDint | M∗, τ) (14)

· P (LHα | M∗, τ , Ṁacc,Rin) (15)

· P (EWHα | LHα, SEDint) (16)

· P (SEDapp | SEDint,EWHα, d,A0) (17)

· P (SEDobs | SEDapp) (18)

It is trivial to see that rewriting the equation in this way
makes it far easier to define our probabilistic model, which
is now a combination of small hierarchical “sub-models”.
The models for parameters which do not have parents are
called the priors (Eqns. 12-13), whilst the others are called
the likelihoods (Eqns. 14-18). In what follows we explain
how each of the above factors are computed, which acts as
a formal specification of our parameter inference model.

c© 2012 RAS, MNRAS 000, 1–18
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Prior Distribution

P(M∗) ∼
{

M∗−1.3 if 0.1 < M∗ < 0.5
0.5 M∗−2.3 if 0.5 6 M∗ < 7

P(log τ) ∼ U(5, 8)

P(log Ṁacc) ∼ U(−15,−2)

P(Rin) ∼ N (5, σ = 2) (Rin > 1)

P(d) ∼ N (760, σ = 5)
P(log A0) ∼ N (−0.27, σ = 0.46)

Table 2. Summary of priors. U(min,max) denotes a Uniform

distribution, while N (µ, σ) denotes a Gaussian.

2.3 Priors and Likelihoods

2.3.1 Priors

A challenge that comes with the use of Bayes’ theorem is the
choice of the priors. We should not shy away from this task
however, as there is no inference without assumptions. Being
forced to define them in a clear way can be seen as an advan-
tage over other methods (e.g. χ2-fitting bears the implicit
assumption of uniform priors on the free parameters, yet the
consequence of this assumption is rarely considered.) In the
case of our most influential prior, P(A0), we will quantify
the extent of its influence in §5.4 at the end of the paper.

The prior distributions are summarised in Table 2 and
explained as follows:

• P(M∗): the mass prior follows the Initial Mass Function
(IMF) due to Kroupa (2001), truncated between 0.1 and
7 M� which are the limits of the stellar evolutionary model
that we adopt in what follows. Objects outside this range
are either saturated or fall below the detection limit of the
IPHAS survey and so these truncation limits do not affect
our results, other than constraining the parameter space to
a sensible domain.
• P(τ): the age prior is assumed uniform in the logarithm

and truncated between 0.1 and 100 Myr, which again corre-
sponds to the limits of the evolutionary model.
• P(Ṁacc): the accretion rate prior is assumed uniform

in the logarithm and is truncated between 10−15 and
10−2 M� yr−1. This range entails all the accretion rates com-
monly reported in the literature and goes well below the
typical detection limit of ∼ 10−10 M� yr−1 we found in Pa-
per I.
• P(Rin): the disc truncation radius follows a Gaussian

distribution with a mean of 5 R∗ and standard deviation
2 R∗. This is a commonly used assumption based on the
typical co-rotation radius of T Tauri stars (Gullbring et al.
1998).
• P(d): for the distance prior we adopt a Gaussian dis-

tribution centred on the widely cited distance towards
NGC 2264 of 760 pc (Sung et al. 1997). The standard devia-
tion of 5 pc reflects the approximate diameter of the cluster
and therefore the uncertainty in our results will reflect only
the relative distance errors. We note that a recent distance
estimate by Baxter et al. (2009) puts the region at 913 pc
and so the systematic error in the distance may be signifi-
cantly larger than 5 pc. However, because we aim to investi-
gate the relative properties of objects in the cluster, rather
than systematic errors for the cluster as a whole, we opt not
to model the absolute distance uncertainty here. (Note that

the Gaia survey will remove most of this uncertainty in the
future.)
• P(A0): for the extinction parameter we adopt the em-

pirical distribution of extinction for 202 candidate mem-
bers as determined by Rebull et al. (2002) on the basis
of moderate-resolution spectroscopy of low-mass objects in
NGC 2264. We found that their distribution can be well-
approximated as a log-normal with mean logA0 = −0.27
(A0 = 0.54) and a broad standard deviation σ logA0 = 0.46.

2.3.2 SEDint likelihood (Eqn. 14)

The intrinsic SED of a young star is predicted as a function
of mass and age as follows.

First, intrinsic broad-band magnitudes Mr′ , Mi′ and MJ

are interpolated from the evolutionary model due to Siess
et al. (2000) for solar metallicity (Z = 0.02). Their model
consists of 29 separate mass tracks from 0.1 to 7 M� from
which isochrones can be computed using an online tool1. We
used this tool to download the model at 50 different ages
ranging between 0.1 Myr and 100 Myr, i.e. we obtained a
dense sampling of the model in 1450 discrete points as a
function of mass and age (= 29 · 50 points).

The Siess et al. model provides intrinsic magnitudes on
the basis of the empirical conversion tables presented by
Kenyon & Hartmann (1995), which provide intrinsic colours
and bolometric corrections as a function of stellar effective
temperature. These tables only provide a calibration for the
Cousins photometric system however, so we had to convert
the model RC/IC magnitudes to IPHAS r’/i’ using the trans-
formations given in Paper I.

We then approximated the evolutionary model as a
continuous function by fitting 1450 Radial Basis Functions
(RBF) to the collection of discrete model points using the
Python module scipy.interpolate.rbf (cf. Appendix A).
The resulting set of basis functions provides us with an ac-
curate and fast tool to interpolate values from the grid.

Having obtained intrinsic magnitudes as a function of
age and mass, we then predict the narrow-band magnitude
MHα using the grid of IPHAS colour simulations presented
in Paper I, where we determined the intrinsic colour (r’-Hα)
as a function of (r’-i’) on the basis of a library of observed
spectra.

These steps provide us with a forward model of the
intrinsic magnitudes as a function of age and mass, i.e.
fSED(M∗, τ) = {Mr’, MHα, Mi’, MJ}. For simplicity, we
assume here that this model predicts absolute magnitudes
with zero uncertainty. In reality, there are known to be sig-
nificant systematic differences between pre-main sequence
models, ranging up to 2-4 Myr in age and 0.2 M� in mass
(Paper I). However, the modelling and study of these sys-
tematic effects are beyond the scope of this work, and so we
adopt a deterministic likelihood:

P (SEDint | M∗, τ) =

{
1 if SEDint = fSED(M∗, τ)
0 if SEDint 6= fSED(M∗, τ)

(19)

1 http://www.astro.ulb.ac.be/∼siess/WWWTools/Isochrones
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2.3.3 LHα likelihood (Eqn. 15)

Hα is the strongest emission line due to accretion, and its
intensity can be used to trace the accretion luminosity.

As explained in §2, accretion is thought to take place
along magnetic field lines which act as channels connecting
the disc to the star from an inner disc truncation radius
Rin. The infalling gas is essentially on a ballistic trajectory,
falling on to the star at near free-fall velocities, producing a
hot impact shock (Calvet & Gullbring 1998; Gullbring et al.
2000). The energy released in these shocks heats the infalling
circumstellar gas, which explains the Hα emission.

Under the assumption that the free-fall gravitational
energy released in the impact accretion shock is reprocessed
entirely in the accretion energy Lacc, we may write:

Lacc =
GM∗Ṁacc

R∗
(1− R∗

Rin
), (20)

and therefore:

log
Lacc

L�
= 7.496 + log

M∗
M�

+ log
Ṁacc

M�yr−1

− log
R∗
R�

+ log(1− R∗
Rin

), (21)

where R∗ is derived from a forward model fR∗(M∗, τ) ob-
tained by interpolating the Siess et al. model in the same
way as described previously.

The accretion luminosity Lacc has previously been found
to relate to LHα as a power-law relationship (e.g. Herczeg &
Hillenbrand 2008; De Marchi et al. 2010). In Paper I (fig. 8)
we presented a compilation of 107 objects from the litera-
ture for which both Lacc and LHα estimates are available,
whereby Lacc has been derived from blue continuum excess
measurements. We used the stats.lm function in the R sta-
tistical environment to determine the linear least squares
regression:

log LHα = (0.64± 0.04) log Lacc − (2.12± 0.08). (22)

This empirical relationship shows a significant scatter how-
ever (rms = 0.43), which is commonly assumed to be caused
by a combination of physical effects (e.g. absorption by stel-
lar winds, uncertain extinction corrections, emission not due
to accretion). The scatter in this relationship dominates the
uncertainty in the inferred accretion rates (Paper I). We take
this into account by modelling the likelihood function as a
Log-normal distribution:

P (LHα | M∗, τ , Ṁacc,Rin) ∼ logN (log LHα, σ = 0.43),
(23)

where log LHα is obtained by combining Eqns. 21 & 22.

2.3.4 EWHα likelihood (Eqn. 16)

To infer EWHα we need to predict the stellar continuum
luminosity in the Hα band:

L(Hα)cont = LV (Hα) · 10−0.4·[MHα+0.03] (24)

where MHα ∈ SEDint is the previously estimated intrinsic
magnitude of the star and LV (Hα) = 0.316 L� is the lumi-
nosity of Vega in the IPHAS Hα passband (Paper I). We
may then obtain the equivalent width from its definition:

EWHα = −RW · LHα

L(Hα)cont
, (25)

where RW = 95 Å is the rectangular width of the IPHAS
Hα filter.

The uncertainty associated with the conversion of LHα

into EWHα can be assumed negligible and for simplicity we
take the likelihood to be deterministic.

2.3.5 SEDapp likelihood (Eqn. 17)

The apparent SED is obtained by correcting the intrinsic
SED for the effects of distance, extinction and Hα emission
in three steps.

First, the distance modulus 5 log(d)−5 is added to each
of the intrinsic magnitudes. Second, offsets for the r’/Hα/i’
magnitudes are obtained as a function of A0 and EWHα

by means of RBF-interpolation from the pre-computed grid
of simulated photometry from Paper I. Finally, the offset
for the J magnitude for extinction is computed using the
reddening law due to Schlegel et al. (1998). The J-band offset
cannot be computed in the same way as the other bands,
because the optical spectral library on which our grid of
simulated colours is based does not extend far enough into
the near-infrared.

Again, this likelihood is assumed deterministic.

2.3.6 SEDobs likelihood (Eqn. 18)

Finally, we compute the likelihood of observing SEDobs

when expecting SEDapp. Assuming normally distributed un-
certainties on the observed magnitudes, the likelihood is
given by a multivariate Gaussian:

P (SEDobs | SEDapp) =
1

(2π)k/2|Σ|1/2
e−D

2/2, (26)

where Σ is the covariance matrix of the magnitudes in
SEDobs and D2 is given by

D2 = (SEDobs − SEDapp)TΣ−1(SEDobs − SEDapp). (27)

We assume that the uncertainties between magnitudes
in SEDobs are uncorrelated, in which case Σ is a diagonal
matrix and D2 can be simplified to

D2 =
n∑
i=1

[SEDobs(mi)− SEDapp(mi)]
2

σ2
mi + σ2

cal

(28)

where σ2
mi is the squared photometric uncertainty for each

magnitude mi and σ2
cal is an extra uncertainty term which

we add to account for absolute calibration errors. This is
required because the photometric uncertainty given by the
IPHAS database only represents the relative uncertainty due
to background noise, which is often smaller than 0.01 mag
for bright stars. In reality, ground-based survey photome-
try rarely reaches an absolute accuracy better than a few
percent due to additional sources of noise (e.g. variable at-
mospheric conditions).

We found empirically that a value of σcal = 0.1 is
required to prevent the expected match between the ob-
served data and the modelled SED to be too exact. Leaving
this term out has the effect of producing a complex multi-
modal probability landscape which prevents the sampling al-
gorithm –discussed below– from converging efficiently. The
term can be considered as a way to account for all those
sources of noise which we could not explicitly model in the
other parts of the model.
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2.4 Sampling the joint distribution using MCMC

In the previous sections we defined the joint distribution
P (θ,d) and thus the posterior P (θ|d) as a product of priors
and likelihoods. At this point the question remains how this
distribution is computed in practice. A simple “brute force”
method which computes the model for the entire parame-
ter space is computationally intractable. Even if we were to
sample the parameter space at a coarse resolution, say, 100
values for each of the 10 model parameters, we would require
the distribution to be computed in 1020 points. This would
occupy the author’s computer for many billion years.

Fortunately, probability distributions can be sampled
efficiently using a specialised class of algorithms called
Markov Chain Monte Carlo (MCMC). In brief, MCMC al-
gorithms generate a pseudo-random walk in the parameter
space in such a way that, over time, points in the space are
visited with a frequency that is proportional to a specified
probability distribution. Only useful points in the parame-
ter space tend to be evaluated and we avoid wasting time
calculating an infinite number of points in the improbable
regions. The details of MCMC algorithms are beyond the
scope of this paper but we recommend Chib & Greenberg
(1995) for an introduction and MacKay (2003) and Gregory
(2005) for background reading.

Several libraries are available which allow Bayesian
models to be defined and sampled using MCMC. In this
work we used the PyMC framework for Python (Patil et al.
2010) which has the advantage that it allows models to be
defined in a very concise way. Our annotated model takes
less than two pages and is therefore included at the end of
this paper for easy reference (Appendix A). As such, this
paper contains a precise and repeatable specification of the
parameter estimation procedure. The source code and ac-
companying files are also available from the GitHub reposi-
tory of the author2.

For each object under study in this paper (to be ex-
plained in §3), we sampled the joint distribution using the
default settings of PyMC, which is to use the traditional
Metropolis-Hastings walking algorithm with a Gaussian step
proposal function (we refer to the manual of PyMC for defi-
nitions of these technical terms). PyMC automatically tunes
the size of the step proposal function to ensure the walk is
made efficiently with an acceptance rate between 20 and
50%.

It is usually sufficient to sample a probability distribu-
tion in only a few hundred independent points to obtain a
sufficiently accurate approximation. MCMC algorithms typ-
ically require far more samples to be obtained however, be-
cause the walking algorithm naturally produces chains which
are auto-correlated and hence may be stuck at local maxima.
The true number of iterations which are required depends on
the shape of the probability landscape; a complex or multi-
modal distribution with sharp hills and valleys tends to re-
quire far more samples. In our application we find the chains
to be auto-correlated over a typical length of 50 to 250 steps
(depending on the properties of the star). For this reason,
we decided to sample each object in 250 000 points such that
the total number of points is at least 3 orders of magnitude

2 https://github.com/barentsen

larger than the auto-correlation effect (i.e. at least 1000 truly
independent samples are obtained for each object).

It is likely that our application would profit from recent
advances in MCMC algorithms which claim to reduce the
auto-correlation effect considerably. We draw the reader’s
attention to an implementation of such algorithm made
available by Foreman-Mackey et al. (2012) which we intend
to evaluate in future work.

2.5 Results of the sampling procedure

To verify the reliability of our procedure, the sampling was
carried out using 5 independent walks of 50 000 steps, each
starting at randomised positions (with a burn-in length of
1 000 steps). We consistently found these independent chains
to converge to the same parameter-space regions of high like-
lihood within a few hundred iterations, i.e. fast convergence
towards a global maximum was reached in all cases.

We visualised the samplings by means of 2D-histograms
(Figs. 4-7), which trace the posterior marginalised over all
other parameters. The first two examples (Figs. 4-5) are
representative for the vast majority of objects in our study
which show low levels of extinction (A0 < 1). The main dif-
ference is that the first example shows evidence for Hα emis-
sion, whereas the second example does not.

Non-typical examples are shown in Figs. 6-7. These ob-
jects have (i’-J) colours which are significantly redder com-
pared to the first two examples, in a way that is consistent
with a higher level of extinction. We note that the uncer-
tainties are significantly larger for these more highly red-
dened objects. This is a result of our decision to adopt a
log-normal extinction prior with a peak near A0=0.5 and a
long tail towards higher values (corresponding to the empir-
ical distribution for the region which we adopted in §2.3).

If we had not included this prior information then the
uncertainty in Figs. 4-5 would have been similar to that in
Figs. 6-7. In other words, whilst our dataset offers a rough
constraint on the individual extinction, the degeneracy be-
tween extinction and mass is not resolved entirely and the
prior makes a contribution towards constraining the result.
At the same time, Figs. 6-7 demonstrate that the prior does
not prevent higher levels of extinction and uncertainty to
be revealed when the data are inconsistent with low extinc-
tion. We will quantify the contribution of the prior in the
discussion at the end of the paper (§5.4).

We draw the reader’s attention to the ’banana’-shaped
posterior which appears when the uncertainty is large. This
is a natural result of curves in the model evolutionary tracks
relative to the reddening vector.

We also note that the range of possible masses in Fig. 7
appears to go somewhat beyond the mass range that is pro-
vided by the Siess et al. model. Only a few faint objects are
affected in this way however, and we decided not to remove
these from our study.

Finally, we note that a visual inspection of all objects
under study revealed that these marginalised posteriors dis-
tributions are single-moded and quasi-symmetric when the
logarithm of each parameter is considered. This implies
that the marginalised posterior can be well-characterised by
means of computing expectation values and standard devi-
ations.

The posterior was sampled and characterised in this
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Figure 4. Normalised 2D-histograms of the distribution of points in the MCMC chains for object C11059 (r’=19.4± 0.03;

r’-Hα=1.3± 0.04; r’-i’=1.9± 0.04; i’-J=2.1± 0.06). These histograms trace the posterior distributions marginalised over all other pa-
rameters. Blue regions show areas in the parameter space with low probability, red areas show areas with high probability.
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Figure 5. Histograms for object C15152 (r’=16.3± 0.002; r’-Hα=0.8± 0.004; r’-i’=1.4± 0.003; i’-J=1.7± 0.02). Compared to the first
example, this is a brighter object with near-zero Hα emission and a slightly higher mass. The probability region is marginally more

condensed owing to the smaller photometric uncertainties.
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Figure 6. Histograms for object C29493 (r’=19.3± 0.04; r’-Hα=0.7± 0.08; r’-i’=2.0± 0.05; i’-J=3.1± 0.04). Compared to the first

example shown in Fig. 4, the i’-J colour is significantly redder which results in a higher extinction. We also draw attention to the
banana-like shape of the high-probability region, which is a result of changes in the direction of the model isochrones relative to the

reddening vector.
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Figure 7. Histograms for object C36902 (r’=20.6± 0.09; r’-Hα=1.6± 0.11; r’-i’=2.1± 0.10; i’-J=3.1± 0.07). This is one of the lowest-

mass objects in our study. The high-probability region appears to go slightly beyond the range of the Siess et al. model.
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way for a total of 587 known members of the NGC 2264
star-forming region. In the following sections, we discuss
how the input dataset was obtained (§3) and how the de-
rived parameters make sense of the objects’ positions in
colour/magnitude diagrams (§4-§5).

3 APPLICATION TO NGC 2264

NGC 2264, also known as the Cone Nebula or Christmas
Tree Cluster, is located at a distance of ∼760 pc in the con-
stellation of Monoceros (Sung et al. 1997). The cluster is es-
timated to contain∼1000 members, most of which have been
identified using a range of methods including Hα and vari-
ability surveys, X-ray observations and mid-infrared imaging
(a review is given by Dahm 2008).

Stellar parameters have previously been estimated
for members of the region using a wide variety of
colour/magnitude diagrams and evolutionary models (e.g.
Park et al. 2000; Rebull et al. 2002; Sung et al. 2004; Flac-
comio et al. 2006; Dahm et al. 2007). There are significant
systematic differences between these studies however, with
median age estimates for the cluster ranging between ∼1
and 5 Myr (Dahm 2008).

Moreover, there is only a partial overlap in the mem-
bership samples considered in these previous studies, owing
to differences in the datasets and member selection criteria.
In what follows we attempt to select the largest and most
homogeneous membership sample of NGC 2264 to date, and
then use it to demonstrate our method.

3.1 Membership list

The most comprehensive catalogue of objects towards
NGC 2264 has been presented by Sung et al. (2008, 2009)
hereafter referred to as S08 and S09. Their work is based on
a compilation of

(i) deep VRI and Hα photometry using the 3.6 m Canada
France Hawaii Telescope (CFHT);

(ii) bright BVRI and Hα photometry using the 1 m tele-
scope at Siding Spring Observatory (SSO);

(iii) low- and moderate-resolution literature spectroscopy
from Reipurth et al. (2004) and Dahm & Simon (2005);

(iv) archival X-ray observations from the Chandra and
ROSAT Space Telescopes; and

(v) archival infrared observations from the Spitzer Space
Telescope.

The authors constructed a catalogue of 69 674 optical
objects detected towards the cluster (tables 3, 8 & 9 in S08)
and then assigned various “membership codes” by cross-
matching the Hα, X-ray and infrared data. We used these
codes to select a total of 1191 likely members which satisfy
one or more of the following criteria:

(i) Hα emission stronger than chromospherically active
main-sequence stars (membership code: ‘H’, ‘E’, ‘+’, ‘P’ or
‘p’);

(ii) strong X-ray emission (code: ‘X’, ‘+’, ‘-’, ‘M’ or ‘P’);
(iii) Spitzer colours consistent with a protoplanetary disc

(code: ‘I’, ‘II’, ‘II/III’, ‘pre-TD’ or ‘TD’ in S09).

In this sample of 1191 objects, 42% satisfy the Hα cri-
terion, 62% satisfy the X-ray criterion, and 38% satisfy the
Spitzer criterion. There is considerable overlap: 32% satisfy
more than one criterion while 10% satisfy all three.

Additional signatures of membership such as radial ve-
locities, or chemical indicators of youth such as Lithium,
are currently not available for most of these objects. This is,
in part, because half of the sample is fainter than V>18 for
which high-resolution spectroscopy becomes increasingly ex-
pensive. Based on the clustering properties and positions in
the colour-magnitude diagram however, S08 convincingly ar-
gued that the vast majority of objects in this sample are gen-
uine members of NGC 2264. Nevertheless, it is likely that our
sample contains a small number of foreground/background
objects.

The spatial distribution of the sample is shown in Fig. 8
together with the footprints of the observations from which
the sample was compiled.

3.2 IPHAS counterparts

IPHAS is a 1800 deg2 photometric survey of the Northern
Galactic Plane (30o

∼< ` ∼< 220o, −5o

∼< b ∼< +5o) carried out
using a narrow-band Hα filter and the broad-band Sloan r’
and i’ filters, using the 0.3 deg2 Wide-Field Camera (WFC)
at the 2.5-meter Isaac Newton Telescope (INT) in La Palma.
Data towards NGC 2264 were obtained as part of the survey
during several observing runs between 2003 and 2009. The
central part of the cluster, containing the vast majority of
members, was observed on 2008 January 17 with an average
seeing of 1.2± 0.1′′(IPHAS field numbers 3773 and 3773o).

We used the Montage toolkit to create an Hα mosaic
of 20 fields towards the region which is shown in Fig. 9. The
contrast of the mosaic has been stretched using an arcsinh
curve to bring out the Hα background emission.

All data were pipeline processed at the Cambridge As-
tronomical Survey Unit (CASU) as detailed in Irwin &
Lewis (2001), Drew et al. (2005) and González-Solares et
al. (2008). This routinely includes photometric calibration
based on nightly standard star fields, with all magnitudes
based on the Vega system. In addition, we have been able
to draw upon the results of a global calibration of the sur-
vey data which significantly reduces field-to-field magnitude
shifts (Drew et al, in preparation).

We crossmatched the sample of 1191 members from S08
against the IPHAS catalogue. The astrometry of both S08
and IPHAS is based on 2MASS reference coordinates which
offers a typical accuracy of 0.1 to 0.2′′ (González-Solares et
al. 2008). For this reason, we decided on a strict matching
distance upper bound of 0.5′′. A total of 819 members were
found to have a counterpart within the matching distance
in all three IPHAS bands. For 72 of these objects Hα pho-
tometry was not previously available in the S08 catalogue.

From the 372 objects which could not be matched in
all three bands, 249 fall below the typical detection limit of
IPHAS (R > 20) and 44 are saturated (R < 13). Most of the
remaining objects were found to be blended with a nearby
neighbour in IPHAS while being resolved in the higher res-
olution CFHT-based data from S08, which produces an as-
trometric offset. Increasing our matching distance to 1.0′′

would include 35 of these objects, but we decide against
this in favour of data reliability.

c© 2012 RAS, MNRAS 000, 1–18



Bayesian inference of T Tauri star properties 11

202.4°202.6°202.8°203.0°203.2°203.4°203.6°203.8°
Galactic Longitude

+01.6°

+01.8°

+02.0°

+02.2°

+02.4°

+02.6°

G
a
la

ct
ic

 L
a
ti

tu
d
e

2 pc

Figure 8. Spatial distribution of known candidate members in NGC 2264 taken from the works by Sung et al. (see text.) Red circles show

objects for which high-reliability IPHAS and 2MASS photometry is available which satisfy the strict quality requirements defined in §2.4;

these are the objects which are studied in our work. Blue crosses show candidate members for which we could not obtain high-quality
IPHAS/2MASS photometry. Large rectangles show the footprints of the deep optical CFHT observations (dash-dotted line), Spitzer

IRAC observations (dashed line) and Chandra observations (solid line). A few objects fall outside these footprints, because they were

included on the basis of bright optical photometry or literature spectroscopy (footprints not shown). The background image is an inverted
version of Fig. 9.

In the majority of cases the matched objects were de-
tected 2 or 3 multiple times by the IPHAS survey, usually in
the same night. This is because IPHAS fields are observed
twice with a small offset to account for gaps between CCD
chips in the camera. When two or more detections of the
same object are available, we derived the mean magnitude
and updated the uncertainty.

3.3 New candidate members from IPHAS

Having obtained a sample of 819 very likely members from
literature, we carried out a search in the IPHAS database for
any new Hα emitters which may have been missed during
previous searches. Using the method detailed in Paper I we
identified a total of 164 objects which are located confidently
above the main locus of stars in the IPHAS (r’-i’)/(r’-Hα)
diagram. The selection threshold explained in Paper I is de-
signed to avoid chromospherically active field stars, and so
the vast majority of these objects are likely to be accreting
T Tauri stars.

We find that 150 (91%) of these objects were already
selected because they are classified as strong Hα emitters

in S08, while a further 9 objects were selected on the basis
of their X-ray or infrared emission but not on the basis of
Hα (object IDs: C27213, C34019, C36055, C37804, C39811,
C42487, C8431, W3407, W5604). Only 5 objects were not
already selected and are added to our sample (C18650,
C19751, C25302, W2320, W5620). This brings the sample
size to 824 objects. The fact that we are unable to identify
a significant number of new Hα-emitters suggests that the
sample is very complete in this respect, at least down to the
detection limits of IPHAS.

3.4 Quality criteria

At this point we could continue our investigation with all of
the 824 objects for which IPHAS counterparts were found.
However, we choose to narrow down the sample to 587 ob-
jects using the following strict quality requirements:

(i) the photometric uncertainty on each of the three
IPHAS magnitudes must be smaller than 0.1;

(ii) each object must be classified as “strictly stellar” or
“probable stellar” in the IPHAS catalogue in all three bands
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Figure 9. Mosaic of IPHAS observations towards NGC 2264 in the Hα band. A few narrow black bands can be seen, which indicate

small gaps of missing data which will be completed in a future IPHAS data release.

(quality flag ‘-1’ or ‘-2’ defined by González-Solares et al.
2008);

(iii) the object must have a J-band counterpart in the
2MASS database with Signal-to-Noise Ratio (SNR) > 5
(quality flag ‘A’, ‘B’ or ‘C’);

(iv) the object must not be marked as an unresolved bi-
nary in the catalogue due to S08 or 2MASS (flag ‘D’) and its
nearest neighbour must be further away than 1 arcsecond.

Criterion (i) avoids faint sources with high uncertain-
ties. The criterion corresponds to a SNR of 10 or typical
magnitude limits of 20.5 in r’ and 19.5 in i’/Hα (González-
Solares et al. 2008), although we note that there are small
spatial variations in the true magnitude limits depending on
the observing conditions and the number of repeat observa-
tions. Only 34 objects did not meet this criterion.

Criterion (ii) deals with the issue of flux-contamination.
The magnitudes in the IPHAS database are based on aper-
ture photometry which is prone to contamination by nearby
neighbours or spatially varying background emission. The
IPHAS pipeline solves this problem by tracking variations in
the background emission on scales of 20-30 arcsec. In some
cases the background changes on scales smaller than 5-10
arcsec however, in which case photometric measurements of
faint sources become unreliable.

Fortunately, photometry which is unreliable for this rea-
son is flagged in the pipeline as part of the morphological

classification step (see §2.1 in Paper I). In brief, the pipeline
derives a curve-of-growth for each object from a series of
aperture flux measures with different aperture radii. When
this curve deviates from the characteristic point spread func-
tion (PSF) of other stars in the field, the object is flagged
as “extended” (class 1) or “probable extended” (class -3).

By requiring objects to be classified as “strictly stellar”
(code -1) or “probable stellar” (code -2) in all three bands,
we ensure that only reliable measurements for objects with
a normal-shaped PSF are included in our analysis. A total
of 143 objects did not meet this criterion.

Criterion (iii) is introduced because IPHAS magnitudes
alone are not sufficient to constrain the extinction of indi-
vidual objects as we explained in §2. A total of 62 objects
did not meet this criterion. Future work could benefit from
the deeper J-band data offered by the UK Infrared Deep Sky
Survey (UKIDSS, Lucas et al. 2008), but data for NGC 2264
is not yet available from that survey at this time.

Finally, criterion (iv) avoids likely problems due to
source confusion. A total of 30 objects did not meet this
criterion.

After applying each of the criteria, we are left with 587
objects (because a number of objects failed more than one
criterion). The resulting table of IPHAS and 2MASS pho-
tometry for these objects is given in Table 3 and forms the
basis for our analysis.
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4 RESULTS

We obtained Bayesian posterior distributions for each of the
587 objects selected above. We then summarised the pos-
teriors by computing marginalised means and standard de-
viations, i.e. we derived a point estimate per parameter for
each object. These values are listed in Table 4 and visu-
alised by histograms in Fig. 10. In this section we provide a
brief overview of the results by inspecting the distributions
of these point estimates. This will lead us to a set of pre-
liminary results on the properties of NGC 2264, such as its
mass distribution, median age and fraction of accretors.

Whilst point estimates of stellar parameters are widely
used as a tool to investigate the properties of a cluster, we
warn that the presence of large uncertainties can make a
direct analysis of point estimates unreliable. For example,
while it is tempting to estimate the age of NGC 2264 from
the histogram of mean stellar ages shown in Fig. 10, the re-
sult may be biased due to the presence of assymetric and
correlated uncertainties (see Pont & Eyer 2004). This does
not imply that our results cannot be used to study the prop-
erties of the cluster, in fact our posteriors contain all the
required information on the uncertainties and degeneracies.
In order to exploit this information however, we would need
to build a probabilistic model which links the global param-
eters of the cluster to the posteriors of the stars.

Whilst it is easy to see that our hierarchical model may
be extended to include the global properties of the cluster
as parameters, the priors and likelihoods of such parameters
would have to be chosen with care. They would need to re-
flect the current knowledge in the field and allow the right
questions to be answered. For example, if we were to esti-
mate the age and age spread of the cluster, we would need
to make a detailed appraisal of the accuracy of pre-main se-
quence isochrones and include the information in the model.

Defining such a cluster model is beyond the scope of the
present work. In what follows we merely offer the reader a
concise summary of the distribution of the point estimates,
which may be considered as a first-order approximation of
the global properties of NGC 2264. In §6 we will discuss the
future prospect of extending our work to obtain a complete
model of the cluster.

4.1 Masses, ages & extinction

The mass distribution (Fig. 10, panel a) shows the expected
power-law increase towards lower masses. Compared with
the Kroupa IMF (blue solid line) we find a deficit of objects
with masses below 0.25 M�. Our sample is significantly less
complete below this mass due to the SNR quality criteria
imposed in §2.4. Similarly, many stars with masses heavier
than ∼1.2 M� are missing due to the saturation limits of
the IPHAS survey. The highest inferred mass in our sample
equals 1.8+0.3

−0.2 M�.
The age distribution (panel b) shows a mean age of

log τ = 6.48 ± 0.38 (which corresponds to the median τ =
3.0 Myr), albeit with a large apparent dispersion between 1.8
and 4.5 Myr (25 and 75% quartiles). Our median estimate of
3 Myr is identical to the main-sequence turn-off age obtained
in the seminal paper by Walker (1956), and is also consistent
with the age of 3.1 Myr reported by Sung et al. (2004) using
the same set of isochrones as in our work.

The extinction (panel c) shows a mean of logA0 =
−0.37±0.20 (A0 = 0.43) which is consistent with the widely
reported low levels of foreground extinction. 30 objects show
higher levels of extinction ranging between A0=1 and 3,
while only 4 objects show extinctions beyond A0 > 3 (be-
ware that the vertical axis in panel c is logarithmic for clar-
ity).

Compared to the log-normal extinction prior (solid blue
line) there is a deficit of objects with large extinctions, which
will be discussed in §5.4.

4.2 Hα emission & accretion rates

The Hα luminosities (panel d) are shown as a fraction of the
object’s bolometric luminosity L∗ which we derived from the
Siess et al. model as a function of an object’s age and mass.
This allows us to show the distribution relative to the chro-
mospheric saturation limit at log LHα/L∗ = −3.3 (dashed
line). This is the maximum level of Hα emission observed
in clusters at the age of 65 to 125 Myr, where accretion is
thought to have ceased and Hα-emission is produced entirely
by chromospheric activity (Barrado y Navascués & Mart́ın
2003).

This saturation limit is a widely used criterion to sepa-
rate accreting from non-accreting objects. In the remainder
of this paper we refer to objects which fall above the limit as
“accretors” or Classical T Tauri Stars (CTTS) while those
which fall below the limit are “non-accretors” or Weak-lined
T Tauri Stars (WTTS).

According to this definition, the accretion fraction is
20± 2% (115 objects). This fraction may be slightly under-
estimated because 36 additional objects fall only just below
the criterion (log LHα/L∗ between -4.0 and -3.3). It is likely
that some of these objects are undergoing very low levels of
mass accretion which we cannot distinguish from chromo-
spheric activity using our dataset. If we were to assume that
all these objects are undergoing accretion then the fraction
of accreting stars would rise to 25%. We note that a fre-
quency of 20 to 25% for a cluster of 3 Myr is in excellent
agreement with other clusters of a similar age (Fedele et al.
2010).

The Hα EW distribution for the accreting stars (panel
e) shows a range from -12 to -546 Å. The corresponding mass
accretion rates (panel f) range from 10−10.7 to 10−6.4 M�/yr
with a median of 10−8.4 M�/yr. They are in broad agree-
ment with accretion rates found in clusters of a similar age
(e.g. Sicilia-Aguilar et al. 2010).

5 DISCUSSION

The results presented in this paper can be used to inves-
tigate a wide range of questions regarding star formation
and the history of NGC 2264. However, in the remainder of
this paper we choose to restrict ourselves to an evaluation
of the method with an eye on future improvements. In what
follows we show that the results obtained match (i) those ex-
pected from traditional colour-colour and colour-magnitude
diagrams, and (ii) those previously reported in the litera-
ture using spectroscopy. We also discuss a small number of
objects with anomalous colours and discuss the influence of
the extinction prior.
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Name IPHAS ID IPHAS magnitudes 2MASS magnitudes

(S08) J[RA(2000)+Dec(2000)] r’ Hα i’ J H K

C11059 J063955.90+094239.8 19.41±0.03 18.14±0.03 17.56±0.02 15.44±0.06 14.69±0.05 14.28±0.08

C11997 J063957.95+094104.7 17.91±0.01 16.50±0.01 16.16±0.01 14.36±0.04 13.65±0.03 13.35±0.04
C12135 J063958.30+092848.6 18.51±0.01 17.66±0.02 16.74±0.01 14.99±0.04 14.34±0.05 14.11±0.07

C12598 J063959.23+100607.7 17.26±0.00 16.18±0.01 16.07±0.00 13.91±0.02 12.80±0.03 12.10±0.02

C13507 J064001.30+094300.5 19.10±0.04 16.91±0.01 18.14±0.04 15.00±0.04 13.17±0.02 11.94±0.03
C14005 J064002.67+093524.3 16.86±0.00 15.87±0.00 15.35±0.00 13.70±0.03 12.99±0.03 12.71±0.03

C15152 J064005.22+095056.6 16.27±0.00 15.50±0.00 14.87±0.00 13.19±0.02 12.48±0.02 12.26±0.02

C15247 J064005.53+092226.1 16.54±0.00 15.65±0.00 15.44±0.00 13.95±0.03 13.12±0.02 12.73±0.03
C15285 J064005.53+094554.8 18.54±0.02 18.14±0.04 17.16±0.02 15.14±0.05 14.28±0.04 13.93±0.05

C15519 J064006.00+094942.7 16.44±0.00 15.62±0.00 15.18±0.00 13.46±0.03 12.76±0.03 12.45±0.03

· · ·

Table 3. IPHAS and 2MASS photometry for known members of NGC 2264 which satisfy our selection and quality criteria (see text).
The first column shows the existing object identifier as defined by Sung et al. (2008), while the second column shows the IAU-registered

naming convention for objects detected by the IPHAS survey, which is formed by prefixing “IPHAS” to the position string. Calibrated

IPHAS photometry is given in columns 3-5 and matched 2MASS data is given in columns 6-8. This table is available in its entirety in
the online journal.

Name log A0 log M∗ log τ log EWHα log LHα log Ṁacc Comments

[mag] [M�] [yr] [-Å] [L�] [M� yr−1]

C11059 −0.41± 0.44 −0.61± 0.08 6.91± 0.09 1.45± 0.54 −4.5± 0.6

C11997 −0.39± 0.40 −0.49± 0.07 6.50± 0.10 1.79± 0.16 −3.6± 0.2 −9.1± 0.8 CTTS
C12135 −0.33± 0.38 −0.51± 0.07 6.77± 0.09 −0.20± 0.85 −5.8± 0.9

C12598 0.27± 0.39 −0.18± 0.17 6.56± 0.31 1.59± 0.86 −3.1± 1.0 −8.5± 1.4 CTTS

C13507 0.19± 0.73 −0.34± 0.28 6.83± 0.44 1.41± 2.86 −3.8± 3.0 −8.8± 3.3 CTTS
C14005 −0.42± 0.42 −0.41± 0.07 6.28± 0.07 0.49± 1.13 −4.5± 1.2

C15152 −0.33± 0.40 −0.36± 0.09 6.12± 0.08 −0.61± 1.18 −5.3± 1.2

C15247 −0.48± 0.41 −0.29± 0.10 6.59± 0.19 1.00± 0.98 −3.9± 1.0
C15285 0.21± 0.27 −0.32± 0.14 7.04± 0.24 −0.86± 0.92 −6.2± 0.9

C15519 −0.36± 0.45 −0.32± 0.12 6.27± 0.13 −0.44± 1.44 −5.2± 1.5

· · ·

Table 4. Posterior expectation values and standard deviations for parameters of NGC 2264 members, obtained from IPHAS and 2MASS
photometry using Bayesian inference. Shown here are the first 10 entries, the table is available in its entirety in the online journal.
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Figure 10. Distribution of inferred parameters listed in Table 4. Blue solid lines in panels (a) and (c) show the priors. We note that panels
(e) and (f) only include the CTTS objects. We warn that these histograms do not reflect the underlying uncertainties and degeneracies.
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Figure 12. Position of objects in the IPHAS-2MASS (r’-i’)/(i’-J)

plane. The size of the circles represent the mean extinction pos-
terior. The arrow shows the reddening vector for AV = 1 due to

Schlegel et al. (1998).

5.1 Comparison with colour/magnitude diagrams

To verify that our results are consistent with those which
would have been obtained using traditional plane-fitting
methods, we show the position of objects as a function
of their properties in three relevant colour/magnitude di-
agrams

First, Fig. 11 shows the (r’-i’)/(r’-Hα) plane. This dia-
gram acts mainly as an indicator for the Hα-line strength:
objects with Hα in emission show greater r’-Hα values and
are therefore located above the main locus. The size of the
symbols represent our posterior mean estimate for EWHα.
We note the good correspondence between these estimates
and the distance of an object from the main locus.

Second, Fig. 12 shows the (r’-i’)/(i’-J) plane. In this dia-
gram we let the size of the symbols represent the extinction
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Figure 13. Position of objects in the IPHAS (r’-i’)/r’ plane,
dereddened using the mean extinction posterior values of each

object. The size of the circles represent the mean stellar mass pos-

terior. The arrow shows the reddening vector for a unit AV due to
Schlegel et al. (1998). We also show the evolutionary mass tracks

(dotted lines) and isochrones (dashed lines) from the Siess et al.

model, placed at the adopted distance of 760 pc. The isochrones
are for 0.1, 1, 5, 10 and 100 Myr (top to bottom).

estimate, because the unit reddening vector (black arrow)
follows a direction which is somewhat offset from the main
locus of stars, such that objects with high extinction tend
to be located above the main locus.

At first glance, this diagram shows a good agreement
between the position of objects and their estimated extinc-
tion. However, we draw the reader’s attention to the lack of
a one-on-one relationship between the extinction and the ap-
parent distance from the main locus. As discussed in §2.1.2,
this is a result of the fact that the Hα-line falls inside the
r’-band, which has the effect of moving emission-line objects
towards the left of the diagram and above the main locus,
such that strong Hα emitters with low extinction occupy
the same region in the diagram as objects with weak emis-
sion and high extinction. This illustrates the fact that it is
difficult to simultaneously estimate extinction and Hα emis-
sion from these diagrams, which was a major motivation for
adopting the Bayesian approach (cf. §2).

Finally, Fig. 13 shows the (r’-i’)/r’ plane, which can
be used to trace the ages and masses in a way similar to
a Hertzsprung-Russell diagram. The objects shown in this
plane have been dereddened according to their individual
extinction estimates, such that we can compare their po-
sition against the theoretical isochrones (dashed lines) and
evolutionary mass tracks (dotted lines) from the Siess et
al. model. We find a good agreement between the position
of objects in the diagram and their estimated masses. An
equally good agreement is found for the age estimates (not
shown).

5.2 Comparison with existing spectroscopy

The most comprehensive set of spectroscopy towards
NGC 2264 that is currently available in the literature is the
survey presented by Dahm & Simon (2005), which is based
on the Wide-Field Grism Spectrograph (WFGS) on the Uni-
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Figure 14. Comparison of our inferred Hα EWs with values
obtained from grism spectroscopy by Dahm & Simon (2005). The

grey dashed line shows the unity relation. The median error bar

is shown in the bottom right. The scatter is thought to be due to
a combination of uncertainty and natural Hα emission variability.

versity of Hawaii 2.2 m telescope on Mauna Kea, augmented
with spectra from the Gemini North 8.2 m telescope.

Their dataset provides spectroscopic Hα EWs for 74 out
of the 115 accreting objects in our sample. We find a good
correlation between their values and our estimates (r=0.8)
which is shown in Fig. 14, albeit with a significant scatter.
The spread in the relationship is very similar to the one
we previously found in a different cluster (Paper I), and is
thought to be due to a combination of natural variability
and uncertainty (the median 1-sigma uncertainty for our
estimates is shown in the bottom right of the plot).

We note that the work by Dahm & Simon highlighted
the strong natural variability of the Hα line. Using spectra
from multiple epochs between 1990 and 2003, the authors re-
ported that nearly all of the CTTS (90%) exhibited changes
in the EW at or above the 10% level, while 57% varied at
50% or greater. This confirms that the scatter is at least in
part due to natural variability.

5.3 Objects with low likelihoods

An advantage of the Bayesian method is that we may eval-
uate how well the model matches different objects by com-
paring their mean likelihood values (obtained from Eqn. 28).
Using this information, we found a small number of ∼10 ob-
jects with significantly lower likelihoods than the main locus
of stars. These 10 “worst-fit” objects have been marked by
blue rectangles in Figs. 11-14 (object ID’s: C13507, C22501,
C27963, C28541, C31190, C31352, C33877, C36198, C36493,
C37366).

The markers reveal that several of these objects show
strong Hα emission in Fig. 11, while the colours appear
anomalous in Fig. 12, where they fall beyond the extreme
blue edge of the locus. Likewise, a few fall below the main
locus in Fig. 13.

We can think of four reasons to explain their position:

(i) The objects might be blue Hα-emitters in the back-

ground, e.g. interacting binaries, Be stars or unresolved plan-
etary nebulae (Corradi et al. 2008) not related to NGC 2264.

(ii) If the objects are genuine members, the presence of
strong Hα emission suggests that they are undergoing high
levels of mass accretion, which is known to be a cause for
continuum veiling in the red part of the spectrum. The origin
of such emission is unclear however (Fischer et al. 2011).

(iii) The objects might be affected by anomalous extinc-
tion. Three of the stars have previously been discussed by
Sung et al. (2008, 2009) who classified them as “BMS” (for
Below the pre-Main Sequence) based on their outlier posi-
tion in the colour-magnitude diagram. Sung et al. supported
the assumption that these are bona-fide young stars with a
nearly edge-on disk. The dust grains in a disk tend to be
larger than those in the interstellar medium, and hence the
extinction law may differ significantly.

(iv) It is possible that the edge of the disk contaminates
the colours of the star, depending on the inner radius, incli-
nation and shape of the disk.

If these outlier objects are genuine members, they pro-
vide evidence that our results would profit from a more ad-
vanced pre-main sequence model which includes the effects
of continuum veiling due to accretion and dust in the cir-
cumstellar environment. We will discuss this prospect in §6.

5.4 The extinction prior

We noted previously that the extinction distribution
(Fig. 10, panel c) shows a deficit of highly reddened ob-
jects when compared to the prior (blue solid line). The prior
was chosen based on the distribution of spectroscopy-based
extinctions determined by Rebull et al. (2002) for 202 can-
didate members (§2).

The mismatch between our results and the prior is ex-
plained by the use of different selection criteria in both stud-
ies. On one hand, the membership selection by Rebull et al.
made use of a combination of colour-magnitude diagrams
and photometric variability, which is prone to the inclusion
of background objects (i.e. out of the 17 objects for which
the authors reported extinctions larger than AV > 3, only 2
passed our membership criteria). On the other hand, the use
of optical photometry and X-ray observations in our criteria
is likely to introduce a bias against highly reddened objects.

The mismatch illustrates that the extinction prior does
not determine the results alone, but merely helps the data
to constrain the parameters using the additional knowledge
which we chose to include. To understand the influence of
the prior, we repeated the inference procedure using a log-
uniform prior P(logA0) ∼ U(−1, 1), which is less informed.
We found this prior to produce near-identical results with
mean logA0 = −0.32 (A0 = 0.48), which differs from the
original mean extinction by only +0.05 mag. The influence of
this prior on the other parameters was found to be negligible,
with mass estimates showing a median shift of +0.01 M� and
the median age remaining constant.

We also repeated the experiment using the absolute uni-
form prior P(A0) ∼ U(0, 10), which favours high extinctions
far more strongly than the log-uniform prior. This was found
to change the extinction of individual objects by a factor 2.1
on average, hence raising the mean extinction of the sample
to logA0 = −0.03 (A0 = 0.93). As a result, masses ex-
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perienced a median shift of +0.11 M� and the median age
increased from 3.0 Myr to 4.3 Myr.

The factor ∼2 corresponds to the typical 1-σ uncer-
tainty in the extinction of highly reddened objects in our
results (e.g. Fig. 6). We therefore estimate that this is the
level at which our method is able to constrain the extinc-
tion in regions where no prior information is available. The
ability to constrain the extinction within a factor ∼2 meets
the level of accuracy we may reasonably expect from the
combination of r’/i’/J magnitudes, and represents a signif-
icant improvement over the widely used practice of assum-
ing a fixed extinction value in the absence of a spectroscopic
data. Moreover, we are confident that including additional
photometry at longer wavelengths (e.g. 2MASS H/K) can
further strengthen our handle on the extinction in future
work.

6 FUTURE EXTENSIONS

We envisage extending the method presented in this work
on two fronts: (i) more comprehensive modelling of the indi-
vidual stars, and (ii) modelling the global properties of the
cluster.

First, in the previous section we found indications that
our results would profit from a more detailed model of T
Tauri stars, which should include the effects of continuum
veiling due to accretion shocks, as well as the presence of
dust in the circumstellar environment. We envisage employ-
ing a grid of radiation transfer models for this purpose, such
as the widely used models by Robitaille et al. (2006, 2007).
We note that a maximum-likelihood fitting tool already ex-
ists for these models3. At present the tool only links observa-
tions to ‘best-fit’ parameters however, and it does not reveal
the full posterior. In turn, a more detailed model invites the
inclusion of photometry across a wider wavelength range.
We note the possibility to include U- and g-band magni-
tudes from the UVEX and VPHAS galactic plane surveys
(Groot et al. 2009), deep JHK-magnitudes from the UKIDSS
surveys (Lucas et al. 2008) and infrared photometry from
space-based telescopes.

Second, in §4 we explained that our findings on the
global properties of NGC 2264 must be interpreted with cau-
tion, because we did not incorporate the cluster properties
as part of our probabilistic model. This would be desirable,
because there are pertinent open issues in the current lit-
erature which require a careful treatment of the parameter
uncertainties (these questions include the ages of clusters,
their age spreads, and the dependency of accretion rates on
stellar masses, e.g. see Clarke & Pringle 2006; Jeffries et al.
2011). These questions may be addressed by adding the rele-
vant cluster parameters to the top of the hierarchical model
in Fig. 3.

It is worth emphasising that the goal of understanding
clusters can be regarded as the problem of finding a hierar-
chical model which best explains the observations. For this
reason, we encourage others to adopt graphical Bayesian
models as a generic framework to link observations to the-
ory.

3 http://www.astro.wisc.edu/protostars

7 CONCLUSIONS

We showed how the theory of graphical Bayesian networks
can be used to define a probabilistic model which allows ex-
tinction, age, mass and accretion rate to be inferred from
IPHAS r’/Hα/i’ and 2MASS J-band photometry without
the need for spectroscopy. The model combined the evolu-
tionary model due to Siess et al. (2000) and the simulated
photometry for Hα emission-line stars due to Barentsen et
al. (2011) to compute probabilistic posterior distributions.

Compared to more popular plane-fitting or maximum-
likelihood techniques, the advantages of our approach are
that (i) we dealt with the degeneracy between stellar mass
and extinction by considering the full probability distribu-
tion of solutions and (ii) we obtained meaningful expecta-
tion values and uncertainties by marginalising over nuisance
parameters such as the distance and disc truncation radius.

We used the Python/PyMC library to compute the
model using a Markov Chain Monte Carlo (MCMC) algo-
rithm, which was found to take only a small amount of pro-
gramming effort (Appendix A). We then applied the method
to 587 low-mass members of the NGC 2264 star-forming re-
gion and found a good agreement between our results and
the position of stars in colour/magnitude diagrams, as well
as literature spectroscopy. We performed an initial inspec-
tion of the sample and found that:

(i) NGC 2264 shows a median age of 3.0 Myr, albeit with
a large apparent dispersion between 1.8 and 4.5 Myr (25 and
75% quartiles);

(ii) 115 objects (20±2%) show fractional Hα luminosities
above the chromospheric saturation limit (logLHα/L∗ >
−3.3; Barrado y Navascués & Mart́ın 2003) and are there-
fore very likely to be CTTS objects which are accreting gas
from a circumstellar disc;

(iii) for these CTTS objects, we estimated mass accretion
rates on the basis of Hα luminosities and found them to
range between 10−10.7 and 10−6.4 M�/yr with a median of
10−8.4 M�/yr.

The results were shown to be consistent with existing
spectroscopic studies in the literature. Our method achieved
these results with great efficiency by depending only on
photometry, and provides a significant step forward from
previous photometric methods because our probabilistic ap-
proach ensures that nuisance parameters, such as extinction
and distance, are fully included in the analysis with a clear
picture on any degeneracies.

In future work, we envisage extending the method to
include more physics. We note the possibility to utilise a
grid of radiation transfer models which include the effects of
continuum veiling and material in the circumstellar environ-
ment. In turn, our method would benefit from the inclusion
of additional photometric bands across a wider wavelength
range.

Graphical Bayesian models provide a generic framework
for estimating parameters from sparse data. We expect that
the approach will become increasingly important as a tool
for the effective utilisation of large surveys, in particular
once distance estimates from Gaia can be included. We re-

c© 2012 RAS, MNRAS 000, 1–18



18 Barentsen et al.

mind the reader that our source code is made available on-
line4 and encourage others to reuse or improve the code.
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APPENDIX A: PYTHON SOURCE CODE FOR THE INFERENCE MODEL

import numpy as np

from scipy.interpolate.rbf import Rbf

import pyfits

import pymc

""" Interpolation functions for intrinsic magnitudes """

siess = pyfits.getdata("siess_isochrones.fits", 1) # Siess et al. (2000)

# Interpolation is performed using linear Radial Basis Functions

siess_Mr = Rbf(siess.field("logMass"), siess.field("logAge"),

siess.field("Mr_iphas"), function="linear")

siess_Mi = Rbf(siess.field("logMass"), siess.field("logAge"),

siess.field("Mi_iphas"), function="linear")

siess_Mj = Rbf(siess.field("logMass"), siess.field("logAge"),

siess.field("Mj"), function="linear")

siess_logR = Rbf(siess.field("logMass"), siess.field("logAge"),

siess.field("logRadius"), function="linear")

""" Functions for magnitude offsets due to emission & exctinction """

sim = pyfits.getdata("simulated_iphas_colours_barentsen2011.fits", 1) # PaperI

# Functions for r’/Ha/i’ offsets as a function of colour, extinction and EW

r_offset = Rbf(sim.field("ri_unred"), sim.field("av"), sim.field("logew"),

sim.field("d_r"), function="linear")

ha_offset = Rbf(sim.field("ri_unred"), sim.field("av"), sim.field("logew"),

sim.field("d_ha"), function="linear")

i_offset = Rbf(sim.field("ri_unred"), sim.field("av"), sim.field("logew"),

sim.field("d_i"), function="linear")

# Intrinsic (r’-Ha) colour as a function of intrinsic (r’-i’)

intrinsic = (sim.field("av") == 0) & (sim.field("logew") == -1)

rminHa_intrinsic = Rbf(sim.field("ri_unred")[intrinsic],

sim.field("rha")[intrinsic], function="linear")

def make_model(observed_sed, e_observed_sed):

""" This function returns all prior and likelihood objects """

# Prior: mass (Kroupa 2001)

@pymc.stochastic()

def logM(value=np.array([np.log10(0.5)]), a=np.log10(0.1), b=np.log10(7)):

def logp(value, a, b):

if value > b or value < a:

return -np.Inf # Stay within the model limits (a,b).

else:

mass = 10 ** value

if mass < 0.5:

return np.log(mass ** -1.3) # Kroupa (2001)

else:

return np.log(0.5 * mass ** -2.3) # Kroupa (2001)

def random(a, b):

val = (b - a) * np.random.rand() + a

return np.array([val])

# Prior: age (uniform in the logarithm)

logT = pymc.Uniform("logT", np.array([5]), np.array([8]))

# Prior: accretion rate (uniform in the logarithm)

logMacc = pymc.Uniform("logMacc", np.array([-15]), np.array([-2]))

# Prior: disc truncation radius (Rin = 5 +\- 2 R, Gullbring et al. 1998)

Rin = pymc.TruncatedNormal("Rin", mu=np.array([5.0]), tau=2.0 ** -2,

a=1.01, b=9e99)

# Prior: distance (d = 760 +\- 5 pc, Sung 1997)

d = pymc.TruncatedNormal("d", mu=np.array([760.0]), tau=5.0 ** -2,

a=700, b=9e99)
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# Prior: extinction (logA0 = -0.27 +/- 0.46, Rebull et al. 2002)

logA0 = pymc.Normal("logA0", mu=np.array([-0.27]), tau=0.46 ** -2)

# Likelihood: intrinsic SED

@pymc.deterministic()

def SED_intrinsic(logM=logM, logT=logT):

r = siess_Mr(logM, logT) # IPHAS r’ as a function of (mass, age)

i = siess_Mi(logM, logT) # IPHAS i

j = siess_Mj(logM, logT) # 2MASS J

ha = r - rminHa_intrinsic(r - i) # IPHAS H-alpha

return np.array([r[0], ha[0], i[0], j[0]])

# Likelihood: H-alpha excess luminosity

@pymc.deterministic()

def logLacc(logM=logM, logT=logT, logMacc=logMacc, Rin=Rin):

logR = siess_logR(logM, logT) # Radius as a function of (mass, age)

return 7.496 + logM + logMacc - logR + np.log10(1 - (1 / Rin))

logLha = pymc.Normal("logLha", mu=(0.64 * logLacc - 2.12), tau=0.43 ** -2)

# Likelihood: H-alpha equivalent width (EW).

@pymc.deterministic()

def logEW(logLha=logLha, SED_intrinsic=SED_intrinsic):

Lha = 10 ** logLha # Excess luminosity

Lha_con = 0.316 * 10 ** (-0.4 * (SED_intrinsic[1] + 0.03)) # Continuum

ew = -95.0 * Lha / Lha_con # Equivalent width.

return np.log10(-ew)

# Likelihood: apparent SED

@pymc.deterministic()

def SED_apparent(d=d, logA0=logA0, SED_intr=SED_intrinsic, logEW=logEW):

dismod = 5.0 * np.log10(d) - 5.0 # Distance modulus.

A0 = 10.0 ** logA0 # Extinction parameter

ri_intr = np.array([SED_intr[0] - SED_intr[2]]) # Intrinsic (r’-i’)

# Correct the intrinsic magnitudes for extinction and H-alpha emission:

r = SED_intr[0] + dismod + r_offset(ri_intr, A0, logEW)

ha = SED_intr[1] + dismod + ha_offset(ri_intr, A0, logEW)

i = SED_intr[2] + dismod + i_offset(ri_intr, A0, logEW)

j = SED_intr[3] + dismod + 0.276 * A0

return np.array([r[0], ha[0], i[0], j[0]])

# Likelihood: observed SED

@pymc.stochastic(observed=True)

def SED_observed(value=observed_sed, SED_apparent=SED_apparent):

e_calib = np.array([0.1, 0.1, 0.1, 0.1]) # Absolute uncertainty term

D2 = sum((observed_sed - SED_apparent) ** 2 /

(e_observed_sed ** 2 + e_calib ** 2))

logp = -D2 / 2.0

return logp

return locals() # Return all model components defined above

if __name__ == "__main__":

""" Example code which demonstrates how to obtain the posterior mass """

# Input: the observed magnitudes and 1-sigma uncertainties

sed_observed = np.array([19.41, 18.14, 17.56, 15.44]) # r, Ha, i, J

e_sed_observed = np.array([0.03, 0.03, 0.02, 0.06]) # e_r, e_Ha, e_i, e_J

# Initialize the model.

mymodel = make_model(sed_observed, e_sed_observed)

M = pymc.MCMC(mymodel)

# Demo: run the MCMC sampler and print the expectation value for log(Mass)

M.sample(50000)

samples_logM = M.trace("logM")[:]

print "logM = %.2f +/-%.2f" % (np.mean(samples_logM), np.std(samples_logM))
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