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Abstract Building artificial neural network (ANN) mo-

dels and studying their dynamic behaviours is extremely

important from both a theoretical and practical stand-

point due to the rapid advancement of artificial intelli-

gence. In addition to its engineering applications, this

article concentrates primarily on the memristor model

and chaotic dynamics of the asymmetric memristive

neural network. First, we develop a novel memristor

model, which is multistable and highly tunable . Using

this memristor model to build an asymmetric memris-

tive Hopfield neural network (AMHNN), the chaotic

dynamics of the proposed AMHNN are investigated

and analyzed using fundamental dynamics techniques

such as equilibrium stability, bifurcation diagrams, and

Lyapunov exponents. According to the findings of this

study, the proposed AMHNN possesses a number of

complex dynamic properties, including scaling ampli-
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tude chaos with coupling strength control, and coex-

isting uncommon chaotic attractors with initial control

and coupling strength control. Significantly, the pro-

posed AMHNN have been observed to exhibit the phe-

nomenon of infinitely persisting uncommon chaotic at-

tractors. In the interim, a system for image encryption

based on the proposed AMHNN is constructed. By an-

alyzing correlation, information entropy, and key sensi-

tivity, the devised encryption method reveals a number

of benefits. The feasibility of the encryption method is

validated through field-programmable gate arrays (FP-

GAs) hardware experiments, and the proposed mem-

ristor and AMHNN models have been translated into a

Simulink model.

Keywords Chaotic dynamics · Asymmetric mem-

ristive Hopfield neural network · Highly tunable

memristor · Lyapunov exponents and bifurcation ·
Image encryption

1 Introduction

Due to its nonlinearity and synaptic-like properties,

memristor is a crucial new technology for memory and

neuromorphic computing. The memristor was theorized

in 1971 by Dr. Leon Chua[1] and was first fabricated

by a research team at Hewlett-Packard Labs in 2008[2].

Since then, memristor research has exploded, as evi-

denced by a significant number of papers. As an impor-

tant research content, mathematical memristor model

is concerned and it is used to simulate the rich features

of nano-memristor[3].To study the nonlinear dynamics

of memristor-based circuits, to create new hybrid hard-

ware architectures that combine memory storage and

data processing at the same physical location, and to
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understand how biological systems work, it is very im-

portant to have such mathematical memristor model.

Thankfully, many significant theories on mathematical

memristor models were proposed by Chua, who catego-

rized them as ideal memristor, generic memristor, and

extended memristor. These theories provide a suitable

theoretical foundation for further study on mathemat-

ical memristors. In recent times, numerous models of

memristors have emerged[4,5], in accordance with the

aforementioned theory. Also, since many phenomena in

reality are multistable, recently, there have been many

studies on multistable memristor systems[6,7].

Recently, with the rapid development of AI, artifi-

cial neural networks (ANNs) have gained popularity as

a model in the field of machine learning and have be-

come a strong competitor to traditional regression and

statistical models in terms of practicality and effective-

ness. Meanwhile, many different types of ANNs have

recently emerged[8–13], and are widely used in various

fields such as classification, clustering, pattern recogni-

tion and prediction, etc.

Specifically, ANN is constructed using interconnected

units or nodes known as artificial neurons, which serve

as a loose representation of the neurons found in a

biological brain. Similar to the synapses in a biolog-

ical brain, each connection within an ANN has the

ability to transmit signals to other neurons. Moreover,

based on the fact that memristor can simulate biolog-

ical neural synapses, therefore, it can serve as synapse

in artificial neural networks and artificial neuron, such

as Hodgkin-Huxley neuron model, FitzHugh-Nagumo

neuron model, Morris-Lecar neuron model, Hindmarsh-

Rose neuron model, Chay neuron model, Hopfield neu-

ral network (HNN), Cellular neural network, etc[14–17].

Due to its distinct network topology and numerous

chaotic dynamics that resemble brain function, HNN is

one of these models that is frequently used as a typical

paradigm[18]. Researchers have thoroughly investigated

chaotic dynamics based on the HNNs for many years

and from a variety of angles. For example, in recent

research[6,19], it was found that memristive HNN can

well simulate the dynamic behavior of the human brain,

such as periodic motion, limit cycles, chaos, coexistence

chaos, etc.

Using memristors to simulate synapses in a HNN

with some neurons, for instance, can result in mem-

ristive HNN with complex multistability [20–22]. Sp-

ecifically, a recent study[23] demonstrated that a mem-

ristive asymmetric neural network with two sub-neural

networks can generate brain-like complex chaotic initial-

boosted behavior. This indicates that memristive cou-

pled neural networks exhibit intricate dynamic behav-

iors closer to the brain. Meanwhile, the circuits of mem-

ristive neural networks show higher efficiency and lower

power due to the use of real nano-memristor devices[24].

Thus, the construction of a brain-like dynamical system

model with complex dynamic behavior plays a good

role in promoting the development of brain-like com-

puting infrastructure and also helps brain neuroscien-

tists use the model to find the hidden meaning behind

these brain-like dynamic properties.

At the same time, with the development of infor-

mation technology and multimedia communication, in-

formation security is becoming more and more impor-

tant in multimedia communication[25]. As an essential

component of multimedia communication, it is crucial

to safeguard images, as they are intimately connected

to the privacy of individuals . To protect images secu-

rity, various image encryption methods are designed so

far[26]. Over time, researchers have utilized a variety

of techniques to enhance the security of images. Be-

cause the images have different properties as compared

to text, the traditional methods such as DES, AES, and

IDEA are not suitable in the case of images, then many

image encryption methods are utilized in the last few

decades[27,28]. Among these approaches, chaotic en-

cryption which uses chaotic system encryption can be

very suitable for generating random number sequences

that are utilized as secret keys in image encryption, be-

cause its properties such as dynamic and deterministic

nature, being sensitive to initial conditions, and ergod-

icity[29].

Numerous studies have demonstrated that image

encryption methods based on HNNs with complex chaotic

behaviors provide outstanding encryption performance.

Using a chaotic HNN to generate a keystream, for in-

stance, a robust hybrid image encryption method[30]

was developed. Several memristive HNN-based image

encryption method with multi-scroll attractors or initial-

boosted behavior have recently been reported [31,32].

These encryption method outperform earlier systems

in terms of security because of their intricate dynamic

features.

From the above review, it becomes clear that two

issues still need further consideration:

Firstly, the existing multistable memristor models

are very complex and do not provide high tunability.

In reality, synapses are extremely plastic. There is no

doubt, if a suitable mathematical model of the memris-

tor with multistability and high tunability can be pro-

vided, it will have a good practical guiding significance

for the construction of nano-level memristor elements.

Secondly, multiple dynamic behaviors, such as rest-

ing state, spiking firing, bursting firing, and disorder,

can be exhibited by the nervous system of the brain.

And numerous dynamic phenomena, including chaotic



3

attractors, coexisting attractors, and multi-scroll at-

tractors, have been identified and implemented in var-

ious HNNs[33–35]. However, previous studies with re-

spect to HNNs have focused primarily on one of their

dynamic characteristics, such as chaotic behavior, multi-

scroll behavior, coexisting behavior, or initial-boosted

behavior. The impact of the memristor on the position-

ing and the amplitude of the chaotic attractor of the

HNN has not yet been explored in previous studies.

There is no doubt that it will help people build more

realistic memristive neural network.

In light of the above analysis, this paper proposes

a new general memristor mathematical model that is

multistable and highly tuneable. Using this paradigm,

AMHNN is constructed. We alse apply the proposed

AMHNN to generate an image encryption method. The

primary contributions and originality of this study are

enumerated as follows:

1. We construct a novel multistable and highly tunable

memristor (MSAHTM) model.

2. The AMHNN exhibits rich and complex brain-like

initial-boosted dynamics, in which an infinite num-

ber of coexisting chaotic attractors with distinct

shapes and positions are generated, the range and

position of chaotic attractor of the AMHNN are af-

fected by the interference coefficient. To the best of

our knowledge, this peculiar feature has rarely been

detected in other neural networks.

3. To demonstrate the usefulness of the proposed AMH-

NN , we develop an image encryption cryptosystem

based on AMHNN. The developed cryptosystem of-

fers numerous advantages over currently used chaos-

based image encryption methods, including a wide

key-space, high information entropy, extremely sen-

sitive keys, and good robustness.

4. Hardware experiments using FPGAs are carried out

to show the effctiveness of the image cryptosystem.

The rest of this paper is organized as follows: Section

2 derives the novel generic multistable memristor model

from the circuit perspective and builds its Simulink

model. Section 3 designs the AMHNN, constructs their

Simulink models, and analyzes their dynamic perfor-

mance. Section 4 designs an image encryption method

based on AMHNN, discusses its performance, and veri-

fies it on the FPGA hardware platform. Section 5 sum-

marizes and discusses the whole work.

2 CONSTRUCTION OF THE NOVEL

MEMRISTOR MODEL

A voltage-controlled generic memristor can be described

as follows in accordance with memristor theory[36]:

State equation:

dx/dt = g(x, v), (1)

State-dependent Ohm’s law:

i = G(x)v, (2)

where G(x) is memductance, and v, i, and x de-

note voltage, current, and memristor state, respectively.

Now, based on equations (1) and (2), we propose the

MSAHTM:

dx/dt = g(x, v) = acos(x)tanh(x)− v, (3)

i = G(x)v = (bx+ ccos(x))v. (4)

In this work, a, b, and c are set to 3, 500 and 0.4,

respectively.

To better study this new model, a sinusoidal exter-

nal stimulus is applied to the memristor:

v = Asin(Ft). (5)

where A and F respectively represent amplitude and

frequency. And a more in-depth characteristic analysis

is provided in the next section using numerical simula-

tions by MATLAB.

2.1 Volt-ampere characteristic analysis

Equations (3) and (4) are examined when the stimulus

v = Asin(Ft) is used as the driving source at vari-

ous frequencies and amplitudes. The pinched hysteresis

loops of the memristor are numerically simulated and

depicted in Fig. 1, where initial state x(0) = π
2 , am-

plitudes A and frequencies F are chosen with various

values. Three pinched hysteresis loops running through

the origin in the voltage-current (v-i) plane are clearly

visible in Fig. 1(a). And in Fig. 1(b), the hysteresis

lobe area steadily decreases as the excitation frequency

rises from 0.8 to 8. Furthermore, it is obvious that the

pinched hysteresis loop will trend to a single-valued

curve as the frequency approaches infinity.The novel

model is thus a memristor device, since it has three

memristor fingerprints[37].
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(a) (b)

Fig. 1 Pinched hysteresis loops of MSAHTM under v = Asin(Ft) with initial state x(0)=π
2
. (a) Three pinched hysteresis

loops running through the origin with different amplitudes. (b) The hysteresis lobe area steadily decreasing as the excitation
frequency rises from 0.8 to 8.

2.2 Multistability analysis

Here, we show the multistability of MSAHTM using a

power-off plot (POP). Typically, POP is just a curve in

the f(x, 0) vs x plane [38]. Due to the fact that dx/dt =

0, any intersection of POP with the x-axis is defined as

an equilibrium point of the memristor. Then, assuming

v = 0, the memristor state (3) becomes:

dx/dt = g(x, 0) = acos(x)tanh(x), (6)

where a satisifies the equation (3).

The POP of this innovative memristor is seen in

Fig. 2. In Fig. 2, there exist an unlimited number of

intersections, which correspond to equilibrium points.

As shown by the evaluation tool in [38], the equilibrium

points with circle dots are asymptotically stable, while

the equilibrium points with triangle dots are unstable.

Evidently, given random initial states, the memristor

state tends toward the equilibrium point xe:

xe = ± (2k + 1)π

2
, k ∈ (0, 1, 2, 3, 4 . . .), (7)

In particular, the stable equilibrium point xse can

be expressed as follows:

xse = ± (4k + 1)π

2
, k ∈ (0, 1, 2, 3, 4 . . .). (8)

Fig. 2 shows that MSAHTM makes six coexisting

pinched hysteresis loops on the v-i plane. It could pro-

duce an infinite number of coexisting pinched hysteresis

loops for different initial states. This also indicates that

MSAHTM is also locally active for the branches of the

state x(0) < 0, as indicated by the fact that its slope

at origin is negative.

2.3 Tunability analysis

More interestingly, as we can see from Fig. 3, this mem-

ristor model can generate different shapes of hysteresis

loops, with varying a, b, and c parameters. By setting

b = 5, c = 0.4, and altering a from -2 to 3, for in-

stance, this model can generate various shapes of hys-

teresis loops. And by setting a = 3, c = 0.4, and varying

b between -50 and 50, hysteresis loops approximately

spins in counterclockwise. Hysteresis loops pull up to

the upper left when a = 3, b = 5, and c varies from

-4 to 6. As a result of the analysis, it is clear that this

MSAHTM is highly tunable, thus simulating the dy-

namic behavior of various types of memristor devices.

2.4 Simulink model of novel memristor

In order to further verify this novel memristor, we de-

veloped the Simulink model of it, which can be seen

from its circuit diagram in Fig. 4(a). Furthermore, the

simulation results of this Simulink model are shown in

Fig. 4(b).

3 APPLICATION IN A HOPFIELD NEURAL

NETWORK

3.1 Construction of memristive Hopfield neural

network

A HNN is often used to mimic the dynamic activity

of brain processes[6], for better understanding human

memory. The i-th neuron in HNN can be stated as

Ciẋi = −xi/Ri +

n!

j=1

wij tanh(xj) + Ii(i, j ∈ N∗). (9)

where Ci,Ri, and xi are, respectively, the membrane

capacitance, membrane resistance, and membrane volt-

age between the exterior and interior of neuron i. tanh(xi)
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(a) (b) (c)

Fig. 2 (a-b) Numerical simulation results of MSAHTM under different initial states x(0)= -9π
2
, -5π

2
, -π

2
, π

2
, 5π

2
, 9π

2
. (c) POP

of the MSAHTM.

(a) (b) (c)

Fig. 3 Different shapes of coexisting hysteresis loops, with fixed initial state, but different parameter for memristor . (a) By
setting b = 5, c = 0.4, and altering a from -2 to 3, for instance, this model can generate various shapes of hysteresis loops.
(b) By setting a = 3, c = 0.4, and varying b between -50 and 50, hysteresis loops approximately spins in counterclockwise. (c)
Hysteresis loops pull up to the upper left when a = 3, b = 5, and c varies from -4 to 6.

(a) (b)

Fig. 4 Simulink model of MSAHTM. (a) Circuit diagram of MSAHTM. (b) Circuit simulation results of MSAHTM under
different initial condition x(0) = -π

2
and x(0) = π

2
.
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is the activation function of the neuron, and Ii is the

external bias current. From an ANN model standpoint,

wij is the synaptic weight that describes the strength of

the connection between neurons j and i. From an cir-

cuital standpoint, wij is the admittance of the resistor

linking neuron j and neuron i. According to the char-

acteristics of memristors, both memductance and wij

are measured in Siemens, hence a memristor may be

used in lieu of a connecting resistor. Thus, the synaptic

weight may be converted into the memductance of a

memristor. Under this strategy, some memristor-based

HNNs were presented, and complex dynamic behav-

iors of quasi-periodic orbits, chaos and coexisting chaos

were identified [39–42].

Fig. 5 Connection topologies of the AMHNN.

To better understand how this novel memristor can

apply itself in HNN, we constructed a asymmetric mem-

ristive HNN, named AMHNN, which is composed of

four neurons coupled with two memristors, as can be

seen in Fig. 5. In this HNN model, the proposed novel

memristor stands for the synaptic weights w41 and w31.

By combining equations (3), (4), and (9), assuming Ci

= 1, Ri = 1, and Ii = 0, the dynamical equation of the

AMHNN in Fig. 5 is as follows:
!
"""""#

"""""$

ẋ1 = −x1 + tanh (x1) + 0.5 tanh (x2) − 2 tanh (x3) − tanh (x4) ,
ẋ2 = −x2 + 2.3 tanh (x2) + 3 tanh (x3) ,
ẋ3 = −0.7x3 + ρ2G2 tanh (x1) − 3 tanh (x2) + tanh (x3) − tanh (x4) ,
ẋ4 = −x4 + ρ1G1 tanh (x1) + 3 tanh (x2) + tanh (x3) + 0.3 tanh (x4) ,
ż1 = 3 cos(z1) tanh(z1) − tanh (x1) ,
ż2 = 3 cos(z2) tanh(z2) − tanh (x1) .

(10)

whereG1 = 500z1+0.4 cos(z1),G2 = 500z2+0.4 cos(z2)
indicate the synaptic weights w41 between neuron 1 and
neuron 4, and w31 between neuron 1 and neuron 3, re-
spectively. The coupling strength of the memristor is
represented by the system parameters ρ1 and ρ2. By
setting the right side of the equation (10) to zero, we
can determine that the AMHNN has indefinitely dis-
crete equilibria

E =

%&
x
∗
1 , x

∗
2 , x

∗
3 , x

∗
4 , z

∗
1 , z

∗
2

'
| x∗

i = 0, z
∗
1 =

(2k + 1)π

2
, z

∗
2 =

(2k + 1)π

2

(

(11)

where i = 1, 2, 3, 4, k ∈ (0, 1, 2, 3, . . .). By modifying

phase space, AMHNN can create infinitely many equi-

libria along the z1-axis and z2-axis. Evidently, using two

unique memristors as synapses is crucial to the forma-

tion of endless equilibria.

3.2 Dynamic analysis of AMHNN

The complex dynamic behavior in the AMHNN(10) is

revealed by using basic dynamic analysis methods, in-

cluding bifurcation diagrams, Lyapunov exponents, and

phase diagram for further investigation. In addition,

all numerical simulations are carried out in MATLAB

R2021a using the Runge-Kutta algorithm(ODE45).

3.2.1 Coupling strength-relied dynamic behaviors

To explore the effect of a single coupling coefficient per-

turbation on the dynamic behavior of AMHNN, we as-

sume that the initial conditions are (x1(0), x2(0), x3(0),

x4(0), z1(0), z2(0)) = (1, 1, 1, 1, π
2 ,

π
2 ) and we use fixed

ρ2 = 0.008. As shown in Fig. 6, it is obvious that

AMHNN produces successively periodic attractors with

varied periods and chaotic attractors as ρ1 increases.

Under prior initial conditions, the phase portraits de-

picting the attractors of AMHNN with various ρ1 values

are provided to highlight its dynamic evolution with the

coupling strength of the memristor. In Fig. 7, by vary-

ing ρ1, it shows that AMHNN can produce a series of

chaos with different amplitude, which means the change

of ρ1 can control the amplitude of the chaotic attrac-

tors. This specific phenomena is capable of simulating

brain impulses with various amplitudes that correspond

to various dynamic states.

Then, to investigate whether AMHNN can achieve

complex bifurcation under the perturbation of a single

coupling coefficient, the bifurcation diagram of AMHNN

with respect to the parameter ρ1 ∈ (−5, 5) can be

shown in Fig. 8 (a-b). When ρ1 < 0, as ρ1 increases,

x1max route is a horizontal line without bifurcation and

x4max is a upward sloping line without bifurcation, de-

noting the stable equilibrium point of x4 that receives

the effect of ρ1 and the larger ρ1 is, the closer the stable

equilibrium point of x4 is to the coordinate origin. How-

ever, when ρ1 > 0, as ρ1 increases x1max route quickly

become dense bunch of points, and x4max route steadily

expands with dense bunch of points, indicating that the

proposed AMHNN can rapidly enters chaotic states and

possesses extraordinarily complex chaotic behavior.

Meanwhile, as shown in Fig. 8 (c-d), the associated

constant Lyapunov exponents have one positive value
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(a) (b)

(c) (d)

Fig. 6 Numerically simulated phase portraits for different
ρ1 with fixed ρ2. (a) Period-1 attractor at ρ1 = 0.003. (b)
Period-3 attractor at ρ1 = 0.007. (c) Multi-period attractor
at ρ1 = 0.015. (d) Chaotic attractor at ρ1 = 0.023.

Fig. 7 A series of scaling amplitude chaos with varying ρ1,
where ρ1 ∈ (1, 5).

and the sum of the exponents is negative across the en-

tire ρ1 fluctuation range, indicating that AMHNN has

a high chaotic quality. Moreover, based on the fact that

AMHNN has two coupling coefficients ρ1 and ρ2, how

the two coefficients affect the dynamic behavior of it is

thoroughly investigated in Fig. 9 by variables method.

In Fig. 9(a), ρ2 is fixed with 0.008 and ρ1 varies from

0.003 to 2.6. When ρ1 = 0.018, AMHNN has entered

chaotic state. While in Fig. 9(b), by contrast, ρ1 is fixed

at 0.016, we vary ρ2 from 0.001 to 0.064. It is clear that

AMHNN can generate a more complex dynamic behav-

ior than the previous condition as ρ2 changes. In sum-

mary, all the facts prove that the dynamic behavior of

the system is highly dependent on the strength of its

coupling coefficient ρ1 and ρ2.

3.2.2 Initial state-relied dynamic behaviors

Through the above numerical and theoretical analysis,

we can make the following hypothesis: with a given

coupling strength, AMHNN may generate coexisting

attractors under varied initial conditions of the two

memristor G1 and G2. In order to verify this hypoth-

esis, several suitable simulation experiments were con-

ducted. At first, by influencing the state evolution of

G1, how the different initial states of G1 would affect

the dynamic behavior of AMHNN is studied in this pa-

per. After that we study the initial states of G2. Sup-

posing that ρ1 = 2.6 and ρ2 = 0.008, coexisting at-

tractors may be seen from the initial states listed be-

low: (x1(0), x2(0), x3(0), x4(0), z1(0), z2(0)) = (1, 1, 1, 1,
(4k+1)π

2 , (4k+1)π
2 ), where k ∈ (0, 1, 2, 3, . . .). Then, by

choosing three different initial states with fixed z2(0) =
π
2 , such as (1, 1, 1, 1, π

2 ,
π
2 ), (1, 1, 1, 1,

5π
2 , π

2 ), (1, 1, 1, 1,
9π
2 , π

2 ), the AMHNN generates three coexisting chaotic

attractors with different position, as demonstrated in

Fig. 10 (a-b). However, when we do not fix z2(0) and

choose different values for it, such as (1, 1, 1, 1, π
2 ,

π
2 ),

(1, 1, 1, 1, 5π
2 , 5π

2 ), (1, 1, 1, 1, 9π
2 , 9π

2 ), the AMHNN pro-

duces three coexisting attractors of different position

and shapes, as demonstrated in Fig. 10 (c-d). So, for

AMHNN, we can say that z1(0) governs the position

of the attractors and z2(0) can change the shape of

the attractors. Furthermore, Fig. 11 (a-b), show that

different z1(0) can generate state evolution with differ-

ent position, which means G1 is actually a multistable

memristor. While, in Fig. 11 (c-d), distinct z2(0) can

cause state evolution with varying amplitudes, which

can affect the dynamic behavior of the AMHNN.

3.3 Simulink model of AMHNN

To further confirm the observed attractors, we design

the Simulink model of the AMHNN, and its circuit

diagram can be seen in Fig. 12(a-b). Chaotic attrac-

tors can be successfully generated by Simulink model

of AMHNN, which is same to numerical simulation in

Fig. 9(a).

4 APPLICATION IN IMAGE ENCRYPTION

Recent emphasis has been placed on chaos-based image

encryption research [43–47]. Systems with multistabil-

ity are better candidates for chaos applications than

chaotic systems without multistability because they have

more complex dynamic behavior. Because it has both

chaotic attractors and multistability, the proposed AM-

HNN has a lot of potential use in image encryption

method. In this section, an image encryption method

based on AMHNN is developed and its suitability for

image secure communication is evaluated. In order to

have an intuitive understanding, the architecture of the

AMHNN-based image encryption method as can be shown

in Fig. 13.
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(a) (b) (c) (d)

Fig. 8 (a-b) Bifurcation diagram of the x1 and x4 of AMHNN with ρ1 ∈ (−5, 5), ρ2 = 0.008. (c) Six Lyapunov exponents
diagram of the AMHNN, where ρ1 ∈ (−5, 5). (d) Six Lyapunov exponents diagram of the AMHNN, where ρ1 ∈ (−0.05, 0.1).

(a) (b)

Fig. 9 An abundance of dynamic behavior with various coupling strength and (x1(0), x2(0), x3(0), x4(0) ,z1(0), z2(0)) =
(1,1,1,1,π

2
,π
2
), where the x-axis represents x2 and the y-axis represents x3. (a)In this case, ρ2 equals 0.008, ρ1 ranges from

0.003 to 2.6. The specific values of parameter ρ1, by row traversal order, are [0.0030 0.0060 0.0090 0.0120 0.0150 0.0180 0.0210
0.0240 0.0360 0.0390 0.1260 0.1590 1.6000 1.6300 1.6500 2.6000]. (b) In this case, ρ1 equals 0.016, ρ2 ranges from 0.001 to
0.064. The specific values of parameter ρ2, by row traversal order, are [0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080
0.0110 0.0190 0.0210 0.0220 0.0240 0.0280 0.0440 0.064].

(a) (b) (c) (d)

Fig. 10 (a-b) Three coexisting chaotic attractors of different positions on phase space with different initial conditions z1(0),
where ρ1 = 2.6 , ρ2 = 0.008 and z2(0) =

π
2
. (c-d) Coexisting uncommon attractors with different shapes on phase space with

different initial conditions z2(0), where ρ1 = 2.6 , ρ2 = 0.008 and z1(0) is equal to z2(0).
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(a) (b) (c) (d)

Fig. 11 (a-b) The state evolution of G1 and G2 with different z1(0), where ρ1 = 2.6 , ρ2 = 0.008 and z2(0) =
π
2
. (c-d) The

state evolution of G1 and G2 with different z2(0), where ρ1 = 2.6 , ρ2 = 0.008 and z1(0) is equal to z2(0).

(a) (b)

Fig. 12 Simulink model of the AMHNN. (a) Circuit diagram of the AMHNN. (b) Chaotic attractors obtained from the
AMHNN circuit in simulink simulation, where (x1(0), x2(0), x3(0), x4(0) ,z1(0), z2(0)) = (1,1,1,1,π

2
,π
2
), ρ1 = 2.6 , and ρ2 =

0.008 .

4.1 Description of encryption method

1. Image serialization and deserialization module: Se-

lect the original image ORI, suppose the size of the

image is (A × B), and serialize the 2D image by

column-first scanning to obtain the 1D image se-

quence O(i), the sequence length is (A × B). After

encryption, arrange the encrypted sequence E′(i) in

columns to form an encrypted image ENC of size (A

× B).

2. Chaotic sequence generator: Set system settings, con-

trol parameters, initial states, the discarded num-

ber N0, and time step T , then iterate the AMHNN

using the Runge-Kutta algorithm(ODE45). Six dis-

crete chaotic sequences of the same length are cre-

ated here: (x1(i), x2(i), x3(i), x4(i), z1(i), z2(i)).

3. Key generator: Following is how the chaotic sequences

are reprocessed:

%
A(i) = ((x1(i) + x2(i) + x3(i) + x4(i) + z1(i) + z2(i))/6) ∗ 1013,
K(i) = mod(floor(A(i)), 256).

(12)

Here,A(i) is chaotic sequence generated by AMN-

N and K(i) is generated by modulo operation on

A(i), where floor(x) represents the largest integer

less than or equal to x.
4. Permutation and Diffusion module: Here, we use the

arnold cat map (ACM) to jumble the original image,
since it may considerably minimize the connection
between image pixels[48,49]. Consequently, obtain-
ing this design may improve the encryption process.

%
Ki = K(i) [randi(floor(len(K(i)) ∗ 0.8), len(K(i)))],
Li = K(i) [randi(floor(len(K(i)) ∗ 0.5), floor(len(K(i)) ∗ 0.7))].

(13)

!
I

′

J
′

"
=

!
1 Ki

Li KiLi + 1

" !
I
J

"
mod N. (14)

E
′
(i) = P (i)⊕K(i). (15)

where the symbol ⊕ represents the XOR opera-

tion.

In this case,K(i)[x] means selecting value fromK(i)

by x-th position, randi(x, y) represents returning a

random integer from [x, y], and len(K(i)) returns

the length of the K(i) sequence. Ki and Li are the

system parameters of ACM, I and J represent the
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original pixel position, I ′ and J ′ represent the pixel

position after scrambling, and N is equal to the

small one between A and B. Traverse and scramble

all the elements in the image sequence O(i), per-

form ACM abs(Ki−Li)/2 times until the scrambling

is completed, and obtain the scrambling sequence

P (i). Then, perform a bitwise XOR operation(15)

on P (i) and K(i) to realize the diffusion of the im-

age encryption process and obtain the encrypted se-

quence E
′
(i).

5. Decryption module: The encrypted image is decryp-

ted with the reverse process of the encryption method.

Fig. 13 Architecture of the AMHNN-based image encryp-
tion method.

4.2 Experiments and Performance Analyses

1. Key space analysis:

The secret key of the proposed scheme consists

of eight parameters (x1(0), x2(0), x3(0), x4(0), z1(0),

z2(0), ρ1, ρ2), where x1(0), x2(0), x3(0), x4(0), z1(0),

z2(0), ρ1, ρ2 are double numbers. Then the key space

of the proposed scheme is (1016)8 = 10128≈ 2384

with the accuracy of 10−14. Therefore, our scheme

can resist the brute-force attack.

2. Differential attack analysis:
In this attack, the hacker slightly alters the plain-

text or original image to get around the encryp-
tion method. The Unified Averaged Change Inten-
sity (UACI) and Number of Pixel Change Rate (NP-
CR) are two measures that are used to assess how
vulnerable a certain encryption method is to a dif-
ferential attack. The difference between the original
plaintext and the encrypted ciphertext is compared
to calculate the average level of intensity. Two ci-
pher images C1 and C2, which differ by only one

pixel and whose sizes are equal to M ×N . The ex-
pressions C1(i, j) and C2(i, j), respectively, repre-
sent the gray values of the pixels at positions (i, j)
of C1 and C2. NPCR and UACI can be written as:

NPCR(C1, C2) =
#M

i=1

#N
j=1

D(i,j)

MN
× 100% (16)

D(i, j) =

$
0, ifC1(i, j) = C2(i, j)

1, ifC1(i, j) ∕= C2(i, j)
(17)

UACI(C1, C2) =
1

MN

#M
i=1

#N
j=1

|C1(i,j)−C2(i,j)|
255

×100%.

(18)

The expected NPCR and UACI values of a grayscale

image are 99.6094% and 33.4635%, respectively, ac-

cording to [50,18]. The NPCR and UACI values of

the encrypted images for various plain images using

the suggested encryption method are provided in

Table 1.The numbers for NPCR and UACI for the

provided encryption method in Table 1 are quite

similar to those expected values. As a result, it is

extremely sensitive to even minor changes in the

basic images. That is to say, it has a potent defense

against differential attacks.

Table 1 Results of UACI and NPCR test for experimental
datasets

Image NPCR(%) UACI(%)

Airplane 98.8638 31.3101
Monkey 96.6558 33.0489
Dog 99.3958 32.8813

3. Histogram analysis:

The histogram of an image depicts the intensity

distribution of the image pixels. Generally speaking,

a decent encryption method can provide an image

with a uniform histogram that is resistant to sta-

tistical assault[51]. Fig. 14(a-f), depict the original

images and histograms. Fig. 14(g-l) exhibit, respec-

tively, the encrypted images and accompanying his-

tograms. As shown, the histograms of the encrypted

images are very uniform and notably different from

the histograms of the original images, indicating

that the encryption method based on the proposed

AMHNN can withstand statistical assault well.

4. Correlation analysis:
The pixels near one another in the horizontal, ver-

tical, and diagonal directions of the original image
exhibit a high association. In contrast, the corre-
lation coefficients in an encrypted image should be
near zero in three dimensions. The correlation[52] of
each pair of pixels could be calculated by

ρxy =

#N
i=1(xi − E(x))(yi − E(y))

%#N
i=1(xi − E(x))2

%#N
i=1(yi − E(y))2

. (19)
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 14 Experiment results of the proposed encryption method. (a-c) Original image. (d-f) Histogram of the original image.
(g-i) Encrypted image. (j-l) Histogram of the encrypted image.

N is the total number of pixels, and E(x) and

E(y) are the mean values of x and y, respectively.

Here, we compare the correlation distribution be-

tween neighboring pixels of the encrypted image and

the original image in three orientations.

After encryption, it is evident from Fig. 15 and Ta-

ble 2 that the correlation distribution of the en-

crypted image gets jumbled, and its correlation co-

efficients trend toward 0.

5. Entropy analysis:
When assessing the unpredictability of an encryp-

ted image, the information entropy is a crucial met-
ric. If an encryption method is capable of produc-
ing encrypted images with a maximum information
entropy close to 8, it has great randomness proper-
ties[53]. In experiments, we may use the following
formula(20) to determine the information entropy:

H(m) = −
L&

i=1

P (mi) log
P (mi)
2 . (20)

Here, the entropies of the original image, the en-

crypted image, and the decrypted image are calcu-

lated using the equation (20). Additionally, the en-

tropies of these images, which can be found in Table

2, demonstrate that the encrypted images created

by this encryption method are extremely close to 8,

indicating that this encryption method can provide

good security in the domain of image encryption.

6. Key sensitivity analysis:

Key sensitivity is a critical index for the secu-

rity of encryption methods. A successful encryption

method should be sensitive to the key. In our en-

cryption technique, both the system parameter and

the initial state (x1(0), x2(0), x3(0), x4(0), z1(0),

z2(0), ρ1, ρ2 ) serve as secret keys. The correctly

decrypted image is shown in Fig. 16 (a,e,i). And the

others depicts the erroneous decrypted images re-

sulting from a little modification of the secret keys.

It can be seen that even the secret key has been

changed a bit, by adding 10−14, the decrypted im-

age is completely different from the original image.

Therefore, the key sensitivity test proves that the

proposed image encryption method has complete

sensitivity to the key.

In this study, we conducted a comparison between

the results of the presented cryptosystem and those of

previous similar works, as shown in Table 3. It is evi-

dent that the chaotic system utilized in the designed en-

cryption method possesses higher dimensions and more

complex chaotic dynamics when compared to the recent

results of [54], [55], and [18]. As a result, the proposed

image encryption method offers a higher information

entropy, and a more sensitive secret key, thereby ensure

enhanced security. Additionally, the designed image en-

cryption method demonstrates very low correlation co-

efficients in all directions. Consequently, these findings

suggest that the image encryption method based on the

AMHNN can effectively withstand entropy attacks and

statistical attacks, making it suitable for safeguarding

image data in practical information communication sce-

narios.

4.3 Implementation of encryption method in FPGA

The FPGA is widely used in industrial electronics due

to its qualities of ultralow power, programmable reusa-

bility, and high controllable. In particular, FPGA-based

chaotic systems have received a lot of attention re-

cently [18,55]. However, FPGA hardware is seldom used

to create image cryptosystems based on chaotic neu-

ral networks [56–58]. So, in order to implement the

suggested AMHNN and the created image encryption
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(a) (b) (c)

Fig. 15 The correlation distribution diagram of adjacent pixels comparison between original image and encrypted image from
three directions. (a-c) The correlation distribution of airplane, monkey, dog.

Table 2 Coefficients of correlation and information entropy of the original images and their encrypted images

Image Type Horizontal Vertical Diagonal Entropy

Airplane Original 0.96632 0.96413 0.93702 6.7024
Airplane Encrypted 0.00178 0.00130 0.00011 7.9992
Monkey Original 0.95554 0.95765 0.93238 6.8841
Monkey Encrypted -0.00246 0.00244 -0.00480 7.9976
Dog Original 0.98759 0.99194 0.98192 7.6806
Dog Encrypted 0.00228 -0.00516 -0.00710 7.9977

Table 3 Performance comparison with some exsiting system

Ref
Image
type

Information
Entropy

Key
sensitivity

Correlation:
Horizontal,
Vertical,
Diagonal

Hardware
demonstration

2020 [54] Lena 7.9975 –
-0.0327,
-0.0414,
-0.0037

No

2021 [55] Lena 7.9976 10−9
0.000827,
0.005238,
0.000455

Yes

2022 [18]
Medical Image
Chest

7.9981 10−12
-0.001745,
-0.000839,
0.013351

Yes

This work Airplane 7.9992 10−14
0.00178,
0.00130,
0.00011

Yes

method, we develop an FPGA-based hardware test plat-

form. One Xilinx Virtex-6 FPGA development board

and one monitor are part of the hardware.

The encryption and decryption functions are imple-

mented using Verilog HDL programming, and the cre-

ation of the chaotic sequences is based on AMHNN. In

the experiment, the RAM of the ZYNQ-XC7Z020 chip

is used to store images. Fig. 17 displays both the orig-

inal image and the encrypted image using the secret

key (x1(0), x2(0), x3(0), x4(0), z1(0), z2(0), ρ1, ρ2) =

(1, 1, 1, 1, π
2 ,

π
2 , 2.6, 0.008). The FPGA-based experi-

mentation findings and the MATLAB-based simulation

results are in complete agreement. It is clear from these

experimental findings that the proposed AMHNN-based

image encryption method is both feasible and trustwor-

thy.

5 Conclusion

In this paper, we devolop a novel memristor model

called MSAHTM. Then, we use MSAHTM to construct

AMHNN. The proposed AMHNN exhibits rich and com-

plex brain-like initial-boosted dynamics, where infinitely

many coexisting chaotic attractors sharing the same

shape but with different position are generated. To the

best of our knowledge, this peculiar feature has rarely
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 16 Image decryption process with the secret key (x1(0),
x2(0), x3(0), x4(0), z1(0), z2(0), ρ1, ρ2). (a,e,i) Accurate
decrypted images with the secret key (1, 1, 1, 1, π

2
, π

2
,

2.6, 0.008). (b,c,d) Inaccurate decrypted images with ρ1 =
2.6 + 10−14, x1(0) = 1 + 10−14, z1(0) = π

2
+ 10−14.

(f,g,h) Inaccurate decrypted images with ρ2 = 0.008+10−14,
x2(0) = 1 + 10−14, z2(0) = π

2
+ 10−14. (j, k, l) Inaccurate

decrypted images with ρ1 = 2.6+10−14, ρ2 = 0.008+10−14,
x4(0) = 1 + 10−14.

been found in other neural networks. To demonstrate

the usefulness of the proposed AMHNN, we develop

an image encryption cryptosystem based on AMHNN.

The developed cryptosystem offers numerous advan-

tages over current chaos-based image encryption meth-

ods, including a wide key-space, high information en-

tropy, extremely sensitive keys, and good robustness.

Hardware experiments using FPGAs are carried out to

show the the efficiency of the image cryptosystem.
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