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Abstract 

 

In the last ten years or so, many interactive aircraft design software packages have 

been released into the market. One drawback of these packages is that they assume 

prior knowledge in the field of aircraft design. Also, their main purpose being the 

preliminary aircraft design in a commercial environment, and are not intended for 

instructional use. Aircraft Design is an iterative process, and the students in the 

formative years of training must realise that one year of study is not enough to 

embrace all the necessary underlying concepts in this field. Most universities present 

the aircraft design as a classical Problem-Based Learning scenario, where students 

work in groups, with the group size varying between 5 and 8 students., each with a 

designated role, to carry out a specific task. The students work through the classical 

process of preliminary design based largely on textbook methods. Therefore, the 

need for a preliminary design tool (software) that helps the students to understand, 

analyse, and evaluate their aircraft design process exists. 

The developed software does everything that is needed in the preliminary design 

environment. Students are interactively guided through the design process, in a 

manner that facilitates lifelong learning. Comprehensive output is provided to 

highlight the “what if scenarios”. 

The software consists of many modules such as input (user interface), weight 

estimation, flight performance, cost estimation, take-off analysis, parametric studies, 

optimisation, and dynamic stability. Due to the large number of input design 

variables, a full interactive Graphical-User-Interface (GUI) is developed to enable 

students to evaluate their designs quickly. Object-Oriented-Programming (OOP) is 

used to create the GUI environment. 

The stability and control derivatives computed in this work are largely based on 

analytical techniques. However, a facility is provided in the software to create the 

data input file required to run a software package produced by USAF, called 

DATCOM, that enables computation of the dynamic stability and control derivatives 

that can be ultimately used in flight simulation work. 
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Amongst all the variables used in aircraft design, aircraft weight is the most 

significant. A new weight estimation module has been developed to increase the 

accuracy of estimation to better than 5%. Its output results agree very favourably 

with the published data of current commercial aircraft such as Airbus and Boeing. 

Also, a new formula is proposed to estimate the engine weight based on its thrust in 

the absence of the data available with high degree of accuracy. 

In order to evaluate the effectiveness of the design under consideration, a 

comprehensive methodology has been developed that can predict the aircraft price as 

a function of aircraft weight. The Direct Operating Cost (DOC) is also calculated 

using methods proposed by ATA, NASA, and AEA. 

Finally, a walk-through of two case studies are presented, one for large transport 

aircraft and other for small business jet, to show how typical undergraduate students 

will proceed with the design and to demonstrate the effectiveness of the developed 

software.  
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Chapter   ONE 

Introduction 

 

1.1   History background 

Aircraft Design is both an Art and Science [1].  One can argue the case for this 

statement.  The word Art does not mean or imply connection with the artistic elements 

of aircraft design, here the implicit meaning is understood to be “A work of art is an 

artefact of a kind created to be presented to a set of persons, the members of which are 

prepared in some degree to understand an object which is presented to them” [2].  

Since an aircraft can be regarded as an artefact, the interpretation that it is an art is 

correct.  On the other hand, Science is universally defined as, “1- the systematic 

observation of natural events and conditions in order to discover facts about them and 

to formulate laws and principles based on these facts. 2- the organised body of 

knowledge that is derived from such observations and that can be verified or tested by 

further investigation” [3].  So yes, Aircraft Design is both an Art and a Science. 

The proliferation of the human race mean they employed the land and water as a 

medium through which it was able to reach to remote areas of this world, and for 

centuries dreamt of somehow acquiring the ability to be able to use the third medium, 

“Air”.  This meant emulating the birds that grace our skies.  Knowledge is incremental, 

and often builds upon the findings of our predecessors.  According to a commonly 

known myth, an ancient Greek legend Daedalus, an engineer who was imprisoned by 

King Minos, with his son Icarus, made wings of wax and feathers.  Daedalus flew 

successfully from Crete to Naples, but Icarus, tried to fly too high and flew too near to 

the sun.  The wings held together with wax melted and Icarus fell to his death in the 

ocean.  If one assumes that the myth has an element of truth, then one can only say that 

the flight was doomed from the start, as the engineers had little or no scientific 

knowledge as regards the material properties or of the theories that eventually evolved 

that outlined the basic principles of flight and wax melting with increasing temperature. 

Many advances over centuries from the kite in 400BC, to Hero’s Aeolipile, the first 

steam powered rotation device, to Leonardo da Vinci’s flapping wing ornithopter to 

Joseph and Jacques Montgolfier’s hot air balloon helped in adding to the knowledge 
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pool that led Sir George Cayley to produce a glider, and in the process, he was able to 

specify the importance of separating lift and propulsion and the importance of dihedral.  

He also developed whirling-arm apparatus to measure forces on aerofoils and wings 

and quantified the importance of camber.  Otto Lilienthal also known as the “Father" of 

hang-gliding, in his experiments discovered the importance of control and developed 

extensive tables of lift and drag forces based on (flawed) whirling-arm experiments.   

One of the most important contributions came from Octave Chanute who took 

European aeronautical knowledge to the USA and published Progress in Flying 

Machines in 1894.  This information ultimately helped the Wright brothers in pursuit of 

the dream to fly.  Wilbur and Orville discovered the importance of 3-axis control (but 

not stability) and learned to control flight in extensive glider experiments.  They 

discovered errors in Lilienthal’s whirling-arm data and built a wind-tunnel for 

aerodynamic testing, enabling them to understand lift and drag.  They also developed 

the first theory for propellers and built one that had better than 80% efficiency.  It was 

not until 1903, when the Wright Flyer made history.  According to the Fédération 

Aéronautique Internationale (FAI), Orville Wright made the first sustained, controlled, 

and powered heavier-than-air manned flight of 120 feet in 12 seconds in North Carolina 

on December 17, 1903.  He continued to improve his plane with his brother Wilbur, 

which included many changes to control surfaces as well as the wing.  On October 5, 

1905, the Wright Brothers made Flyer III which was the first practical airplane that 

flew in the air for a distance of 24 miles in 39 minutes 23 seconds.  Santos-Dumont, 

from Brazil, made other contributions to the field of aircraft design.  He added movable 

surfaces, the precursor to ailerons, between the wings in an effort to gain more lateral 

stability.  Santos-Dumont's final design was the Demoiselle monoplane (No.s 19 to 22) 

in 1909.  In 1911, the first transcontinental flight across the U.S. was completed by 

Calbraith Rodgers.  His flight from New York to California took 3 days, 10 hours, and 

14 minutes, and was flown in a Wright aircraft [4].  

Soon after, aviation science gathered pace and the English Channel was crossed in 

1909, with the DC3 entering active service in 1933.  The DC3 had retractable landing 

gear, fully cantilevered wing, monocoque construction, wing flaps and low-drag engine 

cowling.  These features are also found in the present day aircraft.   

http://en.wikipedia.org/wiki/Aileron
http://en.wikipedia.org/wiki/Santos-Dumont_Demoiselle
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The start of World War II saw great strides being made in order to gain air superiority, 

and very efficient aircraft designs were evolved mainly to satisfy diverse mission 

objectives.  The early piston driven multi-engine to the modern super-jets powered by 

efficient turbo-fan engines have quite a few things in common, and needless to say they 

all share similar aerodynamic configuration.  One can safely say that the basic 

configuration that we see today has resulted from extensive scientific probing and flight 

testing. 

After World War II and by 1947 all the basic technology needed for aviation had been 

developed: jet propulsion, aerodynamics, radar, etc.  Civilian aircraft orders rapidly 

grew from 6,844 in 1941 to 40,000 by the end of 1945.  With all the new technologies 

developed by that time, airliners were larger, faster, and featured pressurised cabins.  

New aerodynamic designs, materials, and power plants resulted in high-speed turbo-

fan/jet airplanes.  These planes are able to fly supersonically and make transoceanic 

flights regularly [5]. 

The advances in technology meant that aircraft could fly faster and over greater 

distances.  The design of aircraft is a function of the requirements.  For instance for 

commercial aircraft a top cruise speed of around 600 knots is almost a maximum which 

is at the limit of the sub-sonic flight regime.  Transonic and supersonic flight regimes 

require a radical change in the wing design that requires extremely low drag.  Whilst 

for military applications these designs are plausible, for commercial applications, these 

become cost ineffective, as the commercial operations are cost sensitive and require a 

very low seat mile cost, a factor that decides profitability of operation.  These days, not 

only is the aircraft required to be commercially viable, but needs to be ecologically 

friendly.  

In order to comply with requirements and regulations, improvements in all 

technological areas are continually sought.  These changes in technology lead to new 

methods and processes and affect the design of aircraft. 

Aircraft Design is truly multidisciplinary, and involves knowledge in propulsion, 

aerodynamics, materials, structures, flight mechanics, control and numerous other 

disciplines.  In order to serve the needs of the aviation industry, that needs the designers 

and maintenance engineers, the knowledge base has to be imparted to those who wish 

to embark upon a career in aviation industry.  The question that arises is, “how best to 
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teach this art and science of Aircraft Design”?  Before we can commit to defining the 

associated curriculum that will enable the knowledge transfer, the process of aircraft 

design needs to be understood first. 

 

1.2   Aircraft design process 

Design practice consists of three distinct phases.  From the design viewpoint, these are: 

Conceptual, Preliminary, and Detail design phase.  It should be noted that these phases 

are not completely separated and tend to overlap considerably depending on the 

manufacturer, as shown in Figure 1-1 [6]: 

 

Figure 1-1: Phases of aircraft design process, [6] 

 

The cost increases with each process, and any mistakes in the later stages prove to be 

very costly.  So, it is imperative that most issues are ironed out in the early stages of 

design.  

Cost escalation 

Manufacture 

Drawings released for manufacture 

Testing 

Conceptual phase 

Project studies start 
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Configuration fixed 

Detail design phase 

Project design Detail design 



5 
 

1.2.1   Conceptual design phase 

The first phase, as the name implies, deals with the design at the conceptual level.  It 

starts with a specific set of design requirements usually defined by the customer.  

Range, seating capacity, and field distances may be an example of these requirements.  

Other requirements are imposed by airworthiness standards such as FAR [7] and JAR 

[8].  At this stage, the fundamental tool is “selection”.  Therefore, there are not many 

calculations, but there are variety of evaluations and analysis.  This phase is dependent 

on the past design experience to determine the configuration layouts which are 

technically feasible and commercially viable.  Layout details include aircraft overall 

geometry, wing and tail configurations, the engine (type, number, and position), 

undercarriage configuration, control surfaces arrangements, maximum take-off weight 

estimation, etc.  In addition, it may be necessary to investigate the feasibility of the 

novel concepts and technologies that may be used in the design under consideration. 

 

1.2.2   Preliminary design phase 

In this phase, as the name implies, all the determined parameters are subject to change, 

as the design process is iterative.  However, accuracy of the determined results can 

affect the aircraft design, and it would suffice to say, the designers look towards 

achieving an accuracy of better than 5% in their calculations/estimations.  All designed 

layouts are compared and analysed carefully and the one closest to fulfilling the 

requirements is chosen.  A model (mock-up) is usually constructed and tested either 

physically or visualised using a CAD system.  It is preferred to establish a baseline 

configuration and to perform a series of parametric studies around this layout.  These 

changes continue iteratively until the proposed layout completely satisfies the 

specifications.  For instance, the aim of this phase is to find the best optimum geometry 

for the aircraft with respect to the commercial requirements.  The preliminary design 

phase ends after the configuration is “frozen” and a decision is taken to proceed to the 

detail design phase without return. 
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1.2.3   Detail design phase 

Detail design phase is the most expensive and extensive phase in the whole design 

process.  Due to full-scale development, the phase starts to verify and refine the design 

to a greater level of detail and to produce data necessary for the manufacture of the 

aircraft.  A huge number of drawings and/or computerised CAD files is needed to 

define the aircraft adequately and to ensure that each item designed represents the best 

solution in terms of performance, manufacturing costs, and operations.  The second part 

of this phase is called production design.  Specialists determine how the aircraft will be 

fabricated, starting with the smallest and simplest subassemblies and building up to the 

final assembly process.  Some parts are built for test purposes at the beginning of the 

production phase, and the first aircraft is used for initial flight tests.  Ground testing 

includes the use of wind tunnels, structural specimens, and systems rigs.  Flight testing 

is used to verify the performance and flight characteristics of the actual aircraft.  At the 

completion of all tests, the aircraft will be granted a Certificate of Airworthiness by the 

national aviation authority.  Detail design phase ends with fabricating and testing the 

first aircraft.  Figure 1-2 summarises the activities of aircraft design phases [9]. 

 

There are many excellent textbooks covering aircraft design such as References 

[10][11][12][13][14].  These books are quite detailed in their presentation of design 

process and cover all aspects of aeronautical engineering subjects that needed in the 

aircraft design process.  To a novice, the information presented can be daunting, and 

often confusing, as there are so many permutations of the same variables, and the 

eventual effect of some choice may not be fully understood. 
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Figure 1-2: Traditional aircraft design phases, [9] 
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1.3   Teaching aircraft design 

1.3.1   Introduction 

Aircraft design is a multidisciplinary subject.  It requires knowledge in aerodynamics, 

structures, propulsion, stability and control.  Many universities in the United Kingdom 

teach aspects of aircraft design, as a part of the Aeronautical Engineering curriculum, in 

the final year of their degree programme.  By this stage, the students have acquired 

basic skills in the fundamental aeronautical science.  Aeronautics is defined as the 

science of operating aircraft.  It is concerned basically with predicting and controlling 

the forces and moments of an aircraft travelling in the air [15].  Engineering is the 

practice of applying scientific knowledge to the design, construction, and operation of 

machines and instruments.  Engineering design is the process of devising a feasible and 

efficient solution to some specified needs.  It is a complex process of creative and 

analytical steps, where basic and engineering sciences are applied to convert resources 

into real products [16].  The designer is required to solve an ill-defined problem to 

reach the best (or one of the best) among the many possible solutions.  The philosophy 

of aeronautical engineering course is that knowledge, understanding, and skills needed 

for aircraft operation and design are best acquired through interdisciplinary teaching 

and demanding application, rather than through a disjointed series of individually 

assessed modules [17].  Therefore, “Aircraft Design” must be a mandatory part of any 

aeronautical engineering curriculum.  “It is the corner stone of the aeronautical 

engineering syllabi. It is recognised as a science that educates the student in synthesis 

perspective and contributes to create in the future professional an open mind 

mentality.” [18].  So, the question is: what is the best way to teach students about 

aircraft design?  Many universities follow a Problem-Based-Learning approach. 
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1.3.2   Problem-based learning 

Problem-Based Learning is defined by Barrows [19] as: “The learning that results from 

the process of working towards the understanding of resolution of a problem. The 

problem is encountered first in the learning process”.  Problem is something that 

cannot be resolved with the current level of knowledge and/or way of thinking about 

the issues.  It is presented as an ill-structured as opposed to well-structured problem.  It 

is characterised as a real-life and authentic, not a hypothetical exercise, messy not tidy, 

incomplete in the sense of lacking information needed for its solution and iterative in 

the way that it produces further ideas and learning issues [20].   

Problem-Based Learning originated from a curriculum reform by medical faculty at the 

Case Western Reserve University in the late 1950s.  Innovative medical and health 

science programmes continued to evolve the practice of Problem-Based Learning, 

particularly the specific small group learning and tutorial process that was developed by 

medical faculty at McMaster University in Canada.  These innovative and forward-

looking medical school programs considered the intensive pattern of basic science 

lectures followed by an equally exhausting clinical teaching program to be an 

ineffective and dehumanising way to prepare future physicians.  Given the explosion of 

medical information and new technology, as well as the rapidly changing demands of 

future medical practice, a new mode and strategy of learning was developed that would 

better prepare students for professional practice.  The Problem-Based Learning has 

spread to over 50 medical schools, and has diffused into many other professional fields 

including law, economics, architecture, mechanical and civil engineering [21]. 

The research has found that traditional educational approaches (e.g., lectures) do not 

lead to a high rate of knowledge retention.  Despite intense efforts on the part of both 

students and lecturers, most material learned through lectures is soon forgotten, and 

natural problem solving abilities may actually be impaired.  The motivation in such 

traditional classroom environments is also usually low. 

One of the greatest advantages of Problem-Based Learning is that students genuinely 

enjoy the process of learning. The Problem-Based Learning is a challenging 

programme because students are motivated to learn by a need to understand and solve 

real problems. The relevance of information learned is readily apparent; students 

become aware of a need for knowledge as they work to resolve the problems. “It is vital 
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that the problems are engaging, that they “smell real”, are interesting and challenging 

to students. This engagement stimulates further learning and requires research, 

elaboration, further analysis and synthesis together with decisions and action plans” 

[22]. 

 

The characteristics of Problem-Based Learning [23] are: 

1. The problem challenges students’ existing knowledge, attitudes and 

competencies, leading them to identify problem new knowledge (or learning 

issues) needed, and shortcomings that need to be corrected. 

2. The responsibility and direction of learning is assumed by the students. 

Faculty members are only there to facilitate students’ thinking, learning and 

group functioning to help them resolve any problem. 

3. Information mining from various source’s, and utilisation of evaluation to 

analyse what is really useful. 

4. The process of identifying learning issues and problem-solving is as 

important as acquiring new knowledge to arrive at the solution. 

5. Students learn in cooperative teams, where they need to interact and 

communicate to share knowledge, discuss their understanding and debate 

conflicting opinion. 

6. Synthesis of various knowledge and information to arrive at the solution 

7. Reflection of the students’ learning experience. 

 

Valuable details of Problem-Based Learning have been outlined by Ribeiro [24], 

Hmelo-Sliver [25], and Newman [26]. 

 

1.3.3   Implementation of Problem-Based Learning 

Designing an aircraft is a complex and iterative task.  To achieve this objective, one or 

two semesters are not enough time to fully cover all concepts of aircraft design.  Most 

universities present preliminary design projects as in-course assessment (ICA) for this 

reason.  Students are sub-grouped into 5-8 student teams with the lecturer playing the 

role of facilitator.  Teams are given a set of specifications for an aircraft to be designed 
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(i.e. a project).  The specifications may include payload, speed, range, take-off, landing 

performance, or specific mission objective, etc (i.e. requirements of the design).  

Students start searching with textbook examples, or existing designs, hoping to find a 

similar solution to their problem that requires only minimal amendments.  Actually, 

these textbook examples are intended to show the way the design process may be 

applied to those who are starting to undertake aircraft conceptual design for the first 

time.  “It should be noted that these projects are not meant to provide a “fill in the 

blank” template to be used by current and future students working on similar design 

problems, but to provide insight into the process itself” [27].  In some cases, students 

may browse the internet searching for a computer code (program) that may help them 

with the initial variable selection that may meet their design objectives and how best to 

get final design results.  From the faculty view point, students should start the design 

process through reviewing their previous courses in aerodynamics, structures, 

propulsion, performance, etc. 

Implementation of Problem-Based Learning methodology in aircraft design starts with 

“Problem Overview”.  Students have to read and understand the project scenario, 

organise their ideas, reflect and explain possible issues individually based on the 

available knowledge.  Then, they have to identify the aspects of the problem and needs 

for research and literature review (learning issues).  They are encouraged to do 

background reading on these issues.  Subsequently, they sort the issues and plan when, 

who, where, how these issues will be investigated.  During initial few meetings, they 

share and explore the gathered knowledge about the learning issues and use it to 

propose an informed solution to the problem.  They may have to restart the cycle if they 

cannot get a satisfactory solution.  The team leader and the role of each individual in 

the team are decided at the end of this stage. 

The second stage is “Conceptual Sketches and Analysis”.  Students start by producing 

conceptual sketches of the proposed aircraft.  The creative part of the design process, 

which has no rules and constraints, may produce neither logical nor illogical design 

alternatives.  It is based on uncritical brain storming, observation of nature, and ideas 

from other engineering disciplines.  Thereafter, these sketches are analysed separately 

depending largely on textbook methods and a single design is adopted by the team.  

Students may also identify appropriate existing knowledge and more learning issues 
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than those decided in the previous stage.  At this stage, facilitators guide the students so 

that they are on the right track checking and questioning the learning issues identified. 

The third stage is “Synthesis and Application”.  Each student in the team starts to 

synthesise his/her own part (component) of the proposed aircraft.  The Final solution is 

an assembly of individual student contributions to the whole aircraft.  Information is 

shared and critically reviewed so that the relevant ones can be synthesised and applied 

to solve the problem.  Facilitators at this stage ensure that the coverage of the problem 

is sufficient, and continually probe students on accuracy and validity of the information 

obtained.  This can be an iterative process, where students may need to re-evaluate the 

analysis of the problem, required further learning, reporting and peer learning.  The 

outcome of this stage is the preliminary layout of the proposed aircraft and an 

integrated report is produced which addresses not only the technical aspects of the 

design but also the financial viability of the concept [1]. 

 The final stage is “Presentation, Reflection, and Assessment”.  The designed aircraft is 

presented to the class and audience that may consist of practitioners of aircraft design 

working in industry, followed by probing questions to assess their deeper learning and 

understanding. Students are also asked to reflect on the content as well as the design.  

The facilitator helps with integrating knowledge learnt from solving the problem with 

what they have already, and encourages students to give their opinion on the value and 

usefulness, of the proposed design, for future learning and application to the work 

place.  The facilitator also summarises crucial principles and concepts, as well as 

eliminates any doubts that are aired by the students.  Figure 1-3 summarises the stages 

of implementing Problem-Based Learning process in Aircraft Design. 
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Figure 1-3: Framework of Problem-Based Learning process in Aircraft Design 

 

1.4   Conclusions 

The long journey of creation and innovation in aviation history shows that aircraft 

design is not simple.  It is truly a multidisciplinary subject.  It hinges on aerodynamics, 

structures, propulsion, and stability and control.  Aircraft design process consists of 

three phases which are conceptual, preliminary, and detail design.  Many universities in 

the UK, follow Problem-Based Learning approach in teaching aircraft design.  Since, 

the aircraft design process is an iterative process and one year of study is not enough 

time to fully cover the concepts of the aircraft design.  However, at the end of the 

project, students gain valuable insight into the design process, and this prepares them 

well to embark upon a career in the aircraft industry.  In most universities, students 

undertake a preliminary design project as an in-course assessment, and pertinent 

feedback is provided by the facilitators on a weekly basis, to steer the students towards 

a feasible design. 
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Chapter TWO 

Aircraft Design Software 

 

2.1   Introduction 

 Computers have become a mainstream part of most academic engineering curriculum.  

The integration of computer software into Problem-Based Learning can encourage 

students to learn effectively, deeper, and with much more interest than before, by 

varying the ways in which information is delivered [28].  If so, is there any aircraft 

design software that can be used for undergraduate teaching?  First of all, there is no 

such software that takes the design objectives (requirements) and produces a viable 

aircraft design.  Secondly, many young students, who have grown to expect right and 

wrong answers to problems, are uncomfortable to know that aircraft design has no 

unique answer.  During the conceptual design phase the student has to determine the 

design manually.  The need for a preliminary design software tool that enables the 

student to understand and analyse the design becomes important. 

Now, the question is more specifically: is there any preliminary design software 

available in the market for teaching?  What are its characteristics?  To answer the 

question, existing software is reviewed first, in order to evaluate its effectiveness for the 

purposes of undergraduate teaching.  If not, then a case for developing such software 

needs to be answered.  

 

 

2.2   Early aircraft design software 

In the mid-sixties and the seventies, several programs were developed.  SYNAC II, an 

optimised program coded in Fortran IV, was developed by Lee, et al [29] at 1967.  “The 

fundamental philosophy of the program can be summarised as follows: It is intended to 

replace completely the usual manual process of aircraft synthesis which is associated 

with basic configuration selection” [29].  It consisted of input, geometry, weight, 

propulsion, performance and optimiser modules.  The major function of SYNAC was 

the computation of flight performance.  The key drivers were aerodynamic, propulsion 

forces, and the weight, as a result of the requirement set of the proposed aircraft.  Due 
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to the limited computational power at that time, the basic synthesis execution time was 

one minute per problem without optimisation and no graphic output obtained.  

At the same time, Lockheed Georgia [30] produced a computer-aided aircraft design 

(CAAD) program which included the use of computer graphics and interactive user 

interface. The program was used until the nineties.  “It is being developed as a 

prototype covering the aircraft preliminary design and performance estimation 

process”, [30].  The multivariate optimisation program developed by Kirkpatrick & 

Larcombe [31] was evolved into the optimal design of large civil transport aircraft.  

This program highlighted the significance of accuracy in the basic aircraft estimating 

methods.   

Howe [32] described the use of the computer in the preliminary design process.  He 

discussed what features a computer program should embody, to perform aircraft design.  

These features include ability of parametric variations due to iterative process and the 

need to extrapolate many assumptions from past experience during project design.  In 

addition, he remarked on the limitations of computational methods, flexibility, and the 

difficulty of interaction techniques. 

 By the end of the eighties and the nineties, many powerful programs had been 

developed.  Two separate programmes of preliminary design optimisation (GATEP) 

and flight-profile optimisation (SCOPE) were integrated in one program called 

CASTOR [33].  This program was limited to short-haul twin-turboprop aircraft.  A 

multivariate optimisation (MVO) routine developed by Royal Aircraft Establishment 

was used to produce optimised aircraft designs, with a choice of three objective 

functions (minimum: fuel, take-off mass, and direct operating cost).  The program 

represented a complete preliminary aircraft design methodology through its modules 

(e.g. geometry, mass, aerodynamics, flight performance, cost, etc.).  A number of 

limitations were outlined by the authors, such as, the optimisation process was time 

consuming and the program required some degree of familiarisation from the operator 

which tended to discourage its use by non-experts.  

ACSYNT (AirCraftSYNThesis) [34] was an interactive program, for conceptual design 

process.  It was developed for military purposes.  The first version of ACSYNT was 

developed in 1976 [35].  The analysis part of the program consisted of all flight 

performance modules.  These were: Geometry, Trajectory, Aerodynamics, Propulsion, 
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Stability, Weights, and Optimisation.  The objective function of the optimiser was 

oriented for minimum: takeoff mass or fuel only.  Optimisation times were 5 minutes 

on a CDC 7600 machine, while computer resources of 20-30 hours were common on 

the same machine.  Thereafter, many modules were added to enhance the overall 

performance of the program.  These modules included: PHIG (Programmer's Hierarchical 

Interactive Graphics) for 3D graphics, GUI for interactive user interface, TAKEOFF for 

detailed takeoff parameters, and ECONOMICS for evaluating the manufacturing cost, 

direct, and indirect costs.  One drawback was that it required a significant investment in 

time and skills to use it effectively.  Out of a class of thirty students my experience 

would be that perhaps four or five would become effective users [36]. 

 

 

2.3   Existing aircraft design software 

Since the early nineties, several software packages have been released into the market.  

The Piano 1.0 [37] software was developed by Lissys Limited, which is a small UK-

based company incorporated by Dr. Dimitri Simos, who has published numerous papers 

on aircraft design.  It is continually being updated, lastest version is Piano 5.2.  It is 

integrated software for analysing and comparing existing or projected commercial 

aircraft designs.  It has a large database which contains more than 250 existing aircraft.  

The size of aircraft modelled in the database ranges from very small business jets (like 

the Eclipse) up to the A380 and its likely future derivatives.  Its methodology is 

optimally tailored to FAR 25/JAR 25.  The software does a complete mission analysis.  

It consists of many modules such as: Geometry, Weights, Aerodynamics, Performance, 

Cost, Parametric studies, and Optimisation.  An environment emissions module has 

been added recently to calculate both the amount and the precise distribution of 

atmospheric pollutants (NOx, CO, and Hydrocarbons) emitted during a complete flight 

profile.  The software cannot be used for detailed aircraft design.  It is intended 

primarily to be used by airframe and engine manufacturers during their conceptual 

design studies. 

 The AAA (Advanced Aircraft Analysis) [38] software started out as a computerised 

version of Roskam's eight-volume textbook: Airplane Design, Parts I-VIII [12], 
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featuring a friendly user interface, that performed preliminary design and analysis 

functions for fixed wing aircraft.  Its objective was to allow students and preliminary 

design engineers to develop a suitable aircraft configuration with a minimum of work.  

The software includes many modules such as: Geometry, Weight and Balance, 

Performance Sizing and Analysis, Stability and Control Derivatives, and Cost 

Estimation.  The user has the opportunity to work in Imperial units or the SI unit 

system.  A calculator notepad is incorporated as a part of user interface, to help the user 

to calculate the variables and to pass the calculated results to the desired place in the 

program.  One limitation of the software has been noticed, that it does not have 

mechanisms to perform parametric studies which help students to investigate the 

influence of changing the design variables.  Other limitation is that the stability and 

control derivatives only deal with subsonic flow (up to about Mach = 0.7) for most 

derivatives. 

Kroo [39] developed a system for aircraft design utilising a unique analysis 

architecture, graphical interface, and suite of numerical optimisation methods.  The 

unique analysis architecture methodology is based on “loosely-coupled” systems of 

analysis routines, managed by executive routines [39].  Kroo was the first one who 

described this methodology in [40] and it has subsequently been refined and applied to 

several example problems.  The non-procedural architecture provides extensibility and 

efficiency not possible with conventional programming techniques [39].  Program 

(PASS), which consists of the executive system and a collection of analysis routines, is 

used for analysis of subsonic transport aircraft, while the optimiser (NPSOL) is used for 

aircraft design studies.  An expert system has been incorporated to warn the user for 

critical design problems through alert messages.  

In 1996, Raymer developed a software package RDS [41] which implements the 

approach described in his book [14].  Actually, he developed two versions.  The first 

one is for students.  It consists of Aerodynamics, Weights, Propulsion, Performance, 

and Cost modules.  3-D CAD module has been added for design layout.  The software 

has friendly graphical interface as well.  No parametric studies module was 

incorporated.  Output results are shown as a text and/or in a spreadsheet form.  “It has a 

relatively complete mission capability, and is probably the best PC program available 

in this price range” [36].  The second version, which is called professional, is an 
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expanded version with optimisation module and 3-D CAD module for design layout.  It 

is a much more expensive version than the first one. 

However, in the last ten years or so, many interactive aircraft design software have 

been released into the market.  Madsen aircraft design program (M.A.D. V2.0.1) by 

Ned Madsen [42] has been developed and runs on Macintosh computers.  This program 

was written to assist the aircraft designer with the conceptual design phase using the 

Mac user interface.  The program is oriented toward General Aviation (GA) aircraft, 

and contains an excellent database of aerofoils and engines for GA aircraft.  It evaluates 

the design in terms of weight and balance, lift and drag, stability, controllability, and 

performance.  It does not have any fancy graphic capabilities.  

Other software, which is specifically developed for light aircraft such as: GA, UAV, 

and helicopter, is ADS V320 Professional [43] from Optimal Aircraft Design group.  It 

offers a convenient way to make a complete conceptual design of a single or twin 

engine aircraft.  The cost module provides a statistical analysis which helps the user to 

perform the major part of the market analysis of the new aircraft.  Its payload capability 

is limited to nine passengers only.  Graphical output is limited, and the program is 

intended for aircraft homebuilders (54%), aircraft designers (18%), and university staff 

and students (24%) [43], engaged in aircraft design. 

CEASIOM (Computerised Environment for Aircraft Synthesis and Integrated 

Optimisation Methods) [44] software is meant to support engineers in the conceptual 

design phase, with emphasis on improved prediction of stability and control properties 

achieved by higher-fidelity methods than found in the contemporary aircraft design 

tools.  It integrates the main design disciplines, aerodynamics, structures, and flight 

dynamics into one application.  But, it does not however carry out the entire conceptual 

design process.  The starting point to the present CEASIOM was provided by Isikveren 

[45], who developed the MATLAB QCARD package for aircraft conceptual design 

with quasi-analytical shape definitions, aero-data correlations, and performance 

predictions.  The main modules of CEASIOM are: Geometry (CADac) which prescribe 

the control surfaces in the meshing CAD model, Aerodynamic (AMB-CFD) which use 

VLD for low-speed aerodynamics and CFD for high-speed aerodynamics, Stability and 

Control (S&C) which is a static and dynamic stability and control analyser and flying-

quality assessor, Aero-elastic (NeoCASS) which produce the “eta” aero-elastic 
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coefficients and determine flutter boundaries,  and Flight control system design 

(FCSDT) which is for flight control-law formulation, simulation,  and technical 

decision support.  

Finally, ADAS 1.0 (Aircraft Design and Analysis Software) by Nicolosi [46] is the 

latest software.  It is “originally intended as an educational tool, but after many 

improvements carried out during the past years, can be absolutely used as a research 

tool and it can be of some relevance also for some industrial applications” [46].  It 

consists of many modules such as: preliminary estimation, wing, fuselage, aircraft’s 

drag polar, and field and ground performance.  The preliminary estimation module 

represents the first part of the processing.  It deals with the preliminary estimation of 

aircraft weight (both empty and maximum takeoff), required wing area, and engine 

thrust/power under design requirements.  Then, the user starts designing all aircraft 

parts.  The software methodology, to estimate all aircraft characteristics, is based on 

classical semi-empirical laws (Roskam or ESDU) integrated with more sophisticated 

approaches (Multhopp or Weissinger for wing module).  Although the main goal was to 

obtain a very user friendly platform, actually it seems very complex due to the huge 

number of variables per form.  The software authors suggest an optimisation module is 

included as requirement for any future work. 

 

 

2.4   Limitations of the existing software 

Limitations and shortcomings of the existing software packages were mentioned in the 

previous section, the following limitations and shortages can be summarised here: 

1. They assume prior knowledge in the field of aircraft design. 

2. Evaluation of some software packages revealed that although they were 

designed with friendly user interfaces, their user interaction data entry forms 

being too complex, with a likely result of confusing the student.  

3. Analysis output forms contain too much information, some of it, is not useful 

for the preliminary design phase (just to show the power of the software). 

4. These are designed for commercial use and not for instructional use. In teaching 

aircraft design, the student needs to know the philosophy of the design as well 
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as the acceptable answer (most of them do not have the ability to perform 

parametric studies). 

5. One of the important aspects in aircraft design is the dynamic stability.  Most of 

these programs omit it in their synthesis process. 

6. Most of them have extensive CAD capabilities, the main problem for students 

with CAD systems is that the aircraft design course can easily become the 

“learn how to use a certain CAD system” course and not to learn the 

philosophy, methods, and techniques of aircraft conceptual design [14]. 

7. They lack mechanisms to integrate with other programs for further analysis. 

8. They do not have an expert system to detect and diagnose student errors. 

9. From programming viewpoint, source code is not made available for 

modifications. 

 

2.4.1   Prerequisites for aircraft design software for teaching 

If a new package were to be developed, then the major characteristics essential for 

teaching purposes would be as follows: 

1. Friendly graphical user interface. 

2. Flexible data entry and manipulation. 

3. Good visual analysis output as well as 3-view or 3D geometry. 

4. Accurate analysis methods. 

5. Cover all the fundamental aspects of aircraft design. 

6. Fast response. 

7. Parametric Studies capability. 

8. Integrate easily with other programs by direct programming interface or file 

transfer. 

9. Ability to extend to more complex analysis in smooth transition. 

10. Archiving ability. 

11. Availability of expert system to watch and handle user mistakes. 

12. Numerical optimisation capability. 

13. Generate the design configuration quickly. 

14. Interaction with geometry by using design parameters. 

15. Easy design maintenance (edit, modify, update any of the design parameters). 
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16. Software portability (machine and graphic devices independence). 

17.  The source code should be available for future modifications and improvements 

in the empirical relationships that often are required in the design process, 

reflecting the current practices and information. 

 

 

2.5   The methodologies of teaching aircraft design 

Aircraft design is a multidisciplinary subject.  Teaching aircraft design requires 

knowledge in aerodynamics, structures, propulsion, stability and control, etc.  The 

knowledge base is rapidly expanding and the curriculum design issues are becoming 

more evident.  The curriculum overload results in the lecturers trying to cram too much 

information in the conventional “three year degree” courses, resulting in surface 

approach to learning.  On the other hand, the present day concern of industry is that 

engineering students, in general, do not have the prerequisite skills to be effective 

practitioners.  Hence, the researchers and academics have taken a note of this concern, 

and have evaluated methodologies that help students to become effective engineering 

practitioners.  Two methodologies have been employed for teaching aircraft design; 

Problem-Based Learning and Project-Based Learning. 

 

2.5.1   Problem-Based Learning 

The original Problem-Based Learning methodology was developed for use with 

medical students in Canada [47].  This methodology was designed to help interns 

improve their diagnostic skills through working on "ill-structured problems."  Medical 

students are introduced to a diagnostic problem, usually a patient with a complaint or 

illness.  Using a database of information and test data about this patient and guided by a 

facilitator who plays the role of a coach or Socratic questioner, students are led to 

construct a diagnosis by generating hypotheses, collecting information relevant to their 

ideas (e.g., interviewing the patient,  reading test data), and evaluating their hypotheses.  

The process, which has been used in business, architecture, law, and graduate education 

schools [48], combines problem statements, databases, and a tutorial process to help 

students hone their hypothetical-deductive thinking skills.  In a similar manner, case-
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based methods have been used in medical, business, and legal education to help 

students become proficient at preparing briefs and making presentations [49]. 

More recently, the Problem-Based Learning methodology has been extended to 

mathematics, science, and social studies classes at the elementary and secondary level 

[50].  Gallagher, et al., [51] devised a problem-based course for high-school seniors 

enrolled in an Illinois school for students talented in mathematics and science.  In each 

semester that the course was given, students were presented with two "ill-structured" 

problems along with raw data relevant to the problem.  For example, information was 

presented to students about an unusually high number of persons dying of a disease 

with flu-like symptoms in hospitals across Illinois.  Students were assigned specific 

tasks to (a) determine if a problem existed, (b) create an exact statement of the problem, 

(c) identify information needed to understand the problem, (d) identify resources to be 

used to gather information, (e) generate possible solutions, (f) analyse the solution 

using benefit /cost analysis and ripple-effect diagrams, and (g) write a policy statement 

supporting a preferred solution.  Aside from this list of tasks, the procedure for the 

course was reported to be relatively non-directional.  Students worked autonomously to 

define and seek a solution to the problem posed to them, investigating leads, asking for 

additional information, analysing data, etc.  Results from this study focused primarily 

on performance, on a problem-solving test given as both a pre-test and post-test.  A 

comparison was made between the pre-test and post-test, for the 78 students in the 

experimental group and a matched group that did not participate in the Problem-Based 

Learning course.  All students were asked to describe a process for finding a solution to 

an ill-defined problem situation (unrelated to the problems administered in the course).  

Their responses were scored using a six "step" checklist.  Only one of the six steps 

evaluated, which is the "inclusion of problem finding" showed a significant increase 

between the pre-test and post-test for the experimental group. 

Stepien, et al. [52], in a subsequent study, described research conducted in two 

secondary-level settings, an elective science course for seniors and a more traditional 

course in American Studies for sophomores.  In this study, the problem used in the 

science course was one designed to prompt students' consideration of ethical as well as 

biological issues.  Likewise, the social studies problem combined historical with ethical 

issues.  Students were asked to advise President Truman on how to bring a speedy end 

to the war based on an unconditional surrender by the Japanese and the assurance of a 
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secure post-war world.  The effectiveness of the two problem-solving courses was 

evaluated using pre-test to post-test gains on a measure of factual content for the tenth-

grade course and a measure assessing the breadth of students' ethical appeals for the 

twelfth-grade course.  In the case of the 10th-grade American Studies course, 

experimental students demonstrated equivalent or better knowledge of factual content 

as compared to a control class that studied the same period of history, but did not 

engage in problem solving. 

As was the case in the Gallagher, et al. [51] study, students enrolled in the problem-

solving course for seniors, along with a matched group of control seniors, were given 

an ill-structured problem as a pre-test and another such problem as a post-test.  All 

students were instructed to outline a procedure they might use to arrive at a resolution 

to the problem.  According to the scoring procedure employed in this study, students 

who took the problem-solving courses outperformed control students in the breadth of 

their ethical appeals and in the extent to which they tended to support their appeals with 

reasoned arguments.  

Results on the effectiveness of a more “packaged” approach to Problem-Based 

Learning methodology are provided in a study by Williams, et al. [53].  In this study, 

conducted with 117 seventh grade science students, students taking a Problem-Based 

Learning programme presented via CD-ROM outperformed a control group that 

received more traditional instruction on a measure of knowledge of science concepts. 

Additionally, there are several articles in the literature in which the authors report 

success for the use of a Problem-Based Learning methodology for other populations 

and other curriculum domains, albeit without including data.  Gallagher, et al. [54] 

reported the successful use of the methodology with fifth-grade students on problems 

relating to the ecosystem; Sage [55] described the implementation of Problem-Based 

Learning by science and language arts teams in an elementary and a middle school; 

Savoie and Hughes [56] described a study involving a two-week problem-based 

(actually, case-based) unit for ninth-grade students focused on family dynamics; Boyce, 

et al. [57] described a curriculum for high-ability learners in Grades K-8, developed at 

the College of William and Mary, that presented highly salient, systemic problems for 

students to investigate (e.g., archaeology, pollution, human immunology, ecosystems); 
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and Shepherd [58] reported on a study conducted with fourth- and fifth-grade students 

using social studies problems. 

This methodology of teaching aircraft design has been applied for undergraduate 

aeronautical engineering students in the United Kingdom for many years.  It has 

become a widespread teaching methodology in disciplines where students have to apply 

knowledge not just acquire it [59].  Problem-Based Learning is a concept used to 

enhance multidisciplinary skills using planned project scenarios.  It is an active way of 

learning that teaches students problem-solving skills while at the same time allowing 

them to acquire basic knowledge.  As mentioned in the previous chapter, the students 

work in 5-8 student collaborative group size and learn what they need to know in order 

to solve a problem.  The students have to work as a team to manage the design process.  

They are presented with problem before they have the skills and knowledge to solve it.  

Problem-Based Learning methodology gives the students the opportunity to choose 

their peers according to effort and contribution made to the group project. 

 

2.5.2   Project-Based Learning 

The methodology that organises learning around projects is called Project-Based 

Learning.  According to the definitions found in Project-Based Learning handbooks for 

teachers, projects are complex tasks, based on challenging questions or problems, that 

involve students in design, problem-solving, decision making, or investigative 

activities; give students the opportunity to work relatively autonomously over extended 

periods of time; and culminate in realistic products or presentations [60][61].  Other 

defining features found in the literature include authentic content, authentic assessment, 

teacher facilitation but not direction, explicit educational goals, [62], cooperative 

learning, reflection, and incorporation of adult skills [63]. 

Another definition for Project-Based Learning was described by Markham [64] as: 

"Project-Based Learning integrates knowing and doing. Students learn knowledge and 

elements of the core curriculum, but also apply what they know to solve authentic 

problems and produce results that matter.  Project-Based Learning students take 

advantage of digital tools to produce high quality, collaborative products.  Project-

Based Learning refocuses education on the student, not the curriculum-- a shift 

mandated by the global world, which rewards intangible assets such as drive, passion, 
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creativity, empathy, and resiliency. These cannot be taught out of a textbook, but must 

be activated through experience." 

An early example of applied Project-Based Learning methodology [65] is Muscatine 

High School, located in Muscatine, Iowa, USA.  The school started the G2 (Global 

Generation Exponential Learning) which consists of middle and high school “Schools 

within Schools” that deliver the four core subject areas.  At the high school level, 

activities may include making water purification systems, investigating service 

learning, or creating new bus routes.  At the middle school level, activities may include 

researching trash statistics, documenting local history through interviews, or writing 

essays about a community scavenger hunt.  Classes are designed to help diverse 

students become college and career ready after high school. 

Another example [65] is Manor New Technology High School, a public high school 

that is part of the New Tech Network of school.  Manor New Technology High School 

is a 100 percent project-based instruction school.  Students average 60 projects a year 

across subjects.  Since opening in fall 2007, the school has outperformed the state of 

Texas and Manor Independent School District in the percentage of students passing 

state standards in three of the four subjects tested: science, social studies, and 

reading/English language arts. 

However, the research has been gathered on various projects that have been conducted 

to see the impact of Project-Based Learning methodology on students in the 

engineering context.  One such project that aims to confront the way students learn, and 

the ability to integrate diversity within an academic environment, is called the 

Freshman Engineering project [66].  In this project, three groups of Freshman 

engineering students were posed with the problem of designing and constructing a 

stereoscopic aerial imaging platform that is low cost, light weight, and easy to control.  

This engineering design concept aimed to provide a hands-on approach with 

prominence on planning, developing and design.  This project aimed to assess the 

experience for the students involved in terms of Project-Based Learning.  The project 

used both engineering and aviation programmes to look at the student learning through 

collective projects.  The outcome of this exercise was the fact, as the students realised, 

they could work in a team communicating and cooperating.  The students also learned 

http://www.g-squared.info/
http://www.g-squared.info/
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vital skills that could be applied to any situation such as time allocation, project 

management, cost constraints, and brainstorming, skills that are transferrable. 

The achievements in terms of the final product, the stereoscopic aerial imaging 

platform varied greatly between teams.  For one team, the camera activation system 

was successful when it came to bench testing, where as another team failed to even 

produce a design.  To understand this difference in outcomes when it comes to Project-

Based Learning methodology, the group that has cohesiveness and cohort skills is far 

more likely to succeed. 

More recently, the Project-Based Learning methodology is practiced at the University 

of Hertfordshire (UH), where a selection of final year AADE students worked together 

to produce an Unmanned Air System (UAS) to compete in the European Students 

Competition on Unmanned Aircraft Systems, ESCO-UAS, in 2009 [67].  Meeting on at 

least a weekly basis, the team of ten-aerospace students, each of them have their own 

specialist area of expertise, worked together to design and manufacture the UAS.  To 

realise this project as a form of Project-Based Learning methodology, the essential 

activities represent some degree of difficulty to the student that can’t be carried out 

with information that has already been learnt.  From this point of view, it is obvious 

that the UAS project is a type of Project-Based Learning, as students are continuously 

learning through the course of the design and manufacture exercise. 

Although only in the fourth year of running the project, it is evident that students are 

gaining deeper understanding and knowledge not only in a text-book type manner but 

actually getting hands on experience and developing their interpersonal skills.  

Moreover, this style of learning is a type of long-life learning, as students are actually 

putting their knowledge into practice.  The UAS project allows the exploration of the 

imagination within the team members in terms of design ideas and actually achieving 

the desired end result.  The teams have showed dedication, the willingness to work 

together, and the ingenuity to succeed.  Many problems have been put in front of the 

team, but through shear-determination, the inconveniences have been overcome.  The 

UAS project at UH is a prime example of how Project-Based Learning methodology 

can enthuse students to excel in their academic studies [67]. 

From the above examples, Project-Based Learning methodology emphasises learning 

activities that are long-term, interdisciplinary and student-centred. Unlike traditional, 
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teacher-led classroom activities, students often must organise their own work and 

manage their own time in a project-based class.  Project-based instruction differs from 

traditional inquiry by its emphasis on students' collaborative or individual artefact 

construction to represent what is being learned [68]. 

The core idea of Project-Based Learning methodology is that real-world problems 

capture students' interest and provoke serious thinking as the students acquire and apply 

new knowledge in a problem-solving context.  The lecturer (or teacher) plays the role 

of facilitator, working with students to frame worthwhile questions, structuring 

meaningful tasks, coaching both knowledge development and social skills, and 

carefully assessing what students have learned from the experience [69]. 

The main criticism of Project-Based Learning methodology is that it may be 

inappropriate in mathematics, the reason being that mathematics is primarily skill-based 

at the elementary level.  Transforming the curriculum into an over-reaching project or 

series of projects does not allow for the necessary practice at particular mathematical 

skills.  For instance, factoring quadratic equations in elementary algebra is something 

that requires extensive practice [70]. 

On the other hand, a teacher could integrate a Project-Based Learning methodology into 

the standard curriculum, helping the students see some broader contexts where abstract 

quadratic equations may apply.  For example, Newton's law implies that tossed objects 

follow a parabolic path, and the roots of the corresponding equation correspond to the 

starting and ending locations of the object.  Another criticism of Project-Based 

Learning methodology is that measures that are stated as reasons for its success are not 

measurable using standard measurement tools, and rely on subjective rubrics for 

assessing results [71]. 

It should be noted, not to confuse between Problem-Based Learning and Project-Based 

Learning.  Both share much in common.  Both share the same abbreviation (PBL).  The 

differences include [72]: 

1. Project tasks are closer to professional reality and therefore take a longer 

period of time than problem-based learning problems. 

2. Project work is more directed to the application of knowledge, whereas 

problem-based learning is more directed to the acquisition of knowledge. 
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3. Project-based learning is usually accompanied by subject courses (e.g. maths, 

physics etc. in engineering), whereas problem-based learning is not. 

4. Management of time and resources by the students as well as task and role 

differentiation is very important in project-based learning. 

5. Self-direction is stronger in project work, compared with problem-based 

learning, since the learning process is less directed by the problem. 

Finally, the research on the application of technology to learning and instruction has 

led, in general, to an interest in using technology as a "cognitive tool" as well as 

extension of student capabilities.  In addition, technology has, among its touted 

benefits, the value of making the knowledge construction process explicit, thereby 

helping learners to become aware of that process [73]. "Using technology in project-

based science makes the environment more authentic to students, because the computer 

provides access to data and information, expands interaction and collaboration with 

others via networks, promotes laboratory investigation, and emulates tools experts use 

to produce artefacts." [74].  Hence, this research (iADS) is a practical example of 

incorporating computer software into both Problem-Based Learning and Project-Based 

Learning methodologies. 

 

 

2.6   Methods of aircraft design formulae 

Designing an aircraft is based on many formulae suggested by many analysts.  Aircraft 

design formulae have different accuracy based on the theories used and the assumptions 

made in the development of their formulae.  The preliminary formulae can be classified 

into three categories: Empirical, Analytical, and Semi-analytical.  

  

2.6.1   Empirical methods 

Empirical methods are the earliest and most frequently used [75].  They are based on 

the use of historical data of the manufactured aircraft to develop empirical relationships 

in order to predict, for example, the weight of a new aircraft, using simple regression 

techniques.  To achieve a successful application of this method for the design under 

consideration, the aircraft weight being estimated must be similar in terms of 
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configuration and characteristics to those of the reference database [76].  This method 

can be divided into two categories; fixed fraction, and statistical equations methods. 

The fixed fraction method is the simplest form of the empirical method due to its 

elementary nature. The aircraft breaks down into its components and sub-components. 

Each component (or sub-component) is calculated as a fraction of the whole aircraft (or 

whole component).  For example, wing drag is calculated as a fraction of aircraft drag, 

stud weight is calculated as a fraction of wing weight, and so on.  The statistical 

equations method is the most widely used of the empirical methods.  It is based on 

correlating historical data by means of statistical equations known as the Power Law 

formula, [77].  For example, the weight of the component of interest is obtained by 

summing up all the physical characteristics combinations, which influences the weight 

of the component [76].  The empirical coefficients are determined by either a least 

square curve fitting process or by constrained regression analysis techniques, using 

weights and geometric data of actual components.  The constrained regression analysis 

technique plots data on a logarithmic scale as a straight line.  All available data can be 

plotted against the correlation parameter.  A regression analysis produces a trend line 

through the data, and the coefficients and exponent can be determined from the 

intercept and slope of the line respectively, [76].  The trend line can be altered for 

different combinations of design parameters, thus changing the value of the coefficients 

to suit different types of aircraft.  The selection of the type of design parameter is of 

vital importance for any success in the application of this method and has to consist of 

one or more characteristics of the component or the vehicle, [77].   

The empirical methods are the most generally used weight estimation techniques due to 

their simplistic nature [78]. These methods can be used to generate fast and accurate 

estimations for different configurations of aircraft [79][80][81].  On the other hand, 

empirical methods have several limitations.  First of all, its use of historical data of the 

existing aircraft, which are very similar in both shape and size.  Secondly, they do not 

possess the ability to account for technological advancements due to its elementary 

nature.  Thirdly, the accuracy of the calculations depends on the size and nature of the 

referenced database.  Finally, the selection of the correlation parameters does not 

necessarily guarantee satisfactory results [82]. 
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2.6.2   Analytical methods 

The analytical methods offer exact techniques and are related to individual aspects of 

individual systems and not to the aircraft as a whole.  These methods require prior 

knowledge in the field of aircraft system design and allow inclusion of weight control 

measures [81]. Analytical methods have three fundamental features; design intent, size 

criteria, and production design.  Once these features are established, the computation 

process takes place by identifying and analysing the loads that drive the design of the 

particular component, taking into account any physical constraints and limits [83].  The 

main benefit of these methods is the ability to incorporate new technologies, materials, 

and concepts due to the detail and load analysis component [81].  Also, the analytical 

methods tend to be more accurate than the empirical methods and encourage 

multidisciplinary design, in that engineers from various departments are involved in the 

design from the beginning.  On the other hand, the analytical methods have limitations.  

The major limitation of these methods is that they are extremely detailed which require 

vast amount of information, which may not be available in the early phases of the 

design [84][85].  Therefore, these methods tend to be used in detailed design phase 

rather than in preliminary design phase.  Other limitation is that it is very hard to 

incorporate risk assessments in the design procedures, thereby making them risky 

because the analytical methods are more oriented toward groups and components [81]. 

 

2.6.3   Semi-analytical methods 

The semi-analytical methods combine the benefits of both analytical and empirical 

methods. They are so-called (rather than semi-empirical) because the predictions are 

based largely on analytically derived estimates which are correlated to reported data of 

the existing aircraft.  Some of the individual penalty and special feature estimates may 

be statistically based [81][85]. A good example of an application of these methods is 

the wing structure weight estimation proposed by Torenbeek [10].  It starts with 

estimation of the wing structural box weight using station cut analysis, an analytical 

technique used to determine the shear, torsion and optimum bending stresses. The total 

wing weight is then determined by applying a series of analytical and statistically based 

increments to the estimated weight to account for non-optimum factors such as 

fasteners, cut-outs, wing fold, splices and joints, fuselage attachments, fuel containment 
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etc.  Lastly for the control surfaces, the fixed trailing edge weights can be estimated 

separately using statistical methods [81][86].  The main benefit of the semi-analytical 

methods is their versatility.  These methods have the highest accuracy than the others 

and require less data compared to analytical methods [87].  Other benefit is that the 

semi-analytical methods are able to incorporate new technologies and concepts due to 

their analytical component.  Also, these methods offer continuity and accountability for 

details and changes through the latter stages of the design [81][85].  The main 

limitation of these methods is that the parametric components associated with these 

methods, make them reliant on historical data, which limit their applicability to 

unconventional aircraft configurations that fall outside the scope of their reference 

database [10].  Torenbeek’s approach [10] is based on these methods and therefore, his 

formulae set are employed in the development of the iADS software. 

 

 

2.7   Conclusions 

The use of computers in higher education to aid learning is widespread.  The integration 

of computer software into Problem-Based Learning can encourage students to learn 

effectively and in depth.  The power of software can be harnessed to make the subject 

material much more interesting than before, and by varying the ways in which 

information is delivered.  After SYNAC II and CAAD software packages for aircraft 

design, several software packages have been released into the market.  PIANO, AAA, 

and RDS are examples of such packages.  One drawback of these packages is that they 

assume prior knowledge in the field of aircraft design.  Also, their main purpose being 

the preliminary aircraft design in a commercial environment, and are not intended for 

instructional use.  For instructional use the key features for aircraft design software 

were outlined.  Teaching aircraft design is based on two methodologies; Problem-Based 

Learning and Project-based Learning.  These methodologies and the differences 

between them were indicated.  Implementation of any aircraft design software is based 

on different formula sets suggested by various analysts, and the accuracy of the 

predictions is largely based on the methods employed.  These formula sets are 

classified into three categories; empirical, analytical, and semi-analytical methods.  

Benefits and limitations of each category were outlined.  
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Chapter    THREE 

Preliminary Aircraft Design Process 

 

3.1   Introduction 

The aircraft design process consists of three phases as mentioned on the first chapter.  

In the conceptual phase, where the design process is based on concepts without 

resorting to precise calculations, all parameters are determined by decision making 

processes and selection techniques.  An estimation of maximum takeoff weight 

(MTOW) is the first step in this phase.  Zero-order sizing methodology, which is found 

in most textbooks, is the general technique used for that estimation.  MTOW is divided 

into four sub-weights, which are: empty, crew, payload, and fuel weight.  Crew and 

payload weights are evaluated from requirements whereas empty weight is estimated 

from statistics. Fuel weight is calculated using a modified Brequet range equation.  The 

result of this process is an inaccuracy of 10-15%.  All the output design parameters of 

this phase become preliminary input variables.  Analytical, empirical and semi-

empirical equations are used in the second design phase.  The mass estimation is 

improved and inaccuracies of 5-10% remain, and occasionally as low as 5%.  As 

accuracy of mass estimation is increased, the complexity of calculation increases, and 

hence the number of design variables needed for a more refined estimate increases.  

Design of an aircraft requires several hundreds of variables to be manipulated.  Some of 

them are empirically estimated, while others are analytically computed.  To understand 

the aspects of preliminary design process, first input variables required to perform the 

process are examined. 

 

3.2   Preliminary input variables 

Input variables comprise of two categories: Aircraft geometry variables and Mission 

requirements variables. 

3.2.1   Aircraft geometry input variables 

To facilitate exploring these variables, the aircraft variables are grouped into four 

sections, which are: Wing, Fuselage, Tail, and Propulsion.  
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3.2.1.1   Wing section 

The wing section is the most important component of the aircraft.  Its primary function 

is to generate lift.  From wing geometry view point, the following design variables are 

considered: 

1. Reference Area (  ): This is the most important wing parameter.  It is the 

trapezoidal portion of the wing projected into the centreline.  It is evaluated 

when the wing loading is selected.  As the wing area is increased, both lift 

produced and wing weight, are proportionally increased. 

2. Aspect Ratio (  ): An important key characteristic that defines the shape of 

the wing is the aspect ratio.  It is the ratio of the wing length to its chord.  High 

aspect ratio indicates a long, narrow wing, while low aspect ratio indicates a 

short, wide wing. 

3. Taper Ratio (  ): It defines the shape of the wing.  It is the ratio between the 

tip chord and the centreline chord.  It affects the distribution of the lift along the 

span of the wing. 

4. Sweep Angle (Λ): The major use of a swept wing is to reduce the adverse 

effects of transonic and supersonic flow.  Lateral stability is improved by 

sweeping the wing. 

5. Thickness Ratio (   ): This is the ratio of the maximum thickness of the 

aerofoil to the length of its chord.  It provides the major influence on the profile 

drag.  It has direct effect on drag, maximum lift, stall characteristics, and wing 

weight. 

6. Wing root thickness to tip Thickness Ratio (      ): It describes the 

relationship between the root and tip thickness.  Hence, it has great effect on the 

pressure distribution on the wing. 

7. Wing configuration:  This is the location or positioning of the wing with 

respect to the fuselage.  Three locations are categorised: high, mid, and low.  

Each configuration has its own benefits and disadvantages.  Due to the 

structural carry-through problem, transport aircraft have either high or low wing 

configuration. 

8. Incidence Angle (    ): This is the angle at which the wing is installed on the 

fuselage, measured relative to the axis of the fuselage.   
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From an aerodynamics view point, aerofoil section is important.  The correct choice 

ensures the generation of the optimum pressure distribution on both upper and lower 

surfaces of the wing such that the required lift is created with the lowest drag.  The 

following design parameters, which are related to wing aerodynamics, represent the key 

characteristics of the aerofoil section: 

1. Lift Curve Slope (   ): This is the slope of the variation of lift coefficient with 

respect to the change in the angle of attack.  The better aerofoil is one with a 

higher curve slope. 

2. Maximum Lift Coefficient (     
): This is the maximum capacity of an 

aerofoil to produce non-dimensional lift.  The higher maximum lift coefficient, 

the lower the stall speed (i.e. safer flight). 

3. Ideal Lift Coefficient (   ): This is the lift coefficient at which the drag 

coefficient does not vary significantly with the slight variations of angle of 

attack.   It usually corresponds to the minimum drag coefficient. 

4. Pitching Moment Coefficient (   
): Pitching moment is the moment (or 

torque) produced by the aerodynamic force on the aerofoil if that aerodynamic 

force is considered to be applied, not at the centre of pressure, but at the 

aerodynamic centre of the aerofoil.  The pitching moment on the wing of an 

aeroplane is part of the total moment that must be balanced using the lift on the 

horizontal stabiliser.  Pitching moment coefficient is defined as a result of the 

pitching moment divided by the product of dynamic pressure, wing area, and 

the chord of the aerofoil [88].  Pitching moment is, by convention, considered to 

be positive when it acts to pitch the aerofoil in the nose-up direction. 

Conventional cambered aerofoils supported at the aerodynamic centre pitch 

nose-down so the pitching moment coefficient of these aerofoils is negative 

[89]. 

High lift devices are moving surfaces intended to increase lift during certain flight’s 

conditions.  The most common type of high lift devices are flaps which are usually 

located at the trailing edge of the wing and used to increase the wing camber to help 

produce more lift.  The following design variables that related to flaps should be 

assigned: 

http://en.wikipedia.org/wiki/Moment_(physics)
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Aerodynamic_force
http://en.wikipedia.org/wiki/Center_of_pressure_(fluid_mechanics)
http://en.wikipedia.org/wiki/Aerodynamic_center
http://en.wikipedia.org/wiki/Horizontal_stabilizer
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1. Flap outboard span to wing span ratio (      ): Flap span depends on the 

amount required for the ailerons.  Transport aircraft have a large flap span 

(more than 70% of the wing span) and small inboard ailerons (less than 30% 

of wing span) used for gentle manoeuvre at high speeds. 

2. Flap chord to wing chord ratio (       ): Since the flap deflection 

increases the wing drag, due to the increase in the frontal area, the flap 

chord must not to be too high that it eliminates its advantages. 

3. Maximum flap deflection at take-off (     ): This is an important 

parameter to achieve the required lift increment at the takeoff stage. 

4. Maximum flap deflection at landing (      ): This is an important 

parameter to achieve the required drag increment at the landing stage. 

5. Type of flap: Four types are included which are single-slotted, double-

slotted, single-slotted fowler, and double-slotted fowler flaps.  As the flap 

complexity increases, weight, efficiency, and cost increases. 

 

 

3.2.1.2   Fuselage section 

This is the main body section that holds crew and passengers and/or cargo.  The shape 

of the fuselage is normally determined by the mission requirements, as specified by the 

top level requirements document.  Fighter aircraft have a very slender fuselage, whilst 

transport aircraft have a wider fuselage to carry the passengers.  The cylindrical, 

elliptical or double bubble fuselage sections are terminated at the front and rear by a 

cone.  These are generally referred to as the nose and tail cone sections.  Fuselage 

configuration has major effects on the cost of flight operation, cost of aircraft, 

performance, passenger comfort, and aircraft life.  From the point of view of fuselage 

geometry, the following fuselage design variables, which are evaluated in the 

conceptual design process depending on seat configuration, seat pitch, and number of 

crew, are required for the preliminary design process: 

1. Fuselage Diameter (    ). 

2. Nose Cone Length (     ). 

3. Cabin Length (     ). 
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4. Tail Cone to Fuselage Diameter Ratio (           ). 

5. Wing Position to Fuselage Length Ratio (        ). 

6. Number of Seats per Row (         ).  

 

3.2.1.3   Tail section 

A tail is a little wing.  The main difference between a wing and a tail is that a wing is 

used to provide lift whilst a tail is used to provide trim, stability, and control.  Trim 

refers to generating a moment about the centre of gravity to balance some other 

moment produced by the aircraft.  Stability refers to restoration of the aircraft from an 

upset in pitch, yaw or roll, and the ability of the aircraft to adopt a new stable attitude or 

to return to its initial state.    Control refers to the provision of adequate control power 

at all critical conditions such as nose-wheel lift-off, low-speed flight with flaps 

deployed, engine-out flight at low speeds, and spin recovery.  The tail section consists 

of two parts, the horizontal tail (also called tail-plane) and vertical tail (also called fin).  

Both have similar design variables to the wing.  These are: 

1. Aspect Ratio (       ). 

2. Taper Ratio (       ). 

3. Thickness Ratio (         ). 

4. Sweepback Angle (     ). 

5. Volume coefficient (       ): Instead of reference area, this coefficient is used 

to calculate the tail area. 

6. Tail configuration: Transport aircraft have either a conventional type or T-

type.  Military aircraft may have more than one fin for stability requirements, or 

a novel tail configuration. 

 

3.2.1.4   Propulsion section 

This consists of two parts: propulsion system (engine) and nacelle system.  For engines, 

two objectives must be achieved.  Thrust must balance the drag in cruise, and thrust 

must exceed the drag in order to accelerate, during climb.  The propulsion section has a 

direct effect on performance, aircraft cost, flight time, and aircraft life.  From an engine 

view point, the following variables are considered: 
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1. Engine Scale Factor (      ): Full ground and altitude data for a Rolls-Royce 

–Allison engine were available.  Also, an equation that allowed computation of 

reference thrust as a function of Mach number, altitude, temperature and density 

was obtained after multi-variable regression.  The reference thrust for this 

engine is 6797 (lbs).  It is a high by-pass ratio engine and representative of 

modern day gas turbine technology.  A scale factor is used to up size or down 

size the engine to produce the maximum thrust required. 

2. Engine Length (    ). 

3. Engine Span-wise Distance (     ): The horizontal distance from the fuselage 

centreline to its location. 

4. Number of Engines (    ). 

5. Engine Thrust (    ). 

The nacelle system is the aerodynamic structure that surrounds a jet engine.  It includes 

not only the parts commonly referred to as engine cowling, but also other parts such as: 

inlet cowl, fan cowl, thrust reverser, core cowl, and nozzle.  The design variables 

related to a nacelle system are: 

1. Nacelle Diameter (    ). 

2. Nacelle Length (    ). 

3. Distance of Nacelle Leading Edge to Forward of Wing Quarter-Chord Line 

(          
). 

 

3.2.2   Mission requirements variables 

The second category of input variables, which are based on customer requirements, 

aircraft configuration, and power plant selection, are very important in analysing the 

flight profile performance, they are: 

1. Main Mission Climb Speed (    ). 

2. Main Mission Cruise Speed (    ). 

3. Main Mission Descent Speed (    ). 

4. Diversion Cruise Speed (      ). 

5. Design Dive Speed (     ). 
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6. Main Stage Length (  ). 

7. Diversion Stage Length (   ). 

8. Main Mission Cruise Height (    ). 

9. Diversion Cruise Height (      
). 

 

 

3.3   Preliminary process synthesis 

As more detailed information is available, the design process becomes more accurate.  

Hence, the preliminary design process yields accurate results when compared to the 

conceptual process.  Many formula sets have been suggested by many analysts.  These 

formulae have different accuracy based on the theories used and the assumptions made 

in the development of their formulae.  The preliminary formulae can be classified into 

three categories: Empirical, Analytical, and Semi-analytical.  Each category has its 

benefits and limitations, as mentioned in the previous chapter.  Torenbeek’s approach 

[10] is an example of semi-analytical category and his formulae set are employed in the 

development of the iADS software.  This choice is based on the methodology yields 

accurate results.  And because of inherent accuracy, in the sphere of aircraft design, his 

formulae set are widely used in the preliminary design process.  The classical synthesis 

approach can be considered as separate inter-related sections.  These sections are: 

Geometry, Weights, CG, Stability, Aerodynamics, Performance, and Cost.  

Presented in the subsequent sections are the relationships, given in Torenbeek [10], for 

the purposes of completeness.  Any deviations from his formulations will be duly noted 

and outlined. 

 

3.3.1   Geometry 

Aircraft Geometry allows other design variables to be computed, which in turn are to be 

used in the subsequent detailed analysis.  Starting with the wing component, the 

following output parameters are: 

 

1. Wing Span:- 

           (3.1) 
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2. Centreline Chord:- 

    
    

         
 (3.2) 

 

3. Tip Chord:- 

           (3.3) 

 

4. Mean Geometric Chord:- 

    
       

 
  (3.4) 

 

5. Mean Aerodynamic Chord:- 

   
 

 
      

    
 

    
  (3.5) 

 

6. Root Thickness:- 

                 (3.6) 

 

7. Exposed Wing Span:- 

            (3.7) 

 

8. Exposed Wing Area:- 

                  (3.8) 

 

9. Exposed Wing Aspect Ratio:- 

    
   

 

   
 (3.9) 

 

10. Distance from Fuselage Nose to Wing Quarter Root:- 

         
 

 
     (3.10) 

 

11. Distance from Fuselage Nose to Wing Centre of Pressure:- 

          
  

 
      (3.11) 
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For Flap section, these parameters are: 

1. Flap Span Inboard Position:- 

         (3.12) 

 

2. Flap Span Outboard Position:- 

              (3.13) 

 

3. Flap Inboard Span to Wing Span Ratio:- 

    
   

   

  
 (3.14) 

 

4. Flapped Wing Area:- 

      
    

        
 

  
    

      

      
     

     
       

   

  
  (3.15) 

 

5. Flap area:- 

         
        (3.16) 

 

 

For Fuselage section: 

1. Tail Cone Length:- 

                       (3.17) 

 

2. Fuselage Length:- 

                       (3.18) 

 

3. Fuselage Wetted Area:- 

     
                                    (3.19) 

 

Where:             are shape parameters.  For transport aircraft,              . 
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For Vertical tail section: 

1. Tail Arm in case of Rear Engine (Fuselage Mounted):- 

              (3.20) 

 

2. Tail Arm in case of Engine (Wing Mounted):- 

                        
   

 
       (3.21) 

 

3. Area of the vertical tail:- 

    
         

   
 (3.22) 

 

4. Root Chord:- 

       
        

       
 (3.23) 

 

5. Span:- 

             (3.24) 

 

6. Mean Geometric Chord:- 

     
   

   
 (3.25) 

 

 

For horizontal Tail section: 

1. Tail Arm for Conventional Configuration:- 

        
   

 
      (3.26) 

 

2. Tail Arm for T-Tail Configuration:- 

        
   

 
       

   

 
      (3.27) 

 

3. Area:- 

          
   

   
 (3.28) 
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4. Root Chord:- 

       
        

       
 (3.29) 

 

5. Span:- 

             (3.30) 

 

6. Mean Geometric Chord:- 

     
   

   
 (3.31) 

 

 

For Nacelle section, Nacelle Wetted Area is:- 

     
                        

          

    
 

     

        

   

              
  (3.32) 

 

 

3.3.2   Aircraft weight 

Weight for each aircraft component is calculated using build-up methodology that 

allows the maximum takeoff weight to be broken down into its components and adds 

them to determine empty, operational empty, zero-fuel, and maximum takeoff weights.  

In order to calculate component weights, pre-calculations for the load factors (limit and 

ultimate) are required as follows: 

 

Initially, the limit load factor which is the greater of the gust and manoeuvre factors is 

evaluated.  These load factors are determined in accordance with airworthiness 

requirements [7][8].  The following relationships [13] are used: - 

 

        
                 

         
 (3.33) 

 

           
     

        
 (3.34) 
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          (3.35) 

                                                    

 

The second step is to calculate the ultimate load factors of both gust and manoeuvre:- 

                     (3.36) 

                      (3.37) 

                                                 

 

 

The Individual aircraft components are determined as follows: 

1. Wing mass:- 

               
              

    
   

  

     
 

 

    

    

 
          

  
   

   

  
 
    

      (3.38) 

 

2. Fuselage mass:- 

               
      

         

      
 (3.39) 

 

3. Tail mass:- 

         
               

   

     
 (3.40) 

 

4. Propulsion mass:- 

                                     (3.41) 

 

5. Undercarriage mass:- 

                                       (3.42)      

                                   (3.43) 
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6. Surface Controls mass:- 

               
   

 (3.44) 

 

7. Systems mass:- For accurate estimation, further broken down to its sub-

components as follows: 

a. APU 

                 (3.45) 

 

b. Instruments and Avionics 

            
   

 
 
     

  
  

    
 
    

 (3.46) 

 

c. Hydraulics and pneumatics 

            
   

 
      (3.47) 

 

d. Electrical  

                             
 
 
   

         

                  
 
 
   

   (3.48) 

 

e. Air conditioning and Anti-icing 

              
     (3.49) 

 

 

Adding the sub-components defined by Equations (3.45) to (3.49), the total systems 

mass:   

 

                                (3.50)  

 

 

8. Furnishings mass:- 

               
     (3.51) 
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Hence, Empty weight using Equations (3.38) to (3.44), (3.50) and (3.51) is: 

 

                                        (3.52) 

 

 

9. Operating items mass:- 

                                       (3.53) 

                                        (3.54) 

 

10. Flight crew mass:- 

                    (3.55) 

 

11. Flight attendants mass:- 

                  (3.56) 

 

 

Operating empty weight using Equations (3.52) to (3.56) is defined as: 

 

                             (3.57) 

 

 

12. Payload mass:- Assuming 90.72 kg (200 lbs) per passenger, the payload mass 

is: 

                 (3.58) 

 

 

Zero fuel weight is then defined as the sum of Equations (3.57) and (3.58): 

 

             (3.59) 

 

 



46 
 

13. Fuel mass       is an input variable, and varies depending on the mission stage 

requirements.  From a design standpoint, this figure normally is the maximum 

fuel that can be carried by the aeroplane, so that the maximum loaded weight of 

the aircraft can be known.  This figure is important for the majority of 

performance calculations. 

 

Maximum takeoff weight is therefore the sum of Equation (3.59) and      : 

 

              (3.60) 

 

 

3.3.3   Centre of gravity (CG) 

Aircraft must be designed to achieve good stability and control properties and adequate 

flexibility in loading conditions.  For this reason, computation of the CG is required to 

be determined for several loading cases.    Loading cases include variable payload and 

fuel.  Engine and tail configurations are taken into consideration as well.  Although 

arbitrary cases can be used, preference is to represent common current practice.   

 

Initially, the moment of an empty aircraft is determined by calculating the moment of 

each component around a reference point (Datum) and summing them together as in the 

following: 

1.  Wing moment:- 

                       
  

 
           (3.61) 

 

2.  Fuselage moment:- 

     Let: 

                                  (3.62) 

 

     Then: 

                        
              

 
         

     

 
  

 
          

 
                             

              

 
  (3.63) 
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3.  Horizontal tail moment:- 

                               
   

       
                       (3.64) 

                     
   

       
                        (3.65) 

 

4.  Vertical tail moment:- 

                               
   

       
                     (3.66) 

                     
   

       
                          (3.67) 

 

5.  Nacelles moment:- 

                                         
              

                             (3.68) 

 

                           

                                                   

 (3.69) 

  

6.  Engines moment:- 

                                          
              

                                (3.70) 

 

     

                          

                                                     (3.71) 

 

7.  Undercarriage moment:- 

                             
       

 
       (3.72) 
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In the absence of detailed data for surface controls, systems, and furnishings at this 

stage, it is assumed that the CG positions for them are in the centre of the cabin section, 

i.e.:- 

      8.  Surface Controls moment:- 

                                        (3.73) 

      

     9.   Systems moment:- 

                                        (3.74) 

       

     10.   Furnishings moment:- 

                                            (3.75) 

 

Total empty aircraft moment is the summation of all moments, therefore: 

 

                                                 (3.76) 

 

 

For the forward CG, the following cases are selected.  Each case without/with fuel: 

1. Empty aircraft position. 

2. Full payload. 

3. Simplified window-seating rule (forward seats only). 

 

Empty aircraft CG position without fuel is: 

    
 

  

  
 (3.77) 

       

      11.   Fuel moment:- 

                                             (3.78) 

 

 

 



49 
 

Empty aircraft CG position with fuel is: 

     
 

        

        
 (3.79) 

 

 

For the second case, 

      12.   Full Payload moment:- 

                                           (3.80) 

 

Aircraft CG position without fuel is: 

      
 

         

         
 (3.81) 

 

Aircraft CG position with fuel is: 

      
 

               

               
 (3.82) 

 

 

For the third case, window seats payload mass is:- 

              
    

    
  (3.83) 

        

      13.   Forward window seats payload moment:- 

                                            (3.84) 

 

Aircraft CG position without fuel is: 

      
 

        

          
 (3.85) 

 

Aircraft CG position with fuel is: 

      
 

              

                
 (3.86) 

 

Forward CG is determined as the largest CG value of all cases above. 
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For the aft CG position, two cases are selected.  Each case without/with fuel: 

1. Aircraft at maximum take-off weight with 20% payload at rear of cabin 

(rear luggage hold). 

2. Simplified window-seating rule (rear seats only). 

 

For the first case without fuel, the aft CG position is: 

      
 

                                                    

       
 (3.87) 

 

With fuel, the aft CG position is: 

      
 

                                                          

             
 (3.88) 

 

 

 

For the second case, 

       14.   Aft window seats payload moment:- 

                                 (3.89) 

 

Aft CG position without fuel is: 

      
 

        

          
 (3.90) 

 

Aft CG position with fuel is: 

      
 

              

                
 (3.91) 

 

Aircraft aft CG is determined as the lowest CG value of all cases above. 
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3.3.4   Aerodynamics 

The determination of static stability requires aircraft lift coefficient and aircraft 

aerodynamic centre to be known.  Five major parameters are required to be computed: 

zero-lift drag, aircraft lift, lift-induced drag, total drag, and stall speed. 

 

3.3.4.1   Zero-lift drag  

This parameter is determined as the sum of effects from each aircraft component, plus 

the effect of the interference at the wing/fuselage junction as follows.  Flat plate 

analogy with correction for section thickness is applied to calculate the wing, horizontal 

tail, and vertical tail effects.  The following coefficients are referenced to the gross 

wing area:- 

     1.  Wing: 

                                    
   

   

  
 (3.92) 

    

     2.  Horizontal tail: 

                                         
   

   

  
  (3.93) 

    

     3.  Vertical tail: 

                                         
   

   

  
  (3.94) 

 

For fuselage and nacelle, the usual axis symmetric body pressure drag term is used:- 

      4.  Fuselage: 

                          
  

           
         

    

    
  

     

  
  (3.95) 

    

      5.  Nacelle: 

                          
  

            
        

    

    
  

     

  
  (3.96) 

 

Skin friction coefficients in the above equations are determined by applying the 

Prandtl-Schlichting theory for a fully developed boundary-layer using a roughness 
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factor to account for deviations from the theoretical shape and other surface 

irregularities as follows:- 

                         
    

   (3.97) 

 

                                     
    

   (3.98) 

 

                                     
    

   (3.99) 

 

                                       
    

   (3.100) 

 

                                       
    

   (3.101) 

 

 

The wing-fuselage interference zero-lift drag coefficient is determined as follows:- 

                           
     (3.102) 

 

Where:- 

                                 
    

  (3.103) 

 

 

Summing zero-lift drag coefficients to determine aircraft zero-lift drag coefficient: 

                                            (3.104) 

 

 

3.3.4.2   Aircraft lift 

The common way to determine aircraft lift is the ‘aircraft-less-tail’ (AC-T) and adding 

the tail effect, i.e.: 

                 
   

  
 (3.105) 
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Determination of AC-T lift coefficient is done by summing the effects from each 

component and modifying the total to account for mutual interference effects.  Due to 

the fact that the aircraft can be flown at different angles of attack (AOA) in various 

flight conditions, it is easier to determine the lift curve slopes for aircraft components 

and multiply by the appropriate AOA at each operational point as in the following: 

 

 
   

  
 
    

       
   

  
 
  

 
   

  
  

   

  
 
   

 
      

  
       

   

  
 
   

 
      

  

 (3.106) 

 

Where,      is the wing-fuselage interference effect factor.  For a conventional circular 

fuselage: 

            
    

  
 (3.107) 

 

The Exposed Wing lift curve slope is computed as:- 

 
   

  
 
  

    
   

  
   
    

  (3.108) 

 

Where,         for conventional tapered wings, and E is the Jones velocity factor.  

For straight tapered wings defined as: 

                  
    

         
  (3.109) 

 

Fuselage and Nacelle lift curve slopes are determined as: 

 
   

  
 
   

              (3.110) 

 

 
   

  
 
   

              (3.111) 

 

Where:         is computed using Figure 3-1 [90], which represents the graph of 

        against body length/diameter ratio. 
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Figure 3-1:  (K2-K1) versus body fineness ratio, [90] 

 

Now, referring to Equation (3.105), the horizontal tail lift (    ) is computed as: 

 

     
    

   
 

    

   
  

       

  
  (3.112) 

 

To compute Equation (3.112), the aerodynamic centre and the volume coefficients are 

required, which can be computed as follows: 

 

The distance of the aircraft aerodynamic centre from the nose reference point      is 

determined as: 

 

               
        (3.113) 

 

Where:           as calculated in the geometry section. 

 

      
   

        
     

 
   
  

 
    

   
  (3.114) 

 

             
    
            

 
   
  

 
    

   
       (3.115) 
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Where:            for wing mounted 

                         for rear fuselage mounted 

 

The aircraft pitching moment coefficient (    
  is determined as: 

    
    

      
 (3.116) 

Where:    
 is a design input variable 

 

Fuselage pitching moment coefficient is computed using Munk’s theory as: 

     
   

                            
      

       
       (3.117) 

 

Hence: 

                 
   

  
 (3.118) 

 

The angle of attack of an aircraft is determined as: 

           
   

  
 
   

       
   

  
 
    

  (3.119) 

 

Then, lift from each aircraft component is: 

       
   

  
 
   

   (3.120) 

 

       
   

  
 
   

   (3.121) 

 

                       (3.122) 

 

3.3.4.3   Lift induced drag 

Aircraft lift induced drag is determined as the sum of the aircraft component effects 

plus the interference effect. i.e.: 

 

                                           (3.123) 
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Where: 

         
  

   

    
       , where: δ is a parameter evaluated from a graph of    and λ 

given in [91] and curve fitted in the program.  (3.124) 

      

          
  

  

     
 

   

  
          , where:     is Oswald factor ≈ 1.2 for horizontal tail.

 (3.125) 

           

                      (3.126) 

           

               (3.127) 

 

 Interference coefficient          is determined using Munk’s Stagger theorem as: 

   

       
   

 
         

   

      
 (3.128) 

   

Where: σ is determined from curve fitted data with downwash gradient and ratio (
   

  
) 

as the coordinates [92]. 

 

The last component in aircraft lift induced drag        is the increment in profile drag 

coefficient due to angle of attack.  It is calculated as: 

 

     
      

           
           

 
 (3.129) 

 

Where:      
     

             
                      (3.130) 

 

 

Hence, the total aircraft drag is: 

 

                 (3.131) 
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3.3.4.4   Stall speed 

Stall speed (at take-off and at landing) is an important parameter since it indicates the 

slowest speed at which an aircraft can travel and generate enough lift to remain or 

become airborne.  It depends mainly on aircraft configuration, state of flaps, and other 

lift-control devices.  Take-off stall speed is computed as: 

 

     
        

              

 (3.132) 

 

While landing stall speed is computed as: 

 

     
         

              

 (3.133) 

 

 

3.3.5   Stability 

Simple stability calculations are necessary to determine the static margin.  The static 

margin is evaluated as: 

 

              
       

  
 (3.134) 

 

Where       is the aft CG position and       is the position of the aircraft neutral point 

which defined as: 

 

            
 
   
  

 
  

 
   
  

 
  

     
  

  
      (3.135) 

 

Where       as calculated in equation (3.113), and 

 

 
   

  
 
  

 is the lift curve slope of the horizontal tail and determined as: 
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  (3.136) 

 

Where         for conventional tapered wings, and assume same 2-D slope as wing.  

E is the Jones velocity factor.  For straight tapered wings defined as: 

 

                  
     

           
  

            

  
   

  
 
  

  is the lift curve slope of the whole aircraft which is defined as: 

 

 
   

  
 
  

  
   

  
 
    

  
   

  
 
  

 
   

  
    

  

  
  (3.137) 

 

 
  

  
   is the downwash gradient which is defined as: 

  

  
 

      
   
  

 
 

           
   
  

 
    

       
 (3.138) 

 

Where     : is the factor which depends on the flow separation from both tail and wing 

surfaces.  It is computed for high and low positions of wing and tail as follows: 

      
    

 
                     , for low wing, low tail (3.139) 

 

      
      

 
                        , for low wing, high tail (3.140) 

 

       
     

 
                      , for high wing, low tail (3.141) 

 

          
    

 
                    , for high wing, high tail (3.142) 
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3.3.6   Performance 

Aircraft performance analysis in the preliminary design stage consists of flight profile 

analysis and field performance. 

 

3.3.6.1   Flight profile performance 

Climb rate and descent rate are two important parameters that are considered in the 

field profile performance.  Best climb performance is achieved when the total available 

thrust is more than aircraft drag.  Civil aircraft make an en route climb to cruise altitude 

at a quasi-steady-state climb by holding the climb speed at constant Mach number.  

Since the parameters of climb performance vary with altitude, it is typically computed 

in discreet steps of altitude, i.e. all parameters are considered invariant and taken as an 

average value within the altitude steps.  “The engineering approach is to compute the 

integrated distance covered, the time taken, and the fuel consumed to reach the cruise 

altitude in small increments and then totalled.” [93].  Torenbeek’s equation to compute 

the rate of climb is: 

 

   
              

                
  

 (3.143) 

 

The rate of descent is the opposite of the rate of climb.  Therefore, it has a negative sign 

since the drag is higher than thrust.  It uses the same approach and equations as for a 

climb. 

 

3.3.6.2   Field performance 

Three major parameters are considered in this category which are: Balanced Field 

Length (BFL), Landing Field Length (LFL), and Second Segment Climb Gradient.  

Takeoff is achieved when an aircraft accelerates under maximum thrust until a suitably 

safe speed is attained: at this point lift equals the weight of the aircraft.  For safety 

purposes, mandatory requirements for taking-off with one engine inoperative (OEI) are 

to clear an obstacle of 35-ft height.  BFL is computed when the stopping distance after 

an engine failure at decision speed is the same distance taken to clear the obstacle at 

maximum takeoff weight.  Torenbeek’s equation for determination of BFL is: 
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 (3.144) 

 

Where:   minimum airworthiness gradient is 0.024 

               Obstacle height is the metric equivalent of 50 ft, i.e. 14 m 

               runway friction coefficient is 0.04 

               typical inertia distance is 200 m 

 

Landing performance is similar to takeoff performance with full flaps extended and the 

aircraft at landing weight.  The difference is that a landing phase after touchdown 

requires the aircraft to decelerate rapidly.  Thrust reversers provide negative thrust as a 

decelerating force.  Aircraft drag is higher than at takeoff due to flap extension and air 

brakes.  LFL is determined based on Loftin’s analysis [94] as: 

 

           
    

        

            (3.145) 

 

Where:  1.667 is the required airworthiness multiplying factor 

 

The climb rate after the screen height of 35ft, is known as the second segment climb 

gradient (      , which needs to be evaluated for the OEI case, with one engine 

inoperative. This parameter is determined at ISA conditions and/or WAT limit 

conditions.  For WAT calculations, ambient temperature and airfield height should be 

available as input design variables.  The basic drag of the aircraft is determined in the 

Aerodynamics section (3.3.4).  Due to asymmetric flight following an engine failure, 

the drag is increased.  It can be estimated as described by Torenbeek [10]: 

 

               (3.146) 

 

Where      is the drag increment due to wind milling effect and is determined as: 

 

                       
  

                       
 

          
  (3.147) 
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The increment in drag of the aircraft due to asymmetric flight is          can be 

estimated by the following Torenbeek’s equation, 

 

          
             

        
     

 

 (3.148) 

 

Where, 

 

    
     

   
 
 

 
 

         
              

   

     
 
     

  (3.149) 

 

Another increase in induced drag is due to the uneven distribution of wing span wise 

loading which is determined as: 

 

     
           

 

    
 (3.150) 

 

Where,    is the Oswald factor ≈ 1.5 

 

 

 

Hence, the total drag is: 

 

                             
        

  
  (3.151) 

 

The Second climb gradient may now be computed as: 

 

      
                   

        
 (3.152) 
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3.3.7   Cost 

Cost-benefit analysis is a significant parameter in evaluating competitive aircraft 

designs as it is based on the minimum cost per unit work performed.  Aircraft cost 

consists of airframe cost and engine cost, i.e.: 

                  (3.153) 

 

The rule of thumb is airframe cost depends mainly on aircraft empty weight, i.e.: 

            (3.154) 

 

While engine price is based on its takeoff thrust as 

 

                (3.155) 

 

Aircraft price is not the only parameter under consideration, but also aircraft operating 

costs. These operating costs are classified into two categories which are direct operating 

cost (DOC) and indirect operating cost (IOC).  IOC is difficult to estimate well, since it 

depends on the services that the airline (customer) offers. Therefore, DOC is a useful 

and widely-used parameter for comparative analysis. 

Several methodologies [95][96][97] have been used in the past to estimate DOC.  

Kundu [93] suggests using AEA [98] methodology, which is widely used in Europe, as 

a standard approach to identify DOC.  The main components of DOC are: 

 

1- Depreciation. 

2- Insurance. 

3- Interest on capital. 

4- Crew salary and staff wages. 

5- Airframe maintenance, labour and material. 

6- Engine maintenance, labour and material. 

7- Landing fees. 

8- Navigational charges. 

9- Ground-handling charges. 

10- Fuel charges. 
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The following equations are used to estimate the value of each component.  Note that 

these equations compute the component DOC per block hour.  To determine a flight 

cost, the DOC per block hour is multiplied by the block time: 

 

1- Depreciation: This is calculated over a 14 year period to a residual value of 10%.  It 

is determined as: 

 

    
                                  

    
 (3.156) 

 

Where:    is the utilisation (calculated per block hour per annum in hours/year): 

 

   
    

      
     (3.157) 

 

 

2- Insurance cost: 

 

     
         

 
 (3.158) 

 

3- Interest cost: 

 

     
                                    

 
 (3.159) 

 

4- Flight crew costs $493 per block hour for a two-crew operation, while $81 per block 

hour for each cabin crew member. 

 

5- Airframe maintenance cost: 

 

             (3.160) 

 

Where: 
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      (3.161) 

 

and, 

 

      
                 

  
           (3.162) 

 

6- Engine maintenance cost: 

 

                    
      

       
 (3.163) 

 

Where: 

                           
                     

    

    
 
   

 (3.164) 

 

and 

             
    

    
 
   

               
                    

   
 

                (3.165) 

 

 

Where:  k = 0.5 for a single spool engine 

             k = 0.57 for a double spool engine 

             k = 0.64 for a triple spool engine 

 

7- Landing fees: 

 

    
   

  
 

   

    
 (3.166) 

 

8- Navigational charges: 

 

      
      

    
   

   

     
 (3.167) 
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9- Ground-handling charges: 

 

     
        

       
 (3.168) 

 

10- Fuel charges: 

 

      
         

  
 (3.169) 

 

Where:        is in pounds (lbs) and excluding reserves, while                 . 

The DOC can then be calculated by summation of Equations (3.156) to (3.169). 

 

 

3.4   Conclusions 

Design of an aircraft requires many variables to be computed, mainly to arrive at a 

design that fulfils most of the mission objectives.  The effect of changes in one or more 

variables may not be obvious to the beginner; therefore an iterative process is usually 

followed.  Whilst some variables are selected, others are calculated.  As the complexity 

of the design is increased, the number of variables that reflect the design choices is also 

increased.  In the preliminary design phase, the input and output variables are grouped 

according to aircraft components and mission requirements.  All equations required for 

analysing the output variables, in this phase were also grouped into sections for clarity 

and easy understanding.  Torenbeek’s formulae are used in the development process of 

the iADS software due to their accuracy.  The next chapter shows how the design 

methodology is coded into an interactive design software tool. 
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Chapter FOUR 

Aircraft Design Software Implementation 

 

4.1   Introduction 

Implementing new aircraft design software for teaching is not simple.  It needs proper 

consideration and effort to overcome all the limitations and disadvantages of the 

existing software plus additional features that are necessary for teaching.  Due to 

student time limitations, the software should facilitate student understanding of 

different aspects of aircraft design and to speed up the design process as well.  The 

software should have a friendly-user interface, comprehensive analysis without making 

it overtly complex, parametric studies for sensitivity analysis and an optimiser to fine 

tune the design, etc. as mentioned at the end of chapter two.  This chapter describes in 

some detail the implemented software, which has been developed using a modular 

approach.  Each aspect of design is realised through an appropriately named module.  A 

module in this context is an object that takes information from other linked objects and 

passes the results to any other object that needs the information. 

 

4.2   Graphical user interface (GUI) 

A GUI is the way a user interacts with the computer and it is almost as important as the 

software computations itself.  As the computing and graphical processing ability of 

computers has grown, with it has grown the graphical user interfaces.  Actually, it 

dresses up the software functions and allows access to software functionality in a 

cohesive manner.  If the GUI is too complex and/or contains many symbolic 

(ambiguous) items, it confuses the user and the software results may be erroneous due 

to inappropriate interactions.  GUI design should be based on the knowledge of the 

user’s experiences and expectations.  In the present context, since the user of the 

Interactive Aircraft Design Software (iADS) is going to be an undergraduate student, it 

should be in keeping with his/her cognitive abilities. 

However, a GUI is based on the integration of a number of elements that bring the tasks 

and work we do on the computer to life.  In other words, a GUI is the graphical 
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representation of, and interaction with, programs, data, and objects on the computer 

screen.  A GUI is WIMP, which means that GUI is made of these elements: Windows, 

Icons, Menus, and Pointers.  Another way to define a GUI is WYSIWYG, what you see 

is what you get.  The main features of a GUI outlined by Galitz [99] are as follows: 

1. Symbols are recognised faster than text. 

2. Faster learning. 

3. Faster use and problem solving. 

4. Easier remembering. 

5. More natural. 

6. Exploits visual/spatial cues. 

7. Foster more concrete thinking. 

8. Provide context. 

9. Fewer errors. 

10. Increase feeling of control. 

11. Immediate feedback. 

12. Predictable system responses. 

13. Easily reversible actions. 

14. Less anxiety concerning use. 

15. More attractive. 

16. May consume less space. 

17. Replaces national languages. 

18. Easily augmented with text displays. 

19. Low typing requirements. 

20. Smooth transition from command language system. 

One of the limitations of a GUI environment developed on the Windows platform is its 

application specific interface.  Various sets of information that the user wishes to 

manipulate are delivered through an application specific interface.  Initially, users must 

start an application before doing anything with data that is stored in files.  The action of 

double-clicking the application icon starts the application.  The interface to the 

functionality of the application is presented via a set of menus that are grouped by 

functionality.  Most of what users see in the Windows environment are mainly 

application-oriented interfaces (or function-oriented interface), [100]. 
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In 1992, IBM released a new generation of a GUI based on object-oriented architecture.  

“Object-oriented interfaces are sometimes described as turning the application inside-

out as compared to function-oriented interfaces.  The main focus of the interaction 

changes to become the users’ data and information objects that are typically 

represented graphically on the screen as icons or in windows” [101].  The difference 

between a GUI and an object-oriented user interface (OOUI) is very difficult to explain 

without actually using them since OOUIs include all the features of GUIs.  A key 

characteristic of an OOUI is that it fights to overcome the main drawback of GUI, i.e. 

its application orientation.  The following example explains this difference: 

Figure 4-1 [100], shows the new clock in Windows 95 Power Toys developed by 

Microsoft.  It is based on a GUI.  The user can change the aspects of the clock by using 

the properties in the drop-down menu.  Figure 4-2 [100], shows the OS/2 system clock.  

It is an OOUI.  The application window opens into the default view, Date/Time.  The 

user can open another view of the clock where the properties available in a multipage 

notebook, i.e., multiple objects of the same type can co exist which, are differentiated 

by its properties.  For example, one instance of the clock object could show an analogue 

representation and the other digital.  Depending upon the set of properties, a change in 

one object instance can automatically be reflected in the other object.  

  

 

Figure 4-1: GUI application, [100] 
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Figure 4-2: OOUI application, [100] 

 

The benefits of using GUIs are many, if the software packages are well-designed.  

Without a well-designed GUI, even a software package with outstanding features will 

not be successful or be used effectively.  GUIs can educate and entertain as well as 

allow users to do their work.  All GUIs of the existing aircraft design software are user 

friendly-user interfaces that tend to be application-oriented interfaces.  Nowadays, as 

technology (including GUI) has improved, some old style GUIs seem un-friendly and 

hence lose usability appeal.  In order to overcome these drawbacks, an OOUI is 

designed using object-oriented programming language (Delphi).  Though many OOP 

programming languages exist such as C++ or common LISP to name a few, the choice 

of Delphi as a development tool was made due to its similarity with FORTRAN, and 

since many existing codes had to be translated it seemed to be the obvious choice.  The 

iADS software layout is similar to many existing applications, comprising a menu bar 

window which consists of these elements: File, Edit, Configure, Design, Output, 

Window, and Help.  File, Edit, Window, and Help elements are general purpose menus.  

The student starts to work with the configuration menu to enter his/her designed 

variables’ values.  This functionality is grouped in well-defined items that are easily 

understood.  Each item consists of its related set of design distinct features in aircraft 

design.  These items are: Wing, Fuselage, Tail, Aerodynamics, Propulsion (Engine & 
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Nacelle), Speeds, Stages, Heights, Weights, and Cost.  This configuration is unlikely to 

confuse the student and facilitates the input process as shown in Figure 4-3.   

 

 

Figure 4-3: Main menu form 

 

Figure 4-4 shows Wing menu item data entry form for Boeing 737-800 aircraft as an 

example.  Investigating the form in general, many features are outlined as follows: 

1. A separate window is used (this helps student to focus on a specified area of the 

screen). 

2. The number of variables is kept to a minimum (no more than ten, depending on 

the item’s variables). 

3. Two options are available for entering the design variable’s value (either direct 

in the specified space, or through the scroll bar). 

4. The presence of the scroll bar limits the input value between lower and upper 

bounds (this helps the student to understand the variable’s range). 

5. Design variable names are defined in full with no symbols used (so the student 

can recognise the variable well). 

6. An alert message is popped up by the expert system (if a variable’s assigned 

value is out of range when using direct data entry method). 
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7. A two dimensional (2D) 3-View of the design aircraft window is popped up that 

dynamically changes, if the scroll bar method is used to change variables, i.e. an 

OOUI (to help student to understand the effect of variable variation). 

8. Basic colour (black) is used (many colours confuse the student). 

9. Status bar is added to show hints for student. 

 

 

Figure 4-4: Wing menu form 

 

As the student completes the input process, the design stage starts which is invoked by 

the Design menu, in the menu bar.  It consists of three items which are: without 

optimisation, with optimisation, and dynamic stability.  The first item “without 

optimisation” performs the design iteration once.  The output parameters as well as the 

input design variables are displayed in a tree form window as shown in Figure 4-5.  

The tree has two main roots, i.e. input variables and output parameters.  Each root has 

branches and sub-branches.  This type of implementation allows the student to focus on 

some parameters rather than the whole output results.  The value of this feature appears 

in performing parametric studies on assigned design variables.  The second item in the 

Design menu is “with optimisation” which performs optimisation to fine tune the 

design.  This requires an additional item in the Configure menu to set the value of the 
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free (or fixed) design variables, constraints, and the objective function related the 

optimisation process as explained later.  The last item is “dynamic stability” which 

opens a new window to perform dynamic stability, also discussed later. 

 

 

Figure 4-5: “without optimisation” form in the ‘Design’ menu 

 

The “Output” menu in the menu bar also consists of three items which are: text data, 

2D 3-view of the aircraft, and parametric studies.  The full set of results is listed, 

organised in an easy to understand format.  These results can be saved as a text file or 

as a spreadsheet for further analysis if required.  The “3-view aircraft” item draws the 

designed aircraft as a 2D 3-view form.  This allows the student to visualise the effect of 

the design variable variation on the shape as mentioned above. The last item is 

“parametric studies” which performs, as its name refers to, parametric studies between 

the input design variables and the output parameters in a graphical format to be 

discussed later.   
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4.3   Synthesis program 

All equations, presented in the previous chapter, are used to develop the synthesis 

program.  Each equation-group is implemented as a module that can be easily edited, 

modified, or replaced by another module.  These modules are: Geometry, Weight, CG, 

Aerodynamics, Stability, Flight Performance, and Cost Estimation.   

 

4.3.1   Geometry 

The geometry module sizes the fixed aircraft components.  This involves the 

calculation of the major geometries related to the wing, fuselage, empennage, flaps, and 

nacelles.  The wing geometry algorithm starts  to calculate wing related parameters 

such as: Span, Root chord, Tip chord, Mean geometric chord, Mean aerodynamic 

chord, Root thickness, Exposed span, Exposed area, Exposed aspect ratio, Distance 

from fuselage nose (Datum point) to wing quarter root, and Distance from datum to 

wing centre of pressure.  For flap related parameters, it calculates Flap-span inboard 

position, Flap-span outboard position, Flap-inboard-span to wing-span ratio, Flapped 

wing area, and Flap area.  In the fuselage part, three parameters are determined which 

are: Tail cone length, Fuselage length, and Fuselage wetted area.   

The empennage component consists of horizontal and vertical tails.  Calculated 

parameters for both tails are: Area, Root chord, Span, Mean geometric chord, and Tail 

arm.  The tail arm for the vertical tail is calculated based on engine positions (either 

wing mounted, or rear fuselage mounted), whilst for horizontal tail calculations are 

based on the tail configuration (either conventional, or T-tail).  Nacelle wetted area is 

the only calculated parameter for the nacelle component.  All these parameters are 

computed based on standard geometrical relationships.   

Figure 4-6 shows a sample result for Boeing 737-800 aircraft which also includes input 

design variables. 
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Figure 4-6: Sample geometry output results 

 

4.3.2   Weights 

This is the most significant module due to the fact that accurate weight estimation at 

early stages is a hard and a difficult process.  This module is developed using the 

common general build-up methodology.  It breaks down the maximum takeoff weight 

into its components and adds them to determine empty, operational empty, zero-fuel, 

and maximum takeoff weights.  Empty weight comprises of the following aircraft 

components: wing (including flaps), fuselage, empennage, propulsion (engines and 

nacelles), undercarriage, surface controls, furnishings, and systems (which include 

APU, electrical, hydraulics, instruments and avionics, and air conditioning and anti-

icing).  Operating items and crew weights are added to empty weight to form operating 

empty weight.  Adding payload weight to the operating empty weight gives zero-fuel 

weight.  Finally, fuel weight is added to achieve the total maximum takeoff weight.  

Load factors (limit and ultimate) are calculated at the beginning of this module.  

Torenbeek’s formulae are used and an example result for Boeing 737-800 aircraft is 

shown in Figure 4-7. 



75 
 

 

Figure 4-7: Sample output result from the weights module 

 

4.3.3   Centre of gravity (CG) 

Good stability and control is a foremost requirement for operational aircraft.  To 

achieve this goal, the evaluation of aircraft CG is required.  This CG position is 

evaluated for several loading cases, which include variable payload and fuel, with 

engine and tail configurations taken into consideration as mentioned in the previous 

chapter.  To evaluate forward aircraft CG position, three cases for payload variation are 

implemented which are: empty aircraft, full payload, and simplified forward window-

seating rule.  Each case with and without fuel is developed.  Aft CG position is 

implemented by considering two payload cases which are: maximum takeoff weight 

with 20% payload at the rear of the cabin (rear luggage hold) and simplified rear 

window-seating rule.  Again with and without fuel is developed.  A sample result for 

Boeing 737-800 aircraft is shown in Figure 4-8. 
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Figure 4-8: Sample CG output result 

 

4.3.4   Aerodynamics  

This module computes the aerodynamic coefficients required for the designed aircraft 

which are: zero-lift drag, aircraft lift, lift induced drag, total aircraft drag, flap effects, 

and stall speeds.  Zero-lift drag and lift induced drag are implemented by summing the 

effects from each aircraft component, plus the effect of the interference at the 

wing/fuselage junction.  Aircraft lift is implemented via the usual way which is the 

‘Aircraft-less-tail’ plus the tail effects.  Total drag is the summation of zero-lift drag 

and lift induced drag.  Figure 4-9 shows a sample of a lift-drag polar plot for Boeing 

737-800 aircraft.   

 

 

Figure 4-9: Lift-Drag polar plot 
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Flap effects are also included in evaluating aircraft lift at take-off and landing based on 

Torenbeek’s formulae.  Stall speeds for takeoff and landing are implemented as well.  

Figure 4-10 shows the results of this module. 

 

4.3.5   Stability 

Implementation of this module is necessary to calculate the static stability represented 

by the static margin.  Evaluation of the static margin is based on both the aft CG 

position (which is calculated in the CG module) and the position of the aircraft neutral 

point (which is calculated in this module).  Figure 4-10 shows these results for Boeing 

737-800 aircraft. 

 

 

Figure 4-10: Sample results of aerodynamics and stability modules 
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4.3.6   Flight performance 

This module is implemented for both the flight profile analysis and field performance.  

Three phases of the flight profile (climb, cruise, and descent) are analysed separately 

and summed to determine the flight performance parameters.  Time and fuel are also 

calculated using linear interpolation in each stage.  The engines are at the maximum 

continuous climb rating during the climb phase while the descent phase analysis is 

performed at flight idle setting.  Figure 4-11 shows the output of the flight profile 

analysis for Boeing 737-800 aircraft. Additionally, three major parameters are 

computed which are: Balanced Field Length (BFL), Landing Field Length (LFL), and 

Second segment climb gradient (both ISA and WAT shown as Figure 4-12 for Boeing 

737-800 aircraft. 

 

 

Figure 4-11: Flight profile performance output results 
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Figure 4-12: Flight field performance output results 

 

4.3.7   Cost estimation 

 Finally, the cost estimation module computes the aircraft cost and direct operating cost 

(DOC).  DOC is a significant parameter of interest when it comes to commercial 

aircraft design.  AEA’s method is a standard method used in this module.  Figure 4-13 

shows the detail output of cost estimation module for Boeing 737-800 aircraft.  

 

 

Figure 4-13: Output results of cost estimation module 
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4.4   Parametric studies 

An important aspect, that aids understanding and explains the philosophy of aircraft 

design are the parametric studies. In conducting a parametric study, the program 

executes the synthesis program many times with different sets of design variables.  As 

the design enters a new phase, the student can assess the impact of changing certain 

parameters in the design.   Student can assign parameters for evaluation, define the 

parameter range, specify the design goal (output parameter), and analyse the results of 

each parameter variation.  It performs so-called “What if scenarios” which means: what 

happens if one or more design parameters are changed.  Implementing this module 

requires the following: 

1. Selection of the design variables. 

2. Range of design variables. 

3. Selection of the dependent variable. 

Each section in the synthesis program has design variables associated with it.  One 

approach to working with design variables is to create a user-defined list of parameters 

for a specific area of interest.  Since the students at this stage may not have a full 

appreciation of the impact and influence of the design variables, a user selectable list 

may not serve the intended purpose.  The other method is a pre-defined list of variables, 

presented as a drop-down list,  that are considered to be important parameters and have 

a great impact on the final aircraft design.  For example, in the wing section, aspect 

ratio and wing area have a great impact on aircraft weight and stability.  Hence both are 

part of the pre-configured list.  

The design variables range means the boundaries between which the design variable 

value is allowed to be changed.  Lower and upper boundaries represent the lowest and 

highest value respectively that the design variable should have.  The common way to 

implement these boundaries is as a percentage of the nominal design variable value.  A 

symmetric percentage is the simplest approach for implementation.  For example, 20% 

means that the variable value starts with -20% (low boundary) and moves toward +20% 

(high boundary) in a pre-defined incremental sequence. 

There are many output or calculated parameters, only the most significant parameters 

are presented to the user for selection.  The output results of these studies are presented 
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as graphs.  Graphical representation of information is easy to understand and aids 

appreciation of the effect of the parameter variation.  Colours are used to differentiate 

between plots in a single graph which can be viewed by the student as 2D or 3D plots.  

Another feature has been added which allows the selection of two independent design 

variables simultaneously, with one output variable.  The primary design variable is 

represented by the bottom axis (x-axis) while the secondary variable is represented by 

the right axis. Figure 4-14 shows the output form of this module.  The primary design 

variable is the Wing area and the output is the MTOW.  The multiple selection of an 

independent variable allows the examination of changing aspect ratio at the same time. 

 

 

 

Figure 4-14: Parametric studies output form 
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4.5   Takeoff 

Although balanced field length (BFL) is calculated in the performance module of the 

synthesis program, an additional module is employed to synthesise the takeoff stage in 

much more detail.  Takeoff definition under FAR 25 is “an aircraft taking off performs 

a ground roll to rotation velocity, rotates to liftoff attitude, lifts off and climbs to a 

height of 35 ft”.  Two types of takeoff are recognised which are: takeoff with all 

engines operating (AEO) and takeoff with one engine inoperative (OEI).  The aircraft 

accelerates from a stop or taxi speed to the velocity of rotation (   ) rotates to the liftoff 

attitude with corresponding velocity (    ) and climbs over an obstacle of 35 feet.  The 

takeoff safety speed, which is given the designation (   ), is the velocity at the end of 

the 35 ft climb.  Two methods have been developed to analyse the equation of motion 

during the takeoff stage.  The first method was proposed by Powers [102] and called 

simplified Powers method.  This method has no thrust vectoring capability, since the 

assumption was made that the aircraft thrust is constant during the takeoff run.  Also, 

one equation of motion is used during the aircraft takeoff.  The simplified Powers 

method has several disadvantages.  First of all, the method produces surprisingly good 

results for conventional aircraft, but aircraft with large high lift devices or with STOL 

capability will not produce good results.  Secondly, it does not allow STOL or 

unconventional high lift devices to be properly modelled due to its small amount of 

input data.  Finally, the absence of a rotation phase has proven to under-predict ground 

runs in many situations.  This has proven to be more of a problem in aircraft with high 

thrust to weight ratios (T/W) and in aircraft with especially high wing loadings (W/S). 

The second method was proposed by Krenkel & Salzman [103].  This method 

calculates the aircraft equations of motion for ground roll and climb.  It has vectored 

thrust as the assumption is made that the thrust varied with velocity and it did not solve 

for balance field length.  In this method, the ground roll equations were obtained by 

summing the forces on the aircraft in the horizontal direction and substituting them into 

Newton's second law (F=ma).  This caused the algorithm to consistently under predict 

most aircraft takeoff times, distances and velocities.  The modified approach to this 

method [104] is based on time-step integration technique, while the original method 

solved the aircraft equations of motion parametrically.  It is also modified for 

calculating BFL for preliminary design purposes.  “Four equations were developed for 

the climb phase. Two are the governing balance of force equations, one relates the 
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velocity components to the climb angle, γ, and the fourth relates the total velocity, V, to 

the individual velocity components.  The result is a system of nonlinear ordinary 

differential equations. The ground and climb equations of motion, with quadratic thrust 

variation with velocity and a rotation phase included, were used to solve for both AEO 

and balanced field length OEI takeoff.” [104].  Many advantages for this method over 

the simplified Powers method have been noted.  The first advantage is the quadratic 

thrust variation with velocity allows a more accurate engine representation.  The second 

advantage is the ability to specify aerodynamic parameters during ground run and 

during climb.  This allows the user much more control over the aircraft takeoff as well 

as being a better representation of true takeoff.  The third advantage is the ability to 

vector the thrust during the takeoff run, allows application of this methodology to 

STOL aircraft.  The last advantage is, like the simplified Powers' method, the modified 

Krenkel and Salzman method requires little data to produce results.  Therefore, it is 

recommended for use in the preliminary design phase due to its accuracy in predicting 

the takeoff parameters. 

 

This module is an implementation of the modified Krenkel and Salzman method.  The 

module program analyses the takeoff stage for the two cases; normal takeoff (all 

engines operating), and BFL (one engine inoperative).  In each case, different aspects in 

takeoff analysis are described.  Figure 4-15 shows the output results for both cases, i.e. 

AEO and OEI, which include the important velocities, distances, and times.  As 

mentioned above, normal takeoff and BFL calculations are iterative.  The number of 

iterations for BFL calculations is also shown in the figure which is dependent on the 

prescribed error tolerance to balance between the run time and the accuracy of 

calculations.  Convergence in less than 20 iterations is indicative of numerical stability 

in the integration process and the pre-set convergence tolerance.  A tighter tolerance 

will require many iterations before the convergence criterion is satisfied.  Data 

presented in Figure 4-15 pertains to the take-off performance of the Boeing 737-800 

aircraft.  The computed values in terms of various speeds and distances compare 

favourably with the published results from Reference [105].   For instance the quoted 

value for the rotation velocity of the 737-800 at an MTOW of 82 tonnes, dry runway, 

zero headwind is 97 m/s where as the program computes the same value as 87.09 m/s.  

This small variation is due to the differences in the aerodynamic parameters used for 

the ground run and the friction characteristics of the runway.  The method is 
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sufficiently accurate for use in the preliminary design phase.  A similar pattern is 

observed for other parameters. 

 

 

 

Figure 4-15: Takeoff analysis output results 

 

 

4.6   Optimisation 

As mentioned in chapter two, numerical optimisation is one feature that is an essential 

requirement for preliminary design software for teaching.  Optimisation methods can be 

classified into two categories; classical and advanced techniques [106]. 

1. Classical Techniques: these are useful in finding the optimum solution or 

unconstrained maxima or minima of continuous and differentiable functions.  

The classical methods are analytical methods and make use of differential 

calculus in locating the optimum solution.  These methods have limited scope in 
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practical applications as some of them involve objective functions, which are 

not continuous and/or differentiable, and lead to a set of nonlinear simultaneous 

equations that may be difficult to solve. 

 

2. Advanced Techniques: these are classified into four methods; hill climbing, 

simulated annealing, genetic algorithms, and ant colony. 

i. Hill climbing: in this method, the first closer node is chosen whereas in 

steepest ascent hill climbing, all successors are compared and the closest 

to the solution is chosen.  Both forms fail if there is no closer node.  This 

may happen if there are local maxima in the search space which are not 

solutions.  This method is widely used in artificial intelligence fields, for 

reaching a goal state from a starting node. 

ii. Simulated annealing: this method comes from annealing process in 

metallurgy.  It is a technique involving heating and controlled cooling of 

a material to increase the size of its crystals and reduce their defects.  In 

this method, each point of the search space is compared to a state of 

some physical system, and the function to be minimised is interpreted as 

the internal energy of the system in that state.  Therefore, the goal is to 

bring the system, from an arbitrary initial state, to a state with the 

minimum possible energy. 

iii. Genetic algorithms: this method is a local search technique used to find 

approximate solutions to optimisation and search problems.  It is a 

particular class of evolutionary algorithm that use techniques inspired by 

evolutionary biology such as inheritance, mutation, selection, and 

crossover (it is also called recombination).  This method is typically 

implemented as a computer simulation, in which a population of abstract 

representations (called chromosomes) of candidate solutions (called 

individuals) to an optimisation’ problem, evolves toward better 

solutions. 

iv. Ant colony: the idea of this method comes from the real world.  Ants 

(initially) wander randomly, and upon finding food return to their colony 

while laying down pheromone trails.  If other ants find such a path, they 

are likely not to keep travelling at random, but instead follow the trail 

laid by earlier ants, returning and reinforcing it if they eventually find 
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food.  The aim of this algorithm is to mimic this behaviour with 

"simulated ants" walking around the search space representing the 

problem to be solved.  It is used to produce near-optimal solutions to the 

travelling salesman problem.  Ant colony algorithm has an advantage 

over simulated annealing and genetic algorithm approaches when the 

graph may change dynamically.  It can be run continuously and can 

adapt to changes in real time.  Ant colony method is of interest in 

network routing and urban transportation systems. 

 

An optimiser (RQPMIN) from RAE [107] has been added to allow a greater flexibility 

in selecting objective functions and in exploring the optimised design to change in 

some specifications or constraints.  It is a general numerical optimisation program that 

can be applied in a wide range of situations for the solution of many problems in 

science, engineering, and commerce, involving the calculation of the optimum value.  

The optimiser has the ability to handle problems with up to 75 constraints and up to 50 

variables.  It was written in standard Fortran 77 and re-encoded in Delphi to be suitable 

for use with the software. 

The optimiser algorithm uses ‘hill-climbing’ method which is very fast with respect to 

other methods.  It is of interest for interactive software and Problem-Based Learning 

purposes.  It is based on the Lagrange-Newton approach, i.e. a stationary point of the 

Lagrange function is calculated by Newton’s method.  The concept of pseudo-

feasibility is used where a trial point is rejected if the square root of the sum of the 

squares of the constraints is greater than the radius of pseudo-feasibility.  The latter is 

initially given a substantial value, being only reduced when necessary [108][109]. 

The input data consists of three groups: 

1. List of variables. 

2. List of constraints. 

3. Objective function. 

A list of variables were selected from the input design variables of the synthesis 

program and finalised during the development of the software.  The selection process 

was based on RAE requirements for compatibility with the swept synthesis.  Changes 

in the value of these variables may change the overall design of the aircraft.  Twenty-
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one design variables were selected and shown in Figure 4-16.  Another benefit of the 

optimiser flexibility is that the student can decide which of the design variables are to 

be freed or fixed.  By varying the status of these variables, in-depth studies can be 

conducted by students to enhance their understanding and analysis of aircraft design 

process. 

The list of constraints comprises fourteen equality or in-equality constraints which 

include fuel weight, total takeoff weight, balanced and landing field lengths, static 

margin, stage length, etc) which can be set by the students.  Figure 4-17 shows the 

form that allows the assignment of these constraints. 

The objective function represents the minimum value of the function required for an 

optimal solution.  Main objective functions include, total fuel weight, takeoff weight, 

direct operating cost, and wing weight.  These functions are available for the student to 

select as shown in Figure 4-18. 

 

 

Figure 4-16: Input design variables form of the optimiser 
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Figure 4-17: Constraints form of the optimiser 

 

 

Figure 4-18: Objective function form of the optimiser 

 

The operation of the optimiser starts by checking of the input data and if no errors are 

detected it proceeds to program initialisation.  The optimiser calls the synthesis 

program a few times and evaluates the objective and constraint functions using the 

initial values of the design variables.  Then, it begins a series of feasibility steps in 
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order to locate a feasible path from which it can start minimising the objective function.  

During this stage, some values of the design variables may change.  The optimiser will 

stop and notify the student that no further progress is possible if no feasible path has 

been located.  After the feasible path has located, the optimiser begins a long series of 

minimisation steps which continues until the objective and constraint function values 

minimise within the prescribed tolerances and convergence is detected.  Three 

situations of convergence (A, B, and C) are classified [109]: 

1. Convergence A: occurs when the optimiser has located a point at which the 

estimated distances to the minimum of the criterion function and to the 

minimum of the sum of the squares of the constraint function are less than the 

prescribed tolerances. 

2. Convergence B: occurs when the optimiser has located a point at which the 

estimated distance to the minimum of the sum of the squares of the constraint 

functions is less than the prescribed tolerance and a value of the criterion 

function sufficiently smaller than the current value cannot be found. 

3. Convergence C: occurs when the optimiser has located a point at which the 

estimated distance to the minimum of the sum of the squares of the constraint 

function is less than the prescribed tolerance where no further changes to the 

design variables can be made. 

 

 

4.7   Dynamic stability 

The design of an aircraft must meet stability requirements to be able to fly.  “An 

understanding of flight stability and control played an important role in the ultimate 

success of the earliest aircraft designs.” [90].  It is essential for students to evaluate 

both static and dynamic stability concepts early in the preliminary stage.  This early 

evaluation, before the detail design phase takes place, makes the design process more 

efficient and speeds up the design process itself.  

It should be noted that the symbols and notation used in this section that pertain to the 

aspects of evaluating the dynamic stability of the design are not noted in the list of 

symbols.  Instead the appropriate symbol is defined in the text on its first use.  
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Figure 4-19A (a) depicts an aircraft in steady flight.  In this condition sum of all forces 

and moments is zero.  An aircraft would be termed to be statically unstable if owing to 

an applied moment, the aircraft does not return to its initial undisturbed state, Figure 4-

19A (b).  However, if the aircraft on application of some moment, assumes a new state 

then it is termed to be statically neutral. 

 

 

Figure 4-19A: Equilibrium flight and static stability 

 

If an aircraft owing to some disturbance returns to its trimmed condition and if all 

dynamic oscillations decay in time then it statically and dynamically stable Figure 4-

19B (a).   If however, the oscillations persist with equal amplitude the aircraft possesses 

neutral dynamic stability, Figure 4-19B (b).   And when the amplitude of oscillations 

increases with time then it is termed dynamically unstable Figure 4-19B (c). 
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Figure 4-19B: Static and dynamic stability 

 

 Static stability is defined as the initial tendency of an aircraft to return to its 

equilibrium (original) state after it is disturbed (i.e. positive stability).  Equilibrium is 

the original state for the aircraft which means trimmed flight in which sum of forces 

and moments are zero.  If an aircraft initially tends to return to its trim flight condition 

after a disturbance, then it is statically stable.  If it initially tends to move away, then it 

is statically unstable.  Evaluation of static stability is achieved by looking at the aircraft 

stability in one direction at a time, i.e. longitudinal (pitch), lateral (roll), and directional 

(yaw) stability.  If the pitching moment coefficient value is negative (   
  ), then 

the aircraft will have longitudinal static stability.  If the rolling moment coefficient 

value is negative (     ), then the aircraft will have lateral static stability.  If the 

yawing moment coefficient value is positive (   
  ), then the aircraft will have 

directional static stability. 

The neutral stability means that an aircraft tends to stay in its most recently commanded 

attitude or condition, without oscillations, and it will neither tend to return to its 

previous state or diverge from its new attitude.  It is also called neutral equilibrium or 

neutral static stability.  It would exhibit neutral stability only if the centre of pressure 

and centre of gravity coincide. 
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On the other hand, dynamic stability refers to how an aircraft moves after it is disturbed 

from a trim condition.  Evaluation of dynamic stability is done in a similar way to that 

for static stability except roll and yaw motions are now coupled (which means that one 

does not happen without the other).  In general, there are two types of aircraft motion: 

longitudinal and lateral-directional motion.  Longitudinal (pitch) motion consists of two 

distinct oscillation modes.  The primary mode is called short-period mode which is a 

heavily damped oscillation.  It is a decaying oscillation that occurs in the aircraft’s 

angle of attack when the aircraft pitches up or down.  In aircraft design, short-period 

mode should have high frequency and should decay quickly.  Therefore, decreasing 

   
 increases the frequency of the short-period mode, i.e. improves its stability.  The 

other mode is called long-period mode (“phugoid” mode) which is a lightly damped 

oscillation and is a large-amplitude variation in air-speed and altitude.  The motion is so 

slow that the effects of inertial forces and damping forces are very slow.  Typically, the 

period is 20-60 seconds where the pilot generally can control this situation easily. In 

lateral-directional motion, two types of motion occur: spiral mode and Dutch roll.  

Improving lateral-directional stability can be achieved by reducing the impact of both 

spiral mod and Dutch roll.  Decreasing rolling moment coefficient      improves the 

spiral mode (more stable), but worsens the Dutch roll (increasing the amplitude of the 

Dutch roll), while increasing yawing moment coefficient     
 improves the Dutch roll 

(increases the frequency of the Dutch roll), but worsens the spiral mode (i.e. less 

stable). 

Evaluation of dynamic stability coefficients is a difficult challenge for aircraft 

designers.  The difficulty increases in the early stages of the aircraft design process due 

to the uncertainty of detailed information about the design.  The traditional method is 

the wind tunnel test which has been used for a long time.  It requires both the 

construction of a model and an adequate test facility.  Also, the lag time between the 

paper design and test results can be significant.  Furthermore, any change in aircraft 

configuration requires a change of the test model.  In the preliminary design phase, the 

alternative approach involves: empirical methods such as USAF DATCOM [110][111], 

numerical methods using computational fluid dynamics (CFD) [112][113], and 

estimation from a basic stability theory method [9], are used.  Each of these approaches 

has its own advantages and disadvantages with respect to the range of applicability, 

computation time, and cost [114].  For undergraduate teaching purposes, estimation of 
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dynamic stability coefficients based on basic stability theory is used for implementing 

the dynamic stability module.  Simple theory is only accurate for preliminary design or 

relationships between the overall aircraft geometry and stability [115].   

Table 4-1 and Table 4-2, [90], represent the simplified equations to predict the most 

important longitudinal and lateral stability coefficients (non-dimensional derivatives).  

These derivatives were derived from the nonlinear differential equations of aircraft 

motion. Small-perturbation theory was used to linearise these equations [116].  

Equations to predict directional (or dimensional) longitudinal and lateral derivatives are 

shown in Table 4-3 and Table 4-4, [90], respectively.  Rearrangement of the 

directional equations of motion (both longitudinal and lateral) into state space forms is 

useful from control standpoint, as shown in Figure 4-20 and Figure 4-21, [90].  The 

state space model can therefore be used in any further control scheme easily, by using 

tools such as MATLAB [117]: 

         (4.1) 

Where A is     matrix, that consists of the stability derivatives and B is     

control driving matrix, that contains control derivatives, and x is a     state vector 

that consists of the principal motions of the aircraft, and may have linear or rotational 

accelerations, rates or positions.   

The eigenvalues of the A matrix, are also the roots of the conventional characteristic 

equation.  If the roots or eigenvalues are negative or have negative real parts then the 

system has stability, positive real parts of roots are indicative of instability.  The roots 

of the system can also be evaluated by using the characteristic equation viz.: 

  

            (4.2) 

For longitudinal stability, two modes are distinct as mentioned before.  Table 4-5, [90], 

shows the approximate relationships for the long- and short-period modes.  These 

relationships were developed by assuming that the long-period mode occurred at a 

constant angle of attack and the short-period mode occurred at a constant speed.  

“These assumptions were verified by an examination of the exact solution.  The 
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approximate formulas permitted us to examine the relationship of the stability 

derivatives on the longitudinal motion.”  [90]. 

 

 

Table 4-1: Non-dimensional longitudinal stability coefficients, [90] 
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Table 4-2: Non-dimensional lateral stability coefficients, [90] 
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Table 4-3: Dimensional longitudinal stability coefficients, [90] 

 

 

Table 4-4: Dimensional lateral stability coefficients, [90] 
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Figure 4-20: Longitudinal state space matrices, [90] 

 

 

Figure 4-21: Lateral state space representation, [90] 

 

 

Table 4-5: Frequency and damping of the longitudinal modes, using 2-DOF 

approximation, [90] 
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For lateral stability, three types of modes are distinct: 

1. Spiral mode characterises as a slowly convergent or divergent motion. 

2. Roll mode, i.e. highly convergent motion. 

3. Dutch roll mode, i.e. lightly damped oscillatory motion having a low frequency. 

When Equation (4.2) is solved for the lateral case, five roots exist, one real and two as a 

complex conjugate pairs.  The real root is associated with the spiral mode, whose value 

can be determined to be [90]:  

 

        
           

  
 (4.3) 

 

For a stable spiral, the nominator must be positive since    is usually a negative 

quantity. 

The first complex root is associated with the roll mode which is highly damped, and 

can be approximated as a first order characteristic given by [59]: 

 

       
 

 
     (4.4) 

Where:   is the roll time constant 

 

The second complex root is associated with the Dutch Roll mode, the un-damped 

natural frequency and the damping ratio is given by the following: 

 

      
                 

  
 (4.5) 

 

     
 

      
  

        

  
  (4.6) 
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In order to implement the dynamic stability module, two more significant input design 

variables are added.  These are: velocity and height of the designed aircraft under 

consideration.  Additional input values are required which are the initial state values for 

both longitudinal and lateral analysis.  Output results are shown in a text format.  This 

user interaction form has both inputs and outputs, and displays non-dimensional and 

dimensional derivatives, state space matrices and approximated modal values.  

Graphical outputs are also available to show the time response of each element in the 

state space representation.  The system can be excited by one of two disturbance 

signals, impulse or step.   

Figure 4-22 shows the dynamic stability module interaction form, for the Boeing 747-

200 aircraft.  For further analysis and the synthesis of feedback control, all the relevant 

data is exported as an ‘.m’ file for use in MATLAB/SIMULINK software.  Example 

outputs are presented in Appendix IV; the data applies to the case studies presented in 

chapter six. 

 

Another feature was added to the dynamic stability module which is its ability to 

prepare the input file (which is called for005.dat) for use in the DATCOM software.  

This file defines the flight characteristics and geometry of the designed aircraft as 

explained in Appendix I. Due to its specific format, any mistake or deviation from the 

prescribed format will cause DATCOM software to raise an error. To avoid this 

problem, a GUI was developed to create the input file as shown in Figure 4-23.   

Most of the input data are passed directly by the software developed as part of this 

research, while other data are entered manually through this interface.  This feature 

allows the use of the DATCOM software for predicting the stability and control 

derivatives used in dynamic stability analysis.  

The form is displayed as a tabbed notebook, and has multiple tabs. The additional 

variables required for DATCOM are input using this interface.  The variables required 

are explained in Appendix I.  These variables are grouped in fuselage, wing, 

empennage and aerofoil sections on the designed interface.   
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Figure 4-22: Dynamic stability module output form 

 

 

Figure 4-23: DATCOM interface form 
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4.8   Conclusions 

A software package for undergraduate teaching has been developed, to be known as 

iADS (Interactive Aircraft Design Software).  Torenbeek’s aircraft design formulae are 

used as the basis for aircraft synthesis.  Due to the fact that the GUI is as important as 

the software computations itself, an OOUI is implemented to provide an ergonomic 

interface to the software functions.   

The synthesis program does everything needed in the preliminary design environment.  

This includes calculations involving aircraft geometry, weights, CG, aerodynamics, 

aspects of flight performance, and cost estimation.  The output data are displayed in 

text form, as well as it can be saved as a spreadsheet for further analysis.  A parametric 

studies module is implemented to understand design parameters’ variations.  The RAE 

optimiser is also added that allows an optimum design to be arrived at subject to a 

number of constraints.  An additional module is employed to synthesise the takeoff 

stage in detail.  It is essential for students to evaluate both static and dynamic stability 

behaviour of the aircraft early on in the preliminary design phase.   

The dynamic stability module is implemented based on the analytical approach of 

aircraft equations of motion.  This early evaluation, before the detailed design phase 

takes place, makes the design process more efficient and helps to speed up the design 

process itself.  3-View of the proposed aircraft is available as well, and changes 

dynamically with the design variable variations to explore the influence of these 

variables on the design and geometric configuration of the aircraft.   

Estimation of aircraft weight and cost is fundamentally important.  It has been shown 

by many researchers that the cost of the aircraft is dependent on its weight.  Therefore, 

accurate weight estimation in the preliminary aircraft design phase will yield better 

indication of key economic factors that govern the commercial suitability and viability 

of the proposed aircraft design, such as seat mile cost and direct operating cost.  In the 

next chapter a new method for estimating the MTOW is presented.  It will be shown 

that the presented method yields a superior MTOW estimation, than methods that have 

been presented by various researchers in the past. 
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Chapter   FIVE 

Alternative Weight and Cost Estimation Modules 

 

5.1   Introduction 

Amongst all the design variables used in aircraft design, weight is the most important 

one.  It is the first variable that must be estimated as accurately as possible, not only in 

its estimation, but through the whole design process.  Performance of the aircraft is 

dependent on the aircraft having a suitable weight in order for it to carry out its 

intended mission.  Cost of aircraft which is another major parameter for customers 

(airliners) depends mainly on aircraft weight.  Therefore, manufacturers try to make the 

aircraft as light as possible.  Accurate weight estimation at an early stage of aircraft 

design process is a hard and a difficult task.  When the detailed design drawings are 

complete, the aircraft weight can be calculated accurately by evaluating each part and 

adding up all component weights.  The methodologies used for weight estimation are 

expanded synchronously with the design phases.  In the conceptual design phase, these 

methodologies are very simple in nature and have significant uncertainty [118] which 

estimate the aircraft weight as maximum takeoff weight (MTOW).  In the preliminary 

design phase, MTOW is broken down into components and sub-components, the 

methodologies become more complicated and accurate.  More specifically, as 

information becomes more accessible in this phase, the accuracy of prediction is 

increased from 10-15% to 5-10%.  Torenbeek’s formulae achieved a good accuracy of 

about 6% and almost over-weight predictions.  Now, the question is how to improve the 

accuracy to better than 4%?  This requires a development of a new methodology.  In 

fact, Roskam [12] describes three different methodologies that yield different values 

which differ by as much as 25%.  What makes the process difficult is the non-

availability of data that could be used to compare aircraft component weights.  

Although the overall weight figures (such as operating empty weight (OEW) and 

MTOW) are available, there is a scarcity of information on the detailed component, 

sub-system and system level. 

Hence, instead of applying a complete formulae set for one methodology, a modified 

weight module is suggested as a new approach for accurate weight estimation in the 

preliminary design phase [119].  This module evaluates each aircraft component weight 



103 
 

by applying many formulae of different methodologies and trying at the same time to 

avoid using any formula that has secondary (additional) variables which may not be 

available in the early stages of aircraft design.  The one that gives the lowest average 

value is selected to overcome the over-weight estimations of Torenbeek’s approach. 

 

 

5.2   Modified weight module 

Since the body of the aircraft (Wing, Fuselage, and tail) forms 50-60% of the empty 

weight, in methodology three different formulae sets that define component weights are 

used and the one that gives the lowest average value is selected.  The main input 

variables that are used in this module are:                    ,     , and   .  Other 

input variables such as:           and      
    are functions of the foresaid variables.   

If composite or other advanced materials are used, then an allowance is made by 

applying suitable user-controlled factors to each individual weight component.  These 

factors are used to overcome the shortcomings of some empirical methodologies as 

mentioned above.  For the reason that all formulae work in terms of mass rather than 

weight, some traditional weight-style abbreviations such as: OEW and MTOW are used 

interchangeably for convenience.  SI units are used unless otherwise mentioned.  In 

order to calculate component weights, pre-calculations for the load factors (limit and 

ultimate) are required as indicated in chapter three. 

 

The weight module evaluates the aircraft weight (MTOW) by breaking it down into: 

1. Fuel weight.  This is an input design variable. 

2. Zero fuel weight.  This consists of payload and operating empty weights. 

a. Payload.  This is calculated according to FAA regulations which suggest that 

passenger weights include 169 lbs per passenger plus 10 lbs for winter clothing and 

16 lbs of carry-on bags and personal items for a total of 195 lbs per passenger.  An 

additional 30 lbs is assumed for checked bags, leading to the total of 225 lbs per 

passenger.  This is higher than what has been assumed in the past and based on 

recent surveys of passenger weights.  The aircraft may also carry cargo as desired. 

An added cargo weight of 40 lbs per passenger is reasonable in the determination 
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of maximum zero fuel weight.  Therefore, the total weight per passenger is 265 lbs 

or 120 kg:  

               (5.1) 

 

b.   Operating empty weight.  This consists of operating items, flight crew, flight 

attendants, and empty weight. 

1. Operating items.  Torenbeek’s formula [10] for a short range aircraft is: 

 

                  (5.2) 

 

While for long range aircraft, the formula is: 

                   (5.3) 

 

2. Flight crew.  Torenbeek [10] suggests an average 93 kg per flight crew, i.e.:  

 

                    (5.4) 

 

 

3. Flight attendants.  Typically, there are 30 passengers per attendant and 

Torenbeek [10] suggests 68 kg per flight attendant: 

 

                 (5.5) 

 

4. Empty weight.  This weight consists of wing, fuselage, tail, propulsion, 

landing gear, surface control, systems, and furnishings components: 

a.   Wing: Wing weight represents about 17-27% of the empty weight. The following 

formulae (5.6, 5.7, & 5.8) are from Kroo [120], Torenbeek [10], and Raymer [14] 

respectively: 
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 (5.6) 

 

               
              

    
   

  

     
 

 

    

     
          

  
  

 
   

  
 
    

     (5.7) 

 

            
        

    
            

                  
   

   
         

 (5.8) 

 

Note that formulae (5.6 & 5.8) are in Imperial units.  

 

These formulae are applied for the current aircraft and Raymer’s formula is selected for 

the reason that it gives the lowest average value as shown in Figure 5-1. 

 

 

Figure 5-1: Wing weight from three different formulae 

 

b.   Fuselage: The formulae (5.9, 5.10, & 5.11, respectively) of Nicolai [121], 

Torenbeek [10], and Raymer [14] are used to calculate the fuselage weight as follows: 
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 (5.9) 

 

               
      

          

      
 (5.10) 

 

                            
           

              
    (5.11) 

 

Where:                
 
        

      
                  

    
 (5.12) 

 

Note that formula (5.11) is in Imperial units. 

 

Typically, Raymer’s formula gives the lowest average value as in Figure 5-2. 

 

 

Figure 5-2: Fuselage weight from three different formulae 

 

c.   Tail: Similar to the wing weight estimation, the formulae of Kroo [120], Torenbeek 

[10], and Raymer [14] (5.13, 5.14, & 5.15 respectively) are used to calculate both the 

horizontal and vertical tail weights as in the following: 
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    (5.13a) 

 

                       
         

             
   
  

 

          
  (5.13b) 

 

            (5.13) 

 

 

 

         
               

   

     
 (5.14) 

 

 

 

                
           

        
         

              
                  

   
          

    

   
 
     

      
  

   
 
   

  (5.15a) 

 

               
           

        
         

              
         

      

     
          

         
  

  
 
     

 (5.15b) 

 

            (5.15) 

 

 

Note that all formulae are in Imperial units except formula (5.14).  Again, Raymer’s 

formula gives the lowest average value as shown in Figure 5-3. 
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Figure 5-3: Tail Weight from three different formulae 

 

d.   Propulsion: The major factor in evaluating the weight of the propulsion group 

(propulsion system & nacelles) is the engine dry weight.  In the original weight 

estimation module, engine dry weight was an input design variable.  An alternative way 

to estimate this weight accurately is done by using the engine data given by Harris 

[122] and after curve fitting the data, the following two equations were determined: 

 

                
                                                    (5.16) 

  

               
                                                     (5.17) 

 

The weight of the propulsion system includes the engines, exhaust, thrust reverser, 

starting, controls, lubrication, and fuel systems.  Torenbeek [10] suggests the following 

formula for estimating this weight: 

                         (5.18) 

 

While his formula for nacelle group weight is: 

                     (5.19) 
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The total weight of propulsion group is: 

                    (5.20) 

Note that all weights in this sub-section are in pounds (lbs). 

 

e.   Landing gear: The total landing gear weight which includes structure, actuating 

system, and rolling assembly, is about 3.5-4% of MTOW for aircraft whose weight 

exceeds 4500 kg [14].  Landing gear weight estimation can be broken down into main 

gear weight and nose gear weight.  The following formulae developed by Torenbeek 

[10] are employed due to their good estimation (around 3.7% of MTOW): 

 

               
                           

    (5.21) 

 

              
                

    (5.22) 

 

The total weight is: 

 

             (5.23) 

 

Note that all weights are in Imperial units. 

 

 

f.   Surface controls: The weight of the surface controls comprises the systems 

associated with control surface actuation and depends mainly on the tail area, 

Torenbeek [10] suggests the following formula related to takeoff weight instead: 

 

               
   

 (5.24) 

Add 20% for leading flaps or slots and 15% for control dampers if used. 
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g.   Systems: Different analysts have their different categories for system component 

weights.  Therefore, it is better to select only one formula set from any one analyst.  

Raymer’s set [14] for example, is good but requires much detailed information which 

may not be available at the early design stage.  Torenbeek’s set [10] has been used for a 

long time and hence it is used here.  However, it is most likely to over-estimate the 

systems weight for the current generation of aircraft, mainly because of avionics and 

materials.   Systems are broken down into seven sub-categories as follows: 

 

g.1   Auxiliary power unit (APU): The installed APU weight is dependent mainly on 

the dry engine weight of APU as in the following formula: 

                
 (5.25) 

 In the absence of the uninstalled APU weight, Kundu’s formula [93] is used: 

       
           (5.26) 

 

g.2   Instruments and Avionics: This weight is estimated based on both takeoff weight 

and stage length: 

             
   

 
 
     

   
  

    
 
    

 (5.27) 

 

g.3   Hydraulics and Pneumatics: The weight of hydraulic systems is related directly 

with the takeoff weight: 

            
   

 
      (5.28) 

 

g.4   Electrical system: This weight depends only on cabin length (     ) and fuselage 

diameter (    ): 
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  (5.29) 

Note that this formula is in Imperial units. 

 

g.5   Air conditioning and Anti-icing: Again this weight depends on cabin length 

(     ) only: 

              
     (5.30) 

 

 g.6   Oxygen system: This weight is added to the modified module which relates to 

cruise altitude and range.  If the altitude is less than 25000 feet, the following formula 

is used: 

                 (5.31) 

 

If the altitude is higher than 25000 feet, the following formulae are used: 

                                            (5.32) 

                                         (5.33) 

 

g.7   Paint and Miscellaneous: Other weight is added to the modified module which 

represents 0.006 of the take-off weight:  

               (5.34) 

 

Therefore, the total systems weight is: 

                                          (5.35) 
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f.   Furnishings: Furnishings are mainly proportional to the number of actual passenger 

seats. For a more accurate calculation, this weight is based on the actual division of 

seats between first class and economy class.  In the early stages of the aircraft design 

process, the maximum number of seats of one class is used. Torenbeek’s formula [10] 

for estimating this depends on zero fuel weight, and is given as: 

 

               
     (5.36) 

 

 

Hence, Empty Weight is the sum of all structural component weights. i.e.:- 

                                        (5.37) 

 

 

5.2.1   Case study 

In the preliminary design phase, improving the weight estimate is a difficult process 

due to the non-availability of data that could be used in the estimation of maximum 

takeoff weight.  Although overall weight figures are available, there is a scarcity of 

information regarding detailed component, sub-system and system level weights.  

Operating empty weight (   ) and maximum takeoff weight (   ) are the only 

available data for the existing aircraft.  These data are used in a case study to assess the 

modified module.  Table 5-1 shows the output results of the Torenbeek’s weight 

estimation method described in chapter 3, whilst Table 5-2 shows the results for the 

modified weight estimation module described above. 

On examination of Table 5-1, we can conclude that the absolute average difference in 

operating empty weight is 5.14%, and 3.12% for maximum takeoff weight.  At first 

instance these figures seem very good for the preliminary design phase.  More 

specifically, as aircraft weight is reduced, these differences are reduced as well.  This 

explains why Torenbeek’s formulae have been in use for a long time, mainly for its 

simplicity and accuracy of prediction. 
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Aircraft 

Type 

Published Data Calculated Data % Diff. 

    

% Diff. 

    
                

A319 – 100 40800 75500 40773 76525 - 0.06 + 1.36 

A321 - 200 48500 95510 52487 99932 + 8.22 + 4.63 

A330 – 200 119600 238000 125006 240683 + 4.52 + 1.13 

A330 – 300 124500 235000 131967 246856 + 6.00 + 5.05 

A340 – 300 130200 276500 131979 283368 + 1.37 + 2.48 

A340 – 600 177800 368000 174859 363364 - 1.68 - 1.28 

737 – 700 38147 70305 38643 72053 + 1.3 + 2.49 

737 – 800 41145 79245 43974 83192 + 6.88 + 4.98 

737 – 900ER 44676 85130 47075 88918 + 5.37 + 4.45 

767 – 200ER 84280 179625 90966 185825 + 7.93 + 3.45 

767 – 400ER 103145 204570 111749 211826 + 8.34 + 3.55 

777 – 200ER 145015 297550 151545 302435 + 4.5 + 1.64 

777 – 300ER 167830 351500 185722 365633 + 10.66 + 4.02 

Table 5-1: Torenbeek weight estimation method  

 

 

Aircraft 

Type 

Published Data Calculated Data % Diff. 

    

% Diff. 

    
                

A319 – 100 40800 75500 38918 74670 - 4.63 - 1.10 

A320 - 200 42600 78000 43909 81046 + 3.07 + 3.91 

A321 - 200 48500 93510 46934 94879 - 3.23 + 1.46 

A330 – 200 119600 238000 117101 232778 - 2.09 - 2.19 

A330 – 300 124500 235000 118746 233636 - 4.62 - 0.58 

A340 – 300 130200 276500 124116 275505 - 4.67 - 0.36 

A380 – 800 276800 571000 264111 571645 - 4.58 + 0.11 

737 – 700 38147 70305 36664 70074 - 3.89 - 0.33 

737 – 800 41145 79245 41294 80512 + 0.36 + 1.6 

737 – 900ER 44676 85130 43277 85121 - 3.13 - 0.01 

767 – 200ER 84280 179625 86626 181484 + 2.78 + 1.03 

767 – 400ER 103145 204570 99113 199189 - 3.91 - 2.63 

777 – 200ER 145015 297550 139771 290660 - 3.62 - 2.32 

777 – 300ER 167830 351500 164944 345056 - 1.72 - 1.83 

Table 5-2: Modified weight estimation module 
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From Table 5-2 it can be seen that the absolute average difference in operating empty 

weight (   ) is 3.45%, and 1.06% for maximum takeoff weight (   ).  These figures 

show an improvement over the original methodology.  The modified module improves 

weight estimation by 33% for operating empty weight (   ) and 66% for maximum 

takeoff weight (   ) in terms of absolute average difference.  The comparison of the 

predicted MTOW’s, with actual published MTOW’s of old and new aircraft confirms 

that the proposed methodology works very well, with predictions of the MTOW better 

than 3% in most cases which is a vast improvement on the existing MTOW estimation 

methods in the preliminary design phase. 

 

 

5.3   Cost estimation module 

Direct operating cost and seat mile cost are significant parameters in evaluating 

competitive aircraft designs.  Although the rule of thumb is that the aircraft cost 

depends mainly on aircraft empty weight, occasionally this is not right.  For example, 

using new technologies and materials (e.g. composite) makes the aircraft lighter, but the 

production cost is increased.  Therefore, manufacturers always pick the design and 

price that maximises their own return.  This requires better estimates of the operating 

costs (OC) and a good measure of the market elasticity.  Customers are interested in 

cost savings, not just low aircraft price at the time of purchase but also throughout the 

lifetime of the aircraft [123].  More specifically, one pays for a pound of aluminium in 

the wing once, but a pound of fuel on every flight [124].  

Aircraft operating costs consist of many contributing costs which are due to 

depreciation, insurance, maintenance, fuel burn, flight crew, cabin crew, landing fees, 

and passenger services.  These items are grouped into two main categories which are 

direct operating cost (DOC) and indirect operating cost (IOC).  IOC is difficult to 

estimate well, since it depends on the services that the airline (customer) offers [124].  

Therefore, DOC is a very useful and widely-used parameter for comparative analysis.  

In 1944, the Air Transportation Association of America (ATA) developed the first set 

of equations to estimate DOC.  It continued periodically to revise these formulae to 

match current statistical cost data.  The last updated version was published in 1967 

[97].  Many methodologies have been developed thereafter [125] [126].  The purpose of 
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applying a standard methodology to estimate DOC is to enable both the manufacturer 

and the customer to assess the economic suitability of the aircraft operation on a given 

route.  ATA pointed out that it “must essentially be general in scope, and for simplicity 

should preferably employ standard formulae into which the values appropriate to the 

aircraft under study are substituted” [97].  Typically, aircraft manufacturers use 

standard methodologies in their cost comparisons, while customers (airlines) always 

generate their own methodologies based on many things that may not be accounted for, 

such as fleet size, route structure, accounting procedures, etc, or capitalise certain costs 

which then can be reported in depreciation or amortisation cost figures. 

 

5.4   Extended cost estimation module 

A cost module based on the AEA methodology was incorporated into the software as 

described in the previous chapter.  It evaluated the aircraft price based on statistical 

data, DOC per flight, and seat-mile cost. Instead of implementing one standard 

methodology (AEA [98]) to analyse DOC, two further common methodologies (ATA 

[97] and NASA [127]) have been incorporated into this cost module.  Their formulae 

are explained in detail in the DOC components section (5.4.1).  ATA, the professional 

society of airliner business in the U.S., used industry-wide statistical data to develop a 

standard methodology for estimating comparative DOC for jet aircraft.  NASA’s 

methodology is an estimation known as DOC+I (Direct Operating Cost plus Interest).  

It is based on the work done by Liebeck [127], who was able to draw upon the 

operating costs of McDonnell Douglas aircraft in commercial service up until 1993.  It 

is therefore based on a more recent set of data which reflect airline costs in a 

deregulated environment.  AEA methodology has been accepted as the basis for 

comparison in Europe.  These methodologies depend initially on estimating aircraft 

price (capital cost).   

Estimating aircraft price in the early stages of aircraft design requires an investigation 

of the actual data available.  Prices of the current Boeing [128] and Airbus [129] 

aircraft at year 2010 are shown in Table 5-3 and Table 5-4, respectively.  These prices 

are plotted as a function of their empty weights in Figure 5-4.  Prices are shown as an 

average, since the exact price of a given aircraft depends upon special equipment 

particular to different buyers.   
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Airplane Families  2010 $ in Millions Average  

737 Family  

737-600  56.9  

737-700  67.9  

737-800  80.8  

737-900ER  85.8  

747 Family  

747-8  317.5  

747-8 Freighter  319.3  

767 Family  

767-200ER  144.1  

767-300ER  164.3  

767-300 Freighter  167.7  

767-400ER  180.6  

777 Family  

777-200ER  232.3  

777-200LR  262.4  

777-300ER  284.1  

777 Freighter  269.1  

787 Family  

787-8  185.2  

787-9  218.1  

Table 5-3: Aircraft prices for various Boeing aircraft in 2010, [128] 

 

 

Airplane Type 2010 $ in Millions Average 

A318 63.2 

A319 74.7 

A320 82.0 

A321 95.7 

A319/A320/A321: new engine option 

average 

6.2 

A330-200 193.8 

A330-200 Freighter 196.6 

A330-300 215.5 

A340-300 231.0 

A340-500 253.8 

A340-600 267.4 

A350-800 228.6 

A350-900 259.6 

A350-1000 290.7 

A380-800 365.3 

Table 5-4: Aircraft prices for various Airbus aircraft in 2010, [129] 
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Figure 5-4: Airbus & Boeing aircraft prices vs. Operating empty weights 

 

Although, Sforza [130] was interested in the specific cost of the aircraft in terms of 

$/lb, it is easier to evaluate the aircraft price (in $) using the operating empty weight 

(   ) directly as in the following: 

 

                  
                                    (5.38) 

 

                  
                                      (5.39) 

 

A similar procedure has been adopted by Kroo [120] to estimate the price of the 

aircraft’s engine as shown in Figure 5-5.  These prices are based on data available and 

applicable in 1990 and can be corrected to figures pertinent to 2010,  by applying a 

simple inflation multiplier (1.76) which is the ratio of the consumer price index (CPI) 
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for year 2010 to that for 1990.  Reference [131] presents some deflators that are used in 

the aerospace industry while more extensive information on the CPI and other 

economic factors may be found in [132].  The formula for engine price (in $) is: 

 

                    (5.40) 

 

 

 

 

Figure 5-5: Engine prices vs. SLS thrust (lbs), [120] 

 

 

5.4.1   DOC components 

DOC is expressed in terms of $/hour, $/mile, ¢/seat-mile, or for cargo aircraft, ¢/ton-

mile.  Costs in terms of $/mile indicate the maximum loss of the airliner with an empty 

aircraft, while costs per unit productivity such as ¢/seat-mile, or ¢/ton-mile indicate the 

fare that must be charged with reasonable load factors.  DOC is broken down into its 

components and is explained in the following sub-sections.  Each component cost is 

computed using the three methodologies: ATA, NASA, and AEA.  Note that all 

component costs are per trip and some of them are based on the evaluation of the 

annual utilisation ( ) of the aircraft, which in turn depends mainly on the customer and 
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its route (i.e. the range). The latter can be derived in terms of block hour time (  ).  The 

original ATA graph [97], shown in Figure 5-6, is represented by the following formula: 

 

              
        (5.41) 

 

 

Figure 5-6: Original ATA graph for utilisation, [97] 
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MIT [133] collated the daily utilisation for a number of US airliners in year 2006 as 

shown in Figure 5-7.  The average utilisation from Figure 5-7 is determined to be, 

10.64 hours/day and in turns the annual utilisation is about 3800 hours/year.  It seems 

approximately equal to the average of the original ATA graph. 

 

 

 

Figure 5-7: Daily utilisation in the USA for year 2006, [133] 

 

 

NASA suggests values of utilisation as trips per year as: 

Short range aircraft = 2100 trips/year 

Medium range aircraft = 625 trips/year 

Long range aircraft = 480 trips/year 

 

For short and medium ranges, AEA utilisation ( ) formula in terms of hours/year is: 

   
    

      
     (5.42) 

 

While for long range, it is assumed to be equal to 4800 hours/year. 
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5.4.1.1   Depreciation 

The Depreciation of the capital value of an aircraft is dependent to a large degree on the 

individual airline and its competitive conditions as the aircraft is maintained in a fully 

airworthy condition throughout its life.  ATA depreciation period (  ) is 12 years and 

0% is the residual value for subsonic aircraft and its components [97].  The ATA 

depreciation formula is: 

 

    
                         

    
 (5.43) 

 

NASA’s formula for determining depreciation is: 

    
         

 
 (5.44) 

Where             is evaluated using the following formula: 

                 
   

   
       

   

   
  

    

   
       

    

    
  (5.45) 

 

AEA suggests a ten-aircraft fleet with a 14-year lifespan and a residual value (R) of 

10% of the total investment. i.e.: 

 

    
                             

    
 (5.46) 

 

5.4.1.2   Hull Insurance  

ATA insurance value per trip [97] is determined as follows: 

 

     
           

 
 (5.47) 

Where:               as in Figure 5-8 [134]. 



122 
 

 

Figure 5-8: ATA insurance rate for years 2000- 2010, [134] 

 

NASA’s formula [127] for determining the hull insurance is: 

     
          

 
 (5.48) 

 

 

AEA’s formula for determining the hull insurance is: 

     
         

 
 (5.49) 

 

5.4.1.3   Interest 

Although the original ATA method did not include the interest cost, most aircraft 

purchases nowadays are financed through the use of long-term debt and a down 

payment from company funds.  For this reason, Hays [135], suggests the following 

AEA formula to be used in ATA methodology with      typically = 0.07 [134] as in 

Figure 5-9: 

 

     
                              

 
 (5.50) 
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Figure 5-9: ATA interest rate for years 2000- 2010, [134] 

 

The NASA formula for interest cost per trip is: 

 

     
                             

 
 (5.51) 

Where      = 0.055 [127]. 

 

The AEA formula is similar to the ATA formula with       = 0.053. 

 

 

5.4.1.4   Flight Crew 

ATA’s formula is based on economic conditions that prevailed in 1967 and the result 

has to be updated to 2010 conditions.  It is convenient to simply inflate the equation 

result by the ratio of the consumer price index (CPI) [85] in 2010 to that in 1967 which 

is: 

                                      

This value can easily be corrected to the (CPI)2013.  Since the majority of data for 

costing purposes was available for the period ending 2010, it was decided not to apply 

the CPI correction for the year 2013. 
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This factor modifies the ATA’s formula to be: 

        
         

    
      (5.52) 

 

The NASA formula for determining the flight crew cost is: 

                       
         

    
  (5.53) 

Where     is in pounds (lbs).   

 

AEA uses $493 per block hour for a two-crew operation, i.e.: 

           (5.54) 

 

 

5.4.1.5   Cabin Crew 

ATA cabin crew costs are classified as indirect costs and hence, there is no separate 

formula for these costs. 

 

NASA’s formula for cabin crew cost is: 

                   (5.55) 

 

Where      = base cabin crew cost of $60/hr for domestic flights and $78/hr for 

international flights.  The AEA formula is similar to NASA except that AEA uses 

$81/hr for       . 
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5.4.1.6   Fuel and Oil 

The current fuel prices may be found from the IATA website [136].  A factor of 0.326 

is used to convert 1kg of fuel weight to 1gal of volume for the reason that the density of 

Jet A fuel may be taken as 6.76 lbs/gal at standard conditions.  On the other hand, an 

examination of prices for turbine oil shows that it is around $50/gal.  Therefore, 

applying simple CPI inflation is sufficiently accurate and the cost of lubricating oils is 

relatively stable and does not generally follow the rise in fuel prices. 

 

The ATA formula [97] for fuel and oil cost per trip (which includes 2% non revenue 

flying and assuming that the rate of consumption of oil is 0.135 lbs/hr/engine), is: 

 

                                          (5.56) 

 

Where                  is the average value for the ten year period, for the first 

quarter as in Figure 5-10 [134], and               .  The figure of 0.135 

lbs/hr/engine i.e., the rate of oil consumption may be changed if a more accurate value 

is available for the specific engine.  

 

 

The NASA and AEA formula for determining the cost of fuel is: 

 

      
         

  
 (5.57) 

Where        is in pounds and excluding reserves, while                 . 
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Figure 5-10: First quarter fuel cost for years 2000- 2010, [134] 

 

5.4.1.7   Maintenance   

This term includes labour and material costs for both airframe and engines. 

Furthermore, burden costs are also included i.e.: 

 

                                  (5.58) 

 

5.4.1.7.1   Airframe labour cost 

 The ATA formula for determining the labour cost associated for maintaining the 

airframe is: 

                                
    (5.59) 

 

     

 Where          
         

    
   

   

 
    
    

     
  , (5.60) 

 

                                        , (5.61) 

            , as in Figure 5-11 (assuming average 2000 hours / year), and 

        Cruise Mach No. 
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Figure 5-11: Labour cost per person per year for years 2000-2010, [134] 

 

The NASA formula determining the labour cost associated for maintaining the airframe 

is: 

                       
    

   
          

    

   
 
 
            

                 
    

   
          

    

   
 
 
        (5.62) 

Where              

 

The AEA formula determining the labour cost associated for maintaining the airframe 

is: 

          
               

   

       
                     

  
      (5.63) 

Where              

 

 

5.4.1.7.2   Airframe material cost 

The ATA formula determining the material cost associated for maintaining the airframe 

is: 



128 
 

                        (5.64) 

 

Where         
        

   
   , and         

        

   
 

 

The NASA formula for the material cost associated for maintaining the airframe is: 

                              
    

   
          

    

   
 
 
           

       
    

   
         

    

   
 
 
         (5.65) 

 

The AEA formula for the material cost associated for maintaining the airframe is: 

      
                 

  
   

   

   
  (5.66) 

 

5.4.1.7.3   Engines labour cost  

The ATA formula for determining the labour cost associated for maintaining the 

engines is: 

                             (5.67) 

Where                
          

   
        ,  (5.68) 

               
         

   
       (5.69) 

 

The NASA formula for determining the labour cost associated for maintaining the 

engines is: 

            
         

   
        

     

  
               (5.70) 
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The AEA formula for determining the labour cost associated for maintaining the 

engines is: 

                           
   

 (5.71) 

Where                  
    , and               

 

5.4.1.7.4   Engines material cost 

The ATA formula for determining the material cost associated for maintaining the 

engines is: 

                        (5.72) 

Where                    
    

   
  , (5.73) 

                      
    

   
  (5.74) 

 

The NASA formula determining the material cost associated for maintaining the 

engines is: 

           
         

   
         

    

  
                 (5.75) 

 

The AEA formula determining the material cost associated for maintaining the engines 

is: 

                            
   

 (5.76) 

Where         
     

  
 
   

      (5.77) 

                           
    (5.78) 

                         (5.79) 
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Note that the AEA total engine maintenance (labour + material) formula is: 

                    
      

       
 (5.80) 

 

5.4.1.7.5   Maintenance burden 

This is defined as labour and material overheads that contribute to overall maintenance 

costs through activities such as administration, controlling, monitoring, planning, 

testing, and tooling.  It is also called “Indirect Maintenance Cost”.  

 

The ATA formula for determining the maintenance burden is: 

   

                   (5.81) 

    

The NASA formula for determining the maintenance burden is: 

                 (5.82) 

 

The AEA has no burden cost included. 

 

 

5.4.1.8   Landing fee 

The landing fee is based on the maximum landing weight for domestic operations, or 

maximum takeoff gross weight for international operations. This may vary significantly 

in Europe, with possible additional fees such as for     emissions or community noise, 

which are not included in the DOC.  The ATA methodology categorises landing fee as 

an indirect cost, while the NASA formula is: 

 

        
    

    
                                (5.83) 

         
   

    
                                        (5.84) 

Note that the weights (           )  are in pounds (lbs). 
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The landing fees as determined by the AEA formula is: 

        
   

    
 (5.85) 

 

5.4.1.9   Navigation fee 

The navigation fee is based on the first 500nm of a trip and the maximum takeoff gross 

weight of the aircraft, and applies to international flights only [130]. ATA categorised 

this cost as an indirect cost, while the NASA formula for its determination is: 

 

              
   

    
 (5.86) 

   Note:        is in pounds (lbs).          

 

 

Navigation fees can be calculated by using the AEA formula as: 

         
  

    
  

   

     
 (5.87) 

 

5.4.1.10   Ground handling fee 

This cost is included in the DOC in AEA methodology only using the following 

formula: 

              (5.88) 

 

 

Direct Operating Costs: 

The total DOC per flight for the ATA methodology for the components defined before 

is: 

                                     (5.89) 
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For the NASA methodology: 

                                                       (5.90) 

 

For the AEA methodology: 

                                                           

 (5.91) 

 

The DOC calculations above for the three different methodologies differ in the 

formulation, the AEA and NASA methodologies differ by the ground handling charge, 

but produce very different results, due to the empirical formulation of the various 

formulae. 

 

 

5.4.2   Case study 

To make a good comparison between ATA, NASA, and AEA methodologies, all of 

them have been applied to the current Airbus and Boeing aircraft.  At a glance, the 

AEA methodology gives the highest DOC values and in turn the highest SMC values as 

shown in Figure 5-12 and Figure 5-13, respectively.  To understand the differences 

one needs to break down the DOC into its main components and investigate each one. 

The first component of the DOC under consideration is the standing charge (or so-

called ownership) which consists of depreciation, insurance, and interest.  These costs 

form 30-40% of the DOC and depend mainly on the annual utilisation of the aircraft. 

Obviously, as the utilisation increases, the standing charges decrease.  Although NASA 

methodology has the lowest average value, the main drawback of NASA methodology 

is the ambiguous definitions of ranges (short, medium, and long).  On the other hand, if 

the aircraft is fully owned, interest is not included. 
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Figure 5-12: DOC for ATA, NASA, and AEA methodologies 

 

 

Figure 5-13: Seat/Mile-Cost for ATA, NASA, and AEA methodologies 

 

From Figure 5-14, the differences between ATA and NASA are relatively small and 

hence, ATA methodology is the better choice.  From the engineering design point of 

view, Swan [137] suggests a simple way to overcome this problem by considering a 

monthly lease cost for new aircraft at about 0.8-0.9% of the aircraft price. 

 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

400000 

450000 

500000 

73
7-

70
0 

73
7-

80
0 

73
7-

90
0E

R
 

76
7-

20
0E

R
 

76
7-

40
0E

R
 

77
7-

20
0E

R
 

77
7-

30
0E

R
 

78
7-

8 

A
3

19
 

A
3

20
 

A
3

21
 

A
3

30
-2

00
 

A
33

0
-3

00
 

A
3

40
-3

00
 

A
3

40
-6

00
 

A
3

80
-8

00
 

DOC/Flight ($) vs. Aircraft Type 

ATA 

NASA 

AEA 

0 

2 

4 

6 

8 

10 

12 

73
7-

70
0 

73
7-

80
0 

73
7-

90
0E

R
 

76
7-

20
0E

R
 

76
7-

40
0E

R
 

77
7-

20
0E

R
 

77
7-

30
0E

R
 

78
7

-8
 

A
3

19
 

A
32

0
 

A
3

21
 

A
3

30
-2

00
 

A
3

30
-3

00
 

A
3

40
-3

00
 

A
34

0-
60

0 

A
3

80
-8

00
 

Seat Mile Cost ($/mile/seat) vs. 
Aircraft Type 

ATA 

NASA 

AEA 



134 
 

 

Figure 5-14: Standing charges cost for ATA, NASA, and AEA methodologies 

 

Maintenance cost is the second component that must be considered. In general, it makes 

up 13% of the DOC [137].  It is based on the utility of the aircraft which is in “steady-

state maintenance”.  That means the maintenance savings of the first five years for new 

designed aircraft have been finished and the second half-life maintenance cycles has 

been initiated.  Although the most expensive inspections occur once every 3-4 years, 

the average cost is generally arrived at by rule of thumb.  Figure 5-15 shows that the 

maintenance cost forms 20-25% of DOC for ATA, 8% for NASA, and less than 1% for 

AEA.  These huge differences make the comparison meaningless. 

 

 

Figure 5-15: Maintenance cost for ATA, NASA, and AEA methodologies 
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Flight crew cost is another major component of DOC.  It is based on both flight time 

and maximum take-off weight for ATA and NASA, while it is based only on flight time 

for the AEA methodology.  Although there is not much difference between the ATA 

and AEA results, as shown in Figure 5-16, MIT [133] data agree completely with 

ATA. 

 

 

Figure 5-16: Flight crew cost for ATA, NASA, and AEA methodologies 

 

Fuel cost has changed rapidly in the last 10 years and forms a significant parameter that 

affects the aviation market.  There is no difference noticed between the three 

methodologies as shown in Figure 5-17.  Although ATA added the oil used cost to the 

fuel cost, it makes only a very small difference, and hence can be discounted. 

 

 

Figure 5-17: Fuel cost for ATA, NASA, and AEA methodologies 
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Another methodology, which has been developed by Swan [137], was applied.  It 

evaluates the DOC as a function of stage length and seat capacity.  It is based on years 

1999-2001 data, and one needs to apply an inflation factor of 1.266 to update data to 

year 2010.  Figure 5-18 shows that Swan methodology gives approximately the same 

average difference when compared with the ATA methodology.  ATA developed 

statistical equations, which includes attendant crew, landing fee, navigation costs, and 

other costs associated with operating an aircraft, for estimating IOC.  By adding IOC to 

DOC, ATA methodology has the ability to calculate the total operation cost (TOC) 

rather than DOC alone. 

 

 

 

Figure 5-18: DOC for ATA, NASA, AEA, and Swan methodologies 
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5.5   Conclusions  

In the preliminary design phase of the interactive design process, where the maximum 

takeoff weight needs to be broken down into its components and sub-components, the 

prediction methodologies become complicated.  Estimation methods in this phase 

generally improve the weight estimation accuracy from 10-15% (in the conceptual 

design phase) to 5-10%.  A modified module has been developed to increase the 

accuracy to better than 4%.  Its output results agree very favourably with the published 

data of current Airbus and Boeing aircraft. 

Cost-benefit analysis is a significant parameter in evaluating competitive aircraft 

designs. DOC is a very useful and widely-used parameter for comparative analysis. 

ATA and NASA are two common methodologies that are added to the AEA 

methodology, allowing the cost estimation by any method the user chooses.  All cost 

estimation methods have been applied to estimate the DOC and SMC for the existing 

transport aircraft.  The results show that ATA and NASA methodologies are close to 

each other. 

The weight estimation was based on the lowest value from one of the many empirical 

equations.  However, in the case of cost analysis no such choice is made.  It is up to the 

student to choose one of the costing methods depending upon operational and fiscal 

requirements. 
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Chapter    Six 

Case Studies 

 

6.1 Introduction 

Aircraft design is a complex and iterative process.  It is a classical problem based 

learning Problem-Based Learning scenario.  As depicted by figure 1.3, there is a 

substantial amount of self directed learning in the various stages of design.  For 

students of aerospace engineering studying aircraft design, one or two semesters of 

study are not enough to understand all the aspects of design methodologies required in 

the various stages of design.  A teaching software tool can greatly assist in 

understanding and speeding up the design process.  It can also provide them with 

baseline results that can be used to check their analytical calculations against.  Students 

with access to software tools such as the one developed in this research, can experiment 

with design changes quickly and more efficiently which will enable enhanced and 

deeper understanding.  These benefits and others were stated in chapter one.  

Understanding and assessing these benefits require solving a practical design problem 

as done by a typical student team, typically in the final year of an aeronautical 

engineering degree course, whilst studying aircraft design.   

 

6.2   Aircraft design problems 

In this section, two case studies are presented that explore the limitations of 

conventional undergraduate aircraft design approach and how the software can enhance 

the student experience to investigate the effect of design variables on the whole aircraft 

design.  The studies are presented as an emulation of a typical student design process. 

 

6.2.1   Case study A 

The design process starts with design requirements given to a student team. For the 

purposes of illustration a typical specification will be assumed.  A typical brief 

comprises the following requirements, but may have other aspects specified as well: 
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1. A civil aircraft that transports 150 passengers over a range of 5500 km. 

2. Maximum cruise speed Mach 0.84 and ceiling above 9500 m. 

3. Maximum distance for takeoff to be 2500m, for landing not more than 1500 m. 

4. Pressurised cabin with air conditioning and oxygen supply. 

 

According to the above requirements, the student team starts the first stage in the 

conceptual design phase with the “estimation of maximum takeoff weight”.  The 

common estimation approach is to break down this weight into its components, i.e.: 

 

                     (6.1) 

 

The operating empty weight (   ) is: 

               (6.2) 

 

The procedure of estimation starts by initially guessing a likely value of maximum 

takeoff weight based on similar aircraft in the market.  The available aircraft that match 

the requirements are: 

1. Airbus A319-100, 156 passengers, 6700 km, and 75500 kg. 

2. Boeing 737-700, 149 passengers, 6230 km, and 70305 kg. 

3. McDonnell Douglas MD-87, 139 passengers, 4300 km, and 63500 kg 

 

If the number of passenger versus aircraft weight data above is plotted, a simple linear 

equation can be fitted through the data, from which an aircraft with 150 seats is likely 

to weigh 71000 kg.  Students at this stage may decide on a lower weight, due to use of 

composite construction, so may choose 68000kg as their target weight.  This is a 

reasonable estimate for the class of aircraft under consideration.  The next step is to 

estimate the fuel weight by using the fuel-fraction method.  In this method, the aircraft 

mission is broken down into a number of segments.  These segments are: 1- engine 
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warm-up, 2- taxi, 3- takeoff, 4- climb, 5- cruise, 6- loiter, 7- descent, and 8- landing, 

taxi, and shut down.  Fuel weight in each segment is evaluated either by simple 

calculations or by estimation based on the past experience, or as in the textbooks.  

Segments 1, 2, 3, 4, 7, and 8 are estimated as: 0.99, 0.99, 0.995, 0.98, 0.99, and 0.992, 

respectively.  Fuel fraction for cruise segment 0.805 is calculated from Breguet’s range 

equation with cruise velocity of 254 m/s (Mach 0.84).  Then, total fuel fraction ( 
     

   
 ) 

is 0.244.  Payload weight is determined based on FAR 25 as in chapter three, i.e.: 

                         (6.3) 

 

 

Crew weight, which includes two flight-crew and five flight-attendants, is determined 

also as in chapter three, or using CS25, i.e.: 

                          (6.4) 

                        (6.5) 

                          (6.6) 

 

Hence, 

                                    (6.7) 

 

Rewriting Equation (6.1) and using Equation (6.2) yields: 

    
          

  
  
   

 
     

   

   (6.8) 

 

Step three is applying Equation (6.3), using the guess value of (           , to 

calculate empty weight fraction (
  

   
), i.e.: 

  

   
        , and              (6.9) 
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Step four is applying the following Equation to calculate (   ): 

  

   
         

      (6.10) 

 , which yields:                 

 

Now, a guess must be made of another value for      and, step three and four repeated 

until the guessed value equals the calculated value as in Table 6-1: 

 

    

guess 

  

   
    

    

calculated 

68000 0.4975 33830 65043 

65000 0.4989 32429 65418 

66000 0.4984 32894 65290 

65500 0.4987 32665 65351 

Table 6-1: MTOW estimate iterations 

 

The final values are: 

Maximum takeoff weight = 65400 kg 

Empty weight = 32615 kg 

Fuel weight = 16870 kg 

 

The second stage of estimations, which also is based on past experience, includes the 

evaluation of wing loading, takeoff thrust, and maximum lift coefficient.  These 

estimations are necessary to meet performance requirements such as takeoff field 

length, landing field length, and climb rate.  Selecting wing loading = 500 kg/m
2
, gives 

wing area = 130.8 m
2
, while selecting thrust loading equal to 0.35, gives takeoff thrust 
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= 50163 pound (lbs).  A point to be noted here is that selecting the highest possible 

wing loading and the lowest possible thrust loading (which achieves all performance 

requirements) results in an aircraft with lowest weight and lowest cost.  High aspect 

ratio decreases induced drag in cruise and saves fuel.  Therefore, by selecting aspect 

ratio = 10, the following aerodynamic coefficients are determined: 

Zero-lift drag = 0.0264, maximum lift coefficient = 1.6, takeoff lift = 2.1 coefficient, 

and landing lift coefficient = 2.4. 

 

At this point, the student team is still working together to select the shape 

(configuration) of the proposed aircraft.  A conventional configuration is selected based 

on similarly available aircraft in the market which are characterised as: 

1. Most of them have a low wing configuration. 

2. Most of them have wing-mounted engine, some have rear fuselage-mounted 

engine. 

3. All have a tricycle layout, are wing-mounted, and have retractable into wing-

fuselage intersection landing gear. 

4. A conventional tail is more used than a T-tail configuration. 

5. The database and experience dealing with conventional configuration is very 

large.  It is limited and even non-existent in some of the other configuration. 

 

After the aircraft’s shape selection, each student starts his/her component design as 

follows: 

Fuselage design: fuselage shape depends mainly on seat configuration which in turn 

depends on the number of passengers. It can be described by two parameters; fineness 

ratio and tail-cone length to fuselage diameter ratio.  Past experience for transport 

aircraft shows that the fineness ratio’s range is 7-11 and 2.6-4 for the second ratio.  Seat 

configuration includes the number of seats abreast, number of aisles, and seat 

specifications (e.g. width, pitch, height, etc).  For 150 passengers, selection of 6 seats 

abreast and single aisle, gives 25 rows, seat pitch = 0.91 m, cabin length = 22.5 m, and 
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fuselage diameter = 4 m.  Selecting nose cone length = 4 m, and rear cone ratio = 3.  

Hence, total fuselage length = 38.5 m. 

 

Engine selection: since total takeoff thrust required is 50163 pounds, with number of 

engines = 2, thrust /engine = 25082 pounds.  Hence, CFM 56-5A1 is selected with 

thrust = 25100 pounds, and 2266 kg dry weight.  It is decided to mount the engines 

under the wing, forward to centre of gravity (the aircraft works as a tractor). 

 

Wing design: this is the most important component of an aircraft, since its geometry 

affects all other aircraft components.  Some wing variables are determined which are 

area, aspect ratio, and wing configuration.  Others must be selected or evaluated.  A 

sweep angle of 30 degrees is selected to achieve a cruise speed of M0.84.  The second 

most important wing variable, after wing area, is its aerofoil.  This is responsible for the 

generation of the optimum pressure distribution on wing surfaces (top and bottom 

surfaces) such that the required lift is created.  The aerofoil selection is based on its 

general features.  These features include the maximum lift coefficient, highest lift curve 

slope, and lowest pitching moment coefficient.  An aerofoil NACA 64A413/411 is 

selected with thickness ratio at root = 0.13 and at tip = 0.11.  Taper ratio is estimated 

equal to 0.3, since it has a great effect on lift distribution calculations, while the 

incidence angle is estimated = 2 degrees.  Finally, flaps are used to increase exposed 

wing area which means a further increase in lift.  Flap design variables are estimated as 

a fraction of either root chord or semi-span of the wing.  The inboard span fraction is 

estimated = 0.5, while outboard span fraction is = 0.8.  The inboard and the outboard 

chord fractions are estimated = 0.2. 

 

Empennage design: The next step is placing the empennage on the aircraft to 

determine the empennage moment arms.  These moment arms are obtained from the 

proposed aircraft drawing.  In order to keep aircraft weight and drag as low as possible, 

it is desirable to keep tail area as small as possible.  Tail area is determined by 

estimating tail volume coefficients based on past experience.  A value of 0.8 and 0.06 

are selected for horizontal and vertical tail volume coefficients, respectively.  Table 6-2 



144 
 

shows the tail design variable estimations.  Again, these estimations are based on 

similar available aircraft in the market and the past experience. 

 

Design variable Horizontal tail Vertical tail 

Aspect ratio 5 1.8 

Sweep angle 30 40 

Taper ratio 0.3 0.3 

Thickness ratio 0.12 0.13 

Aerofoil NACA 0012 NACA 0015 

Table 6-2: Tail design variable estimations 

 

At this point the conceptual design phase is finished and the preliminary stage starts.  In 

preliminary design phase, students apply semi-empirical formulae to calculate the 

parameters of aircraft components needed for detailed design phase in a higher 

accuracy.  Starting with the Geometry section, Table 6-3 and Table 6-4 show the 

calculated data for each aircraft component based on the formulae presented in chapter 

three: 

 

Wing:  

                 

Output Parameter Value 

Span 36.17 m 

Root (centreline) Chord 5.56 m 

Tip Chord 1.67 m 

Mean Geometric Chord 3.58 m 

Mean Aerodynamic Chord 3.97 m 

Exposed Wing Span 31.78 m 

Exposed Wing Area 108 m
2
 

Distance from Fuselage Nose to 

Wing Quarter Root 

14.47 m 

Distance from Fuselage Nose to 

Wing Centre of Pressure 

18.31 m 

Table 6-3: Wing geometry output parameters 
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Tail: 

Output Parameter Horizontal Tail Vertical Tail 

Area 21.66 m
2
 14.92 m

2
 

Span 10.41 m 5.18 m 

Root Chord 3.20 m 4.45 m 

Mean Geometric Chord 2.08 m 2.88 m 

Tail Arm 19.16 m 19.02 m 

Table 6-4: Tail geometry output parameters 

 

Fuselage: Wetted Area = 433.54 m
2
.  Nacelle:  Wetted Area = 14.93 m

2
.  For Weight 

section, gust load factor = 6.288 and manoeuvre load factor = 4.125.  Table 6-5 shows 

the calculated aircraft component weights: 

 

Component Weight (kg) 

Wing 9411.2 

Fuselage 9788.6 

Tail 1251.9 

Propulsion (engines + nacelles) 7370.8 

Undercarriage 2650.2 

Surface Controls 1077.5 

Systems 4769.7 

Furnishings 3593.1 

Empty Weight 39913.0 

Operating Items 1292.5 

Crew 526 

Operating Empty Weight 41731.5 

Payload 18030.5 

Zero-Fuel Weight 59762 

Fuel 17000 

Maximum Takeoff Weight 76762 

Table 6-5: Calculated aircraft component weights 
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It should be noted that the estimated weight is higher than the target weight.  In the CG 

and Stability section, the moments of each component are calculated to evaluate CG 

output parameters as in Table 6-6: 

 

Output Parameter Value 

C.G. Position of Empty Aircraft 18.23 m , from Fuselage Nose 

Aft Limit 18.45 m , from Fuselage Nose 

Forward Limit 17.30 m , from Fuselage Nose 

Neutral Point 19.23 m , from Fuselage Nose 

Static Margin 0.47 

Table 6-6: CG output parameters 

 

In the Aerodynamics section, zero-lift drag coefficients, for each aircraft component, 

are computed. The results are in Table 6-7: 

 

Component Zero-lift Coefficient 

Exposed Wing 0.00655 

Fuselage 0.00800 

Tail 0.00235 

Nacelles 0.00906 

Interference 0.00050 

Table 6-7: Zero-lift drag coefficients for aircraft components 

 

The total zero-lift drag coefficient = 0.0264. 

 

The total drag (zero-lift + induced) coefficient for a given lift coefficient (Polar Plot) is 

computed as in Table 6-8: 
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CL CD 

0.0 0.02717 

0.2 0.02828 

0.4 0.03270 

0.6 0.04041 

0.8 0.05143 

1.0 0.06575 

1.2 0.08337 

1.4 0.10429 

1.6 0.12852 

Table 6-8: Lift-drag coefficients 

 

The takeoff lift coefficient for trimmed aircraft with 20 degrees flap deflection is 

computed = 1.97, and landing lift coefficient for trimmed aircraft with 40 degrees is 

computed = 2.23. 

 

For the Performance section, Table 6-9 shows the calculated output parameters: 

 

Performance Parameter Value 

Rate of Climb at Start 14.97 m/s 

Rate of Climb at End 6.45 m/s 

Rate of Descent at Start -13.56 m/s 

Rate of Descent at End -10.29 m/s 

Balanced Field Length 2657 m 

Landing Field Length 1238 m 

Takeoff Stall Speed 69.2 m/s 

Landing Stall Speed 58.5 m/s 

Table 6-9: Performance output parameters 
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Finally, the Cost estimation section takes place.  The aircraft cost is computed based on 

its empty weight plus engine price.  In year 2010, most airliners are seen to cost $750 to 

$800 per pound.  Then, the airframe cost = $68.58 million and total engine cost = 

$10.28 million.  Therefore, aircraft cost = $78.85 million. 

 

Direct operating cost (DOC) is computed as in Table 6-10: 

 

DOC Component Cost ($) 

Depreciation 10164.7 

Insurance 702.1 

Interest 8380.2 

Maintenance 1701.5 

Fuel 10047.8 

Flight Crew 5356.2 

Cabin Crew 2001.6 

Landing Fees 1052.9 

Navigation Fee 5991.9 

Ground-Handling Charges 3170.7 

Table 6-10: DOC component costs 

 

The total DOC = $48569.5, DOC/nm = $16.4, and SMC = ¢10.9. 

 

At this point the preliminary design phase is finished.  The student team may use a 

simulator to assess their design, especially aspects of dynamic stability.  It may seem to 

be a good design even in terms of dynamic stability.  The above process assumed that 

students are able to determine the appropriate initial estimates of the required data, and 

if they were chanceful the estimates, they may end up believing that aircraft design is 

simple.  On closer examination in a preliminary design review, the design may be taken 

apart by the lecturers.  The question is: Why is the design considered to be bad if the 
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aircraft can fly and in stable condition?  If so what design improvements are necessary? 

The next section will answer these questions in some detail. 

 

6.2.1.1   Design assessment and discussion 

Many reasons can be attributed to the failure.  Simply, it does not meet the 

requirements.  First of all, the proposed aircraft cost ($78.85 million) is much higher 

than the cost of available aircraft in the market.  From the market survey, prices for the 

Airbus 319 = $74.7 million and for the Boeing 737-700 = $67.9 million.  Hence, the 

cost must be reduced to lower than $68 million for it to become a competitive aircraft.  

Reducing the cost means reducing its weight.  In conceptual design, maximum takeoff 

weight was 65400 kg, while it was estimated to be 76762 kg in the preliminary design 

phase, as compared to the initial guess of 68000kg.   So, the student team must reduce 

this weight.  They start again to redesign the aircraft and this is actually when the 

iterative nature of aircraft design becomes evident.  They may spend two weeks for the 

first iteration.  One benefit of using a preliminary software tool is to speed up the 

design process.  By using such a tool, a single iteration takes just few seconds to 

perform the preliminary design process. 

The objective of the second and subsequent iterations is all about decreasing the aircraft 

weight.  For students, who are doing aircraft design for the first time, they have little 

idea on how to select, what is the available range of variation, and what are the most 

significant design variables.  For design engineers in industry, working in the 

conceptual design section the selection process is a matter of experience and they are 

able to identify the key parameters that will allow the specifications to be met.  Since 

the fundamental tool is “selection” in conceptual design, the student team will try to 

reselect all the design variables.  In the first iteration, the aircraft’s weight increased by 

20%. In the second iteration, an attempt will be made reduce any design variable (if 

applicable) by 10% at least.  For the wing component, wing loading is increased from 

500 kg/m
2
 to 550 kg/m

2
 in order to reduce wing area from 130.8 m

2
 to 118.9 m

2
, 

decrease the aspect ratio from 10 to 9, and so on.  Due to the number of passengers’ 

requirement, there is a narrow band of variations in fuselage design variables.  For 

example, fuselage length is reduced by reducing seat pitch from 91.4 cm to 84.4 cm, 

and/or reduce fuselage diameter from 4 m to 3.8 m by reducing seat width (although, 
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these changes affect the passengers’ comfort).  Also, reducing the thrust loading from 

0.35 to 0.316 means a reduction in engine thrust and in turn in total fuel burn.  This 

leads to the reduction of fuel weight from 17000 kg to 16000 kg.  The tail is used 

mainly for stability and control and its weight is relatively small with respect to wing or 

fuselage, so they do not need to make any changes to the selected values.  At the end of 

the second iteration, aircraft weight is reduced to 71372 kg, and its cost is now $68.7 

million. 

Although the second iteration improved aircraft cost and weight, it does not comply 

with one of the other requirements: which is the Balanced Field Length (BFL).  The 

BFL increased from 2682 m (in the first iteration) to 2843 m (in the second iteration).  

Utilising Torenbeek’s equation for BFL, many parameters have an effect on BFL such 

as: aircraft weight, starting climb velocity (v2), and engine thrust.  There are limitations 

on reducing aircraft weight any more due to the fuselage weight limitation (which is 

based on seat configuration, i.e. cabin length and diameter).  Also, reducing aircraft 

weight, which implies a reduction in engine weight and in turn engine thrust, conflicts 

with shortened BFL (which requires an increase in engine thrust).  “Analysis of the 

takeoff characteristics is the most complicated item of performance; this applies 

particularly to transport aircraft, where the possibility of engine failure must be 

considered” [10].  The student team can find itself in a very awkward situation.  They 

may not know which design variable should be changed to satisfy BFL requirement.  

The solution is simplified by using the preliminary design software.  Since the software 

is able to perform all the necessary computations very quickly, it allows the student to 

experiment by varying the key parameters and to study the effect of the change.  The 

parametric studies module in this software tool facilitates this process.  Applying most 

(or even all) design variables to see which of them has a great effect on BFL.  Learning 

also how much they should vary the design variable.  Typically, increasing wing area 

from 118.9 m
2
 to 122 m

2
, reducing wing sweep angle from 27 degrees to 25 degrees, 

and increasing takeoff flap angle from 20 degrees to 23 degrees, will shorten BFL by 

more than 300 m (which meets the requirement).  This is the major benefit of the 

software tool which helps the students to understand and analyse the effect of each 

design variable on the whole design as well as on a specific parameter and how one 

parameter affects the others. 
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After these iterations and improvements, the student team will port the design variables 

to a flight simulator to investigate the performance and stability of the designed aircraft. 

Unfortunately, the aircraft is laterally unstable as shown in the Figure 6-1. 

 

 

Figure 6-1: Lateral Aircraft Response to a Step aileron deflection 

 

From Figure 6-1 it can be noted that one of the eigenvalues of the lateral dynamics has 

a positive root, associated with either spiral or roll mode.  The above dynamic analysis 

is performed using the software. Time is saved due to the fact that the students do not 

need to port their designs on to a simulator, only to find it dynamically unstable.  

Students only need to run the flight simulations when all design requirements are 

satisfied and the stability is indicated.  These simulations can be performed either on a 

flight simulator if available or can be done by using one of the freeware simulation 

packages such as X-Plane [138] or Flight-gear [139]. 
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In the present context, lateral stability can be achieved by increasing the volume 

coefficient of the vertical tail from 0.06 to 0.07.  This increment will increase aircraft 

weight by less than 300 kg, which is a small increase with respect to the whole aircraft 

weight.  The availability of the dynamic stability module in one package tool is another 

benefit that facilitates design process and saves time and effort of the students who may 

only have one or two months to analyse and modify their design.  Due to many 

iterations and repeated hand calculations, students may make uncertain mistakes which 

in turn gives wrong results and may cause the whole design to fail.  The additional 

benefit of using the software tool is that it offers error-free calculations.  It needs to be 

stressed here that, students need to perform all the necessary computations using the 

long hand methods, so that they become familiar with the underlying theories.  The 

iADS software can then be used to validate their design.  Or as a tool to refine their 

initial design that they arrived at by using the long hand computational method.  These 

results can be used by the students as a benchmark, against which they can check and 

compare their long hand calculations. 

Appendix II shows the full text output results of the software for the designed aircraft. 

It should be noted that the calculated weight (70149 kg) is lower than that calculated by 

the students, since they used Torenbeek’s formulae.  This accurate weight estimation is 

another benefit that supports students in evaluating their design.  Hence, the MTOW is 

reduced the aircraft cost is reduced also, (lower than Boeing prices) and the design now 

is actually a competitive one.  The ability of providing the input file for DATCOM 

software as in Appendix III for this case study is that it allows students to use 

DATCOM for computing the stability and control derivatives.  Appendix IV shows the 

‘.m’ file of the designed aircraft produced by the software that helps students to use it in 

MATLAB software for complete dynamic simulation, or an engineering flight 

simulator if available. 

A detailed examination of the student design and that of an existing aircraft is presented 

in the following table.  Table 6-11 consists of two sections, requirements and output.  

Only some output variables are shown to emphasise the accuracy and validity of 

software when compared to published data of a similar production aircraft. 
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Requirements 

No. of Passengers 150 

Range 5500 km 

Max. Cruise Speed 0.84M 

BFL < 2500 m 

LFL < 1500 m 

 

Key Parameters Designed Aircraft Boeing 737-700 

MTOW (kg) 70150 70305 

OEW (kg) 36119 38147 

Total Fuel Burn (kg) 13523 15100 

Max. Cruise Speed 0.84M 0.78M 

Flight Time (hr:min) 5:57 6:58 

BFL (m) 2421 2200 

LFL (m) 1208 1375 

Thrust/Engine (lbs) 22770 26300 

Range (km) 5500 6230 

No. of Passengers 150 149 

Overall Length (m) 36.15 32.18 

Overall Width (m) 3.80 3.89 

Aircraft Price ($) 65,800,000 67,900,000 

Table 6-11: Comparison between the designed aircraft and Boeing 737-700 

 

6.2.2   Case study B 

The second case study is for a light business jet aircraft.  The design process is similar 

to the first case study.  The design process starts with design requirements given to the 

student team.  These requirements include the following: 

1. A small business aircraft that transports 4-6 passengers over a range of 1500nm 

with reserve of 100nm. 

2. Turbo-fan engines and maximum speed M0.7. 

3. BFL less than 1000 m. 
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According to the above requirements, the student team starts the first stage in the 

conceptual design phase which is the “estimation of MTOW”.   

The procedure of estimation starts by initially guessing a likely value of MTOW based 

on similar aircraft in the market.  The available aircraft that match the requirements are: 

1. Adam A700, 4-6 passengers, range 1430nm, and MTOW = 4250 kg. 

2. Cessna 525 (CJ1+), 3-6 passengers, range 1300nm, and MTOW = 4853 kg. 

3. Cessna 525 (CJ4), 4-9 passengers, range 1900nm, and MTOW = 7671 kg. 

 

The problem is similar to the first one. So, 5000 kg is a reasonable assumption for the 

MTOW.  The next step is to estimate the fuel weight by using the fuel-fraction method.  

In this method, the aircraft mission is broken down into a number of segments.  These 

segments are: 1- engine warm-up, taxi, and takeoff, 2- climb, 3- cruise, 4- descent, 

landing, taxi, and shut down.  The fuel weight in each segment is evaluated either by 

simple calculations or by an estimation based on the past experience as in the 

textbooks.  Segments 1, 2, and 4 are estimated as: 0.97, 0.985, and 0.995, respectively.  

The fuel cruise segment is 0.858, calculated from Breguet’s range equation with cruise 

velocity of 211 m/s.  Then, the total fuel fraction ( 
     

   
 ) is 0.202.  Payload weight is 

determined based on FAR 25 as 90 kg per person plus a useful load of 30 kg per 

person, i.e.: 

Using Equation (6.3) with                      

 

Using Equation (6.4) and with crew compliment of two, Crew weight, 

                

 

The common estimation approach is to break down the MTOW into its components as 

defined by Equation (6.1).  The OEW was defined by Equation (6.2) and the empty 

mass fraction was defined earlier as Equation (6.8). 

Finally application of the following equation with empty mass fraction determined by 

Equation (6.8) which was 0.6168: 
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     (6.11) 

, which yields:               

 

The initial guess for the MTOW was 5000kg, and the calculated value turns out to be 

5912kg.  It is necessary to guess another value of MTOW and the above process is 

repeated till the calculated value is more or less the same as the initial guess.  

 Table 6-12 shows the iterative nature of this process: 

 

    

guess 

  

   
    

    

calculated 

5000 0.6168 3084 5912 

6000 0.647 3882 3665 

5500 0.6333 3483 4542 

5300 0.627 3323 5013 

5200 0.6238 3244 5284 

5250 0.6254 3283 5145 

5225 0.6246 3264 5214 

Table 6-12: MTOW estimate iterations 

 

So the MTOW is computed to be 5225kg, which appears reasonable. The Empty weight 

is calculated to be 3264 kg and the fuel weight to be 1055 kg. 

The Cessna citation CJ1+ is a very similar aircraft, but with less range and speed to the 

one that is being designed.  So an increase in the fuel weight and bigger engine to 

achieve the required range and design speed. It is no surprise that students might choose 

the tried and tested configuration of a number of light Jet aircraft.  So a conventional 

arrangement, i.e., swept back wings, T-tail and fuselage mounted engines are most 

likely to be the preferred arrangement.  One reason this makes this configuration 

mandatory rather than preferred is the limited fuselage length due the number of 
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passengers.  Another reason is the difficulty of controlling the CG movement if engines 

are mounted on the wing. 

 

The second stage of estimations includes the evaluation of wing loading and takeoff 

thrust. These estimations are necessary to meet performance requirements such as BFL, 

LFL, and climb rate.  Selecting wing loading = 150 kg/m
2
, gives wing area = 34.84 m

2
, 

while selecting thrust loading equal to 0.4, gives takeoff thrust = 4180 pounds (lbs). 

Selecting the highest possible wing loading and the lowest possible thrust loading 

(which achieves all performance requirements) results in an aircraft with lowest weight 

and lowest cost.  

Fuselage design: For 6 passengers, 2 seats abreast with seat pitch = 1.5 m, and 1.5 m 

for toilet and door, yields cabin length = 6 m and fuselage diameter = 1.8 m. Selecting 

nose cone length = 4 m, and rear cone ratio = 3.  Hence, total fuselage length = 15.4 m. 

One of the important key parameters that must be taken into consideration in this case 

study is the wing position to fuselage length ratio.  In a conventional configuration, 

where the cabin length is large, this ratio is about 0.33-0.35 as in Case A.  In light 

aircraft, where the engines are mounted at the rear of fuselage, this ratio is increased to 

be 0.44 to balance the aircraft (CG position) and to achieve a good longitudinal 

stability. 

Engine selection: Since total takeoff thrust required is 4180 pounds, with number of 

engines = 2, thrust /engine = 2090 pounds. Hence, FJ 44-2A is selected with thrust = 

2300 pounds, and 240 kg dry weight.   

Wing design: Aspect ratio is selected first. Although, high aspect ratio decreases 

induced drag in cruise and saves fuel, a value of 8 is reasonable due to the limited 

fuselage length.  A sweep angle of 15 degrees is selected to achieve a cruise speed of 

M0.7.  An aerofoil with average thickness ratio = 0.12 is selected.  Taper ratio is 

estimated equal to 0.3, while the incidence angle is estimated = 2 degrees.  Finally, the 

inboard span fraction is estimated = 0.3, while outboard span fraction is = 0.8. The 

inboard and the outboard chord fractions are estimated = 0.3. 
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For Empennage design, it was decided to use the T-tail configuration.  In order to keep 

aircraft weight and drag as low as possible, it is desirable to keep tail area as small as 

possible. Tail area is determined by estimating tail volume coefficients based on past 

experience.  A value of 0.6 and 0.05 are selected for horizontal and vertical tail volume 

coefficients, respectively.  Table 6-13 shows the tail design variable estimations.  

Again, these estimations are based on Cessna aircraft. 

 

Design variable Horizontal tail Vertical tail 

Aspect ratio 5 2.5 

Sweep angle 15 30 

Taper ratio 0.3 0.3 

Thickness ratio 0.12 0.12 

Volume Coefficient 0.6 0.05 

Aerofoil NACA 0012 NACA 0012 

Table 6-13: Tail design variable estimations 

 

At this point the conceptual design phase is finished and the preliminary stage starts.  In 

the preliminary design phase, students apply semi-empirical formulae to calculate the 

parameters of aircraft components needed for detail design phase in a higher accuracy.  

Starting with the Geometry section, Table 6-14 and Table 6-15 show the calculated 

data for each aircraft component based on the formulae presented in chapter three: 

 

Wing:   

                

Output Parameter Value 

Span 16.69 m 

Root (centreline) Chord 3.21 m 

Tip Chord 0.96 m 

Mean Aerodynamic Chord 2.29 m 

Distance from Fuselage Nose to 

Wing Quarter Root 

7.51 m 

Table 6-14: Wing geometry output parameters 
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Tail: 

Output Parameter Horizontal Tail Vertical Tail 

Area 5.89 m
2
 4.08 m

2
 

Span 5.43 m 3.19 m 

Root Chord 1.67 m 1.96 m 

Mean Aerodynamic Chord 1.09 m 1.28 m 

Tail Arm 8.12 m 7.13 m 

Table 6-15: Tail geometry output parameters 

 

Fuselage: Wetted Area = 73.8 m
2
.  Nacelle:  Wetted Area = 4.5 m

2
. 

For Weight section, Table 6-16 shows the calculated aircraft component weights: 

 

Component Weight (kg) 

Wing 999.9 

Fuselage 1161.2 

Tail 227.7 

Propulsion (engines + nacelles) 772.7 

Undercarriage 325.5 

Surface Controls 199.9 

Systems 1022.2 

Furnishings 386 

Empty Weight 5095.1 

Operating Items 51.7 

Crew 186 

Operating Empty Weight 5332.8 

Payload 721.2 

Zero-Fuel Weight 6054 

Fuel 1055 

Maximum Takeoff Weight 7109 

Table 6-16: Calculated aircraft component weights 
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In CG and Stability sections, Table 6-17 shows the computed parameters: 

 

Output Parameter Value 

C.G. Position of Empty Aircraft 8.62 m , from Fuselage Nose 

Aft Limit 8.64 m , from Fuselage Nose 

Forward Limit 8.37 m , from Fuselage Nose 

Neutral Point 8.78 m , from Fuselage Nose 

Static Margin 0.16 

Table 6-17: CG output parameters 

 

In an Aerodynamics section, zero-lift drag coefficients, for each aircraft component, are 

computed. The results are in Table 6-18: 

 

Component Zero-lift Coefficient 

Exposed Wing 0.0071 

Fuselage 0.006 

Tail 0.0027 

Nacelles 0.0034 

Interference 0.0006 

Table 6-18: Zero-lift drag coefficients for aircraft components 

 

 

The total drag (zero-lift + induced) coefficient for a given lift coefficient was computed 

as in Table 6-19: 
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CL CD 

0.0 0.0208 

0.2 0.0220 

0.4 0.0270 

0.6 0.0358 

0.8 0.0485 

1.0 0.0650 

1.2 0.0853 

1.4 0.1095 

1.6 0.1375 

Table 6-19: Lift-drag coefficients 

 

The takeoff lift coefficient for trimmed aircraft with a 15 degree flap deflection is 

computed to be 2.12, and landing lift coefficient for trimmed aircraft with 30 degrees is 

computed to be 2.6. 

 

For the Performance section, Table 6-20 shows the values of the calculated parameters: 

 

Performance Parameter Value 

Rate of Climb at Start 11.0 m/s 

Rate of Climb at End 1.04 m/s 

Rate of Descent at Start -16.95 m/s 

Rate of Descent at End -12.38 m/s 

Balanced Field Length 1042 m 

Landing Field Length 570 m 

Takeoff Stall Speed 39.3 m/s 

Landing Stall Speed 33.6 m/s 

Table 6-20: Performance output parameters 
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Finally, the aircraft cost is computed based on its empty weight plus engines price.  

Based on year 2010 data, the airframe cost works out to be $7.43 million and engine 

cost at $1.35 million each.  Therefore, the aircraft cost is $8.79 million. The total DOC 

is calculated to be $7616 and DOC/nm as $5.1, and SMC to be ¢85.   

 

6.2.2.1   Design assessment and discussion 

If the design aim was to compete with a Cessna CJ1+, then the design is a failure, with 

high weight and high cost, when compared with the MTOW of CJ1+ being 4853 kg and 

its cost is $7 million. In conceptual design, maximum takeoff weight was 5225 kg, 

while it was estimated to be 7109 kg in the preliminary design phase.   So the weight 

has to be reduced. 

The objective of the second and subsequent iterations is all about decreasing the aircraft 

weight.  In the first iteration, the aircraft’s weight increased by 33%. In the second 

iteration, a reduction of at least 20% in the MTOW would be necessary. In this case, 

very light aircraft have a different scenario than that for heavy aircraft (Case A). Any 

reduction must be considered carefully. For example, students may reduce the fuselage 

length by reducing seat pitch from 1.5 m to 1.25 m, and/or reducing fuselage diameter 

from 1.8 m to 1.5 m by reducing seat width (although these changes affect the 

passengers’ comfort). Keep in mind that the fineness ratio must be greater than 7. 

Hence the total fuselage length is reduced more than 1.5 m. For the wing component, 

they may reduce wing area from 34.84 m
2
 to 27.87 m

2
 (20%). Also, reducing engine 

thrust from 2300 to 2100 pounds.  This leads to the reduction of fuel weight from 1055 

kg to 555 kg.  The tail is used mainly for stability and control and its weight is 

relatively small with respect to the wing or fuselage, so they do not need to make any 

change to the selected values.  At the end of the second iteration, aircraft weight is 

reduced to 6116 kg, and its cost is now $7.3 million.  Although the second iteration 

improved aircraft cost and weight, the BFL still too high, i.e. it is 1047 m. Typically, 

increasing takeoff flap angle from 15 degrees to 22 degrees only, will shorten the BFL 

below 1000 m, i.e. 988 m (which meets the requirement). Comparing this value with 

the published value for the Cessna 525 (which is 972 m), it seems an acceptable value. 

The first iteration normally is done using the formulae presented in chapter 3. The 

process is time consuming, normally the various aspects of design run concurrently and 
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some information may or may not be available.  The availability of iADS at an early 

stage of the design phase allows the effect of parameter variation to be evaluated, and 

by using representative values of similar aircraft, the design can be finely tuned quickly 

and efficiently.  Appendix II (b) shows the detailed output of the iADS software, after 

necessary changes have been made to reduce the weight and cost.  The initial design 

did not meet the BFL requirements and by increasing the flap deflection, that too was 

met.  Table 6-21 shows a comparison between the designed aircraft and Cessna CJ1+ 

and CJ4: 

 

Key Parameters Designed Aircraft Cessna CJ1+ Cessna CJ4 

MTOW (kg) 6116 4853 7761 

EW (kg) 4602 3069 4500 

Range (nm) 1500 1300 1900 

Max. Cruise Speed 0.7M 0.6M 0.84M 

BFL (m) 988 991 972 

Thrust/Engine (lbs) 2100 1965 2300 

No. of Passengers 6 3-5 6-9 

Overall Length (m) 13.75 12.98 16.26 

Overall Width (m) 14.93 14.30 15.49 

Table 6-21: Comparison of designed aircraft and published data for CJ1+ & CJ4 

 

From Table 6-21 it can be seen that the designed aircraft is positioned between the CJ1 

and the CJ4. It has a smaller engine than CJ4, hence lower fuel costs. The cruise Mach 

number is at the designed value.  The design is viable, and competitive, each design 

cycle takes fraction of a second to complete.    

This case study shows the ability of the iADS software to design a wide range of 

aircraft (not just the transport aircraft) with different standard configurations. The 

accurate weight estimation of iADS allows students to design an actual competitive 

aircraft. Time is a critical issue for students. Hence the availability of iADS speeds up 
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the design process as well as it teaches them different aspects of aircraft design 

practically. The designed aircraft’s 3-View graphic is presented as Figure 6-2:   

 

 

Figure 6-2: 3-View of the designed aircraft 

 

Appendix V shows the published data for Cessna 525, CJ4 [140].   It is easily compared 

with Appendix II (b), which shows the full text output results of the software for the 

designed aircraft.  For instance, the CJ4 reaches the service ceiling of 45000ft in 29 

minutes giving it a climb rate of 1551 ft/min, whereas the designed aircraft achieves a 

climb rate of 1230 ft/min.  The designed aircraft has 400lbs less thrust as compared to 

the CJ4, hence a slightly inferior climb performance.   

Once a likely design candidate has been identified, refinement can be done using the 

optimiser, and the aircraft could be optimised for either: MTOW, BFL or DOC.  As an 

example, for the same test case it was decided to optimise the design for MTOW, the 

constraints were set on BFL less than 1000m, and stage length fixed at 1500nm.  
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Appendix VI shows the typical design with optimiser output.  In this case convergence 

was reached in 2065 iterations.  

The DOC has indeed been reduced, and the basic geometry of the aircraft changed. 

Some of the changes are noted in Table 6-22.  It is a different geometric configuration, 

than the original case B design, with higher aspect ratio and reduced wing area.  For 

instance noting from Appendix II (b) and Appendix VI, the lift-drag polar for Case B 

indicates at a lift coefficient of 1.6 the drag coefficient is 0.138.  For the optimum case, 

it has been reduced to 0.12.  This is a substantial drag reduction, allowing the aircraft to 

achieve a much higher cruise Mach number, at lower weight, lower cost and lower fuel 

burn.  The climb rate in this configuration is 1600 ft/min.  The aircraft price is lower 

also, at a mere 7.07 million dollars.  In terms of size the optimum aircraft is similar to 

the CJ1+, but from a performance point of view closer to the CJ4.  The optimiser 

performance is a function of the range of free variables allowed, starting values of these 

free variables, the limits on constraints etc.  At an undergraduate level, students may 

not be able to appreciate the full intricacies of the optimiser operation, so caution needs 

to be exercised in its use.  The feature can be used to generate an optimum around the 

baseline design, by letting the software set the allowable range to be a percentage 

around the baseline value automatically.  The constraints are then selected from a 

predefined list, and then selecting what needs to be minimised.  In this case MTOW 

was chosen.  

 

Key Parameters Case B Optimum 

MTOW (kg) 6116 5700 

EW (kg) 4602 4481 

Aspect Ratio 8 10.3 

Cruise Mach No. 0.7M 0.8M 

BFL (m) 988 980 

Thrust/Engine (lbs) 2100 1990 

Wing Area (m
2
) 27.7 23.6 

Stall Speed (m/s) 13.75 12.98 

DOC ($) 5439 5024 

Table 6-22: Comparison of the Case (B) design and optimum design 
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Availability of software such as iADS means, that students are able to experiment with 

changing the parameters and seeing the results instantly.  iADS is not meant to replace 

the conventional long hand calculations, instead it is intended as a guide, so that the 

students have a reasonably accurate estimate of the key design variables for them to 

aim at.  It is meant to aid understanding. 

By using the DATCOM interface an input file can easily be produced, such as in 

Appendix III (b) applicable to this case study.  This allows students to use DATCOM 

software freely available in the public domain for dynamic stability analysis, should 

they require.   Appendix IV (b) shows the MATLAB ‘.m’ file of the designed aircraft 

produced by the software that contains the longitudinal and lateral stability derivatives 

computed using the analytical approach, along with other data enabling a 

comprehensive dynamic simulation to be produced, either in the MATLAB 

environment or in a flight simulator. 

 

 

6.3   Conclusions 

Two case studies were presented in this chapter, emulating the typical design procedure 

an undergraduate would follow in the course of aircraft design.  The iterative nature of 

the process was highlighted.  It was also indicated, that meeting all the design 

objectives in one or few iterations is difficult, and if it were to be the case, then prior 

knowledge of aircraft design and the variable sensitivities must be known.  Even 

though the design looks viable, it is no way certain to be dynamically stable.  This must 

be done by computing the stability and control derivatives, and the conventional 

stability equations need to be formulated, and their roots found.  Incorporation of 

dynamic stability in the preliminary phase allows the students to gain confidence in 

their design before the design is verified in a flight simulator.   



166 
 

Chapter SEVEN 

Conclusions and Recommendations  

 

7.1   Conclusions 

The long journey of creation and innovation in aviation history shows that aircraft 

design is not simple.  It is truly a multidisciplinary subject.  It hinges on aerodynamics, 

structures, propulsion, and stability and control to name a few.  Modern aircraft are 

equipped with many advanced electronic and software systems too.  The aircraft design 

process consists of three phases which are conceptual, preliminary, and detailed.  Many 

universities in the UK, follow Problem-Based Learning approach in teaching aircraft 

design.  Since, the aircraft design process is iterative in nature, and indeed non-unique, 

it can be said that many aspects of learning that are required, cannot be fully explored 

in the duration of the course of study.  And it is fair to say, that some aspects of 

learning are likely to be shallow, due to limited exposure and time.  However, at the 

end of the project, students gain valuable insight into the design process, and this 

prepares them well to embark upon a career in the aircraft industry.  Most universities 

present the preliminary design project as in course assessment, and pertinent feedback 

is given on a weekly basis, to steer the students towards a feasible design. 

The iterative nature of aircraft design lends itself to automation by coding the 

appropriate design methodology in a computer application.  Most aerospace 

undergraduate students do not possess the capability to produce computer applications, 

which is the domain of computer scientists.  However, students today are well versed 

with spreadsheets, and will produce relevant computational workbooks, that facilitate 

the aircraft design process.  These workbooks are created incrementally and evolve 

over the entire design process.  Since, the students learn on a need to know basis, part 

of the Problem-Based Learning approach, they are unlikely to do the full design 

iteration.  The integration of computer software into Problem-Based Learning can 

encourage students to learn better, deeper, and in a much more interesting environment 

than before, by varying the ways in which information is delivered.  SYNAC II and 

CAAD programs were the early aircraft design software which were developed in the 

mid of sixties and the beginning of the seventies.  Thereafter, several software packages 
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have been released into the market such as PIANO, AAA, and RDS.  Most of these 

packages have been designed for use by aircraft design professionals.  Also, their main 

purpose is the preliminary aircraft design in a commercial environment, and they are 

not intended for instructional use. 

Aircraft design is not trivial; many design variables have to be manipulated and some 

variables have a pronounced effect on the outcome.  Some of them are selected, while 

others are evaluated.  As the design complexity increases, so do the number of variables 

that are used to represent complexity.  In the preliminary design phase, the input 

variables are grouped according to aircraft components and mission requirements.  All 

equations required for analysing this phase are also grouped into sections for clarity and 

easy understanding.   

Based on the mathematical analysis of the preliminary design phase, a software 

package for undergraduate teaching was developed, and presented as part of this 

research.  Torenbeek, Raymer, and Nelson methods and equations, which are widely 

used, are employed for design synthesis and for aspects of dynamic stability.  Due to 

the fact that the GUI is as important as the software computations itself, an OOUI is 

implemented to dress up the software functions.  The synthesis program does 

everything needed in the preliminary design environment.  This includes computation 

of aircraft geometry, weights, CG and aerodynamics, aspects of flight performance, 

cost estimation, numerical optimisation and dynamic stability.  The output data are 

displayed in text form, as well as it can be saved as a spreadsheet for further analysis.  

A parametric studies module is implemented to obtain the majority of the design 

parameters and its sensitivity.  Although, Torenbeek’s equation for estimating BFL is 

implemented in the synthesis program, an additional module is employed to synthesise 

the takeoff stage in a more accurate analysis.  It is essential for students to evaluate both 

static and dynamic stability concepts early in the preliminary design phase.  The 

dynamic stability module is implemented based on the analytical approach of the 

aircraft equations of motion.  This early evaluation, before the detailed design phase 

takes place, makes the design process more efficient and speeds up the design process 

itself.  3-View of the proposed aircraft is available, as well, and changes dynamically 

with the design variable variations to explore the influence of these variables 

graphically on the design. 
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In the preliminary design phase of the interactive design process, where the maximum 

takeoff weight is broken down into its components and sub-components, a modified 

module is developed to increase the prediction accuracy to better than 4%.  Its output 

results agree very favourably with the published data of current Airbus and Boeing 

aircraft. 

Estimating the DOC and SMC are important from a commercial viability of designs.  

Three methodologies exist, formulated by the AEA, ATA and NASA.  Each method for 

determining the DOC and SMC differs but produces comparable results.  This work 

summarises all the three methodologies, and will serve as a source for cost estimation 

for future aircraft design engineering students and professionals alike.  They have been 

applied to predicting the cost of existing transport aircraft and the results show that 

ATA and NASA methodologies are close to each other and agree with the latest 

available data of transport aircraft costs.  

A typical design process due to its iterative nature is time consuming, and a feasible 

design is arrived at, as an accumulation of knowledge and experience. Once a feasible 

design is identified, it should be refined.  This is done by optimisation.  The constrained 

optimisation program RQPMIN developed by the RAE, was re-coded using Pascal for 

use in iADS.  This allows one of five objective functions to be minimised subject to 

equality or inequality constraints, and the number of free variables that could influence 

the design.  Only after a few optimised preliminary designs are complete, the final stage 

of the detailed analysis can be done, from which a candidate for prototyping is normally 

chosen.  The iADS environment is efficient, and all the key and relevant design 

variables are available to the user for manipulation.   

From an undergraduate point of view, the logical grouping of design variables and a 

graphical interface facilitates a better understanding of the subject; this can be done in 

many ways as a 3-view graphic or via the parametric studies, as a one-to-one or two-to-

one variation.  This is a key feature that enables a robust picture of parameter variation 

to be produced, and the associated sensitivities.   

The availability of a software such as iADS means, that students are able to experiment 

with changing the parameters and seeing the results instantly.  The iADS is not meant 

to replace the conventional long-hand calculations, instead, it is intended as a guide, so 
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that the students have a reasonably accurate estimate of the key design variables for 

them to aim at.  It is meant to aid understanding.  The comparisons of Table 6-11 and 

Table 6-21 reveal that the designed aircraft are similar to the Boeing 737-700 and 

Cessna CJ4, respectively.  And it can therefore be concluded, that the iADS software 

produces satisfactory results that can form the basis for the detailed design phase. 

The iADS software has some assumptions and limitations, since it is based mainly on 

semi-empirical methods. So, first of all, the software implements methodologies limited 

to the design of conventional jet transport aircraft.  Secondly, the centres of mass for 

systems and surface control are assumed to be in the mid-point of the cabin section, 

mainly due to the absence of detailed data available.  Other limitation is that all fuel 

tanks are located in the wing.  There is no provision for locating fuel tanks in the 

fuselage or the tail section of the aircraft.  In aerodynamics module, the lift slope of the 

horizontal tail is assumed to be the same as the 2D slope of the wing.  Also, in 

calculating the maximum lift coefficient of the trimmed aircraft, the effects of the 

fuselage and the nacelle lift are very small and are ignored. Hence, the maximum lift 

coefficient of the aircraft minus tail is assumed to be the same as the wing alone.  

Finally, the ambiguous definition of the range in NASA cost estimation methodology as 

small, medium and long is replaced by the values <2000, 2000- 4000, and >4000 

nautical mile, respectively.  These values seem reasonable in calculating the utility.  

The dynamic stability module implements stability equations that are based on small 

perturbations, and in the linear region.   Non linear effects are not considered.  This is 

mainly because, that in preliminary design phase detailed calculations are not required. 

The sole intention of this phase is to arrive at one or two candidate designs, on which 

detailed calculations could be performed.  Therefore, additional complexity due to 

cross-coupling between variables and non-linearities are excluded to keep the 

computations simple.  Neither are the environmental conditions, such as gusts 

considered here. 

A new method for estimating the MTOW has been proposed.  To facilitate this work, 

the output from this research is a software package for aiding the understanding of 

students for whom designing an aircraft is a new experience.  This is a long process and 

the student would have to have spends a larger number of hours programming all the 

equations in as well as setting these inside a design framework and sorting the 
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optimisation and display functions.  This process is iterative with no guarantee that 

design solutions can be found.  The consideration of the learner and his/her attitude to 

the activity is a valuable contribution and something that can continue to develop in the 

future.  The contribution from this research to the scientific literature will mature more 

when papers can be published on the impact of the learning environment on the 

students and on how the staff should use the package to create a positive and enhanced 

learning experience. 

 

 

7.2   Recommendations 

 The iADS is a dedicated development for subsonic civil transport aircraft, with 

MTOW in excess of 5 tonnes approximately.   It should be extended to design 

general aviation aircraft. 

 

 For a comprehensive design and analysis feature, the software should be 

modified to produce the necessary mesh for use in a CFD package such as 

Phoenics [141] or STAR-CCM+ [142]. This will allow aerodynamic 

simulations to be produced. 

 

 

 The DATCOM software at present is stand alone. It should be incorporated into 

the iADS software for ease of use. 

 

 A feature must be incorporated that would allow any formula or calculation 

performed by the program to be substituted by the user supplied methodology or 

function, a Pascal compiler must therefore be embedded into iADS. 

 

 

 A generic turbo-fan engine is in-built in iADS, the software should be extended 

to cater for turbo-prop and piston engine aircraft. 

 

 A database of all existing aircraft should be created as part of the iADS software 

permitting the user to pick out aircraft having similar configuration and 
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performance to the user specified input information.  This can be done by the 

user selecting a range of parameters, which are then matched to the database, 

and rapid baseline values for other parameters are then easily determined, 

further reducing the preliminary design time.   
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Appendix I 

Input Data File Description for DATCOM Software 

 

The for005 file (aka input file) defines the flight characteristics and geometry of the aircraft.  It 

follows a very specific format and any deviance for the format will cause the analysis not to be 

run.  First, input the CASEID on the first line:  

 

CASEID ---------- MY DESIGN ----------------- 

 

Every piece of data that defines the flight characteristics and geometry of the aircraft is 

contained in name lists.  In the input file, name lists are preceded by a "$" sign (ex. $FLTCON) 

and the statements are terminated with "$" signs.  The followings are the name lists:  

1. FLTCON - defines the flight conditions  

2. SYNTHS - locates the cg, wing, horizontal tail, and vertical tail with respect to a 

reference line  

3. BODY - defines the body geometry  

4. WGPLNF - defines the wing geometry  

5. HTPLNF - defines the horizontal tail geometry  

6. VTPLNF - defines the vertical tail geometry  

 

 

1- FLTCON  

The FLTCON name list defines the flight conditions such as Mach number(s), altitude(s), and 

angle of attacks to be analysed.  A full list of the inputs can be found on page 27 of the Digital 

DATCOM manual volume I [110].  The following variables are used for the FLTCON name 

list:  

1. NMACH - number of Mach numbers to be run. For example, only one Mach.  

2. MACH - the mentioned Mach numbers to be run. For example, at Mach = 0.60.  

3. NALPHA - the number of angles of attack to test. For example, 10 of AOA's.  

4. ALSCHD - the schedule of angles of attack. For example, (in deg): -4, -2, 0, 2, 4, 6, 8, 

10, 12, 14 (ten total)  

5. NALT - number of altitudes to run. For example, only one altitude.  

6. ALT - the altitudes to run. For example, at 5000 feet.  

7. WT - the weight of the aircraft.  

8. LOOP - set to 0, 1, or 2. The value ‘0’ for LOOP parameter, enables the user to run 

cases at fixed altitude with varying Mach number; ‘1’ for fixed Mach number with 

varying altitudes; and ‘2’ for varying Mach numbers and altitudes together.  
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Note that each number must contain a decimal point. Also, the file can only be a certain number 

of characters in horizontal length, so do not go over.  The order, in which the variables are 

given, are not crucial, but the following format is recommended.  The following example 

describes what goes into the input file:  

 

$FLTCON NMACH=1.0,MACH(1)=0.6,NALPHA=10.0,ALSCHD(1)=-4.0,-2.0, 

0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,NALT=1.0,ALT(1)=5000.0, WT=13395.0,LOOP=1.$  

 

 

2- SYNTHS  

The SYNTHS (Synthesis) name list is very important because it sets up the CG location as well 

as the position of the wing and tail surfaces.  Page 33 in DATCOM volume I [60] indicates 

exactly what dimensions are needed.  

All horizontal measurements are taken from the nose of the aircraft.  All vertical measurements 

are taken from a reference line conveniently placed at the centre of the aircraft.  The following 

variables are used for the SYNTHS name list:  

1. XCG - the horizontal position of the CG. 

2. ZCG - the vertical position of the CG with respect to the reference line.  

3. XW - the horizontal position of the apex of the wing. For example, 3.63 feet.  

4. ZW - the vertical position of the wing apex with respect to the reference line. For 

example, 0.42 feet.  

5. ALIW - the incidence of the wing in degrees. For example, 1 degree.  

6. XH - the horizontal position of the apex of the horizontal tail. For example 28.73 feet.  

7. ZH - the vertical position of the horizontal tail apex with respect to the reference line. 

For example, 5.24 feet.  

8. ALIH - incidence of the horizontal tail. For example, 0 degrees.  

9. XV - the horizontal position of the apex of the vertical tail. For example, 18.3 feet.  

10. ZV - the vertical position of the vertical tail apex with respect to the reference line. For 

example, 0 feet.  

 

The following example describes what goes into the input file:   

 

$SYNTHS XCG=11.17,ZCG=0.0,XW=3.63,ZW=0.42,ALIW=1.0,XH=28.73, 

ZH=5.24,ALIH=0.0,XV=18.3,ZV=0.0$  

 

 

3- BODY 

The variables of the name list BODY are:  

1. NX - number of body stations  

2. X - horizontal distance of each station  

3. S - cross sectional area at each station  
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The following example describes what goes into the input file:  

 

$BODY NX=8.0, X(1)=0.0,0.74,8.35,13.14,19.35,24.41,28.41,30.77, 

S(1)=5.19,9.32,16.89,16.89,15.94,11.12,5.85,2.5$  

 

 

4- WGPLNF  

WGPLNF name list is used to define the wing geometry.  DATUM volume I page 37 and 38 

can be extremely helpful for all of the plane forms.  The following variables are used in 

defining the wing:  

1. CHRDTP - the length of the chord at the tip of the wing. For example, 7.02 feet.  

2. SSPNOP – it is the "Semi-Span outboard panel". For example, 11.32 feet.  

3. SSPNE - the "exposed" semi-span is measured from the side of the fuselage to the tip 

chord. For example, 13.41 feet..  

4. SSPN - the theoretical semi-span, which is b/2. This dimension is from the root chord 

to the tip chord. For example, 15.71 feet.  

5. CHRDBP - the chord at the break point between the inboard and outboard panel. For 

example, 8.4 feet.  

6. CHRDR - the length of the chord at the root of the wing. For example, 14.0 feet.  

7. SAVSI - the sweep of the wing at the inboard panel. For example, 45 degrees.  

8. SAVSO - the sweep of the wing at the outboard panel. For example, 45 deg.  

9. TWISTA - the twist angle of the wing (wash-out). For example, 0 deg.  

10. CHSTAT - the % of the mac at which the sweep angle will be referenced. Usually this 

is c/4 or 0.25.  

11. DHDAHI - the dihedral of the inboard panel. If the inboard and outboard panel 

dihedral is the same (constant dihedral across the wing), then only DHDADI is 

inputted. For example, the wing dihedral is -3 deg.  

12. TYPE - different plane form types (refer to manual). Will be set to 1.  

 

 

These values are inputted into the for005 file as follows:  

 

$WGPLNF CHRDTP=7.02,SSPNOP=11.32,SSPNE=13.41,SSPN=15.71, 

CHRDBP=8.4,CHRDR=14.0,SAVSI=45.0,SAVSO=45.0,CHSTAT=0.25, 

TWISTA=0.0,DHDADI=-3.0,TYPE=1.0$  

 

5- HTPLNF  

The horizontal tail is described the same way as wing using the same variables. Because the 

geometry of the HT is simpler, the following variables are used: CHRDTP, SSPNE, SSPN, 

CHRDR, SAVSI, CHSTAT, and TYPE.  
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For example:  

1. CHRDTP is 1.86 feet  

2. SSPNE is 5.42 feet  

3. SSPN is 5.43 feet  

4. CHRDR is 4.69 feet  

5. SAVSI is 45 degrees  

6. CHSTAT is 0.25  

7. TYPE is 1  

 

And so the values are inputted into the HTPLNF name list as follows:  

 

$HTPLNF CHRDTP=1.86,SSPNE=5.42,SSPN=5.43,CHRDR=4.69,SAVSI=45.0, 

CHSTAT=0.25,TYPE=1.0$  

 

6- VTPLNF  

The vertical tail is described the same way as wing using the same variables.  Because the 

geometry of the VT is simpler, the following variables are used: CHRDTP, SSPNE, SSPN, 

CHRDR, SAVSI, CHSTAT, and TYPE.  

For example: 

1. CHRDTP is 3.76 feet  

2. SSPNE is 6.05 feet  

3. SSPN is 8.18 feet  

4. CHRDR is 12.47 feet  

5. SAVSI is 55 degrees 

6. CHSTAT is 0.25  

7. TYPE is 1  

 

And so the values are inputted into the VTPLNF name list as follows:  

 

$VTPLNF CHRDTP=3.76,SSPNE=6.05,SSPN=8.18,CHRDR=12.47,SAVSI=55.0, 

CHSTAT=0.25,TYPE=1.0$  

 

AEROFOIL DESIGNATIONS  

Page 74 and 75 of volume I has some information on this.  If the wing was a NACA-2412, then 

input into the for005 file: NACA-W-4-2412.  The "NACA" indicates that it is a NACA 

aerofoil, for which DATCOM has built in data.  "W" indicates that the aerofoil is to be applied 

to the wing ("H" for HT, and "V" for VT).  "4" indicates that it is a 4 series aerofoil (DATCOM 

accepts 1, 4, 5, and 6 series aerofoils).  And after that is the aerofoil designation number, in this 

example it is "2412."  
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For the NACA 66-012 aerofoil is used for the wing, and the 66-009 for the tails.  They will 

simply be inputted into DATCOM as follows:  

 

NACA-W-6-66-012 NACA-H-6-66-009 NACA-V-6-66-009  

 

 

TERMINATING THE FILE  

There are a number of commands that can be placed at the end of the file to specify information 

and give more data. For example, the following commands are used:  

1. DIM FT - specifies that all of the dimension were given in feet and all out the output 

should be in "English" units  

2. BUILD - show the data for all of the components. not just the aircraft  

3. PLOT - generate a plot file (for013.dat) to input into the MATLAB plotting program  

 

 

Finally, the file ends with "NEXT CASE". In the input file this looks like:  

 

DIM FT  

BUILD  

PLOT  

NEXT CASE 
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Appendix II (a) 

iADS Text Output for Case Study (A) 

 

============================================================== 

                      Wing      Tailplane     Fin   

Aspect Ratio          9.00        5.00        1.80 

Gross Area    (m^2) 122.00       21.33       15.22 

Span            (m)  33.14       10.33        5.23 

Taper Ratio           0.27        0.30        0.30 

Thickness chord ratio 0.13        0.12        0.13 

MeanAeroChord   (m)   4.09        2.07        2.91 

Chord at C.line (m)   5.80        3.18        4.47 

Tail Arm        (m)              18.71       18.59 

Sweep Angle  (deg.)  25.00                   40.00 

 

Wing Location 12.29 (m) from nosecone apex to the leading edge at 

centreline 

============================================================== 

                    Fuselage    One Nacelle 

Diameter       (m)    3.80        1.75 

Total Length   (m)   36.15        3.50 

NoseConeLength (m)    4.00        2.00 

Cabin Length   (m)   20.75 

TailConeLength (m)   11.40        1.50 

Wetted Area  (m^2)  385.60       14.95 

 

Number of Passengers            150.00 

Total Take-off Thrust (lbs)   45539.90 

Engine scale factor               3.35 

 

Load Gust Factor                  5.885 

Manoeuvre Load Factor             4.125 

Design Dive Speed (I.A.S.)(m/s) 304.000 

 

========== Mass calculation All Mass in Kg =================== 

Wing includes flaps            6653.2 

Fuselage                       7958.0 

Empennage                      1010.8 

Nacelles                       1136.1 

Engines                        4054.2 

Propulsion System              5584.1 

Propulsion (total)             6720.2 

Undercarriage                  2650.2 

Surface Controls               1077.5 

  

Auxiliary power unit            143.9 

Paint & Oxygen system           602.4 

Electrical system              1420.3 

Avionics, Instruments, AP       962.2 

Air conditioning & Anti-icing   679.1 

Hydraulic system                762.5 

Systems (Total)                4570.3 

  

Furnishings                    3660.6 

Empty Mass                    34300.8 

   

Operation Items                1292.5 

Crew mass                       186.0 
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Flight attendants               340.0 

Op. empty mass                36119.4 

   

Passenger Load                18030.5 

Zero Fuel mass                54149.9 

Total Fuel                    16000.0 

 

Maximum Take-Off (MTOW)       70149.9 

 

============================================================ 

 

C.G. Position From Nose Apex. 

Empty aircraft (m)               16.74 

Datum 50%fuel full payload (m)   15.98 

Aft Limit                        16.99 

Forward Limit(m)                 15.92 

 

===========    Aerodynamics Data ============================== 

== Zero-Lift Drag Coefficients == 

Exposed Wing                     0.006435 

Fuselage                         0.007711 

Nacelles(total)                  0.009710 

Horizontal Tail                  0.001489 

Vertical Tail                    0.001032 

Interference                     0.000584 

 

      CL          CD  

     ----      -------- 

     0.00      0.027647 

     0.20      0.028784 

     0.40      0.033436 

     0.60      0.041603 

     0.80      0.053284 

     1.00      0.068479 

     1.20      0.087189 

     1.40      0.109414 

     1.60      0.135153 

 

===========    Static Stability ============================== 

Neutral Point  

      POWER-OFF (m)            17.34 from Nose 

Static Margin  

      DATUM C.G., POWER-OFF     0.33 

 

===========    Max Lift Requirement ========================== 

         Flap Defln.  Section CL   Wing CL  Trimmed a/c CL 

            (deg)       (max)       (max)       (max) 

Takeoff     23.00        3.16        2.32        2.21 

Landing     30.00        3.46        2.52        2.39 

 

===========    Cruise Mach Number ============================ 

Cruise mach no. =   0.84 

 

===========    MISSION STAGE ANALYSIS ========================== 

== first stage == 

Initial mass (kg)        70149.9 

                   climb       cruise      descent  

Distance   (m)  160963.5    4895000.0     134280.4 

Fuel burn (kg)    1051.0      12426.7          0.0 

Time       (s)     983.5      19272.7        752.1 

IAS      (m/s)     119.6        150.2        139.2  
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Cruise Altitude       (m) 9690.00 

Cruise Thrust Setting (%)   86.00 

Start of climb      (m/s)   14.43 

End of climb        (m/s)    5.89 

Start of descent    (m/s)  -14.80 

End of descent      (m/s)  -11.19 

 

== Diversion stage == 

Initial mass (kg)        56626.8 

                    climb      cruise      descent 

Distance   (m)    48710.0     49950.0      80621.9 

Fuel burn (kg)      431.2       144.3          0.0 

Time       (s)      344.2       389.7        497.5 

IAS      (m/s)      119.6        93.5        139.2 

  

Cruise Altitude       (m)    6096.00 

Cruise Thrust Setting (%)      38.00 

Start of descent    (m/s)     -13.46 

End of descent      (m/s)     -11.16 

 

============= Summary of fuel total fuel burn =============== 

Total mission fuel    (kg)  13523.0 

Inc. ground man. fuel (kg)     45.0 

Diversion fuel burn   (kg)    575.0 

Holding fuel burn     (kg)   1000.0 

Ground total fuel burn(kg)  15098.0 

Average stage time     (s)  21008.0 

 

============= Field Performance ============================= 

Second segment gradient         0.007 

Balanced field length (m)    2421.0 

Takeoff stall speed (m/s)      64.5 

Landing mass         (kg)   56627.0 

Landing field length  (m)    1208.0 

Landing stall speed (m/s)      55.8 

 

============= WAT Performance =============================== 

At ISA + 20 deg.    elevation   0  

Second segment climb gradient   0.007 

 

======== Cost Estimation (Dollars 2010) ===================== 

Stage length      (km)            5500.0 

Fuel price        ($/USG)            2.15 

Fuel used         (kg)           13523.0 

Block time        (hours)            5.95 

Price of airframe ($M)              58.69 

Price of engines  ($M)               7.12 

Price of aircraft ($M)              65.80 

 

====== Cost/Flight (ATA method) in US Dollars ============== 

Utilisation          (hours/year)  4414 

Depreciation cost                 $8702.3 

Insurance cost                     $212.1 

Interest cost                     $7309.9 

Standing charge (Dep+Ins)         $8914.4 

Standing charge (Dep+Ins+Int)    $16224.3 

Total Labour maintenance          $1771.5 

Total Material maintenance        $2637.4 

Aircraft maintenance              $7597.5 
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Fuel & oil cost                   $9681.4 

Flight Crew cost                  $4351.6 

Indirect cost                    $14905.9 

 

Total Operating Costs/Flight     $52760.7 

 

====================== DOC, SMC =========================== 

                         Without Interest  With Interest  

Total DOC/flight   ($)          30544.800      37854.800 

Total DOC/mile  ($/nm)             10.300         12.700 

Seat mile cost  (c/nm)              6.856          8.497 
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Appendix II (b) 

iADS Text Output for Case Study (B) 

 

============================================================== 

                      Wing      Tailplane     Fin   

Aspect Ratio          8.00        5.00        2.50 

Gross Area    (m^2)  27.87        4.71        3.27 

Span            (m)  14.93        4.86        2.86 

Taper Ratio           0.30        0.30        0.30 

Thickness chord ratio 0.12        0.12        0.12 

MeanAeroChord   (m)   2.05        0.97        1.14 

Chord at C.line (m)   2.87        1.49        1.76 

Tail Arm        (m)               7.26        6.37 

Sweep Angle  (deg.)  15.00                   30.00 

 

Wing Location  6.05 (m) from nosecone apex to the leading edge at 

centreline 

============================================================== 

 

                    Fuselage    One Nacelle 

Diameter       (m)    1.50         0.75 

Total Length   (m)   13.75         2.50 

NoseConeLength (m)    4.00         2.00 

Cabin Length   (m)    5.25 

TailConeLength (m)    4.50         0.50 

Wetted Area  (m^2)   54.78         4.50 

 

Number of Passengers        6 

Total Take-off Thrust (lbs) 4214.1 

Engin scale factor      0.31 

 

Load Gust Factor      12.710 

Manouvre Load Factor  5.309 

Design Dive Speed (I.A.S.) (m/s) 278 

 

========== Mass calculation All Mass in Kg =================== 

Wing includes flaps  757.9 

Fuselage          1143.6 

Empennage            118.9 

Nacelles             105.1 

Engines              438.2 

Propulsion System    603.5 

Propulsion (total)   708.7 

Undercarriage        325.5 

Surface Controls     199.9 

  

Auxiliary power unit 11.5 

Paint & Oxygen system 68.6 

Electrical system  212.7 

Avionics & Instruments, +AP 199.2 

Air cond & Anti-icing 116.9 

Hydraulic system 311.2 

Systems (Total)      920.0 

  

Furnishings          427.9 

Empty Mass 4602.4 

   

Operation Items       51.7 

Crew mass            186.0 
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Flight attendants      0.0 

Op. empty mass 4840.1 

   

Passsenger Load      721.2 

Zero Fuel mass 5561.3 

Total Fuel           555.0 

 

Maximum TakeOff 6116.3 

 

============================================================ 

C.G. Position From Nose Apex. 

Empty aircraft       (m)  7.73 

Datum Position –  

50%fuel full payload 7.57 

Aft Limit            (m) 7.76 

Forward Limit        (m) 7.52 

 

===========    Aerodynamics Data ============================== 

== Zero-Lift Drag Coefficients == 

Exposed Wing    0.007359 

Fuselage        0.005608 

Nacelles(total) 0.004244 

Horizontal Tail 0.001660 

Vertical Tail   0.001120 

Interference  0.000653 

========================================================= 

 

      CL          CD  

     ----      -------- 

     0.00      0.021533 

     0.20      0.022685 

     0.40      0.027669 

     0.60      0.036484 

     0.80      0.049132 

     1.00      0.065612 

     1.20      0.085924 

     1.40      0.110068 

     1.60      0.138044 

 

===========    Static Stability ============================== 

 

Neutral Point (POWER-OFF)         (m) =  7.88 from Nose 

Static Margin (DATUM C.G., POWER-OFF) =  0.15 

 

===========    Max Lift Requirement ========================== 

 

         Flap Defln.  Section CL   Wing CL  Trimmed a/c CL 

            (deg)       (max)       (max)       (max) 

TakeOff =   22.00        3.11        2.44        2.39 

Landing =   30.00        3.46        2.69        2.61 

 

Cruise mach no. =   0.70 

 

===========    MISSION STAGE ANALYSIS ========================== 

== first stage == 

Initial mass (kg) 6116.3 

 ----------------- climb ------ cruise ----- descent --- 

Distance   (m) = 273029.8    2469750.0     108603.1 

Fuel burn (kg) =     77.3        346.4          0.0 

Time       (s) =   1604.8      11700.6        707.0 

IAS      (m/s) =    119.57       124.84       120.00 



194 
 

  

Cruise Altitude       (m) 9690 

Cruise Thrust Setting (%) 86.00 

 

*********** R. O. D / C ************ 

Start of climb   (m/s)  12.65 

End of climb     (m/s)   2.45 

Start of descent (m/s)  -16.06 

End of descent   (m/s)  -11.73 

 

 

== Diversion stage == 

Initial mass (kg)  5647.2 

----------------- climb ------ cruise ----- descent --- 

Distance   (m) =  73651.8      49950.0      65438.8 

Fuel burn (kg) =     30.4          6.8          0.0 

Time       (s) =    516.5        389.7        468.7 

IAS      (m/s) =    119.57        93.53       120.00 

  

Cruise Altitude       (m)  6096 

Cruise Thrust Setting (%) 38.00 

 

*****************R. O. D / C ************ 

Start of descent (m/s)  -14.44 

End of descent   (m/s) = -11.75 

 

============= Summary of fuel total fuel burn =============== 

Total mission fuel    (kg) 469 

Inc. ground man. fuel (kg)  45 

Diversion fuel burn   (kg)  37 

Holding fuel burn     (kg)  47 

Ground total fuel burn(kg) 554 

Average stage time     (s)  14012 

 

============= Field Performance ============================= 

 

Second segment gradient   = 0.012 

Balanced field length (m)  988 

Takeoff stall speed (m/s)  38.3 

Landing mass         (kg)   5647 

Landing field length  (m)  614 

Landing stall speed (m/s)  35.2 

 

============= WAT Performance =============================== 

At ISA + 20 deg.elevation (m)     0 

Second segment climb gradient 0.011 

      

    

======== Cost Estimation (Dollars 2010) ===================== 

Stage length             (km)  2775 

Fuel price            ($/USG) 2.15 

Fuel used                (kg)   469 

Block time            (hours)  4.01 

Price of airframe        ($M)  6.00 

Price of engines         ($M)  1.30 

Price of aircraft        ($M)  7.30 

 

====== Cost/Flight (ATA method) in US Dollars ============== 

Utilisation          (hours/year) 4187 

Depreciation cost        ($)   710.7 
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Insurance cost             ($)    17.0 

Interest cost               ($)  597.0 

Standing charge (Dep+Ins)   ($)  727.7 

Standing charge (Dep+Ins+Int($) 1324.7 

Total Labour maintenance    ($)  469.3 

Total Material maintenance  ($)  266.7 

Aircraft maintance          ($) 1580.6 

Fuel & oil cost             ($)  342.7 

Flight Crew cost            ($) 2788.9 

Indirect cost               ($)  170.0 

 

Total Operating Costs/Flight($) 6206.9 

 

====================== DOC, SMC =========================== 

                          Without Interest  With Interest  

Total DOC/flight   ($)  5439.9         6036.9 

Total DOC/mile  ($/nm)     3.6            4.0 

Seat mile cost  (c/nm)    60.504         67.144 
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Appendix III (a) 

Input File of the Case Study (A) for DATCOM Software 

 
 

 

CASEID --- My Design (iADS) --- 

   $FLCON  

    NMACH=1.0, 

    MACH(1)=0.20, 

    NALPHA=7.0, 

    ALSCHD(1)=-4.0,-2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 

    NALT=1.0, 

    ALT(1)=0.0, 

    WT= 6 331.0, 

    LOOP=1.0 

   $ 

 

   $SYNTHS  

     XCG= 0.00, 

     ZCG= 0.00, 

     XW=12.29, 

     ZW= 0.00, 

     ALIW= 2.00, 

     XH=32.47, 

     ZH= 1.30, 

     ALIH=-2.00, 

     XV=31.18, 

     ZV= 1.9 

   $  

    

   $BODY  

    NX=5.0, 

    X(1)=  2.00,  8.00, 20.00, 32.00, 34.00, 

    S(1)= 5.67, 11.34, 11.34, 11.34,  6.16, 

   $ 

    

   NACA-5-64-413 

   $WGPLNF  

    CHRDTP= 1.57, 

    SSPNOP=16.57, 

    SSPNE=14.67, 

    SSPN=16.57, 

    CHRDBP= 5.22, 

    CHRDR= 5.80, 

    SAVSI=25.0, 

    SAVSO=25.0, 

    CHSTAT=0.00, 

    TWISTA=0.3, 

    DHDADI=0.0, 

    TYPE=0.0 

   $ 
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   NACA-4-0012 

   $HTPLNF  

    CHRDTP= 0.95, 

    SSPNE= 5.16, 

    SSPN= 5.16, 

    CHRDR= 3.18, 

    SAVSI=25.0, 

    CHSTAT= 0.25, 

    TYPE1.0 

   $ 

 

   NACA-4-0015 

   $VTPLNF  

     CHRDTP= 1.34, 

     SSPNE= 5.23, 

     SSPN= 5.23, 

     CHRDR= 4.47, 

     SAVSI=40.0, 

     CHSTAT= 0.25, 

     TYPE1.0 

   $ 

 

   DIM M 

   BUILD 

   PLOT 

   NEXT CASE 
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Appendix III (b) 

Input File of the Case Study (B) for DATCOM Software 

 

 

 CASEID --- My Design (iADS) --- 

    $FLCON  

     NMACH=1.0, 

     MACH(1)=0.2, 

     NALPHA=7.0, 

     ALSCHD(1)=-4.0,-2.0, 0.0, 2.0, 4.0, 6.0, 8.0, 

     NALT=1.0, 

     ALT(1)=0.0, 

     WT=  5727.0, 

     LOOP=1.0 

    $ 

 

    $SYNTHS  

      XCG= 7.57, 

      ZCG= 0.00, 

      XW= 6.05, 

      ZW= 0.00, 

      ALIW= 2.00, 

      XH=11.76, 

      ZH= 1.30, 

      ALIH=-2.00, 

      XV=11.49, 

      ZV= 0.75 

    $ 

 

    $BODY  

      NX=5.0, 

      X(1)=  2.00,  5.00,  7.00, 10.00, 12.00, 

      S(1)=  0.93,  1.77,  1.77,  1.77,  0.84, 

    $ 

     

    NACA-5-64-413 

    $WGPLNF  

      CHRDTP= 0.86, 

      SSPNOP= 7.47, 

      SSPNE= 6.72, 

      SSPN= 7.47, 

      CHRDBP= 2.58, 

      CHRDR= 2.87, 

      SAVSI=15, 

      SAVSO=12.5, 

      CHSTAT=0.00, 

      TWISTA=0.3, 

      DHDADI=0.0, 

      TYPE=0.0 

    $ 
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    NACA-4-0012 

    $HTPLNF  

      CHRDTP= 0.45, 

      SSPNE= 2.43, 

      SSPN= 2.43, 

      CHRDR= 1.49, 

      SAVSI=15, 

      CHSTAT= 0.25, 

      TYPE1.0 

    $ 

    

    NACA-4-0015 

    $VTPLNF  

      CHRDTP= 0.53, 

      SSPNE= 2.86, 

      SSPN= 2.86, 

      CHRDR= 1.76, 

      SAVSI=30.0, 

      CHSTAT= 0.25, 

      TYPE1.0 

    $ 

 

    DIM M 

    BUILD 

    PLOT 

    NEXT CASE 
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Appendix IV (a) 

iADS MATLAB m’ File for Case Study (A) 

 
%  This file includes ALL variables required for STABILITY and CONTROL 

analysis 

 

%##################################################################### 

%  WING VARIABLES 

W_AR  =   9.00;    %  Aspect Ratio 

W_ARx  =   8.61;   %  Exposed Wing Aspect Ratio 

W_TR  =   0.27;   %  Taper Ratio 

W_TC  =   0.13;   %  Thickness Ratio 

W_S  =  122.00;   %  Area (m^2) 

W_Sx  =  99.97;   %  Wing Area (m^2) 

W_B  =  33.14;    %  Span (m) 

W_Rt  =   5.80;   %  Root (m) 

W_swp  =  25.00;  %  SweepBack Angle (deg.) 

W_inc  =   2.00;  %  Incidence Angle (deg.) 

W_dh  =  2;       %  Dihedral Angle (deg.) 

W_P  =     0.34;    %  Position to Fuselage Length Ratio 

W_cla  =   6.10;  %  Aerofoil Lift Slop Curve 

W_cm0  =  -0.08;  %  Aerofoil Pitching Moment Coefficient 

W_alfa0  =  -4;   %  Aerofoil Alfa at Zero Lift (deg.) 

 

%##################################################################### 

%  HORIZONTAL TAIL VARIABLES 

HT_AR  =   5.00;   %  Aspect Ratio 

HT_TR  =   0.30;   %  Taper Ratio 

HT_TC  =   0.12;   %  Thickness Ratio 

HT_V  =   0.80;    %  Volume Coeff 

HT_S  =  21.33;    %  Area (m^2) 

HT_B  =  10.33;    %  Span (m) 

HT_Rt  =   3.18;   %  Root (m) 

HT_Se  =   5.08;   %  Elevator Area (m^2) 

HT_qh  =   0.95;   %  Pressure Ratio 

HT_eff  =  0.9;    %  Efficiency 

HT_inc  =  -3;     %  Incidence Angle (deg.) 

HT_dh  =  2;       %  Wing Dihedral Angle (deg.) 

HT_cla  =  6.25;   %  Aerofoil Lift Slop Curve 

HT_cm0  =  0;      %  Horiz. Tail Aerofoil Pitch Moment Coeff 

 

%############################################################################# 

%  VERTIACAL TAIL VARIABLES 

VT_AR  =   1.80;    %  Aspect Ratio 

VT_TR  =   0.30;    %  Taper Ratio 

VT_TC  =   0.13;    %  Thickness Ratio 

VT_V  =   0.07;    %  Vol Coeff 

VT_S  =  15.22;    %  Area (m^2) 

VT_B  =   5.23;    %  Span (m) 

VT_Rt  =   4.47;    %  Root (m) 

VT_Sr  =   4.57;    %  Rudder Area (m^2) 

VT_eff  =  1;       %  Vertical Tail Efficiency 

VT_swp  =  40.00;   %  Vertical Tail SweepBack Angle (deg.) 

VT_cla  =  6.25;    %  Vertical Tail Aerofoil Lift Slop Curve 

 

%############################################################################# 

%  FUSELAGE VARIABLES 

F_D  =   3.80;    %  Diameter (m) 

F_L  =  36.15;    %  FLength (m) 

F_1  =   4.00;    %  Nose Length (m) 

F_2  =  20.75;    %  Cabin Length (m) 

F_3  =  11.40;    %  TailCone Length (m) 

F_ln  =     12.29;    %  Wing Position at Fuselage centre line (m) 

F_inc  =  0;       %  Incidence (deg.) 
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%############################################################################# 

%  NACELLE VARIABLES 

Nac_D  =   1.75;    %  Diameter (m) 

Nac_L  =   3.50;    %  Length (m) 

Eng_N  =  2;       %  Number of Engines 

 

%#############################################################################

##### 

% VARIABLES FROM RUNNING SINGLE PASS PROGRAM 

W_C  =   4.09;    % W_C = Wing aerodynamic chord (m) 

Xcg  =  15.98;    % Xcg = CG normal distance (m) 

Xmac  =  16.44;    % Xmac = Xac power off (m) 

Wto  =  60331.33;   % Aircraft Weight (kg) 

Stab_Height  =   0.00; % Aircraft Height (m) 

Stab_roh  =   1.22; % Roh value for the given height 

Uo  =  68.00;    % Aircraft Speed (m/s) 

q  =  2830.07;    % q = Air Pressure (kg/m^2) 

CL0  =   1.70;  

CD0  =   0.15;  

HT_ac  =      9.16;    % Distance from HT-Aero centre to CG (m) 

VT_ac  =      19.05;    % Distance from VT-Aero centre to CG (m) 

Z_v  =     2.15;    % Z Distance from VT-aero centre to fuselage 

centre line (m) 

Z_w  =   1.42;    % Z Distance from Wing Aero centre to fuselage 

centre line (m) 

a_y2  =    15.74;    % Distance from centre line to the outer side 

of the ailron (m) 

a_y1  =    11.60;    % Distance from centre line to the inner side 

of the ailron (m) 

 

%#############################################################################

##########% ###### LONGITUDINAL COEFFICIENTS ##### 

Cl_alfa  =  5.4226;  

Cm_alfa  =  -2.6521; 

Cm_zero  =  0.2260; 

Cl_alfa_dot  =  0.0000; 

Cl_q  =  0.0000; 

Cm_alfa_dot  =  -9.5097; 

Cz_alfa  =  -5.5719; 

Cz_alfa_dot  =  -2.0282; 

Cm_q  =  -28.5790; 

Cz_q  =  -6.0952; 

Cz_delta_e  =  -0.3129; 

Cm_delta_e  =  -1.4320; 

CT_u  =  -0.2987; 

Cx_u  =  -0.2987; 

Cz_u  =  -3.3292; 

Cm_u  =  0.0800; 

Cx_alfa  =  1.0774; 

 

%####################################################################### 

%##### LATERAL COEFFICIENTS ######## 

Cy_beta  =  -0.7088; 

Cn_beta  =  0.0222; 

Cl_beta  =  -0.0974; 

Cy_p  =  0.6220; 

Cn_p  =  -0.2125; 

Cl_p  =  -0.5867; 

Cy_r  =  0.8149; 

Cn_r  =  -0.1696; 

Cl_r  =  0.0408; 

Cl_delta_a  =  0.0537; 

Cn_delta_a  =  0.0219; 

Cy_delta_r  =  0.0736; 

Cn_delta_r  =  -0.0413; 

Cl_delta_r  =  0.0048; 

 

%########################################################################## 
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% ####### DIMENSIONAL COEFFICIENTS ###### 

Xu  =  -0.0302; 

Zu  =  -0.3005; 

Mu  =  0.000584; 

Xw  =  0.0572; 

Zw  =  -0.4689; 

Mw  =  -0.0194; 

Zw_dot  =  -0.0051; 

Mw_dot  =  -0.0021; 

X_alfa  =  6.1656; 

Z_alfa  =  -31.8872; 

M_alfa  =  -1.3162; 

Z_alfa_dot  =  -0.3488; 

M_alfa_dot  =  -0.1418; 

Z_q  =  -1.0483; 

M_q  =  -0.4263; 

Z_delta_e  =  -1.7907; 

M_delta_e  =  -0.7107; 

 

%########################################################################### 

% ####### LATERAL DIRECTIONAL DERIVATIVES ########## 

Y_beta  =  -4.0564; 

N_beta  =  0.0664; 

L_beta  =  -1.0776; 

Yp  =  0.8673; 

Np  =  -0.1548; 

Lp  =  -1.5815; 

Yr  =  1.1363; 

Nr  =  -0.1235; 

Lr  =  0.1099; 

L_delta_a  =  0.5939; 

N_delta_a  =  0.0655; 

Y_delta_r  =  0.4214; 

N_delta_r  =  -0.1235; 

L_delta_r  =  0.0528; 

 

%########################################################################### 

% ######### MOMENTS ############ 

M_moment  =  318877.85; 

N_moment  = -1939915.42; 

L_moment  = -6712266.34; 

 

%######################################################## 

Along  = [Xu Xw 0 -9.81;Zu Zw Uo 0;Mu+Mw_dot*Zu Mw+Mw_dot*Zw 

M_q+Mw_dot*Uo 0;0 0 1 0]; 

Blong  =[0 CT_u;Z_delta_e 0;M_delta_e+Mw_dot*Z_delta_e 0;0 0]; 

Alat  =[Y_beta/Uo Yp/Uo -(1-Yr/Uo) 9.81/Uo;L_beta Lp Lr 0;N_beta Np 

Nr 0;0 1 0 0]; 

Blat  =[0 Y_delta_r/Uo;L_delta_a L_delta_r;N_delta_a N_delta_r;0 0]; 

C  =[1.0000 0.0000 0.0000 0.0000;0.0000 1.0000 0.0000 

0.0000;0.0000 0.0000 1.0000 0.0000;0.0000 0.0000 0.0000 1.0000]; 

D  =[0.0000 0.0000;0.0000 0.0000;0.0000 0.0000;0.0000 0.0000]; 

 

%########################################################## 

% To evaluate eiginvalues for LONGITUDENAL A MATRIX 

eig(Along); 

 

% To evaluate eiginvalues for LATERAL A MATRIX 

eig(Alat); 

 

%############################################################################ 

syslong  =ss(Along,Blong,C,D); 

syslat  =ss(Alat,Blat,C,D); 
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Appendix III (b) 

iADS MATLAB m’ File for Case Study (B) 

 

%  This file includes ALL variables required for STABILITY and CONTROL 

analysis 

 

%############################################################################ 

%  WING VARIABLES 

W_AR  =   8.00;   %  Aspect Ratio 

W_ARx  =   7.66;   %  Exposed Wing Aspect Ratio 

W_TR  =   0.30;   %  Taper Ratio 

W_TC  =   0.12;   %  Thickness Ratio 

W_S  =  27.87;   %  Wing Area (m^2) 

W_Sx  =  23.56;   %  Exposed Wing Area (m^2) 

W_B  =  14.93;   %  Span (m) 

W_Rt  =   2.87;   %  Root (m) 

W_swp  =  15.00;   %  SweepBack Angle (deg.) 

W_inc  =   2.00;   %  Incidence Angle (deg.) 

W_dh  =  2;     %  Dihedral Angle (deg.) 

W_P  =   0.44;    %  Wing Position to Fuselage Length Ratio 

W_cla  =   6.10;   %  Wing Aerofoil Lift Slop Curve 

W_cm0  =  -0.08;   %  Aerofoil Pitching Moment Coefficient 

W_alfa0  =  -4;    %  Wing Aerofoil Alfa at Zero Lift (deg.) 

 

%############################################################################# 

%  HORIZONTAL TAIL VARIABLES 

HT_AR  =   5.00;   %  Aspect Ratio 

HT_TR  =   0.30;   %  Taper Ratio 

HT_TC  =   0.12;   %  Tail Thickness Ratio 

HT_V  =   0.60;   %  Tail Volume 

HT_S  =   4.71;    %  Tail Area (m^2) 

HT_B  =   4.86;    %  Span (m) 

HT_Rt  =   1.49;    %  Tail Root (m) 

HT_Se  =   1.12;    %  Elevator Area (m^2) 

HT_qh  =   0.95;    %  Pressure Ratio 

HT_eff  =  0.9;     %  Tail Efficiency 

HT_inc  =  -3;     %  Incidence Angle (deg.) 

HT_dh  =  2;     %  Dihedral Angle (deg.) 

HT_cla  =  6.25;     %  Aerofoil Lift Slop Curve 

HT_cm0  =  0;     %  Aerofoil Pitching Moment Coefficient 

 

%############################################################################ 

%  VERTIACAL TAIL VARIABLES 

VT_AR  =   2.50;    %  Aspect Ratio 

VT_TR  =   0.30;     %  Taper Ratio 

VT_TC  =   0.12;     %  Thickness Ratio 

VT_V  =   0.05;     %  Tail Volume 

VT_S  =   3.27;    %  Area (m^2) 

VT_B  =   2.86;     %  Span (m) 

VT_Rt  =   1.76;     %  Root (m) 

VT_Sr  =   0.98;    %  Area (m^2) 

VT_eff  =  1;     %  Efficiency 

VT_swp  =  30.00;     %  SweepBack Angle (deg.) 

VT_cla  =  6.25;      %  Aerofoil Lift Slop Curve 

 

%############################################################################# 

%  FUSELAGE VARIABLES 

F_D  =   1.50;    %  Diameter (m) 

F_L  =  13.75;     %  Length (m) 

F_1  =   4.00;    %  Nose Length (m) 

F_2  =   5.25;     %  Cabin Length (m) 

F_3  =   4.50;    %  TailCone Length (m) 

F_ln  =   6.05;     %  Wing Position at Fuselage centre line (m) 

F_inc  =  0;     %  Incidence (deg.) 
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%############################################################################# 

%  NACELLE VARIABLES 

Nac_D  =   0.75;    %  Diameter (m) 

Nac_L  =   2.50;    %  Length (m) 

Eng_N  =  2;     %  Number of Engines 

 

%#############################################################################

####### 

% VARIABLES FROM RUNNING SINGLE PASS PROGRAM 

W_C  =   2.05;     % Wing aerodynamic chord (m) 

Xcg  =   7.57;   % CG normal distance (m) 

Xmac  =   7.38;   % Xac power off (m) 

Wto  =  5601.09;     % Aircraft Weight (kg) 

Stab_Height  =   0.00;    % Aircraft Height (m) 

Stab_roh  =   1.22;       % Roh value for the given height 

Uo  =  68.00;       % Aircraft Speed (m/s) 

q  =  2830.07;     % Air Pressure (kg/m^2) 

CL0  =   1.70;   

CD0  =   0.15;  

HT_ac  =   7.07;    % Distance from HT-Aero centre to CG (m) 

VT_ac  =   6.18;    % Distance from VT-Aero centre to CG (m) 

Z_v  =   1.17;    % Z Distance from VT-aero centre to fuselage 

centre line (m) 

Z_w  =   0.56;    % Z Distance from Wing Aero centre to fuselage 

centre line (m) 

a_y2  =   7.09;   % Distance from centre line to the outer side 

of the ailron (m) 

a_y1  =   5.23;   % Distance from centre line to the inner side 

of the ailron (m) 

 

%############################################################################# 

% ###### LONGITUDINAL COEFFICIENTS ##### 

Cl_alfa  =  5.4420;  

Cm_alfa  =  -1.0522; 

Cm_zero  =  0.2250; 

Cl_alfa_dot  =  0.0000; 

Cl_q  =  0.0000; 

Cm_alfa_dot  =  -6.2655; 

Cz_alfa  =  -5.5955; 

Cz_alfa_dot  =  -1.8136; 

Cm_q  =  -16.4165; 

Cz_q  =  -4.7519; 

Cz_delta_e  =  -0.3148; 

Cm_delta_e  =  -1.1164; 

CT_u  =  -0.3069; 

Cx_u  =  -0.3069; 

Cz_u  =  -3.3292; 

Cm_u  =  0.0800; 

Cx_alfa  =  1.0040; 

 

%##################################################################### 

%##### LATERAL COEFFICIENTS ######## 

Cy_beta  =  -0.6594; 

Cn_beta  =  0.1508; 

Cl_beta  =  -0.0974; 

Cy_p  =  0.3443; 

Cn_p  =  -0.2125; 

Cl_p  =  -0.5967; 

Cy_r  =  0.5458; 

Cn_r  =  -0.1122; 

Cl_r  =  0.0401; 

Cl_delta_a  =  0.0555; 

Cn_delta_a  =  0.0227; 

Cy_delta_r  =  0.0873; 

Cn_delta_r  =  -0.0372; 

Cl_delta_r  =  0.0069; 

 

%##################################################################### 
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% ####### DIMENSIONAL COEFFICIENTS ###### 

Xu  =  -0.0763; 

Zu  =  -0.7393; 

Mu  =  0.005541; 

Xw  =  0.1408; 

Zw  =  -1.1587; 

Mw  =  -0.0729; 

Zw_dot  =  -0.0057; 

Mw_dot  =  -0.0065; 

X_alfa  =  14.1376; 

Z_alfa  =  -78.7947; 

M_alfa  =  -4.9556; 

Z_alfa_dot  =  -0.3844; 

M_alfa_dot  =  -0.4441; 

Z_q  =  -1.0071; 

M_q  =  -1.1637; 

Z_delta_e  =  -4.4325; 

M_delta_e  =  -5.2580; 

 

%##################################################################### 

% ####### LATERAL DIRECTIONAL DERIVATIVES ########## 

Y_beta  =  -9.2855; 

N_beta  =  3.1884; 

L_beta  =  -6.3850; 

Yp  =  0.5322; 

Np  =  -0.4933; 

Lp  =  -4.2946; 

Yr  =  0.8438; 

Nr  =  -0.2604; 

Lr  =  0.2885; 

L_delta_a  =  3.6396; 

N_delta_a  =  0.4790; 

Y_delta_r  =  1.2298; 

N_delta_r  =  -0.7874; 

L_delta_r  =  0.4496; 

 

%##################################################################### 

% ######### MOMENTS ############ 

M_moment  =    36331.78; 

N_moment  =  -132130.72; 

L_moment  =  -702765.45; 

 

%######################################################## 

Along  = [Xu Xw 0 -9.81;Zu Zw Uo 0;Mu+Mw_dot*Zu Mw+Mw_dot*Zw 

M_q+Mw_dot*Uo 0;0 0 1 0]; 

Blong  =[0 CT_u;Z_delta_e 0;M_delta_e+Mw_dot*Z_delta_e 0;0 0]; 

Alat  =[Y_beta/Uo Yp/Uo -(1-Yr/Uo) 9.81/Uo;L_beta Lp Lr 0;N_beta Np 

Nr 0;0 1 0 0]; 

Blat  =[0 Y_delta_r/Uo;L_delta_a L_delta_r;N_delta_a N_delta_r;0 0]; 

C  =[1.0000 0.0000 0.0000 0.0000;0.0000 1.0000 0.0000 

0.0000;0.0000 0.0000 1.0000 0.0000;0.0000 0.0000 0.0000 1.0000]; 

D  =[0.0000 0.0000;0.0000 0.0000;0.0000 0.0000;0.0000 0.0000]; 

 

%########################################################## 

% To evaluate eiginvalues for LONGITUDENAL A MATRIX 

 eig(Along); 

% To evaluate eiginvalues for LATERAL A MATRIX 

 eig(Alat); 

 

%##################################################################### 

 syslong  =ss(Along,Blong,C,D); 

 syslat  =ss(Alat,Blat,C,D); 
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Appendix V 

Cessna Citation cj4: Specification and Description 
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Appendix VI 

iADS Output for Optimised Aircraft Design Case Study (B) 

 

=============================================================== 

                      Wing      Tailplane     Fin   

Aspect Ratio         10.38        5.00        2.50 

Gross Area    (m^2)  23.61        3.02        2.81 

Span            (m)  15.65        3.88        2.65 

Taper Ratio           0.46        0.30        0.30 

Thickness chord ratio 0.15        0.12        0.12 

MeanAeroChord   (m)   1.58        0.78        1.06 

Chord at C.line (m)   2.07        1.20        1.63 

Tail Arm        (m)  =====        7.40        6.57 

Sweep Angle  (deg.)  15.00       =====       30.00 

 

Wing Location  5.87 (m) from nosecone apex to the leading edge at 

centreline 

=============================================================== 

                    Fuselage    One Nacelle 

Diameter       (m)    1.50         0.75 

Total Length   (m)   13.75         2.50 

NoseConeLength (m)    4.00         2.00 

Cabin Length   (m)    5.25 

TailConeLength (m)    3.15         0.50 

Wetted Area  (m^2)   50.01         4.50 

 

Number of Passengers               6.00 

Total Take-off Thrust (lbs)     3981.30 

Engin scale factor                 0.29 

 

Load Gust Factor                  10.622 

Manoeuvre Load Factor              5.223 

Design Dive Speed (I.A.S.)(m/s)  278.000 

 

============= Mass calculation All Mass in Kg ============== 

Wing includes flaps              666.9 

Fuselage                        1063.4 

Empennage                         92.6 

Nacelles                          99.3 

Engines                          415.7 

Propulsion System                572.6 

Propulsion (total)               671.9 

Undercarriage                    346.2 

Surface Controls                 211.8 

  

Auxiliary power unit              12.5 

Paint & Oxygen system             71.4 

Electrical system                212.7 

Avionics, Instruments, & AP      209.1 

Air cond. & Anti-icing           116.9 

Hydraulic system                 314.8 

Systems (Total)                  937.4 

  

Furnishings                      491.7 

Empty Mass                      4481.8 

   

Operation Items                   51.7 

Crew mass                        186.0 
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Flight attendants               0.0 

Op. empty mass               4719.5 

   

Passenger Load               721.2 

Zero Fuel mass               5440.7 

Total Fuel                    259.3 

 

Maximum Take-Off (MTOW)      5700.0 

 

 

C.G. Position From Nose Apex. 

Empty aircraft (m)              7.42 

Datum 50%fuel full payload  (m) 7.30 

Aft Limit            (m)        7.47 

Forward Limit        (m)        7.24 

 

==========   Aerodynamics Data   ========================  

=== Zero-Lift Drag Coefficients === 

Exposed Wing                    0.008751 

Fuselage                        0.006216 

Nacelles(total)                 0.005168 

Horizontal Tail                 0.001346 

Vertical Tail                   0.001190 

Interference                    0.000516 

 

      CL          CD  

     ----      -------- 

     0.00      0.024105 

     0.20      0.024812 

     0.40      0.028758 

     0.60      0.035943 

     0.80      0.046368 

     1.00      0.060032 

     1.20      0.076935 

     1.40      0.097077 

     1.60      0.120459 

 

===========   Static Stability ========================= 

 

Neutral Point 

       POWER-OFF (m)          7.55 from Nose 

Static Margin 

       DATUM C.G., POWER-OFF  0.16 

 

===========   Max Lift Requirement ====================== 

         Flap Defln.  Section CL   Wing CL  Trimmed a/c CL 

            (deg)       (max)       (max)       (max) 

TakeOff     28.08        3.40        2.59        2.54 

Landing     30.00        3.46        2.63        2.58 

 

===========   Cruise Mach Number ========================= 

Cruise mach no. =   0.80 

 

============   Mission Stage Analysis ==================== 

=== First stage ======== 

Initial mass (kg)        5700.0 

                    climb       cruise      descent  

Distance   (m)   153307.6    2423921.3     197771.2 

Fuel burn (kg)       41.4        124.8          0.0 

Time       (s)     1178.5      10252.9       1966.4 

IAS      (m/s)       90.25       129.22        76.25 
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Cruise Altitude       (m)   10950.00 

Cruise Thrust Setting (%)      51.60 

Start of climb   (m/s)         14.07 

End of climb     (m/s)          5.12 

Start of descent (m/s)         -7.03 

End of descent   (m/s)         -4.52 

 

==== Diversion stage ===== 

Initial mass (kg)         5488.5 

                    climb      cruise      descent  

Distance   (m)    45415.2     34965.0     104619.8 

Fuel burn (kg)       18.9         3.9          0.0 

Time       (s)      428.2       420.8       1185.8 

IAS      (m/s)       90.25       61.21        76.25 

  

Cruise Altitude       (m)   5924.00 

Cruise Thrust Setting (%)     26.60 

Start of descent (m/s)        -5.64 

End of descent   (m/s)        -4.46 

 

=========== Summary of fuel total fuel burn ================ 

Total mission fuel    (kg)     212.0 

Inc. ground man. fuel (kg)      45.0 

Diversion fuel burn   (kg)      23.0 

Holding fuel burn     (kg)      25.0 

Ground total fuel burn(kg)     259.0 

Average stage time     (s)   13398.0 

 

=========== Field Performance ============================= 

Second segment gradient          0.025 

Balanced field length (m)      980.0 

Takeoff stall speed (m/s)       39.0 

Landing mass         (kg)     5489.0 

Landing field length  (m)      682.0 

Landing stall speed (m/s)       38.0 

 

============= WAT Performance ============================== 

At ISA + 20 deg.elevation (m)    0 

Second segment climb gradient    0.024 

      

=========== Cost Estimation (Dollars 2010) ================= 

 

Stage length       (km)        2775.0 

Fuel price      ($/USG)           2.15 

Fuel used          (kg)         212.0 

Block time      (hours)           3.84 

Price of airframe  ($M)           5.80 

Price of engines   ($M)           1.26 

Price of aircraft  ($M)           7.07 

 

====== Cost/Flight (ATA method) in US Dollars ============= 

Utilisation    (hours/year)    4161 

Depreciation cost               $664.7 

Insurance cost                   $15.9 

Interest cost                   $558.3 

Standing charge (Dep+Ins)       $680.6 

Standing charge (Dep+Ins+Int)  $1238.9 

Total Labour maintenance        $449.6 

Total Material maintenance      $250.6 

Aircraft maintance             $1509.5 
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Fuel & oil cost                 $158.2 

Flight Crew cost               $2675.5 

Indirect cost                   $161.1 

 

Total Operating Costs/Flight   $5743.1 

 

=================== DOC, SMC ================================ 

                        Without Interest   With Interest  

Total DOC/flight   ($)          5023.7         5582.0 

Total DOC/mile  ($/nm)             3.4            3.7 

Seat mile cost  (c/nm)            55.875         62.084 

============================================================ 

Convergence detected [code A] after 2065calls to user routine 
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Appendix VII 

iADS pictorial user guide 

 

iADS is a tool for preliminary aircraft design.  At start-up the main interface screen is 

presented with top level menus these are the File, Edit, Configure, Design, Output, 

Window, and Help.  

File, Edit, Window, and Help elements are general purpose menus, allowing opening, 

closing saving aircraft designs, since iADS supports MDI (multiple document interface) 

a window menu is provided to switch between opened documents.  The software loads a 

default aeroplane with representative values, which can be altered using the Configure 

menu as in Figure A-1.   

 

 

Figure A-1: Configure menu form 

 

Each item in the menu has its own form which contains design variables. These forms 

are shown sequentially from Figure A-2 to Figure A-12.  In each form, the user can 

either enter his/her values directly in the ‘Value’ field or using the scroll bar. When 

sliding the scroll bar, its value is appeared in the text box below the scroll bar. Clicking 

‘Accept’ button, the text box value is saved to the associated design variable.  The 

forms associated with the Optimiser Settings menu have already been presented in the 

main text Figures 4-16, 4-17, and 4-18. 



215 
 

 

Figure A-2: Wing menu form 

 

 

Figure A-3: Fuselage menu form 
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Figure A-4: Tail menu form 

 

 

Figure A-5: Aerodynamic menu form 
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Figure A-6: Engine and Nacelle menu form 

 

 

Figure A-7: Speeds menu form 
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Figure A-8: Stages menu form 

 

 

Figure A-9: Flaps menu form 
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Figure A-10: Heights + WAT menu form 

 

 

Figure A-11: Weights menu form 
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Figure A-12: Costs menu form 

 

The next stage is to execute preliminary design using the Design menu in the main form 

as in Figure A-13. The first item ‘Without optimisation’ performs the synthesis as a 

single pass. Selecting this item will open a form which contains all design variables and 

output parameters in tree structure as in Figure A-14. The benefit of using tree 

structure is to focus on certain parameters rather than a whole list. Hence, the user can 

change any design variable to see its effect on the selected output parameter easily and 

directly. 

 

 

Figure A-13: Design menu form 
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Figure A-14: Without optimisation output form 

 

The second item in ‘Design’ menu is ‘With optimisation’, which activates the optimiser 

to perform optimisation for the designed aircraft. At the end of optimisation process, an 

alert message is displayed as in Figure A-15. 
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Figure A-15: Alert message form 

It followed by another message to inform the end of optimisation process as in Figure 

A-16: 

 

Figure A-16: End of optimisation process message form 

The text output will be shown in ‘Text Data’ item of ‘Output’ menu.  

The third item in ‘Design’ menu is the ‘Dynamic stability’. It may be selected to 

perform the dynamic stability analysis as in Figure A-17. The user has a choice to 

select longitudinal or lateral analysis. Other buttons in the form are not activated until 

‘Calculate’ button is pressed. Figure A-18 shows the form after longitudinal analysis is 

selected and ‘Calculate’ button has been pressed. To plot the response, the user can 

select the response mode and the period of plot and press ‘Plot’ button as in Figure A-

19.  

 

Figure A-17: Dynamic stability form 
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Figure A-18: Longitudinal analysis output 

 

Figure A-19: Longitudinal analysis and plot form 
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The ‘DATCOM interface’ button is used to create the input file for DATCOM software. 

Figure A-20 shows the DATCOM interface form. It contains a tabbed notebook of six 

elements. The first element ‘Flight condition’ is used to define the number of Mach 

number, number of AOA, number of heights, and their values used for analysis as 

shown in Figure A-21. ‘Save’ button will be activated after all data are entered. 

 

 

Figure A-20: DATCOM interface form 
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Figure A-21: Flight condition form 

The second element is ‘Synthesis’ contains ten variables where their values are passed 

from the main program as in Figure A-22.  The user has the opportunity to accept these 

values or enter his value. ‘Save’ button commits these values for incorporation in the 

DATCOM interface file.  

 

Figure A-22: Synthesis form 
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‘Fuselage’ is the third element in DATCOM interface. The user should select the 

number of fuselage stations under consideration. Each station has two values, one for 

distance and the other is for cross sectional area. Again, all information input must be 

saved, the ‘Save’ button must be pressed after entering all values. Figure A-23 shows 

‘Fuselage’ element form: 

 

Figure A-23: ‘Fuselage’ form 

All variables required for ‘Wing’ element are passed from the main program as shown 

in Figure A-24.  ‘Save’ button commits these values for incorporation in the DATCOM 

interface file.  

 

Figure A-24: ‘Wing’ form 
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Empennage form is similar to wing form which contains variables that their values are 

passed from the main program as in Figure A-25. 

 

Figure A-25: ‘Empennage’ form 

The last element is the ‘Airfoil’ which is used to enter wing and tail aerofoil numbers. 

Aerofoil series are selected first and its number is entered in the text box. Save button 

will activate after all data are entered as in Figure A-26. The ‘Produce i/p File 

DatCom’ button is activated after all ‘Save’ buttons for the six elements have been 

pressed. 

. 

Figure A-26: Aerofoil form 
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The ‘Output’ item in the main menu form contains three elements as in Figure A-27. 

 

Figure A-27: Output menu form 

‘Text Data’ element shows the output text list: for the synthesis program as in 

Appendix II, for the optimiser as in Appendix VI, and for the takeoff module as in 

Figures A-28, A-29, & A-30, respectively. Clicking on the labels at the top will 

activate the required form. The ability to save data in an Excel spreadsheet, as well as a 

text file, is another feature for iADS software. 

 

Figure A-28: Text output form for the synthesis program 
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Figure A-29: Text output form for the optimiser 

 

Figure A-30: Text output form for the takeoff module 
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‘2D Aircraft View’ element shows the 3-view of the designed aircraft as in Figure A-

31.  

 

Figure A-31: 3-View output form 

The user has the opportunity to resize the form to his need without losing any 

information, as in Figure A-32: 

 

Figure A-32: Resizable draw form 
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This feature is very valuable in configuring the designed aircraft. In entering any 

variable related to the aircraft geometry, this form is launched automatically as an 

OOUI application as shown in Figure A-33. This allows students to understand the 

effect of the design variable graphically. 

 

Figure A-33: OOUI application 

Figure A-34 shows the application after resizing: 

 

Figure A-34: Resizable OOUI application 
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The last element in ‘Output’ menu is ‘Parametric Studies’. This module has great 

benefit to students enabling them to investigate the effect of design variables variation 

on the output parameters. Figure A-35 shows the parametric studies form. 

 

Figure A-36: Parametric studies form 

Initially, the user can select the output parameter under consideration from the drop list 

of the Y axis as in Figure A-37. 

 

Figure A-37: Drop list in parametric studies form 
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 X axis is selecting similar to Y axis. Press ‘Calculate’ to show the plot as in Figure A-

38. The deviation field, next to each axis, is added to allow the user to select the range 

of the variable to be changed. 

 

Figure A-38: ‘One-to One’ 2D plot form 

Selecting the right axis, a plot of ‘One –to-Two’ is shown as in Figure A-39. Note that 

the line with dot points represents the lowest value for the right axis. 

 

Figure A-39: ‘One-to-Two’ 2D plot form 
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The opportunity to select 3D plot is also available in this form as in Figure A-40. 

 

Figure A-40: ‘One-to-Two’ 3D plot form 

The third choice in parametric studies form is the polar plot as in Figure A-41. 

 

Figure A-41: Polar plot form 
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Parametric studies form is also resizable as shown in Figure A-42. 

 

Figure A-42: Resized Parametric studies form 

 

Additional feature was added to iADS software which is ‘Data Base’ folder. This 

folder contains all the necessary design data of the existing Airbus and Boeing aircraft.  

To select an Airbus aircraft, from ‘File’ menu in the main form of iADS, select ‘open’ 

to show the input window. In the ‘file name’ field just press ‘a’, a drop list is opened to 

select the desired Airbus aircraft as in Figure A-43. 

 

Figure A-43: Airbus aircraft selection form 
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In similar manner, the user can select a Boeing aircraft by entering number ‘7’ instead 

of ‘a’ in the file name as in Figure A-44. 

 

Figure A-44: Boeing aircraft selection form 

Finally, a ‘Takeoff’’ module is added to iADS to analyse the takeoff stage in detail. 

‘Takeoff setting’ item in ‘Configure’ menu is the input form for its design variables 

needed as in Figure A-45. Although, most of these values are passed directly from the 

main program, the user has the opportunity to change these data. The text output of this 

module is shown in Figure A-30 as mentioned before. 

 

Figure A-45: Takeoff setting form 


