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ABSTRACT

According to current models, gamma-ray bursts (GRBs) are produced when

the energy carried by a relativistic outflow is dissipated and converted into radi-

ation. The efficiency of this process, ǫγ , is one of the critical factors in any GRB

model. The X-ray afterglow light curves of Swift GRBs show an early stage of

flattish decay. This has been interpreted as reflecting energy injection. When

combined with previous estimates, which have concluded that the kinetic energy

of the late (& 10 hr) afterglow is comparable to the energy emitted in γ-rays, this

interpretation implies very high values of ǫγ , corresponding to & 90% of the ini-

tial energy being converted into γ-rays. Such a high efficiency is hard to reconcile

with most models, including in particular the popular internal-shocks model. We

re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and

re-examine the resulting estimates of the efficiency. We confirm that, if the flat-

tish decay arises from energy injection and the pre-Swift broad-band estimates of

the kinetic energy are correct, then ǫγ & 0.9. We discuss various issues related to

this result, including an alternative interpretation of the light curve in terms of a

two-component outflow model, which we apply to the X-ray observations of GRB

050315. We point out, however, that another interpretation of the flattish decay

— a variable X-ray afterglow efficiency (e.g., due to a time dependence of after-

glow shock microphysical parameters) — is possible. We also show that direct

estimates of the kinetic energy from the late X-ray afterglow flux are sensitive

to the assumed values of the shock microphysical parameters and suggest that

broad-band afterglow fits might have underestimated the kinetic energy (e.g., by

overestimating the fraction of electrons that are accelerated to relativistic ener-

gies). Either one of these possibilities implies a lower γ-ray efficiency, and their

joint effect could conceivably reduce the estimate of the typical ǫγ to a value in

the range ∼ 0.1 − 0.5.
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1. Introduction

Recent observations by the Swift X-ray telescope have provided new information on the

early behavior of the X-ray light curve of long-duration (& 2 s) gamma-ray burst (GRB)

sources. Specifically, it was found (Nousek et al. 2005) that the light curves of these sources

have a generic shape consisting of three distinct power-law segments ∝ t−α: an initial (at

t < tbreak,1, with 300 s . tbreak,1 . 500 s) very steep decline with time t (with a power-law

index α1 in the range 3 . α1 . 5; see also Tagliaferri et al. 2005 and Bartherlmy et al.

2005); a subsequent (at tbreak,1 < t < tbreak,2, with 103 s . tbreak,2 . 104 s) very shallow decay

(0.2 . α2 . 0.8); and a final steepening (at t > tbreak,2) to the canonical power-law behavior

(1 . α3 . 1.5) that was known from pre-Swift observations.

Nousek et al. (2005) already recognized that these results have direct consequences to

the question of the γ-ray emission efficiency in GRB sources. This question is important to

our understanding of the basic prompt-emission mechanism. In the currently accepted inter-

pretation (e.g., Piran 1999, 2004), the γ-rays originate in a relativistic jet that is launched

from the vicinity of a newly born neutron star or stellar-mass black hole. In the simplest

picture, a fraction ǫγ of the energy injected at the source is given to the prompt radiation,

with the remaining fraction (1− ǫγ) ending up as kinetic energy of ambient gas that is swept

up by a forward shock and then mostly radiated as early afterglow emission. One attrac-

tive mechanism for explaining the prompt emission characteristics invokes internal shocks

that are generated when the ejecta have a nonuniform distribution of Lorentz factors, which

results in outflowing “shells” colliding with each other at large distances from the source.

Pre-Swift observations, based on measurements of the γ-ray fluence and of the “late”

(& 10 hr) afterglow emission, have implied (when interpreted in the context of the basic

jet model) comparable (and narrowly clustered) values for the radiated γ-ray energy and

the kinetic energy feeding the afterglow emission, i.e., ǫγ ∼ 0.5 (e.g., Frail et al. 2001;

Panaitescu & Kumar 2001a,b, 2002; Berger et al. 2003; Bloom et al. 2003; Yost et al. 2003).

This result is seemingly problematic for the internal-shocks model, for which an order-of-

magnitude lower value for ǫγ is a more natural expectation (Kobayashi et al. 1997; Daigne

& Mochkovitch 1998; Kumar 1999; Guetta et al. 2001). This apparent difficulty could in

principle be overcome if the ejected shells have a highly nonuniform distribution of Lorentz

factors (e.g., Beloborodov 2000; Kobayashi & Sari 2001). However, to fit the data the shells

must also satisfy a number of other restrictive conditions, which reduces the attractiveness
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of this interpretation (see § 5). An alternative proposal was made by Peng et al. (2005),

who argued that if the jet consists of an ultra-relativistic narrow component (from which the

prompt emission originates) and a moderately relativistic wide component, with the latter

having a higher kinetic energy and the former a higher kinetic energy per unit solid angle,

then the wide component would dominate the late afterglow emission and the γ-ray radiative

efficiency of the narrow component could be significantly lower than the value of ǫγ inferred

under the assumption of a single-component jet. As explained in Peng et al. (2005), this

proposal was motivated by observational indications of the presence of two components in

the late afterglow light curves of several GRB sources and by the predictions of certain GRB

source models.

The earliest (steepest) segment of the afterglow light curve is most naturally explained

as radiation at large angles to our line of sight corresponding either to the prompt emission

(Kumar & Panaitescu 2000) or to emission from the reverse shock that is driven into the

ejecta (Kobayashi et al. 2005). This implies that the early afterglow emission is much weaker

than what would be expected on the basis of an extrapolation from the late-afterglow data.

This behavior was interpreted by Nousek et al. (2005) as an indication of an even higher γ-ray

emission efficiency, typically ǫγ ∼ 0.9. Such a high efficiency could render the internal-shocks

model untenable.

Our primary goal is to evaluate the prompt-emission efficiency as accurately and sys-

tematically as possible on the basis of current data. For this purpose we re-derive in § 2.1

expressions that explicitly relate ǫγ to observable quantities. In particular, we express ǫγ in

terms of the product κf of two parameters, one (κ) encapsulating information that could be

obtained by pre-Swift observations, and the other (f) representing early-time data obtained

in Swift measurements. In § 2.2 we re-examine the estimates of the kinetic energy during

the afterglow phase as inferred from the X-ray flux and present a new general formulation,

correcting errors that have propagated in the literature and have generally led to an un-

derestimate of the kinetic energy. We then analyze both pre-Swift (§ 2.3) and Swift (§ 2.4)

data in a uniform manner in the context of this formalism. We argue that the kinetic energy

estimates remain subject to considerable uncertainties. In particular, while the simple anal-

ysis of a large number of bursts (using “typical” values for the microphysical parameters)

yields rather high values for the kinetic energy and hence a low inferred γ-ray efficiency, a

multiwavelength analysis (which determines the microphysical parameters from the fit to the

data) of a small subset suggests that the kinetic energy is lower and hence the inferred value

of ǫγ is higher. Some caveats to this analysis are considered in § 2.5.

The suggestion that the Swift observations imply a higher value of ǫγ in comparison with

the pre-Swift results is based on the interpretation of the flattish segment of the X-ray light
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curve as reflecting an increase in the kinetic energy of the forward shock during the early

stages of the afterglow. In this picture, the kinetic energy just after the prompt-emission

phase was significantly lower than the kinetic energy estimated from the later stages of the

afterglow (the pre-Swift results). One conceivable way of avoiding the need to increase the

estimate of ǫγ in light of the new Swift observations is through a time evolution (specifically,

an increase with t) of the X-ray afterglow emission efficiency ǫX. Such a behavior could in

principle also account for the flattish segment of the light curve and eliminate the need to

invoke an increase in the shock kinetic energy. If, in addition, the value of the afterglow

kinetic energy at late times were underestimated by the broad-band fits to pre-Swift GRB

afterglows, which could be the case if only a fraction ξe < 1 of the electrons were accelerated

to relativistic energies in the afterglow shock (see Eichler & Waxman 2005), then the typical

afterglow efficiency would be further reduced (to a value as low as ǫγ ∼ 0.1 if ξe ∼ 0.1),

which might reconcile the new Swift data with the comparatively low efficiencies expected

in the internal-shocks model. We discuss these issues in § 3.

A two-component jet model with the characteristics required for reducing the inferred

γ-ray emission efficiency is evidently disfavored by the Swift data, but a model of this type

with different parameters could provide an alternative interpretation of the flattish shape of

the light curve between tbreak,1 and tbreak,2. We elaborate on these matters in § 4, where we

also present a tentative fit to the X-ray light curve of the Swift source GRB 050315 in the

context of this scenario.

Our conclusions on the physical implications of the early X-ray light-curve observations

of GRB sources are presented in § 5.

2. Estimating the Gamma-Ray Efficiency

The observed isotropic-equivalent luminosity can generally be expressed as Liso = ǫEiso/T ,

where Eiso is the isotropic-equivalent energy of the relevant component, T is the duration of

the relevant emission, and ǫ is the overall efficiency. This efficiency is a product of several

factors: ǫ = ǫdisǫeǫradǫobs, where a fraction ǫdis of the total energy is dissipated into internal

energy, a fraction ǫe of the internal energy goes into electrons (or positrons) and can in

principle be radiated away, a fraction ǫrad of the electron energy is actually radiated, and

a fraction ǫobs of the radiated energy falls within the observed range of photon energies. A

fraction ǫγ = ǫdis,GRBǫe,GRBǫrad,GRB of the total original (isotropic equivalent) energy Eiso,0 is

radiated away during the prompt emission, Eγ,iso = ǫγEiso,0, while the remaining (kinetic)

energy in the γ-ray emitting component of the outflow, Ek,iso,0 = (1− ǫγ)Eiso,0, is transferred

to the afterglow shock at tdec. In the prompt GRB emission ǫGRB = ǫγǫobs,GRB. In the
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afterglow ǫdis,X ≈ 1, and therefore ǫX ≈ ǫe,Xǫrad,Xǫobs,X, where we concentrate on the X-ray

afterglow.

Using the above expression for ǫγ , it becomes clearer why it is difficult for it to assume

very high (& 0.9) values. Whereas ǫrad,GRB ≈ 1 is possible, and even expected if the elec-

trons cool significantly over a dynamical time (as is typically expected in the internal-shocks

model), ǫγ & 0.9 requires in addition that both ǫdis,GRB > 0.9 and ǫe,GRB > 0.9. It is difficult

to achieve ǫdis,GRB > 0.9 (i.e., dissipate more than 90% of the total energy) in most models

for the prompt emission, and in particular in the internal-shocks model. Furthermore, it is

not trivial to produce ǫe,GRB > 0.9 (i.e. more than 90% of the postshock energy going to

electrons) in the internal-shocks model, where the electrons are believed to be accelerated

in a shock propagating into a magnetized proton-electron plasma. In particular, this would

require that less than 10% of the postshock energy goes into the protons and the magnetic

field, which is difficult since the protons carry most of the energy (in kinetic form) and the

magnetic field likely carries a comparable energy in the upstream fluid ahead of the shock.

It might conceivably be possible if less than 10% of the energy is in the magnetic field and

the protons can somehow transfer their energy to the electrons, which radiate it away.

2.1. Relationship to Observed Quantities

The X-ray afterglow isotropic-equivalent luminosity, LX,iso, can be expressed in terms of

the X-ray afterglow flux, FX,

LX,iso(t) = 4πd2
L(1 + z)β−α−1FX(t) , (1)

if Fν ∝ ν−βt−α in the relevant ranges in frequency and time.1 The efficiency of the X-ray

afterglow emission is defined as

ǫX(t) ≡
tLX,iso(t)

Ek,iso(t)
, (2)

where Ek,iso is the isotropic-equivalent kinetic energy in the afterglow shock.

Using the relation Eiso,0 = Eγ,iso/ǫγ = Ek,iso,0/(1 − ǫγ), we obtain

ǫγǫobs,GRB

(1 − ǫγ)
=

Eobs
γ,iso

Ek,iso,0

= κf , κ ≡
Eobs

γ,iso

Ek,iso(t∗)
, f ≡

Ek,iso(t∗)

Ek,iso,0

, (3)

1For the more general case, see eq. [1] of Nousek et al. (2005) and the discussion thereafter. Here

LX,iso(t) =
∫ ν2

ν1

dν Lν,iso(t), where both ν and t are measured in the cosmological frame of the GRB, whereas

FX(t) =
∫ ν2

ν1

dν Fν(t), where both ν and t are measured in the observer frame.
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where t∗ can be chosen as a time at which it is convenient to estimate Ek,iso, and we shall

use t∗ = 10 hr (since it is widely used in the literature and is typically > tbreak,2, the end of

the flattish segment of the X-ray light curve).

An important question is how to estimate f and κ from observations. The most straight-

forward way of estimating f = Ek,iso(10 hr)/Ek,iso,0, which has been used by Nousek et al.

(2005), is by evaluating the value of the X-ray flux decrement at tdec relative to the extrapo-

lation to tdec of the late-time (t > tbreak,2) flux, and translating this flux ratio into an energy

ratio according to the standard afterglow theory. When estimating f in this way we assume

that

ǫX ∼ (1 + Y )−1ǫe(νm/νX)(p−2)/2 , (4)

where νm and νc are the characteristic synchrotron frequency and cooling break frequency,

respectively (Sari et al. 1998; Granot & Sari 2002) and Y is the Compton y-parameter.

This result can also be obtained under the assumptions of standard afterglow theory, as

follows. The overall X-ray afterglow efficiency can be written as ǫX ≈ ǫeǫradǫobs, where

ǫrad ≈ min[1, (νm/νc)
(p−2)/2] and ǫobs ≈ (1 + Y )−1 max[(νm/νX)(p−2)/2, (νc/νX)(p−2)/2]; the

factor of (1 + Y )−1 is the fraction of the radiated energy in the synchrotron component,

and it is present because the synchrotron self-Compton (SSC) component typically does not

contribute significantly to FX(10 hr) but may still dominate the total radiated luminosity.

The factor (1 + Y )−1 is generally assumed to be small, consistent with the usual inference

that the magnetic-to-thermal energy ratio in the emission region, ǫB, is smaller than ǫe (see

eq. [12]).2 However, one should keep in mind that a different time dependence of ǫX (which

might occur under less standard assumptions) would modify the value of f accordingly. The

value of ǫobs,GRB can be estimated by extrapolating the observed part of the spectrum and

modeling additional spectral components that might carry considerable energy.

To estimate κ = Eobs
γ,iso/Ek,iso(10 hr) we calculate Eobs

γ,iso = fγ4πd2
L(1 + z)−1 directly from

the observed γ-ray fluence, fγ , and the measured redshift, z. The denominator, Ek,iso(10 hr),

has been estimated following Freedman & Waxman (2001) and Kumar (2000) (see also

Lloyd-Ronning & Zhang 2004) from FX(10 hr) using standard afterglow theory. We recon-

sider this calculation in the next section.

2At early times (less than about a day) inverse-Compton radiation is important in cooling the electrons

that are emitting synchrotron X-rays. Later the X-ray emitting electrons are within the Klein-Nishina cutoff

and are not cooled by inverse-Compton radiation (see Fan & Piran 2006).
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2.2. Estimates of the kinetic energy from the X-ray afterglow observations

Using the results of Granot & Sari (2002) we find that, if νX > max(νm, νc), we can

estimate the kinetic energy from the observed X-ray flux. We use

Ek,iso(t) = 9.2 × 1052 g(p)

g(2.2)
(1 + Y )4/(p+2)ǫ

4(1−p)/(p+2)
e,−1 ǫ

(2−p)/(p+2)
B,−2 L

4/(p+2)
X,46 t

(3p−2)/(p+2)
10hr erg , (5)

where LX,iso = LX,461046 erg s−1 is the isotropic-equivalent X-ray luminosity in the range

2 − 10 keV at a time 10 t10hr hr, both measured in the cosmological frame of the GRB

[corresponding to an observed time of t = 10(1 + z)t10hr hr and spectral range 2/(1 + z) −

10/(1 + z) keV], ǫe,−1 = ǫe/0.1, ǫB,−2 = ǫB/0.01, and

g(p) =

[

(p − 1)p−1 exp(5.89p − 12.7)

(5(p−2)/2 − 1)(p − 2)p−2(p − 0.98)

]4/(p+2)

. (6)

In equation (5), LX,iso is evaluated through FX using equation (1), and it is assumed that

FX is dominated by the synchrotron component. If there is a significant contribution to

FX(t∗) from the SSC component then equation (5) would overestimate Ek,iso(t∗), but the

correct estimate could still be obtained if only the synchrotron contribution to FX(t∗) is used

(although in practice it might be difficult and somewhat model-dependent to disentangle

the synchrotron and SSC components). For our fiducial parameters (1 + Y ) ≈ 3.7, so the

numerical coefficient in equation (5) is 3.2 × 1053 erg for p = 2.2 and 5.8 × 1053 erg for

p = 2.5. This is a factor ∼ 30 − 60 higher than the numerical coefficient in equation (7) of

Lloyd-Ronning & Zhang (2004). Part of this difference (a factor of ∼ 3 − 3.5) reflects the

fact that these authors did not take into account the SSC contribution, which reduces the

flux in the relevant power-law segment of the spectrum by a factor of (1 + Y ) (Sari & Esin

2001; Granot & Sari 2002),3 but this does not account for most of the discrepancy. Most of

the difference is basically a result of a higher (by a factor of ∼ 38 for p = 2.2) value of νm

that Lloyd-Ronning & Zhang (2004) use in their equation (2), given that their expressions

for νc and Fν,max (their eqs. [3] and [4]) are very similar to those in Granot & Sari (2002)

and that Fν>max(νm,νc) = Fν,maxν
1/2
c ν

(p−1)/2
m ν−p/2 ∝ ν

(p−1)/2
m . Our numerical coefficient is lower

than that in equation (4) of Freedman & Waxman (2001) by a factor of ∼ 3 and ∼ 8 (or

∼ 12 and ∼ 31 if SSC is not taken into account) for p = 2.2 and p = 2.5, respectively. The

difference in the numerical coefficient between Lloyd-Ronning & Zhang (2004) and Freedman

& Waxman (2001) is by a factor of ∼ 100 and ∼ 475 for p = 2.2 and p = 2.5, respectively.

3This is assuming that the SSC component does not contribute considerably to the observed X-ray flux,

which is typically the case at t∗ = 10 hr.
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Using equations (2) and (5), we can express the efficiency as

ǫX(t) = 3.5 × 10−3

[

g(p)

g(2.2)

]−(p+2)/4

(1 + Y )−1ǫp−1
e,−1ǫ

(p−2)/4
B,−2 E

(p−2)/4
k,iso,52 t

−3(p−2)/4
10hr (7)

= 3.9 × 10−3 g(2.2)

g(p)
(1 + Y )−4/(p+2)ǫ

4(p−1)/(p+2)
e,−1 ǫ

(p−2)/(p+2)
B,−2 L

(p−2)/(p+2)
X,46 t

−2(p−2)/(p+2)
10hr ,

where Ek,iso,52 = Ek,iso(t)/(1052 erg). For our fiducial values (and for LX,46 rather than

Ek,iso,52), the numerical coefficient in equation (7) is 1.1 × 10−3 for p = 2.2 and 6.3 × 10−4

for p = 2.5.

Equations (5)–(7) are valid for p > 2, but they can be easily generalized to p . 2 by sub-

stituting ǫe → ǭe(p−1)/(p−2), where ǭe = ǫeγmin/〈γe〉, 〈γe〉 =
∫

dγe(dN/dγe)γe

[∫

dγe(dN/dγe)
]−1

is the average electron Lorentz factor, and the electron energy distribution is a power law of

index p at low energies above γmin. If the electron energy distribution is a single power law,

dN/dγe ∝ γ−p
e for γmin < γe < γmax, then

ǫe

ǭe

=
〈γe〉

γmin

=

(

p − 1

p − 2

)

1 − (γmax/γmin)
2−p

1 − (γmax/γmin)1−p
=



























































≈ (p − 1)/(p − 2) p > 2 ,

ln(γmax/γmin) p = 2 ,

≈ (γmax/γmin)
2−p(p − 1)/(2 − p) 1 < p < 2 ,

(γmax/γmin)/ ln(γmax/γmin) p = 2 ,

≈ (γmax/γmin)(1 − p)/(2 − p) p < 1 .
(8)

This results in slightly modified equations:

Ek,iso(t) = 1.19× 1052 ḡ(p)

ḡ(2.2)
(1+Y )4/(p+2)ǭ

4(1−p)/(p+2)
e,−1 ǫ

(2−p)/(p+2)
B,−2 L

4/(p+2)
X,46 t

(3p−2)/(p+2)
10hr erg , (9)

ḡ(p) =

[

(p − 2) exp(5.89p − 12.7)

(5(p−2)/2 − 1)(p − 0.98)

]4/(p+2)

, (10)

ǫX(t) = 3.01 × 10−2

[

ḡ(p)

ḡ(2.2)

]−(p+2)/4

(1 + Y )−1ǭp−1
e,−1ǭ

(p−2)/4
B,−2 E

(p−2)/4
k,iso,52 t

−3(p−2)/4
10hr (11)

= 3.03 × 10−3 ḡ(2.2)

ḡ(p)
(1 + Y )−4/(p+2)ǭ

4(p−1)/(p+2)
e,−1 ǫ

(p−2)/(p+2)
B,−2 L

(p−2)/(p+2)
X,46 t

−2(p−2)/(p+2)
10hr .

Note that the numerical coefficient was calculated in Granot & Sari (2002) only for p =

2.2, 2.5, 3 and interpolated between these values. Extrapolating that formula to p . 2 could

potentially be very inaccurate.
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For simplicity we use the expression for Y that is valid in the fast-cooling regime,

Y =
(1 + 4ǫe/ǫB)1/2 − 1

2
≈







(ǫe/ǫB)1/2 ǫe/ǫB ≫ 1

ǫe/ǫB ǫe/ǫB ≪ 1

, (12)

which is still reasonable at 10 hr, even if it is slightly after the transition to slow cooling.

More generally, ǫe/ǫB should be multiplied by ǫrad ≈ min
[

1, (νm/νc)
(p−2)/2

]

, where for p < 2

and νc < νmax we have ǫrad ≈ 1.

Before applying these relations to observed bursts we remark on a common misconcep-

tion concerning the dependence of Ek,iso that is inferred from FX on ǫB and ǫe. It has been

argued that Ek,iso is very insensitive to the exact value of ǫB (e.g., Freedman & Waxman 2001;

Piran et al. 2001). This follows from the observation (see eq. [5]) that for νX > max(νm, νc),

Ek,iso ∝ (1+Y )4/(p+2)ǫ
−4(p−1)/(p+2)
e ǫ

−(p−2)/(p+2)
B , which suggests that Ek,iso depends very weakly

on ǫB. However, this holds only in the limit where (1+Y ) ≈ 1, which corresponds to Y ≪ 1

and ǫB ≫ ǫe, whereas observations suggest that the opposite limit typically applies, ǫB ≪ ǫe,

in which case (1+Y ) ≈ Y ≈ (ǫe/ǫB)1/2 and Ek,iso ∝ ǫ
−p/(p+2)
B . This is a significantly stronger

dependence on ǫB. (Note that the inferred value of ǫB varies by ∼ 2 orders of magnitude

among different afterglows, from ∼ 10−3 to ∼ 0.1, corresponding to a change of more than

an order of magnitude in the estimated value of Ek,iso.) The dependence of Ek,iso on ǫe is

stronger, ∝ ǫ
−4(p−1)/(p+2)
e (i.e., slightly steeper than an inverse linear relation) in the limit

ǫB ≫ ǫe, but only ∝ ǫ
−2(2p−3)/(p+2)
e in the more relevant limit of ǫB ≪ ǫe. In the latter case

the dependence of Ek,iso on ǫB is rather similar to its dependence on ǫe.
4 However, ǫe appears

to vary much less than ǫB among different afterglows, only covering a range of about one

order of magnitude (between ∼ 10−1.5 and ∼ 10−0.5), which corresponds to a variation in

Ek,iso by a factor of ∼ 4. It is also worth noting that the expression for Ek,iso has some

(nontrivial) dependence on the value of p (see eq. [6]).

2.3. Pre-Swift GRBs

Table 1 shows the estimated values of κ deduced from the observational properties of

17 pre-Swift GRBs with known redshifts, using the samples of Berger et al. (2003) and

Bloom et al. (2003). We provide the values Ek,iso,10hr = Ek,iso(10 hr) and κ for our fiducial

parameter values (ǫe = 0.1, ǫB = 0.01, and p = 2.2). The value of Ek,iso,10hr and therefore

4Quite often Y ∼ 1 − 2 is inferred, in which case neither of the asymptotic limits Y ≪ 1 and Y ≫ 1 is

applicable and the dependence of Ek,iso on ǫB and ǫe does not have a power-law form but rather the more

complex form given by eqs. (5) and (12).
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of κ depends on the values of the microphysical parameters (ǫe, ǫB, and p) that are not

well known. Therefore we also calculate Ek,iso,10hr and κ (for those GRBs for which this is

possible) using the values of the microphysical parameters inferred from the fits to the broad-

band afterglow data that were performed by Panaitescu & Kumar (2002, denoted by PK02,

using Table 2 therein) and by Yost et al. (2003, denoted by Y03, using Table 1 therein).

Finally, we compare the values we obtain for Ek,iso,10hr using equation (5) to those obtained

for Ek,iso(1 day) = Ek,iso,1d by Y03 and those obtained for Ek,iso(10 hr) ≈ 0.5Ek,iso,0 by PK02.

Also shown in Table 1 are the corresponding values of κ, including κ1d = Eγ,iso/E
Y 03
k,iso,1d.

When using the fiducial parameters ǫe = 0.1, ǫB = 0.01, and p = 2.2 our estimates for

Ek,iso,10hr are significantly larger than the estimates of Lloyd-Ronning & Zhang (2004), who

use the same values. This can be traced to the difference in the numerical factor that appears

in equation (5). These relatively large values of Ek,iso,10hr lead to a typical value of κ around

0.1 − 0.2, for which the γ-ray efficiency problem would not be very severe. Similar results

were obtained by Fan & Piran (2006), whose estimates for Ek,iso,10hr are within a factor of 2

of those presented here.

The situation is different when we use the values of the microphysical parameters from

the pre-Swift afterglow fits. In these cases the values of Ek,iso,10hr are typically lower, resulting

in higher estimates for κ. The estimates of the kinetic energy from the PK02 fits to the

afterglow data (rather than from using eq. [5]) are generally the lowest.5 The corresponding

values of κ are close to unity. These results reflect the pre-Swift inference that there exists a

rough equality between the isotropic-equivalent γ-ray and late (10 hr) kinetic energies. The

comparison between the detailed calculations and those based on equation (5) may suggest

that we might be better off adopting different fiducial parameters (e.g., ǫe = 0.3, ǫB = 0.08,

p = 2.2). We also note that the values of Ek,iso,10hr obtained by substituting the values of

the microphysical parameters from the afterglow fits into equation (5) are generally higher

(corresponding to lower values of κ) compared to those derived directly by those fits. The

“typical” values of the microphysical parameters inferred from the fits are roughly ǫe ≈ 0.3,

ǫB ≈ 0.03, p ≈ 2.2.

The values of κ obtained here are crucial to the overall estimate of ǫγ and to the origin

of the “high efficiency problem.” Considering Table 1, one should proceed with care in view

of the large dispersion in the different estimates of Ek,iso,10hr. An example is a factor of 4.7

between the independent estimates of PK02 and of Y03 for GRB 000926 (and a factor of

2.5 in the opposite direction for GRB 970508). The dispersion is even greater between the

5In PK02 the values of Ek,iso(10 hr) are typically a factor of ∼ 2 smaller than Ek,iso,0 due to radiative

losses at early times (A. Panaitescu, personal communication; no energy injection is assumed in that work).
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estimates of Ek,iso from the afterglow fits and the values obtained using equation (5) for the

same values of the microphysical parameters — a factor of 18 for Y03 (and 11 for PK02) for

GRB 000926 .

2.4. Swift GRBs

The new result found by Swift is the appearance of a rapid decay followed by a shallow

decline phase in the X-ray afterglow. For seven out of the ten Swift GRBs considered here

there was a clear observation of the two breaks in the light curve, at tbreak,1 and tbreak,2

(the beginning and end, respectively, of the flattish segment of the X-ray light curve). If

we interpret the shallow decline as arising from an additional injection of energy into the

afterglow shock (see § 1) then the ratio of the X-ray fluxes at the end and at the beginning

of this phase can be used to estimate f (the corresponding ratio of the kinetic energies) for

these bursts (Nousek et al. 2005). A lower limit, fmin, is obtained using the flux decrement

at tbreak,1 relative to the extrapolation back to that time of the late-time (t > tbreak,2) flux.

An approximate upper limit, fmax, is obtained by assuming that the flat part of the emission

from the forward shock starts at tdec ∼ TGRB and is simply buried underneath the tail of

the prompt emission at t < tbreak,1. While formally fmin < f . fmax, it is reasonable, in

the context of the basic jet model, that the assumption made to calculate fmax is basically

applicable, so that f ∼ fmax. Under this assumption one infers f & 10, and in some cases

even a much larger value of f (∼ 102 − 103).

The results for f need to be combined with an estimate of κ. Table 2 shows the values

of Ek,iso,10hr and κ for the ten Swift GRBs with known redshifts from the Nousek et al.

(2005) sample, estimated using equation (5) with ǫe = 0.1 and ǫB = 0.01. The value of p

was derived using the measured spectral slope in the X-ray band (attempting to fit it into

the range 2 < p < 3 if allowed within the measurement errors). Lacking any broad-band fits

to Swift bursts, this is the best direct evidence that we have so far from these data. The

resulting values of κ are similar to those from the pre-Swift era (see Table 1). With the

exception of GRB 050401, for which κ = 0.41, and a few other bursts for which we only have

upper limits, the inferred values of κ are less than 0.1. If this is the correct value of κ then,

using

ǫγ =

(

1 +
ǫobs,GRB

κf

)−1

(13)

(see eq. [3]), we find that with f ∼ 10 the overall γ-ray efficiency is not larger than ∼ 0.5

(assuming ǫobs,GRB ∼ 1). A similar conclusion was reached by Fan & Piran (2006).

One may question this conclusion in view of the fact that, in pre-Swift bursts, broad-
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band analyses of the afterglow data generally resulted in a significantly lower values of

Ek,iso,10hr, and correspondingly higher values of κ, compared to those obtained from equation

(5) with the same fiducial values of the microphysical parameters (ǫe = 0.1 and ǫB = 0.01;

see Table 1). Furthermore, the choice of the fiducial values of the microphysical parameters

is somewhat arbitrary, and it affects the resulting values of Ek,iso,10hr and κ. It is reasonable

to expect that the values of the microphysical parameters that would have been inferred

from a broad-band fit to the afterglow data of the Swift bursts would have led to higher

estimates of Ek,iso,10hr and κ that were similar to those derived for the pre-Swift GRBs. The

latter values, however, vary among the different estimates, from as high as ∼ 5 − 8 to as

low as ∼ 0.1 − 0.3 (see Table 1). In light of this, one may adopt a “typical” value of κ ∼ 1,

keeping in mind that there is an uncertainty of almost an order of magnitude in this value.

The adoption of this higher value of κ (∼ 1) for the Swift GRBs, similar to the values

inferred from broad-band modeling of pre-Swift sources, together with the interpretation

of the shallow decay phase as arising from energy injection (and hence f ∼ 10) leads to

the conclusion that typically ǫγ ∼ 0.9, and in some cases ǫγ is even as high as ∼ 99% (or,

equivalently, 1− ǫγ ≈ ǫobs,GRB/κf is as low as ∼ 10−3 − 10−2). Such a high γ-ray efficiency

would be extremely hard to produce in the internal shocks model (see § 1).

If, on the other hand, κ ∼ 0.1 and there is energy injection (i.e. f ∼ 10), or if κ ∼ 1

and there is no energy injection (i.e. f = 1; see § 3), then this would imply a significantly

lower typical γ-ray efficiency, ǫγ ∼ 0.5, although in some cases ǫγ would still be as high as

∼ 90% (or, equivalently, 1− ǫγ ≈ ǫobs,GRB/κf would still be as low as ∼ 10−2 − 10−1). Even

the latter, more moderate, requirements on the γ-ray efficiency are not easily satisfied in the

internal-shocks model, athough they might possibly still be accommodated in this scenario

(Kobayashi et al. 1997; Kumar 1999; Guetta et al. 2001). Finally, if κ ∼ 0.1 and the shallow

decline does not arise from energy injection (i.e., f = 1) but, say, from varying afterglow

efficiency (as discussed in § 3), then the γ-ray efficiency would typically be ǫγ ∼ 0.1. In the

latter case the results are fully consistent with the predictions of the internal-shocks model.

2.5. Some Caveats

The discussion so far was relevant to the power-law segment of the spectrum where

νX > max(νm, νc). If, instead, νm < νX < νc, we have only a lower limit on the value of Ek,iso

from this consideration (i.e., from eq. [5]) that corresponds to an upper limit on the value

of κ, the true value being smaller than this upper bound by a factor [νc(10 hr)/νX]2/(p+2)

(which, however, is not typically expected to be very large).
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It is possible that there is a contribution to FX(tdec) from a component of the outflow that

is not along the line of sight, or for some other reason did not contribute to the observed γ-ray

emission. In this case equations (3) and (5) would provide a lower limit on ǫγ , rather than

directly determine its value. If both the prompt γ-ray emission and FX(tdec) were dominated

by emission from angles θ > 1/Γ relative to the line of sight (where Γ is the Lorentz factor

of the outflow), then again equations (3) and (5) would provide a lower limit on ǫγ , since

the beaming of radiation away from the line of sight is expected to be either comparable or

somewhat smaller during the afterglow emission at tdec compared to the prompt GRB.

It is also possible that some fraction ǫ∗ of the original energy Eiso,0 ended up in a totally

different form, i.e., was not radiated during the prompt emission and did not end up in the

kinetic energy of the afterglow shock. This could occur, for example, if along some directions

a forward shock is not formed (or at least not formed efficiently) for a very pure Poynting-

flux outflow. In such a case some of the energy (potentially even most of the energy) could

be carried out to very large distances (in principle out to infinity) in electromagnetic form

(such as low-frequency electromagnetic waves).6 Alternatively, a good fraction of the energy

might be carried away in high-energy cosmic rays and neutrinos (Waxman 1995; Waxman

& Bahcall 1997) and thus would not contribute to the kinetic energy of the afterglow shock.

In this case we have Ek,iso,0 = (1 − ǫγ − ǫ∗)Eiso,0 and we need to make the substitution

(1− ǫγ) → (1− ǫγ − ǫ∗) everywhere, so the estimate (13) for ǫγ (assuming ǫ∗ = 0) should be

multiplied by (1 − ǫ∗),

ǫγ = (1 − ǫ∗)

(

1 +
ǫobs,GRB

κf

)−1

. (14)

This means that ǫγ < 1 − ǫ∗ (even for κf ≫ ǫobs,GRB), and therefore ǫ∗ & 0.5 would imply

ǫγ . 0.5 . Thus, even when one infers ǫγ/(1− ǫγ) ≫ 1 and hence 1− ǫγ ≪ 1 under the usual

assumption that ǫ∗ = 0 (or at least ǫ∗ ≪ 1 − ǫγ), the intrinsic γ-ray efficiency might still be

significantly smaller, and is ǫγ . 0.5 for ǫ∗ & 0.5. Note that, in order for GRBs to produce

the highest-energy cosmic rays, their energy should be comparable to that of the prompt

γ-rays (Waxman 1995, 2004), i.e., ǫγ . ǫ∗ (the inequality arising since there might be other

forms of energy that escape the prompt emission site without being directly detected), and

therefore ǫγ . 0.5.

One should, however, keep in mind that high-energy cosmic rays and neutrinos must

tap the same dissipated energy that also powers the prompt γ-ray emission. Therefore, for

the same observed energy in γ-rays and inferred kinetic energy in the afterglow, in addition

to increasing the required total initial energy Eiso,0 by a factor of (1 − ǫ∗)
−1, these particles

6Both the formation of a forward shock and the ability of energy to escape to infinity in electromagnetic

form have not yet been fully worked out (e.g., Melatos & Melrose 1996; Smolsky & Usov 2000).
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would also increase the required dissipated energy ǫdis,GRBEiso,0 and the fraction ǫdis,GRB

of the dissipated energy that ends up in γ-rays.7 In other words, ǫdis,GRB ≥ ǫγ + ǫ∗ =

(Eγ,iso + E∗,iso)/(Ek,iso,0 + Eγ,iso + E∗,iso) > Eγ,iso/(Ek,iso,0 + Eγ,iso), where E∗,iso = ǫ∗Eiso,0

is the (isotropic-equivalent) energy in cosmic rays and neutrinos, and Ek,iso,0 and Eγ,iso are

determined (at least in principle) by observations. Clearly, E∗,iso increases the lower limit on

ǫdis,GRB. Nevertheless, the fact that E∗,iso may reduce ǫγ to . 0.5 even for κf ≫ 1 makes it

possible to have ǫe,GRB . 0.5, which should be easier to accommodate for shock acceleration

in a proton–electron plasma. Still, dissipating and getting rid of almost all of the energy

(through radiation, cosmic rays, neutrinos, etc.) and leaving only a small fraction of the

original energy in the kinetic energy of the forward shock, as is required for κf ≫ 1, is not

an easy task for any model of the prompt emission.

3. Efficiency of the X-Ray Afterglow Emission

As noted in § 1, one of the new features discovered by Swift is the early shallow decline

phase: FX ∝ t−α with 0.2 . α . 0.8 for tbreak,1 . t . tbreak,2. During this phase tFX(t)

increases with time. Using the definition of ǫX(t) (eq. [2]) and the relation between LX,iso

and FX (eq. [1]), we find that

ǫX(t)Ek,iso(t)

tFX(t)
= 4πd2

L(1 + z)β−α−1 (15)

is constant in time. Note that if ν and t in the expression for FX(t) were referred to the GRB

rest frame rather than to the observer frame then the factor (1 + z)β−α−1 on the right-hand

side of equation (15) would be eliminated, and with it any potential (weak) time dependence

resulting from a possible temporal variation of α or β.

Now, if the observed frequencies satisfy νX > max(νm, νc), and p > 2, then equation (4)

is applicable. Furthermore, if the afterglow shock evolves according to the adiabatic self-

similar solution of Blandford & McKee (1976) and the fractions of the postshock internal

energy in electrons (ǫe) and in magnetic field (ǫB) are constant in time, then νm ∝ t−3/2.

Under these circumstances ǫX ∝ t−3(p−2)/4 decreases (slowly) with time. As can be seen

from equation (15), ǫX(t)Ek,iso(t) ∝ tFX(t). Therefore, the observed rise in tFX(t) implies a

similar rise in ǫX(t)Ek,iso(t). Given the expected decrease of ǫX(t) with t for p > 2, the slowly

decaying portion of the light curve has been attributed by several researchers to an increase

7In the case of a very pure Poynting flux, the escaping energy E∗,iso is the fraction that did not dissipate.

Therefore, while Eiso,0 increases by a factor of (1 − ǫ∗)
−1, the dissipated energy ǫdis,GRBEiso,0 remains

unchanged (assuming other efficiencies do not change), and thus ǫdis,GRB decreases by a factor of (1− ǫ∗)
−1.
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in Ek,iso(t), i.e., to some sort of energy injection into the forward shock (e.g., Nousek et al.

2005; Panaitescu et al. 2005; Zhang et al. 2005; Granot & Kumar 2006).

It is, however, conceivable that the rise in tFX(t) corresponds, at least in part, to an

increase of ǫX(t) with time. One way in which this could be brought about is if p were < 2

(assuming ǫe and ǫB remain constant).8 In this case N(γe) ∝ γ−p
e for γmin < γe < γmax and

ǫX ∼ (1+Y )−1ǫe(νmax/νX)(p−2)/2 [the same as eq. (4) for p < 2, but with νmax replacing νm],

where νmax = νsyn(γmax) ∝ γBγ2
max ∝ γ4ρ

1/2
ext ∝ t−3/2 [where B is the comoving magnetic

field amplitude and ρext is the external density; the same as the scaling of νm = νsyn(γmin)

for p > 2], so ǫX ∝ t3(2−p)/4. This time dependence is the same as for p > 2, but in this case

ǫX increases with time whereas for p > 2 it decreases. Similarly, FX ∝ t−(3p−2)/4, just as for

p > 2, except that for p < 2 this corresponds to a decay rate flatter than t−1. One possible

difference between the two cases is that for p < 2 and νc < νmax radiative losses are not

always negligible since most of the energy in the electrons is at γe ∼ γmax and is therefore

radiated away. Thus, unless ǫe ≪ 1, radiative losses could be significant and would tend to

steepen the flux decay rate and make it harder to achieve a flattish light curve. We also

note that the X-ray spectral slope for p < 2 [assuming νX > max(νc, νm)] is βX = p/2 < 1,

which in many cases is inconsistent with the observed value (Nousek et al. 2005), so this

explanation of the shallow decay of FX might only apply to a subset of the sources (see Fig.

8 of Nousek et al. 2005).

An alternative possibility for ǫX(t) to increase with t is for either one (or both) of the

microphysical parameters ǫe and ǫB to increase with time. Using the dependence of νm

on these parameters (e.g., Sari et al. 1998), we find that, for p > 2, ǫX ∝ ǫ
(p−1)
e ǫ

(p−2)/4
B

when ǫe ≪ ǫB and ǫX ∝ ǫ
(p−3/2)
e ǫ

p/4
B when ǫe ≫ ǫB. This applies when parameterizing

in terms of Ek,iso (which is not measured directly), whereas a parameterization in terms

of LX,iso (which is measured directly) yields ǫX ∝ ǫ
4(p−1)/(p+2)
e ǫ

(p−2)/(p+2)
B when ǫe ≪ ǫB and

ǫX ∝ ǫ
2(2p−3)/(p+2)
e ǫ

p/(p+2)
B when ǫe ≫ ǫB (see eq. [2]). Table 3 of Nousek et al. (2005) provides

the values of ∆α — the change in the temporal decay index across the break in the light

curve at tbreak,2 — for nine Swift GRBs in which it could be measured reliably, and shows

that typically 0.5 . ∆α . 1. In our context, if ǫe ∝ tαe and ǫB ∝ tαB at t < tbreak,2, then

attributing the flattish decay phase to a growth of ǫe and/or ǫB with time requires (in the limit

ǫe ≫ ǫB) that ∆α = 2(2p− 3)/(p+2)αe +αBp/(p+2). For 2 < p < 3, 0.5 < p/(p+2) < 0.6

and 0.5 < 2(2p − 3)/(p + 2) < 1.2. Therefore, for p ≈ 2, αe + αB ≈ 2∆α ∼ 1 − 2 and

8It is in principle possible that ǫX could increase with time on account of its dependence on Y (see eq.

[4) even if ǫe and ǫB remained constant and p were > 2, given that Y decreases with time in the slow-

cooling regime (νm < νc) that is relevant for p > 2. However, one can show that, to be relevant during the

early-afterglow phase, this would require unrealistically high values of p.
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for ∆α ∼ 0.5, a roughly linear growth with time of either ǫe or ǫB (or of their product) is

required. For p ∼ 2.6 and ∆α ∼ 1, a linear growth of ǫe and a constant ǫB would work (i.e.

αe ≈ 1 and αB = 0). If Y ∼ 1 (rather than Y ≫ 1 or Y ≪ 1), the dependence of ǫX on

ǫe and ǫB is no longer a simple power law, requiring a similarly nontrivial dependence of ǫe

and/or ǫB on the observed time t (insofar as FX is indeed a pure power law in t during the

flattish decay phase). A physical scenario will need to account both for this behavior and

for why the time evolution of the microphysical parameters effectively terminates at tbreak,2.

The magnetic-energy parameter ǫB could reflect either the structure of the ambient mag-

netic field or postshock field-amplification processes. In the former case an increase of ǫB

with time could be caused by an increase of the magnetization parameter σ = B2
ext/4πρextc

2

of the ambient gas with distance from the source, which might occur in certain GRB progen-

itor models (e.g., Königl & Granot 2002). In the latter case one cannot at present identify

a natural reason for ǫB to increase during the early afterglow phase, but future theoretical

advances (see, e.g., Medvedev et al. 2005) might make it possible to study the evolution of

shock-generated magnetic fields over time scales that are long enough to address this ques-

tion. The value of ǫe might also be linked to the changing shock parameters (in particular,

the shock Lorentz factor). However, in this case, again, our current level of understanding

does not allow us to make a specific prediction.

The possible increase of the afterglow radiation efficiency with time during the early

phases of the X-ray light curve may also help to lower the estimate of the γ-ray radiative

efficiency and thereby alleviate the constraints on the internal-shocks model. If at early

times (t < t∗) ǫX increased with t, then (by eq. [15]) Ek,iso,0 would be underestimated,

and therefore the parameter f and the value of ǫγ would be overestimated. The prompt

emission from internal shocks could in principle be observable even if the very early radiation

from the external (forward) shock is weak because of a low value of ǫB or of a possible

suppression of ǫe when the shock Lorentz factor is high. This is because the value of ǫB in

the internal shocks might be determined by a comparatively strong magnetic field advected

from the central source (e.g., Spruit et al. 2001) and because (in contrast to the forward

shock at the deceleration time, whose Lorentz factor is & 102) the internal shocks are only

mildly relativistic. If the afterglow emission efficiency recovers its commonly assumed value

(equation [4]) at t & tbreak,2 then one could in principle have f ∼ 1, κ ∼ 1, and ǫγ ∼ 0.5.

In this case Ek,iso remains constant while the flattish flux decay is caused by an increase

of ǫX with time. However, if even at late times the afterglow efficiency is only a fraction

δ ≪ 1 of its standard value [where δ might, for example, correspond to the fraction ξe of the

electrons behind the forward shock that are accelerated to relativistic energies, which could

conceivably be ≪ 1 (Eichler & Waxman 2005)] then κ ∼ δκstandard ∼ δ ≪ 1 and ǫγ ∼ δ (for

ǫobs,GRB ∼ 1). In this case Ek,iso is again constant with time and the flattish decay phase is



– 17 –

due to ǫX increasing with time; however, the value of ǫX at late times is δ times its standard

value (given by equation [4]) and the true kinetic energy in the afterglow shock is a factor

δ−1 ≫ 1 larger than the usual estimate of ∼ 1051 erg.

An alternative to the explanation of the flattish segment of the light curve in terms of

a prolonged energy injection into the forward shock of a basic jet model is the possibility

(in a generalized jet model) of distinct spatial components, some of which only contribute

to the afterglow emission at later times. This situation could arise if (1) some of the ejecta

have lower initial Lorentz factors that result in longer deceleration times, so only a small

fraction of the injected energy is transferred to the shocked external medium early on, or if

(2) radiation from components that do not move along our line of sight is strongly beamed

away from us at early times, becoming visible only later on when deceleration causes the

respective beaming cones to widen. Case (1) is exemplified by the two-component jet model

considered in the next section, whereas case (2) might be realized in the “patchy shell” model

of GRB sources (Kumar & Piran 2000) and in the “anisotropic afterglow efficiency” scenario

outlined by Eichler & Granot (2005).9

4. The Two-Component Jet Model: A Case Study

As pointed out in § 1, the two-component jet model was originally invoked by Peng et

al. (2005) as a possible way of alleviating the pre-Swift constraints on the γ-ray emission

efficiency. In this section we interpret the Swift results in the context of this scenario, using

again the parameters κ and f introduced in § 2 and affirming some of the conclusions reached

in that section. In this discussion we assume that the standard afterglow theory applies and

that the microphysical parameters do not change with time. This formulation is used to

demonstrate that the recent observations are inconsistent with parameter values of the two-

component jet model that could lead to a lower inferred magnitude for ǫγ, reinforcing the

result that, in the context of the standard afterglow theory, the Swift measurements have

tightened the constraints on the prompt-emission efficiency. We go on to show, however,

that the two-component model can nevertheless account for the X-ray afterglow light curve

of GRB sources, including the flattish early-time segment.

The generic two-component jet model consists of a narrow and initially highly relativistic

(conical) outflow from which the prompt emission originates, and a moderately relativistic

flow that decelerates at a significantly later time and occupies a wider (coaxial) cone. The

9Case (2) might also be relevant to the two-component jet model if the line of sight to the observer lies

within the solid angle subtended by the narrow component but outside the inner edge of the wide component.
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narrow component is the source of the prompt emission (which is observed as a GRB if the

observer’s line of sight lies within, or very close to, its opening solid angle), whereas the wide

component only makes a contribution to the afterglow emission (which becomes observable

after it decelerates). Letting Ei, Ek,i, θi, and ηi stand for the total initial energy, initial

kinetic energy, opening half-angle, and Lorentz factor of the two components (with i = n, w

corresponding to narrow and wide, respectively), we have

Eγ,iso = ǫγEn,iso = ǫγEn
2

θ2
n

. (16)

The parameter κ defined in equation (3) can be expressed in this context by the relation

Eobs
γ,iso

θ2
w

2
= ǫobs,GRBǫγEn

(

θw

θn

)2

≈ κ (Ek,n + Ek,w) , (17)

where Ek,n = (1−ǫγ)En and Ek,w ≈ Ew. Equation (17) incorporates the fact that the kinetic

energy responsible for the late afterglow emission is determined empirically by assuming

a jet of half-opening angle θw, or equivalently that the isotropic-equivalent kinetic energy

inferred from late time afterglow corresponds approximately to the total kinetic energy over

the fraction of the total solid angle occupied by the wide component.

The energy that determines the early afterglow phase is

Eearly,iso = Ek,n
2

θ2
n

= Ek,n,iso , (18)

whereas the late afterglow phase is determined by

Elate,iso = (Ek,n + Ek,w)
2

θ2
w

. (19)

The evidence from the Swift observations that we do not see the early afterglow emission

above the rapidly decaying tail of the prompt emission, and that even when it shows up it

is rather weak, implies that the early isotropic kinetic energy Eearly,iso is a factor f ∼ 10

smaller than the late isotropic kinetic energy Elate,iso, where we reintroduced the parameter

f defined in equation (3). This implies that

Ek,n

θ2
n

=
Ek,n + Ek,w

fθ2
w

≈
Ek,w

fθ2
w

, (20)

which in turn implies that

Ek,n < Ek,w . (21)

Hence we can delete the term involving Ek,n from the right-hand side of equation (17) and

obtain
ǫγǫobs,GRB

(1 − ǫγ)
= κ

Ek,w

Ek,n

(

θn

θw

)2

= κ
Ek,w,iso

Ek,n,iso

. (22)
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Expressing now Ek,w in terms of Ek,n using this last equation and substituting into equation

(20) (which becomes simply f ≈ Ek,w,iso/Ek,n,iso when one neglects Ek,n on the r.h.s.), we

rediscover the first relation in equation (3), which can be expressed in the form of equation

(13) to yield ǫγ ∼ 0.9 for f ∼ 10 and (κ/ǫobs,GRB) ∼ 1.

Equation (22) with ǫγǫobs,GRB ≈ 1 implies that κEk,w/θ2
w ≈ En/θ

2
n, and hence, given that

Ek,w ≈ Ew and taking κ to be ∼ 1, that the narrow and wide jet components initially have

comparable isotropic-equivalent energies. The ratio of true energies of the two components

is initially Ew/En ≈ κ−1(θw/θn)
2 ∼ (4 − 9)κ−1 for reasonable ratios of the opening half-

angles. This ratio further increases by a factor (1 − ǫγ)
−1 ≈ κf (see eq. [13]) during the

prompt-emission phase.

As argued by Peng et al. (2005), this model could reduce the inferred value of ǫγ if

Ek,w/Ek,n > 1 and Ek,w,iso/Ek,n,iso < 1. However, the Swift results, as expressed by equation

(20), demonstrate that the latter ratio is equal to f ∼ 10, and hence that this possibility

is not realized in practice. Peng et al. (2005) also discussed the ability of this scenario

to account for certain “bumps” in the late-afterglow light curve of several pre-Swift GRB

sources. We now show that this model can similarly account for the early-time flattening

of the X-ray light curve. The required model parameters are, however, distinctly different

from those considered by Peng et al. (2005); in fact, the fits that we obtain reinforce the

conclusion that Ek,w,iso/Ek,n,iso (≈ f) must be ≫ 1.

The Lorentz factor of the narrow jet component does not directly enter into our modeling

of the light curve, although the usual “compactness” arguments for the prompt emission (e.g.,

Lithwick & Sari 2001) imply that its value is ηn & 102. Our interpretation of the flattish

segment of the light curve in the context of this scenario is that it largely corresponds to the

emergence of the wide component around its deceleration time tdec,w ∝ (Ek,w,iso/next)
1/3η

−8/3
w ,

where next is the particle density of the ambient medium at the deceleration radius. Owing

to the strong dependence of tdec on η, we can constrain the value of ηw within a factor of 2

or so.

Figure 1 shows a tentative fit to the X-ray light curve of GRB 050315 with the two-

component jet model, whereas Figure 2 demonstrates the effect of modifying the model

parameters. The extended flat segment of the light curve together with the requirement

that the contribution from the narrow component at t/(1+ z) ∼ 200 s does not overproduce

the observed flux imply f ≈ Ek,w,iso/Ek,n,iso & 30. This suggests that f ∼ fmax ∼ 30 (see

Table 2) and that both fmin and fmax might have been somewhat underestimated for this

event (since the fit to the data should produce f & fmin, suggesting that fmin ∼ 30 for

GRB 050315, which is higher than the value of fmin = 11 derived by Nousek et al. 2005 and

shown in Table 2). For our fiducial parameter values (ǫe = 0.1, ǫB = 0.01, and p ≈ 2.0− 2.1;
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see Table 2 and Fig. 1) we find (using eq. [5]) κ ≈ 0.034 (see Table 2). For this value of κ the

product κf is ∼ 1, which implies (from eq. [13] with ǫobs,GRB ∼ 1) that ǫγ ∼ 0.5. The fit to

the data shown in Figure 1 incorporates an SSC component whose contribution in this case

turns out to be comparable to that of the synchrotron component at t∗ = 10 hr, resulting

in a decrease by a factor of ∼ 2 in the estimate of Ek,iso(10 hr) (and in a corresponding

increase in the estimate of κ) in comparison with the values inferred by using equation (5)

(which only takes account of the synchrotron contribution). The actual numerical difference

between these two estimates is, in fact, slightly larger (a factor ∼ 2.5), reflecting the fact

that the fit employs a numerical scheme that is not identical to equation (5). All in all, the

model fit shown in Figure 1 yields f ≈ Ek,w,iso/Ek,n,iso = 30, κ ≈ Eobs
γ,iso/Ek,w,iso ≈ 0.086, and

κf ≈ Eobs
γ,iso/Ek,n,iso ≈ 2.6, which implies ǫγ ≈ 0.72 for ǫobs,GRB = 1.

One realization of a two-component relativistic outflow of the type considered here is

an initially neutron-rich, hydromagnetically accelerated jet (Vlahakis et al. 2003). In this

picture the narrow component consists of the originally injected protons that are gradually

accelerated to ηn; the injected neutrons decouple from the original proton component when

the jet Lorentz factor reaches ηw and eventually decay to form a distinct (wide) proton

component. In the illustrative solution presented in Vlahakis et al. (2003), ηw ≈ 15. The

dashed curve in Figure 2 demonstrates that, to be consistent with the data, this value of

ηw requires a very high external density, next ∼ 103.5 cm−3 (although even for this value

the fit is not as good as for the parameters adopted in Fig. 1). This can be understood

from the parameter dependence of tdec,w/(1 + z), for which the model fit implies a value of

∼ 2 × 103 s. To reproduce the observed flux, the value of Ek,w,iso cannot be too low. In

fact, in the model fit represented by the dashed curve we have adopted the lowest possible

value of this quantity, corresponding to an equipartition between the electron and magnetic

field energy densities. With the values of tdec,w and Ek,w,iso thus fixed, the inferred external

density becomes very sensitive to the value of the Lorentz factor (next ∝ η−8
w ). Intermediate

options, with a somewhat higher Lorentz factor (ηw = 21) are also shown in Figure 2, both

for the uniform-density case used in the previous fits (dash-dotted curve) and for an r−1.5

density profile (where r is the distance to the source; dotted curve). We interpret the break

in the light curve of GRB 050315 at t/(1 + z) ∼ 1 day as the jet break time of the wide

component, tjet,w/(1 + z). Since the jet break time is particularly sensitive to the value of

the opening half-angle, tjet,w ∝ (Ek,w,iso/next)
1/3θ

8/3
w , this allows us to constrain the value of

θw. Given that tjet,w/tdec,w ∝ (ηwθ,w)8/3, it is seen that any reduction in the fitted value of

ηw requires an increase in θw by a similar factor.

As was already noted in Peng et al. (2005), another realization of this type of an outflow

is potentially provided by a relativistic, baryon-poor jet, which is driven electromagnetically

along disk-anchored magnetic field lines that thread the horizon of a rotating black hole,
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and which is “contaminated” by neutron diffusion from a baryon-rich disk wind. In the

original version of this scenario, which was proposed by Levinson & Eichler (1993, 2003; see

also van Putten & Levinson 2003) and recently studied numerically by McKinney (2005a,b),

the narrow and wide components correspond to the baryon-poor and baryon-rich outflows,

respectively. However, the predicted Lorentz factor of the disk wind is too low to be consistent

with the rather high value of ηw inferred from our model fits. An alternative possibility is

that the wide component corresponds to a hydromagnetically accelerated baryon-rich disk

outflow of the type modeled by Vlahakis & Königl (2003a,b), whereas the narrow component

corresponds (as in the Levinson & Eichler picture) to a baryon-poor Blandford & Znajek

(1977)-type outflow.10 It should be noted that in either one of the above two-component jet

realizations the γ-ray emitting component is associated with an initially Poynting-dominated

outflow. This could in principle make it possible to account for the relatively high emission

efficiency that the Swift results seem to imply (see § 5).

5. Summary and Conclusions

We have shown that the γ-ray efficiency implied by the Swift observations is model-

dependent and can vary over a wide range (from typical values of ǫγ ∼ 0.9 or higher to

ǫγ ∼ 0.1 or lower) depending on the adopted model assumptions. The γ-ray efficiency has

been expressed in terms of observable quantities (see eqs. [3] and [13]), namely κ and f ,

where κ relates the γ-ray emission to the late-time afterglow emission (and was therefore

available in the pre-Swift era) and f relates the early- and late-time afterglow energies (and

therefore became available only with the launching Swift). We have shown that there is

a large uncertainty in the values of both κ and f , which translates into a corresponding

uncertainty in the value of the γ-ray efficiency, ǫγ . In the following discussion we make the

conservative assumption that we observe most of the emitted energy in γ-rays (ǫobs,GRB ≈ 1);

if a significant fraction of the total radiated energy is emitted outside of the observed photon

energy range (e.g., at higher energies) then this would increase the required value of ǫγ (see

equation [13]).

The kinetic energy of the afterglow shock has been estimated in the pre-Swift era using

broad-band afterglow fits for a small number of GRB sources that had the best available

broad-band afterglow data, yielding a typical value of κ ∼ 1 with a large scatter of almost

10It is in principle also conceivable that the baryon-poor outflow could develop an internal structure that

would correspond to the two outflow components considered here, but there are at present no quantitative

results to support this conjecture.
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an order of magnitude (see § 2.3). Substituting the values of the microphysical parameters

(ǫe, ǫB and p) that were derived from these fits into our equations for Ek,iso generally yielded

somewhat lower values of κ. Finally, using our equations with fiducial values of the micro-

physical parameters (ǫe = 0.1, ǫB = 0.01, and p = 2.2) gives a typical value of κ ∼ 0.1− 0.2,

both for the pre-Swift and the Swift GRB samples that we use, with a moderate scatter.

Specifically, for our pre-Swift (Swift) sample, 〈log10 κ〉 = −0.75 (−0.82) corresponding to

κ = 0.18 (0.15) and σlog10 κ = 0.60 (0.63). Obviously, the choice of fiducial values for the

microphysical parameters is somewhat arbitrary and affects the resulting value of κ. Higher

values of the microphysical parameters ǫe and ǫB (e.g., ǫe ≈ 0.3, ǫB ≈ 0.08) are required

in order to obtain an average value of log κ, using our equations, similar to that derived

from pre-Swift broad-band afterglow fits. Altogether, there is almost an order-of-magnitude

uncertainty in the typical value of κ (which ranges from ∼ 0.1 − 0.2 to ∼ 1).

Even if we adopt the high typical values of κ (∼ 1) inferred from pre-Swift afterglow

fits, it is important to keep in mind that these values have been estimated on the basis of

the standard assumptions of afterglow theory. Changing these assumptions would modify

the inferred value of κ for the same fits. For example, as pointed out by Eichler & Waxman

(2005), if only a fraction ξe < 1 of the electrons are accelerated to relativistic energies,

then there is a degeneracy where the same observable quantities are obtained for ǫe → ξeǫe,

ǫB → ξeǫB, next → ξ−1
e next, and Ek,iso → ξ−1

e Ek,iso. Since this increases the inferred value of

Ek,iso by a factor of ξ−1
e , κ is reduced by the same factor in comparison with the estimate

from the standard theory (which uses ξe = 1).

An alternative way of reducing the inferred value of ǫγ was proposed by Peng et al.

(2005) in the context of the pre-Swift observations. Specifically, they considered a two-

componet outflow model with parameters that effectively corresponded to the parameter f

having a value < 1. This parameter choice appears to be inconsistent with Swift’s detection

of an early flattish decay phase in the X-ray light curve, which, when interpreted in the

context of the standard afterglow theory as arising from a gradual increase with time of

Ek,iso, typically implies f ∼ 10 (and, in some cases, values of f that are as high as ∼

102−103). It is worth noting in this connection that the existence of a two-component GRB

jet model can be plausibly expected on various theoretical grounds and has been suggested

independently on the basis of fits to several pre-Swift afterglows (see discussion in Peng et

al. 2005). Furthermore, the Swift observations by no means rule out this model, although

they can be used to constrain its parameters. We have illustrated this fact through the fit

to the X-ray light curve of GRB 050315 that we performed in § 4 within the framework

of this model. This fit has yielded plausible ranges for the kinetic energies and opening

angles of the two components as well for as the Lorentz factor of the dominant (wide)

component. A key conclusion from this fit is that the kinetic energy of the wide component
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is much larger than that of the narrow one (Ek,w/Ek,n ∼ 102). Physically, the narrow and

wide components could conceivably correspond to a baryon-poor, black-hole–driven outflow

(Levinson & Eichler 1993, 2003) and a baryon-rich, disk-driven outflow (Vlahakis & Königl

2003a,b), respectively, although this remains to be demonstrated. We also note that the two-

component jet parameters derived in § 4 were based on standard assumptions; they could

change if the underlying assumptions (involving, for example, the values and time constancy

of the microphysical parameters) were altered.

In conjunction with the κ ∼ 1 estimates of the standard broad-band afterglow fits,

values of f & 10 imply γ-ray radiative efficiencies ǫγ & 0.9. Such high efficiencies would

be essentially impossible to achieve in any scheme, such as the internal-shocks model, that

tapped the kinetic energy of the outflow for radiation. An alternative possibility that has

been discussed in the literature is the direct transfer of Poynting flux (which evidently is also

a major contributor to the flow acceleration — e.g., Drenkhahn & Spruit 2002; Vlahakis &

Königl 2003a) into nonthermal radiation (e.g., Usov 1994; Thompson 1994). It is at present

unclear how to assess the efficiency of this process. There are two generic possibilities:

dissipative fronts and magnetic reconnection sites. The first option corresponds to overtaking

collisions of magnetically dominated relativistic streams and is not expected to result in high

radiative efficiencies (e.g., Romanova & Lovelace 1997; Levinson & van Putten 1997). The

second case would require magnetic field orientation reversals and would most naturally arise

in a pulsar-type outflow from a rapidly rotating neutron star (e.g., Spruit et al. 2001). In this

case it is, however, still unclear whether radiative efficiencies & 0.9 could be attained even

under the most favorable assumptions about the field reconnection rate (Drenkhahn & Spruit

2002), and it has in fact been suggested that the reconnection rate might be self-limiting

(Lyubarsky & Kirk 2001).

An “intermediate” situation could prevail if f ∼ 10 but κ ∼ 0.1, reflecting the pos-

sibility that κ was overestimated by the pre-Swift afterglow fits (perhaps because some of

the assumptions of the standard theory do not hold — e.g., ξe ∼ 0.1 rather than ξe = 1).

Alternatively, κ could be ∼ 1 but f = 1, corresponding to the early flattish decay phase

reflecting an increase with time of the X-ray afterglow efficiency ǫX (due, e.g., to p being < 2

or to an increase with time of ǫe or ǫB; see § 3) rather than an early increase in Ek,iso. In

either one of these cases the inferred γ-ray radiative efficiency would be reduced to ǫγ ∼ 0.5.

Although this value is less extreme than the estimate discussed in the preceding paragraph,

it is worth noting that it is still fairly restrictive for the internal-shocks model, in which it

could potentially be attained only if all of the following conditions (already summarized in

Peng et al. 2005) are satisfied: (1) the ratio between the maximum and minimum initial

Lorentz factors of the ejected shells is large enough (& 10); (2) the distribution of initial

Lorentz factors is sufficiently nonuniform; (3) the shells are approximately of equal mass
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and their number is large enough (& 30), and (4) the fraction of the dissipated energy that

is deposited in electrons and then radiated away is sufficiently high (ǫe,GRBǫrad,GRB & 0.5),

with a similar constraint applying to the fraction ǫobs,GRB of the radiated energy that is

emitted as the observed γ-rays (see Beloborodov 2000 and Kobayashi & Sari 2001). Only if

both f ∼ 1 and κ ∼ 0.1 were satisfied (which could occur, for example, if ǫe or ǫB initially

increased with time and ξe were ∼ 0.1) would the inferred value of ǫγ drop to ∼ 0.1 and be

compatible with the values that are expected to arise under less constrained circumstances

in the internal-shocks model.

We are grateful to D. Eichler, E. Ramirez-Ruiz, and P. Kumar for many useful discus-

sions. This research was supported in part by the US Department of Energy under contract

number DE-AC03-76SF00515 (J. G.), by NASA Astrophysics Theory Program grant NAG5-

12635 (A. K.), as well as by the US-Israel BSF and by the Schwartzmann University Chair

(T. P.). J. G. and A. K. thank the Racah Institute of Physics at the Hebrew University in

Jerusalem for hospitality during the early phase of this work.

REFERENCES

Barthelmy, S. D., et al. 2005, ApJ, 635, 133

Beloborodov, A. M. 2000, ApJ, 539, L25

Berger, E., Kulkarni, S. R., & Frail, D. A. 2003, ApJ, 590, 379

Blandford, R. D., & McKee, C. F. 1976, Phys. Fluids, 19, 1130

Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433

Bloom, J. S., Frail, D. A., & Kulkarni, S. R. 2003, ApJ, 594, 674

Daigne F., & Mochkovitch R. 1998, MNRAS, 296, 275

Drenkhahn, G., & Spruit, H. .C. 2002, A&A, 391, 1141

Eichler, D., & Granot, J. 2005, ApJ, submitted (astro-ph/0509857)

Eichler, D., & Waxman, E. 2005, ApJ, 627, 861

Fan, Y., & Piran, T. 2006, preprint (astro-ph/0601054)

Frail, D. A., et al. 2001, ApJ, 562, L55



– 25 –

Freedman, D. L., & Waxman, E. 2001, ApJ, 547, 922

Granot, J., & Kumar, P. 2003, ApJ, 591, 1086

Granot, J., & Kumar, P. 2006, MNRAS, in press (astro-ph/0511049)

Granot, J., & Sari, R. 2002, ApJ, 568, 820

Guetta, D., Spada, M., & Waxman, E. 2001, ApJ, 557, 399

Kobayashi, S., Piran, T., & Sari, R. 1997, ApJ, 490, 92

Kobayashi, S., & Sari, R. 2001, ApJ, 551, 934
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Table 1. Estimates of κ for pre-Swift GRBs with known redshifts

GRB L †
X,iso,10hr Eobs ‡

γ,iso E ¶
k,iso,10hr E

(PK02) ♠

k,iso,10hr E
(PK02) ♣

k,iso,10hr E
(Y03) ♥

k,iso,10hr E
(Y03) ♦

k,iso,1d κ ♠ κ ♣ κ ♥
10hr κ ♦

1d

#
z

(1046 erg/s) (1052 erg) (1052 erg) (1052 erg) (1052 erg) (1052 erg) (1052 erg)
κ ¶

(PK02) (PK02) (Y03) (Y03)

970228 0.695 0.682 1.416 22.2 — — — — 0.064 - – — — —

970508 0.835 0.374 0.546 12.5 1.31 4.0 1.50 1.6 0.044 0.42 ∗ 0.14 ∗ 0.36 0.34

970828 0.985 1.76 21.98 54.8 — — — — 0.40 - – — — —

971214 3.418 8.96 21.05 258 — — — — 0.082 - – — — —

980613 1.096 0.536 0.536 17.7 — — — — 0.030 - – — — —

980703 0.966 1.02 6.012 32.6 — — 61.6 13 0.18 - – — 0.098 0.46

990123 1.600 12.83 143.8 364 339 22 — — 0.40 0.42 6.4 — —

990510 1.619 8.209 17.64 238 70 ⋆ 9.6 — — 0.074 0.25 ⋆ 1.8 — —

990705 0.840 0.123 25.60 4.35 — — — — 5.89 - – — — —

991216 1.02 18.32 53.54 510 — ⋆ 9.9 — - – 0.10 — ⋆ 5.4 — —

000210 0.846 0.183 16.93 6.35 — — — — 2.67 - – — — —

000926 2.037 7.169 27.97 209 36.7 3.2 272 15 0.13 0.76 8.7 0.10 1.86

010222 1.477 13.79 85.78 389 19 ⋆ 16 — — 0.22 4.5 ⋆ 5.4 — —

011211 2.14 0.886 6.723 28.5 — — — — 0.24 - – — — —

020405 0.698 1.729 7.201 53.9 — — — — 0.13 - – — — —

020813 1.254 12.12 77.50 344 — — — — 0.23 - – — — —

021004 2.323 6.536 5.560 191 — — — — 0.029 - – — — —

Note. — Estimates for Ek,iso(10 hr) = Ek,iso,10hr and κ = Eobs
γ,iso/Ek,iso,10hr for the GRBs with known redshift from the Bloom et al. (2003) and Berger et al. (2003)

samples. † LX,iso,10hr = LX,iso(10 hr) from Table 2 of Berger et al. (2003), ‡ Eobs
γ,iso in the 20−2000 keV range form Table 2 of Bloom et al. (2003), ¶ calculated using eq.

(5) with our fiducial values of the microphysical parameters: ǫe = 0.1, ǫB = 0.01, and p = 2.2. ♠ substituting the best fit values of the microphysical parameters from

Table 2 of Panaitescu & Kumar (2002) into eq. (5), ♣ the value for Ek,iso(10 hr) is taken to be ≈ 0.5Ek,iso,0, where Ek,iso,0 is taken from Panaitescu & Kumar (2002)

and the factor of ≈ 0.5 accounts for the average factor by which the energy is reduced relative to Ek,iso,0 due to radiative losses (A. Panaitescu, personal communication),
∗ these values are for a fit to a uniform external density; PK02 get a significantly better fit to a wind density for which we derive κ = 0.47 and 0.17 instead of 0.42 and

0.14, respectively, ⋆ in these cases Panaitescu & Kumar (2002) find p < 2 which introduces an uncertainty through the extrapolation that is involved in the expression

for the numerical coefficient in eq. (9); for GRB 991216 PK02 find that the X-ray emission is from electrons with γe > γmax where dN/dγe ∝ γ−q
e with p < 2 < q so

that we cannot readily substitute their results into our equations, ♥ substituting the best fit values of the microphysical parameters from Table 1 of Yost et al. (2003)

into eq. (5), ♦ Ek,iso,1d = Ek,iso(1 day) = Eobs
γ,iso/κ1d from Table 1 of Yost et al. (2003). ♦♦ κ1d = Eobs

γ,iso/Ek,iso,1d.
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Table 2. Estimates of f and κ for Swift GRBs with known redshifts

L †
X,iso,10hr Eobs ‡

γ,iso E ¶
k,iso,10hrGRB # z

(1046 erg/s) (1052 erg) (1052 erg)
p ♠ κ ♣ f ♥

min f ♥
max

050126 1.29 0.12 2.2 6.86 3 0.055 — —

050315 1.949 16 18 699 2.1 0.034 11 29

050318 1.44 0.60 3.9 & 28.4 2.1 . 0.18 4.2 170

050319 3.24 5.1 12.1 & 118 2.6 . 0.039 12 76

050401 2.90 9.8 137 433 2.1 0.41 5.6 14

050408 1.236 1.4 2.9 38.5 2.3 0.058 — —

050416A 0.6535 0.091 0.09 4.51 2.1 0.026 2.2 9.9

050505 4.3 2.3 89 & 59.0 2.6 . 0.58 19 1800

050525A 0.606 0.12 3.1 & 3.96 2.4 . 0.47 2.1 5.9

050603 2.821 1.1 126 & 29.6 2.4 . 2.57 — —

Note. — The estimates for f = Ek,iso,10hr/E
obs
k,iso,0 and κ = Eobs

γ,iso/Ek,iso,10hr for the GRBs

with known redshift from the Nousek et al. (2005) sample; † LX,iso,10hr = LX,iso(10 hr) in the

2 − 10 keV range at (both the time and the photon energies measured in the cosmological

frame of the GRB) from Table 2 of Nousek et al. (2005), ‡ Eobs
γ,iso in the 20− 2000 keV range

(in the GRB’s cosmological frame) form Table 2 of Nousek et al. (2005), ¶ calculated using

eq. (5) with ǫe = 0.1, ǫB = 0.01, and the values of p from this Table, ♠ estimated using the

measured spectral slope in the X-rays (Nousek et al. 2005) and attempting to fit it into the

range 2 < p < 3 if allowed within the errors on the spectral slope, ♣ κ = Eobs
γ,iso/Ek,iso,10hr

estimated using the values from this Table, ♥ fmin and fmax are taken from Table 3 of

Nousek et al. (2005), and are estimated using the measured X-ray flux at tbreak,1, and the

extrapolated X-ray flux at TGRB, respectively (see Nousek et al. 2005 for details).
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θw = 2θn = 0.056, θobs = 0.9θn, ηw = 45

Ek = 2.5 x 1051 erg, Ek,w,iso = 30Ek,n,iso

next = 8 cm−3, p = 2, εe = 0.1, εB = 0.01
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Fig. 1.— Tentative fit to the X-ray light curve of GRB 050315 (from Nousek et al. 2005)

with the two-component jet model. The numerical code used to calculate the light curve is

essentially Model 1 of Granot & Kumar (2003), which neglects the lateral spreading of the

jet and includes synchrotron self-Compton (SSC) emission. In addition to the total light

curve (thick solid line) we also show the separate contributions of the different components:

the tail of the prompt emission (∝ t−5), the narrow outflow, and the wide outflow. Here

Ek = Ek,w + Ek,n is the total kinetic energy of the two components. The narrow and wide

components occupy the non-overlapping ranges θ < θn and θn < θ < θw, respectively, in the

polar angle θ (measured from the symmetry axis); θobs is the viewing angle with respect to

this axis.
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 GRB 050315: different fits with a two−component jet

θw = 2θn  θobs/θn  ηw  E51  Ek,w/n  p   εe    εB
(i) 0.056 0.9 45 2.5 90 2 0.1 0.01
(ii) 0.114 0.9 15 2.0 120 2 1/3 1/3
(iii) 0.091 0.9 21 3.0 120 2 0.3 0.03
(iv) 0.05 0.7 21 2.5 210 2 0.3 0.03

(i) next = 8 cm−3

(ii) next = 3,000 cm−3

(iii) next = 600 cm−3

(iv) ρext = Ar−1.5, A = 104 g/cm1.5

Fig. 2.— The effects of varying the two-component jet model parameters with respect to

those of the fit shown in Fig. 1 (reproduced in this figure by the solid line). Here E51 =

Ek/(1051 erg) (with Ek = Ek,w + Ek,n), whereas Ek,w/n denotes the ratio Ek,w/Ek,n of the

kinetic energies of the wide and narrow components.


