
Computational Models of
Intracellular Signalling and

Synaptic Plasticity Induction in
the Cerebellum

Thiago Matos Pinto

May 2013

Submitted to the University of Hertfordshire in partial
fulfilment of the requirements of the degree of

Doctor of Philosophy





Abstract

Many molecules and the complex interactions between them underlie plasticity in
the cerebellum. However, the exact relationship between cerebellar plasticity and
the different signalling cascades remains unclear. Calcium-calmodulin dependent
protein kinase II (CaMKII) regulates many forms of synaptic plasticity, but very
little is known about its function during plasticity induction in the cerebellum.
The aim of this thesis is to contribute to a better understanding of the molecular
mechanisms that regulate the induction of synaptic plasticity in cerebellar Purkinje
cells (PCs). The focus of the thesis is to investigate the role of CaMKII isoforms
in the bidirectional modulation of plasticity induction at parallel fibre (PF)-PC
synapses. For this investigation, computational models that represent the CaMKII
activation and the signalling network that mediates plasticity induction at these
synapses were constructed.

The model of CaMKII activation by calcium-calmodulin developed by Dupont et
al (2003) replicates the experiments by De Koninck and Schulman (1998). Both the-
oretical and experimental studies have argued that the phosphorylation and activa-
tion of CaMKII depends on the frequency of calcium oscillations. Using a simplified
version of the Dupont model, it was demonstrated that the CaMKII phosphory-
lation is mostly determined by the average calcium-calmodulin concentration, and
therefore depends only indirectly on the actual frequency of calcium oscillations. I
have shown that a pulsed application of calcium-calmodulin is, in fact, not required
at all. These findings strongly indicate that the activation of CaMKII depends on
the average calcium-calmodulin concentration and not on the oscillation frequency
per se as asserted in those studies.

This thesis also presents the first model of AMPA receptor phosphorylation
that simulates the induction of long-term depression (LTD) and potentiation (LTP)
at the PF-PC synapse. The results of computer simulations of a simple mathe-
matical model suggest that the balance of CaMKII-mediated phosphorylation and
protein phosphatase 2B (PP2B)-mediated dephosphorylation of AMPA receptors de-
termines whether LTD or LTP occurs in cerebellar PCs. This model replicates the
experimental observations by Van Woerden et al (2009) that indicate that βCaMKII
controls the direction of plasticity at PF-PC synapses. My computer simulations
support Van Woerden et al’s original suggestion that filamentous actin binding can
enable βCaMKII to regulate bidirectional plasticity at these synapses.

The computational models of intracellular signalling constructed in this thesis
advance the understanding of the mechanisms of synaptic plasticity induction in
the cerebellum. These simple models are significant tools for future research by the
scientific community.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . 3

1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

The cerebellum is a brain structure involved in motor control and reflex adjust-
ments. A large number of studies have been performed in order to understand
the principles of the function and the structure of the cerebellum. Although the
cerebellar structure is well-known, the role of the cerebellum in motor learning,
motor control, emotions, and higher cognitive functions still remains obscure [Glick-
stein 2009, Beaton 2010].

It is generally accepted in neuroscience that activity-dependent changes in synapses
represent a system for storing information in the brain [Steuber 2004, Steuber 2007].
Synaptic plasticity, which is the ability to strengthen and weaken synaptic connec-
tions, has been described as a crucial cellular mechanism for learning and memory
formation in neuronal circuits of the brain [Ito 2002].

Different intracellular signalling pathways allow the cell to receive, process, store,
and recall information. The compounds of distinct pathways interact and form
signalling networks. It is thought that the molecular mechanisms of intracellular
biochemical networks underlie learning in biological systems [Bhalla 1999]. During
the past decades a multitude of signal transduction processes that underlie differ-
ent forms of plasticity in the cerebellum were revealed [Ito 2002], but a better
comprehension of this phenomenon is inhibited by the complexity of the inter-
actions between intracellular signalling compounds involved in synaptic plasticity
[Kotaleski 2010].

Many biochemical compounds are involved in the signalling networks that govern
synaptic plasticity in the cerebellum. In particular, calcium-calmodulin dependent
protein kinase II (CaMKII), which is highly concentrated in the brain, regulates
forms of synaptic plasticity. Although significant progress has been made in un-
derstanding the role of postsynaptic CaMKII in plasticity in other brain areas,
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very little is known about its function during plasticity induction in the cerebellum
[Hansel 2006, van Woerden 2009, Kawaguchi 2011].

Cerebellar Purkinje cells (PCs) receive strong inputs from parallel fibre axons
(PFs). Cerebellar long-term depression (LTD) and potentiation (LTP) are calcium-
dependent forms of synaptic plasticity that weaken and strengthen synapses between
PFs and PCs. LTD and LTP are regulated by intracellular calcium concentrations.
Large increases in calcium concentrations in response to paired PF and climbing
fibre (CF) input lead to LTD, while the induction of LTP is mediated by smaller
calcium concentration increases that result from PF input alone.

The CaMKII holoenzyme is composed of different isoforms, such as αCaMKII
and βCaMKII, which is the predominant CaMKII isoform in the cerebellum. Recent
experiments demonstrated that βCaMKII controls the direction of plasticity at the
PF-PC synapse [van Woerden 2009]. More specifically, protocols that induce LTD in
wild-type mice result in LTP in knockout mice that lack βCaMKII, and vice versa.
However, the mechanism that underlies these experimental findings is not clear.

Mathematical analyses and computational simulations have been established
as valuable approaches to understanding complex systems such as biological cells
[Kier 2005, Schilstra 2008]. The computational simulation of kinetic models is a
powerful tool for analysing and exploring the behaviour of complex signal transduc-
tion pathways involved in synaptic plasticity.

Various computational models of intracellular signalling networks underlying
LTD induction have been proposed [Fiala 1996, Wang 2000, Kuroda 2001, Ito 2002,
Doi 2005]. However, the relationship between the known signalling pathways and
LTD still remains obscure. Interestingly, these models do not take LTP induction
into account, and CaMKII has never been included in their signalling cascades.
Moreover, existing kinetic models of the activation of CaMKII are surprisingly di-
verse and there is little general consensus on which processes should be included or
how detailed the modelling needs to be.

The development of a kinetic model of PF LTD and LTP that includes CaMKII
is the key to unravelling processes that underlie the regulation of bidirectional plas-
ticity at the PF-PC synapse [van Woerden 2009]. This new computational model
would significantly advance the understanding of synaptic plasticity induction in the
cerebellum.

1.2 Aims of the Thesis

The aim of this thesis is to contribute to a better understanding of the molecular
mechanisms that regulate the induction of synaptic plasticity in cerebellar PCs. In
particular, the thesis addresses the role of the βCaMKII isoform in bidirectional
plasticity at PF-PC synapses.

To understand the mechanisms of cerebellar LTD and LTP at the PF-PC synapse,
a new kinetic model of signalling pathways in PCs that includes CaMKII is needed.
At first, the present research was based on a well-known cerebellar LTD model of
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[Kuroda 2001]. Kuroda and collaborators have simulated the phosphorylation of
AMPA receptors, an important process in cerebellar LTD and LTP. Many errors in
the original implementation of the Kuroda model were identified, and its reimple-
mentation was completed.

Because this thesis focuses on studying how different isoforms of CaMKII con-
tribute to cerebellar plasticity, a simplified version of a commonly used model of
CaMKII phosphorylation [Dupont 2003] was developed. The model by Dupont and
collaborators reproduced experiments of [De Koninck 1998]. Both the experimental
and modelling studies demonstrated the sensitivity of CaMKII to the frequency of
calcium oscillations. The first aim of the implementation of the Dupont model in
this thesis was to include the CaMKII phosphorylation pathway in the existing cere-
bellar LTD model, but while developing the new CaMKII model interesting issues
arose. A series of simulations under the conditions that were used in [Dupont 2003]
to explain the key experimental observations of [De Koninck 1998] were carried out.
These simulations gave rise to new insights about the decoding of calcium oscilla-
tions by CaMKII.

The CaMKII model was ultimately incorporated into the reimplemented ver-
sion of the biochemical LTD model. However, the complexity of the intracellular
signalling network of the existing cerebellar LTD model [Kuroda 2001] prohibited
a better understanding of the actual role of CaMKII in synaptic plasticity in PCs.
Therefore, a simple model of the phosphorylation and dephosphorylation of AMPA
receptors by CaMKII and protein phosphatase 2 B (PP2B) was proposed. This
kinetic model was crucial to understand how the βCaMKII isoform regulates the
direction of synaptic plasticity in a cerebellar Purkinje cell.

The following questions are addressed in this thesis:

• What are the mechanisms that determine the sensitivity of CaMKII to the
frequency of calcium oscillations?

• Does CaMKII decode the frequency of calcium oscillations?

• How does the network of intracellular signalling molecules in cerebellar PCs
implement the induction of LTD and LTP at the PF-PC synapse?

• In particular, how do different isoforms of CaMKII contribute to the bidirec-
tional modulation of synaptic plasticity at this synapse?

1.3 Contributions to Knowledge

The research presented in this thesis led to the following main findings that con-
tribute significantly to neuroscience:

• The CaMKII phosphorylation rate during the application of calcium-calmodulin
pulses is determined by the average concentration of calcium-calmodulin in the
system, and not by the pulse frequency itself.
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• The application of pulsed and constant levels of calcium-calmodulin with the
same mean concentration results in the same level of CaMKII phosphorylation.

• Thus, the notion of CaMKII as a decoder of the calcium oscillation frequency
is misleading, and experimental tests with rescaled concentrations of calcium-
calmodulin are suggested.

• The first kinetic model of the induction of cerebellar LTD and LTP in PCs
that includes CaMKII is proposed.

• Computational simulations replicate recent experimental findings that demon-
strated that βCaMKII controls the direction of plasticity at the PF-PC synapse
[van Woerden 2009].

• The binding of filamentous actin to CaMKII can contribute to the regulation
of bidirectional plasticity in PCs.

1.4 Overview of the Thesis

The following is a brief overview of each subsequent chapter of this thesis:

• Chapter 2 gives an introduction to cerebellar neuroscience, focusing on the
long-term forms of synaptic plasticity in cerebellar PCs. In the first half of
Chapter 2, the structure, functions and the basic circuit of the cerebellum
are summarised. In the second half of the chapter, the long-term forms of
cerebellar plasticity and the molecular mechanisms involved in cerebellar LTD
are discussed.

• Chapter 3 contains a review of CaMKII, with particular focus on the CaMKII
frequency sensitivity, and on the role of CaMKII isoforms in cerebellar plastic-
ity. The chapter begins with a description of the structure and the mechanism
of activation of CaMKII.

• Chapter 4 describes how to model intracellular signalling pathways. The
kinetics of biochemical compounds of signalling networks can be described by
ordinary differential equations (ODEs). In the first half of the chapter, the
mathematical modelling of kinetics of biochemical reactions is summarised.
The second half of Chapter 4 presents software packages for implementing
the biochemical models described in this thesis, such as GENESIS (GEneral
NEural SImulation System), including the GENESIS/kinetikit library for the
simulation of biochemical reactions [Bower 2008], and XPPAUT (X-Windows
Phase Plane plus Auto) [Ermentrout 2002].

• Chapter 5 presents the reimplementation of an existing model of signalling
in cerebellar LTD. The complex model of [Kuroda 2001] is described in detail
in the chapter. This model was originally implemented in GENESIS/kinetikit.
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Various inconsistencies were identified in the original implementation of the
Kuroda model, and its reimplementation in XPPAUT was performed. All
discrepancies of the cerebellar LTD model were corrected, and results from
the prior research were ultimately reproduced.

• Chapter 6 gives a description of the investigation of the CaMKII frequency
sensitivity. CaMKII is activated by calcium-calmodulin. Based on prior exper-
iments [De Koninck 1998] and computational simulations [Dupont 2003] the
phosphorylation of CaMKII was thought to be sensitive to the frequency of
calcium oscillations. A rationalized version of the earlier model [Dupont 2003]
was proposed to re-evaluate the experimental findings of [De Koninck 1998].
Computational simulations reveal one of the major findings of this thesis: the
CaMKII phosphorylation depends on the average concentration of calcium-
calmodulin, rather than on the actual pulse frequency. As a corollary, equal
phosphorylation levels are achieved in response to pulsed and constant appli-
cations of equal mean concentrations of calcium-calmodulin.

• Chapter 7 presents the study of bidirectional plasticity in cerebellar PCs.
The model of CaMKII activation described in Chapter 6 was incorporated into
a simple kinetic simulation of the phosphorylation of AMPA receptors. A de-
scription of the proposed model is presented in the chapter. The bidirectional
plasticity model was created to understand the mechanisms underlying the role
of βCaMKII in regulating the direction of plasticity at PF-PC synapses [van
Woerden 2009]. Simulation results replicate the experimental observations of
[van Woerden 2009] and indicate that the binding of βCaMKII to filamentous
actin can contribute to the regulation of the bidirectional plasticity at this
synapse.

• Chapter 8 reviews the main contributions of this thesis to knowledge, and
highlights potential avenues for future research that should now be explored.
In the end of this thesis, a list of publications, talks and participations in
conferences during the three years of this research is presented.
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The Cerebellum

Contents
2.1 Structure of the Cerebellum . . . . . . . . . . . . . . . . . . . 8
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2.5 Molecular Mechanisms of Cerebellar LTD . . . . . . . . . . 13
2.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . 14

The cerebellum, whose name comes from the Latin meaning “the little brain”,
lies above the brain stem and toward the back of the brain (Figure 2.1). The

cerebellar structure has been studied for many years due to its unique anatomical
organisation composed of regular and repetitive structures. Although the volume of
the cerebellum is small, it contains most of neurons in the brain.

This chapter begins with a summary of the anatomy of the cerebellum. Although
its structure is well understood, the functions of the cerebellum remain unclear. The
cerebellar function is discussed in the second section of this chapter. Following on
from this, a description of the well-established cerebellar circuit is given. One of
the most important issues in cerebellar research is the role of synaptic plasticity in
the cerebellar cortex. This chapter ends with a discussion of the long-term forms
of synaptic plasticity in the cerebellum, and describes the molecular mechanisms
underlying cerebellar long-term depression.

Figure 2.1: The human brain. View of a human brain which highlights the
location of the cerebellum (green). Adapted from [Marino 2012].
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2.1 Structure of the Cerebellum

The cellular structure of the cerebellar cortex is nearly identical throughout. The
cerebellum has been divided into many regions and comprises three uniform layers
throughout the entire cortex. Like the cerebral cortex, the cortex of the cerebellum,
a highly elaborated area, is located outside a centrally located mass of white matter
composed of afferent and efferent fibres (Figure 2.2) (see for example [Kandel 1991]).
The outer mantle of the cerebellar cortex consists of a mass of grey matter.

Figure 2.2: Midsagittal section through the cerebellum. The figure shows the
tree shaped white matter and the surrounding grey matter of the cerebellar cortex.
Adapted from [Spitalnik 2012].

Three pairs of deep cerebellar nuclei project out of the cerebellum, the interposed,
the fastigial and the dentate nucleus (Figure 2.3). Each of the three nuclei is involved
in different functions and sends projections to different areas of the brain.

The cerebellum is linked to the medulla by three thick connectives, the inferior,
middle, and superior cerebellar peduncles, where the efferent fibres leave and the
afferent fibres enter the cerebellar structure.

The cortex is divided into three zones: the vermis, the cerebellar hemispheres,
and the flocculonodular lobe. The flocculonodular lobe is phylogenetically the oldest
part of the cerebellum. The vermis constitutes the majority of the cerebellum in
most animals, but it is overshadowed by the cerebellar hemispheres in humans.
Anatomists divide the vermis into many parts, while the cerebellar hemispheres are
divided into intermediate and lateral zones.

Because of the precision and geometric beauty of the neuronal arrangement of
the cerebellum, neuroanatomists have recognised that this part of the brain provides
an ideal opportunity to determine its function [Eccles 1967, Ito 2006].
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Figure 2.3: The major anatomical subdivisions of the human cerebellum.
The cerebellar dorsal and ventral views are represented in the figure. The cerebellum
contains a cortex on its surface and deep nuclei in its internal region. Adapted
from [Lent 2005].

2.2 Functions of the Cerebellum

Because cerebellar lesions lead to impairments in motor control and posture, and
most of the cerebellar output leads to the motor system, the cerebellum has been
considered to play a role in motor control. It is also thought to control balance
and regulate muscle tone [Kandel 1991]. It is generally accepted in neuroscience
that the cerebellum is important for motor learning, but the nature of its involve-
ment is unclear. Important questions are still unanswered as to how and where
cerebellar-dependent motor memories are stored. Other studies point to a role of
the cerebellum in cognition and emotion (for review, see [D’Angelo 2012]).

To achieve a better comprehension of cerebellar function, scientists have focused
on studying information processing in the basic circuit of the cerebellum.
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2.3 The Basic Cerebellar Circuit

Most of the work on information processing in cerebellar cortex has focused on five
different types of neurons: Purkinje, granule, basket, stellate and Golgi cells, while
much less is known about the role of Lugaro cells and unipolar brush cells. The
cerebellar cortical neurons are organized into a three-layered structure composed of
the molecular, Purkinje cell and granular layers (Figure 2.4).

The outer layer of the cerebellar cortex, the molecular layer, contains the axons
of granule cells, the dendrites of Purkinje cells, and basket and stellate cells, which
are often grouped together as molecular layer interneurons. The cerebellar granule
cells are the most abundant class of neurons in the human brain. They give rise
to specialized axons called parallel fibres due to their parallel orientation along the
axis of the folia.

Directly beneath the molecular layer, a single layer of Purkinje cell bodies forms
the Purkinje cell layer. The Purkinje cells are large neurons with a fan-like den-
dritic tree that extends upwards through the molecular layer. These neurons receive
excitatory synaptic inputs from approximately 200,000 different parallel fibres and a
single climbing fibre, and inhibitory inputs from stellate and basket cells, and recur-
rent collaterals of the axons of Purkinje cells. The Purkinje cell axons run through
the granular layer and the white matter and form inhibitory synapses with the neu-
rons in the deep cerebellar nuclei. The innermost layer of the cerebellar cortex, the
granular layer, is composed of a large number of small granule cells and a few large
Golgi cells.

The basic cerebellar circuit is relatively simple and well established. The cere-
bellum receives input from two major excitatory afferents, the mossy fibres and the
climbing fibres, which form glutamatergic synapses with cerebellar neurons. Inter-
estingly, the two types of fibres produce different patterns of firing in the single
output neuron of the cerebellar cortex: the Purkinje cell (Figure 2.5).

The mossy fibres are the major input to the cerebellum. These fibres originate
from neurons in the spinal cord and brain stem, and project to the neurons in the
deep cerebellar nuclei, and to granule and Golgi cells in the cerebellar cortex.

Climbing fibres, which are unique to the cerebellum [Ito 2002], originate in the
inferior olivary nucleus in the medulla. Like the mossy fibres, the climbing fibres
send collaterals to the neurons in the deep cerebellar nuclei. Purkinje cells receive a
powerful synaptic input from a single climbing fibre, whereas climbing fibres contact
the Purkinje cells with a divergence ratio of 1:10.

The organisation of the cerebellar output is simple. Purkinje cell axons form
inhibitory synapses with neurons in the deep cerebellar nuclei which also receive
excitation through mossy fibre and climbing fibre collaterals. The spike output of
the Purkinje cells is modulated by excitatory input from parallel fibres and a single
climbing fibre, and by inhibitory input from stellate cells, basket cells, and recurrent
Purkinje cell collaterals.
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Figure 2.4: Organisation of the cerebellar cortex. A. Micrograph of the cere-
bellar cortex showing its three layers. The figure indicates the location of the cell
bodies and shows the large number of neurons in the granular layer. Adapted
from [Nephron 2012]. B. Three-dimensional view of the cerebellar cortex. Adapted
from [Kandel 1991].
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Figure 2.5: The basic cerebellar circuit. The figure indicates the excitatory (+)
and inhibitory (−) synapses between the cell types. Adapted from [Kandel 1991].

2.4 Cerebellar Long-term Plasticity

Synaptic plasticity is an activity-dependent change in the strength of the synaptic
connection between pre and postsynaptic neurons. Changes in synaptic plasticity
can occur at timescales of milliseconds to seconds, known as short-term plasticity,
or within minutes, which is then called long-term plasticity.

The long-term strengthening and weakening of synapses are known as long-
term potentiation and long-term depression, respectively. Long-lasting changes in
synaptic strength are assumed to be the basis of learning and the formation of
memories (for review, see for example [Manninen 2010]). In particular, these forms
of plasticity are involved in learning processes in cerebellar Purkinje cells.

Many types of cerebellar plasticity have been studied, but a major focus of
cerebellar research is the long-term depression (LTD) at excitatory synapses between
parallel fibres (PF) and Purkinje cells (PCs). PF LTD (often called cerebellar LTD)
is a process in which the strength of the PF-PC synapse is depressed in response
to the coincident activation of PF and CF input onto the PC [Ito 1982, Ito 1989,
Ito 2002].
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Some studies concerning cerebellar learning have revealed that PFs convey in-
formation required for movement generation, and CFs carry error signals, which are
delayed relative to the PF activation. Accordingly, it has been shown that PF acti-
vation preceding CF activation is more effective in inducing LTD than CF activation
preceding PF activation [Wang 2000, Doi 2005].

In addition to undergoing LTD, PF synapses can also exhibit long-term potenti-
ation (LTP). The strengthening of excitatory synapses between PFs and PCs by PF
LTP occurs after the activation of PFs without any coincident CF input to the PC.
LTP is necessary to balance LTD at cerebellar PF-PC synapses to prevent satura-
tion and to allow reversal of motor learning [Belmeguenai 2005]. Cerebellar research
has little explored the mechanisms underlying cerebellar LTP.

2.5 Molecular Mechanisms of Cerebellar LTD

Research has pointed out that many molecules and the complex interactions between
them underlie cerebellar plasticity (see for example [Kotaleski 2010]). In particular,
multiple signalling pathways involving more than 30 molecules have been shown
to contribute to cerebellar LTD [Fiala 1996, Kuroda 2001]. However, the exact
relationship between cerebellar LTD and the different signalling cascades remains
unclear. Computational models have been developed to investigate the information
processing performed by the signalling networks underlying synaptic plasticity in
the cerebellum.

Kuroda and collaborators have simulated the phosphorylation of AMPA recep-
tors, an important process in cerebellar LTD and LTP [Kuroda 2001]. They have
developed a kinetic simulation to study the behaviour of the complex signal trans-
duction pathways involved in cerebellar LTD (Figure 2.6). Their model predicts
that the activation of protein kinase C (PKC) can underlie the initial phase of the
phosphorylation of AMPA receptors, and that a positive feedback loop through
mitogen-activated protein (MAP) kinase can mediate the intermediate phase (with
a late phase that depends on protein synthesis and that is not modelled). The LTD
induction model of [Kuroda 2001] is studied in Chapter 5 of the present thesis. The
underlying mechanisms are described below and summarised in Figure 2.6.

As mentioned earlier, the paired activation of PF and CF input leads to the
induction of cerebellar LTD, by activating various signalling pathways that mod-
ulate the phosphorylation of AMPA receptors. Glutamate and nitric oxide (NO)
are involved in PF signal transmission, and the CF signal is mediated by gluta-
mate and corticotropin-releasing factor (CRF). The release of glutamate from PFs
results in the activation of type-1 metabotropic receptors (mGluR) that are bound
to Gq protein complexes, which in turn leads to the release of the GTP-binding
protein subunit GTP-Gα. GTP-Gα activates phospholipase C (PLC). Diacylglyc-
erol (DAG) and inositol trisphosphate (IP3) are the products of the hydrolysis of
the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by active PLC. Cal-
cium, DAG and PIP2 activate cytosolic phospholipase A2 (PLA2), which results in
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the production of arachidonic acid (AA). The subsequent activation of PKC is reg-
ulated by calcium, DAG and AA. PKC phosphorylates AMPA receptors and plays
an important role in the induction of cerebellar LTD.

Moreover, PFs produce NO that diffuses into the PC. NO binds to soluble guany-
late cyclase (GC), which in turn catalyses the conversion of GTP into cyclic guano-
sine monophosphate (cGMP). cGMP binds to cGMP-dependent protein kinase G
(PKG). PKG phosphorylates its substrate (G-substrate), which inhibits protein
phosphatase 2A (PP2A). The resulting inhibition of PP2A causes a reduced de-
phosphorylation of AMPA receptors, and reduced dephosphorylation of two kinases
that form part of a positive feedback loop (see below).

The coincident activation of CF and PF synapses leads to an increase in the
intracellular calcium concentration in the PC. In the Kuroda model, this increase
in calcium is based on experimental measurements [Wang 2000] and given by an
explicit function of time, rather than being modelled by the kinetic simulation.

The CRF that is released from CF synapses activates corticotropin-releasing
hormone receptor (CRHR). Activated CRHR and the protein tyrosine kinase Lyn
phosphorylate Raf. Phosphorylated forms of Raf mediate the phosphorylation of
mitogen-activated ERK-activating kinase (MEK), while phosphorylated MEK reg-
ulates the phosphorylation of MAP kinase. PP2A dephosphorylates Raf, MEK and
AMPA receptors. Activated MAP kinase phosphorylates PLA2 which catalyses the
production of AA and the subsequent activation of PKC. These interactions result
in a positive feedback loop. The consequence of this feedback loop is the sustained
phosphorylation of AMPA receptors by PKC, which underlies the intermediate phase
of LTD induction.

2.6 Chapter Conclusions

The structure of the cerebellum is well understood. The precision of the cerebellar
anatomy has instigated the development of many theories that attempt to unravel
cerebellar function. Although it is known that the cerebellum contributes to motor
learning and cognition, there is still no general agreement about its exact functional
role.

It is thought that modifications in the strength of synaptic connections onto
cerebellar PCs such as LTD and LTP contribute to learning. Repeated conjunctive
stimulations of PFs and CF lead to LTD of PF induced responses in PCs, while LTP
is induced as a result of PF stimulation alone.

Cerebellar LTD is considered as the basis of cerebellum-dependent motor learn-
ing, and has been studied extensively. The events following the paired stimulation
of PF and CF inputs that induce LTD are becoming clearer, however the precise in-
teractions of the molecular machinery underlying LTD induction remain something
of an enigma.
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Many signalling cascades have been demonstrated to be involved in cerebellar
LTD. However, the relationship between the known signalling pathways and cere-
bellar LTD is still not completely known. Kuroda and colleagues have proposed a
complex intracellular signalling model that simulates the phosphorylation of AMPA
receptors, which is crucial for the induction of LTD at PF-PC synapses. The reim-
plementation and test of this model are presented in Chapter 5 of the thesis.

It has recently been shown that calcium-calmodulin dependent protein kinase II
(CaMKII) is an important component of the signalling network that is responsible
for LTD at PF-PC synapses. The involvement of CaMKII in cerebellar plasticity
will be discussed in the next chapter.

Figure 2.6: Signalling pathways underlying cerebellar LTD. The phosphory-
lation and dephosphorylation of AMPA receptors are mediated by the activation of
PKC (blue, pink and yellow lines) and the inhibition of PP2A (green line), respec-
tively. The intracellular calcium concentration (Ca2+, in the figure) is indicated in
the dashed-line box. However, in the model, the increase in calcium concentration
that results from paired stimulation of PF and CF is based on experimental obser-
vations [Wang 2000], and not modelled by kinetic simulation. The symbols for the
biochemical compounds are explained in the text. Adapted from [Kuroda 2001].
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Calcium-calmodulin dependent protein kinase II (CaMKII), which is one
of the most abundant proteins in the brain, is a multifunctional enzyme that

phosphorylates a wide range of substrates. CaMKII is a critical mediator of cal-
cium signalling systems that underlie the induction of synaptic plasticity. Although
significant progress has been made in understanding the role of CaMKII in synap-
tic plasticity in other brain areas, very little is known about its function during
plasticity induction in the cerebellum.

This chapter begins with a summary of the structure and function of CaMKII.
Following on from this, a description of the unique processes involved in the kinase
activation is given. The third section of this chapter presents the idea that the
CaMKII phosphorylation may respond to repetitive calcium signals based on their
frequency. This chapter finishes with a discussion of the involvement of CaMKII
isoforms in the induction of cerebellar plasticity.
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3.1 Structure and Function of CaMKII

The CaMKII holoenzyme consists of 12 subunits that oligomerise into a double
layer of hexameric rings (Figure 3.1). The kinase comprises a family of nearly 30
similar isoforms derived from the α, β, γ and δ genes. CaMKII is found in most
types of cells, and the predominant isoforms in neurons are the α and β subunits
[Fink 2002, Lisman 2002].

Figure 3.1: Multimeric structure of CaMKII. Three-dimensional views of the
surfaces of the holoenzyme. A. Aspects of one of the CaMKII rings composed of 6
subunits. B. Perpendicular perspectives to the view shown in A that illustrate the
12 subunits of a CaMKII holoenzyme, distributed in two coupled hexameric rings.
Adapted from [Lisman 2002].

The structures of αCaMKII and βCaMKII isoforms are similar. Each subunit is
composed of catalytic, regulatory and oligomerisation domains whose functions are
well known (Figure 3.2A). The catalytic domain contains sites for interactions with
adenosine triphosphate (ATP), substrates and anchoring proteins. Under resting
conditions, CaMKII has no catalytic activity since the regulatory domain inhibits its
own catalytic region. The regulatory domain, also known as autoinhibitory domain,
acts as a pseudosubstrate that binds to the catalytic segment and prevents substrates
from binding to CaMKII, inhibiting the enzyme activity. Each CaMKII subunit can
be activated by the binding of calcium-calmodulin to a region that overlaps with the
pseudosubstrate segment [Lisman 2002]. The oligomerisation domain, also known
as association domain, is the site by which subunits bind to each other to form the
holoenzyme.

The oligomerisation segment is connected to the catalytic and regulatory do-
mains by a variable region, which is responsible for the main difference between
the kinase isoforms (red, Figure 3.2A). βCaMKII is longer than αCaMKII, pre-
senting a sequence of amino acids that contains a binding site for the filamentous
actin cytoskeleton (F-actin). Accordingly, βCaMKII but not αCaMKII can bind to
F-actin.
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The α and β kinase isoforms can form holoenzymes that consist of either one
or both isoform types (Figure 3.2B). The cerebellum contains about four times as
much βCaMKII as αCaMKII [Fink 2002].

Figure 3.2: Organisation of CaMKII subunits. A. Schematic representation of
the catalytic, regulatory and oligomerisation domains of αCaMKII and βCaMKII
isoforms. The main difference between these genes is a region that appears in
βCaMKII isoforms only (red). This segment functions as a target for filamentous
actin (F-actin). B. The CaMKII isoforms oligomerise into a double layer of hexam-
eric rings. They can form homooligomers of either αCaMKII or βCaMKII isoforms
(top), or heterooligomers comprised of both αCaMKII and βCaMKII subunits (bot-
tom). Adapted from [Fink 2002].

The meaning of the structural design of the CaMKII holoenzyme is still not
completely understood [Lisman 2002]. Its ring-like structure, however, directly con-
tributes to the regulation of the kinase activation.
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3.2 Activation of CaMKII

Calcium, crucial for the learning process, mediates the activation of CaMKII sub-
units. Extracellular stimulation elevates the concentration of intracellular free cal-
cium, which then binds to calmodulin. Binding of calcium-calmodulin is thought
to disrupt the complex between the autoinhibitory and catalytic domains, thereby
exposing the catalytic site of CaMKII and allowing it to phosphorylate its tar-
gets [Fink 2002]. Thus, this process results in activation of the kinase activity of
CaMKII. One of the phosphorylation targets of an activated CaMKII subunit is its
unphosphorylated neighbouring subunit in the multimer.

The requirement for initiating subunit phosphorylation within the CaMKII mul-
timer is that two molecules of calcium-calmodulin bind to two neighbouring CaMKII
subunits (Figure 3.3). A kinase subunit is phosphorylated in the regulatory domain
at the Thr286 site for the αCaMKII isoform, and at the Thr287 site for βCaMKII
[Brocke 1999]. The catalytic domain of an activated subunit in the CaMKII multi-
mer phosphorylates Thr286/287 of a neighbouring subunit that must also be active.
Once one subunit is phosphorylated, the propagation of phosphorylation around
the multimer can proceed in a unidirectional process. This mechanism is named
CaMKII autophosphorylation, and has a critical role in calcium signalling systems.
Dissociation of calcium-calmodulin from an autophosphorylated subunit yields an
autonomous form of CaMKII that retains kinase activity, a calcium-calmodulin in-
dependent activity.

The structure and the mechanism of activation of CaMKII are crucial for its
autoregulatory behaviour, which is thought to underlie the kinase ability to be-
come differentially phosphorylated at distinct frequencies of calcium pulses [Hud-
mon 2002].

3.3 CaMKII Frequency Sensitivity

Extracellular stimulation and the release of calcium from reticulum stores produce
oscillations of intracellular calcium concentration of different frequencies [Meyer 1992,
Hudmon 2002, Colbran 2004]. It is thought that information may be “encoded” by
the frequency of calcium spikes and “decoded” by effector systems [Hanson 1994].
Based on this idea, Hanson et al have introduced the notion that CaMKII may act
as a “decoder” of calcium pulse frequencies, i.e. the CaMKII autophosphorylation
would depend on the frequency of calcium spikes.

Following on from this suggestion, many studies have investigated the involve-
ment of CaMKII in the frequency-dependent information processing of calcium oscil-
lations. Computer simulations have indicated that the CaMKII activation should be
sensitive to the calcium oscillation frequency [Hanson 1994, Michelson 1994, Dose-
meci 1996]. In vitro experiments with immobilized CaMKII demonstrated that the
kinase does indeed respond differentially to many frequencies of calcium spikes, i.e.
the oscillation frequency is translated to different levels of CaMKII activity [De
Koninck 1998] (Figure 3.4A).
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Figure 3.3: Trajectories for the activation of CaMKII. CaMKII holoenzymes
are represented by rings with 6 subunits each. The kinase subunits can be in the
following states: inactive, bound to calcium-calmodulin (Ca4CaM), phosphorylated
and bound to Ca4CaM, and autonomous: phosphorylated, but dissociated from
Ca4CaM. A possible trajectory for the CaMKII autophosphorylation is represented
in this figure. Initially, all CaMKII subunits are inactive. The activation of a
CaMKII multimer initiates by the binding of Ca4CaM to a kinase subunit. The
Ca4CaM-bound subunit is “ready” for phosphorylation (red) when its left neighbour
within the CaMKII ring is an active subunit (cyan): Ca4CaM-bound, phosphory-
lated or autonomous. A possible dephosphorylation of CaMKII is not considered in
this scheme.

Dupont and collaborators [Dupont 2003] have proposed a simple biophysical
model of activation of CaMKII by calcium-calmodulin to quantitatively reproduce
the experiments by De Koninck and Schulman [De Koninck 1998]. It was demon-
strated that the kinase presents different phosphorylation levels in response to square
calcium pulses with the same amplitude and duration, applied at different frequen-
cies (Figure 3.4B). Both theoretical and experimental studies have argued that
CaMKII depends on the frequency of calcium oscillations.

The stimulation protocols adopted in those earlier studies are investigated in
details in this thesis. With a rationalized version of the earlier computational model
of CaMKII activation [Dupont 2003], it was demonstrated that the kinase autophos-
phorylation kinetics are independent of the pulse frequency itself (Chapter 6). This
is one of the major findings of the thesis and my main contribution to knowledge.
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Figure 3.4: Sensitivity of CaMKII to the frequency of calcium-calmodulin
oscillations. Experimental observations (A) and computer simulations (B) demon-
strate the temporal evolution of the phosphorylation levels of CaMKII in response to
one hundred 200 ms square pulses of calcium-calmodulin (100 nM) at frequencies of
1 (squares), 2.5 (triangles) and 4 Hz (circles). A. Adapted from [De Koninck 1998].
Insets. Representations of the calcium-calmodulin oscillations with identical am-
plitude at frequencies of 1, 2.5 and 4 Hz for 1 s. B. Filled symbols represent results
from computer simulations [Dupont 2003], while open symbols denote the experi-
mental results shown in A. Adapted from [Dupont 2003].

3.4 CaMKII Isoforms and Cerebellar Plasticity

The αCaMKII and βCaMKII isoforms have recently been shown to mediate synaptic
plasticity in the cerebellum, and therefore to be essential for learning and memory
formation.

Because Purkinje cells (PCs) are the only cells in the cerebellum that contain
αCaMKII, Hansel and co-workers have investigated the role of this isoform in cere-
bellar plasticity and motor learning [Hansel 2006]. They have performed experiments
with αCaMKII knockout mice, a mutation that deletes the α isoform of CaMKII.
Experimental observations have revealed that αCaMKII knockout mice were im-
paired in cerebellar long-term depression (LTD) induction, whereas the induction of
long-term potentiation (LTP) was unaffected (Figure 3.5). For the first time, it has
been shown that αCaMKII is required for LTD but not for LTP at the parallel fibre
(PF)-PC synapse and that αCaMKII is important for cerebellar motor learning.

Although βCaMKII is the predominant isoform of CaMKII in the cerebellum,
the role of βCaMKII in cerebellar learning and memory has yet to be established.
The β isoform of CaMKII received more attention since Meyer and collaborators
have shown the unique F-actin binding properties of βCaMKII [Shen 1998], but
little is known about the function of this isoform in synaptic plasticity.
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Figure 3.5: αCaMKII is necessary for LTD induction but not for LTP
in cerebellar PCs. Temporal evolution of amplitudes of excitatory postsynaptic
current (EPSC) in response to conjunctive PF and CF stimulation (A) and PF
stimulation alone (B). The wild-type mice contain both αCaMKII and βCaMKII
isoforms (filled circles), while αCaMKII−/− represents mice that lack αCaMKII
(open circles). Cerebellar LTD is induced by paired stimulation of PF and CF at 1
Hz for 5 min, whereas PF stimulation alone induces LTP. Values for EPSC > 100%

indicate LTP induction, whereas the generation of LTD is expressed by EPSC <
100%. A. Conjunctive stimulation of PF and CF leads to the impairment of LTD in
αCaMKII knockout mice. B. The lack of the αCaMKII isoform does not affect the
LTP induction in response to PF stimulation alone. Adapted from [Hansel 2006].

Recent experiments with Camk2b knockout mice, which suffer a mutation that
deletes the β isoform of CaMKII, have addressed the role of βCaMKII in plasticity in
cerebellar PCs. Those studies have revealed that βCaMKII controls the direction of
plasticity at PF-PC synapses [van Woerden 2009]. More specifically, protocols that
induce LTD in wild-type mice result in LTP in knockout mice that lack βCaMKII,
and vice versa (Figure 3.6).
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Figure 3.6: βCaMKII regulates the direction of cerebellar plasticity in PCs.
Time-evolution of amplitudes of EPSC in response to conjunctive PF and CF stim-
ulation (A) and PF stimulation alone (B). WT represents the wild-type mice that
contain both αCaMKII and βCaMKII isoforms (filled circles), while Camk2b−/−

denotes mice that lack βCaMKII (open circles). A. Paired stimulation of PF and
CF leads to the induction of LTP in βCaMKII knockout mice, rather than LTD.
B. The lack of the βCaMKII isoform leads to LTD induction in response to PF
stimulation alone that should induce LTP. Adapted from [van Woerden 2009].

However, the underlying mechanism that may explain those experimental find-
ings was not clear. Van Woerden et al have suggested that a biochemical difference
between the αCaMKII and βCaMKII isoforms would underlie the switch of the
direction of synaptic plasticity. The βCaMKII, but not αCaMKII, isoforms can
bind to F-actin, which could result in recruitment of CaMKII to F-actin, making it
unavailable for AMPA receptor phosphorylation.
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To investigate the proposed function of βCaMKII in cerebellar plasticity, a ki-
netic model of the phosphorylation of AMPA receptors by CaMKII was built (Chap-
ter 7). The simulation results show that the βCaMKII isoform could indeed control
the direction of plasticity at PF-PC synapses in the manner proposed by van Wo-
erden et al.

3.5 Chapter Conclusions

One of the most vexing questions in cerebellar research is whether or not the cerebel-
lum contributes to motor learning and memory formation. It is known that CaMKII
is a crucial molecule for synaptic plasticity, a process believed to be responsible for
memory and learning. However, little is known about the role of the αCaMKII and
βCaMKII isoforms in cerebellar plasticity.

The oscillatory intracellular calcium signals mediate several cellular mechanisms
such as plasticity in the cerebellum. It is thought that the frequency of calcium oscil-
lations may influence many of these processes. Computer simulations [Dupont 2003]
and experimental observations [De Koninck 1998] have indicated that frequencies
of oscillatory calcium signals can determine different levels of CaMKII activation
by calcium-calmodulin. A kinetic model of the activation of CaMKII to study the
stimulation protocols adopted in those earlier studies was developed in the thesis
(Chapter 6). Simulation results lead to findings of high interest to neuroscience.

It has been found that the βCaMKII isoform regulates the direction of cerebellar
plasticity at PF-PC synapses [van Woerden 2009]. However, a plausible quantitative
model of the molecular mechanisms underlying their observations did not exist. This
thesis presents a simple model of signalling pathways to study the role of βCaMKII
in the bidirectional plasticity at the PF-PC synapse (Chapter 7). Computer simula-
tions predict how βCaMKII may mediate the reversal of plasticity at this cerebellar
synapse. This is the first data-driven model of intracellular signalling pathways that
includes CaMKII and that is able to replicate the induction of cerebellar LTD and
LTP in cerebellar PCs.

The kinetic models described in this thesis represent molecular interactions that
occur in intracellular signalling. The processes involved in modelling biochemical
reactions of signalling pathways are described in details in the next chapter.
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Biochemical reaction kinetics is the study of the velocity of biochemical reac-
tions. Kinetics simulation of biological signalling pathways has received much

attention from experimental and theoretical researchers. Modelling of signalling
networks can contribute to testing or supporting experimental hypotheses about
underlying biological processes, and may suggest new experiments. Computational
modelling of biochemical reactions regulating intracellular signalling is, in many
cases, crucial to understanding the complex signalling mechanisms involved in cere-
bellar plasticity.

This chapter highlights the fundamental concepts of reaction kinetics that are
crucial for building signalling computational models. It includes a presentation of
the Law of Mass Action for representing biochemical kinetics, a description of mod-
els for expressing enzymatic reactions, such as the Michaelis-Menten model and the
kinetics of explicit enzyme-substrate complex, and a discussion about the thermody-
namics of reactions. This chapter also presents features of the computational tools
used in this thesis for kinetics simulation of signalling.
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4.1 Kinetics of Biochemical Reactions

A biochemical reaction is the process in which a set of compounds called reactants
is transformed into one or more products. A general biochemical reaction can be
expressed as

A + B
kon−−⇀↽−−
koff

AB , (4.1)

where the reactant A binds to another reactant B and forms the product AB. This
reaction presents a reversible transformation, i.e. AB can dissociate and result in
substances A and B.

The reaction kinetics describes the rate, or velocity, of biochemical reactions,
determining how fast these transformations occur over a period of time. For instance,
in Reaction 4.1, kon is the rate constant for A binding to B, and koff is the rate for
AB dissociation.

The temporal evolution of biological systems governed by biochemical reactions
can be described by ordinary differential equations (ODEs). Each ODE denotes
variations in the concentration of a certain substance (ξ) evolved over time, and
may be expressed as follows [Cornish-Bowden 2004, Atkins 2009]

d [ξ]

dt
=
∑

vproduction −
∑

vconsumption , (4.2)

where [ξ] represents the concentration of ξ,
∑
vproduction is the total velocity of

production of ξ, and
∑
vconsumption is the sum of the reaction rates consuming ξ.

Rates of biochemical reactions depend on many factors such as the concentration
of reactants. The kinetics of reactions in signalling pathways may be modelled at
different levels of abstraction or simplification. Most approaches, including the
Michaelis-Menten model for simple enzyme reactions, are derived from the Law of
Mass Action, explained below.

4.1.1 Mass action Kinetics

Waage and Guldberg have postulated the Law of Mass Action to demonstrate obser-
vations about the kinetics of chemical reactions [Waage 1864, Atkins 2009]. This law
describes the velocity at which chemical substances collide and interact to form dif-
ferent chemical combinations. Those authors have related the velocities of reactions
to the amounts of reacting substances. More specifically, the mass action kinetics
states that the rate of a reaction is proportional to the product of the concentrations
of compounds reacting in this transformation. For example, assuming the Law of
Mass Action and considering Equation 4.2, variations in the concentration of the
substances of Reaction 4.1 may be calculated as

d[A]

dt
= koff [AB]− kon[A][B] , (4.3)

d[B]

dt
= koff [AB]− kon[A][B] , and (4.4)
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d[AB]

dt
= kon[A][B]− koff [AB] , (4.5)

where [A], [B] and [AB] denote the concentrations of substances A, B and AB,
respectively.

Most biochemical reactions exhibit a linear dependence of the transformation
rate upon the concentrations of the reactants. However, the reactions that involve
enzymes mostly present a nonlinear dependence of the initial reaction rate on the
reactant concentration. In the following, the kinetics of enzymatic reactions is dis-
cussed in detail.

4.1.2 Kinetics of Enzymatic Reactions

Enzymes are proteins that speed up the velocity of biochemical reactions without be-
ing consumed in the transformation. Because enzymes change the rate of reactions,
these proteins act as catalysts on selected reactions and substances.

A free enzyme (E) can act on a compound called substrate (S), catalysing a spe-
cific biochemical reaction. The substrate binds to the active site of the enzyme and
forms an intermediate enzyme-substrate complex (ES), and the enzyme catalyses
the transformation of S into one or more products (P ). The enzyme-product com-
plex (EP ) then breaks down to form one or more products. For simplicity, the EP
complex and the transformation step ES → EP are usually not explicitly included
in the reaction scheme. This simplified reaction scheme, depicted in Figure 4.1, is
denoted as

E + S
kf−−⇀↽−−
kb

ES
kcat−−→ E + P , (4.6)

where kf is the rate constant of formation of the ES complex, also called forward
rate, kb is the rate of dissociation of ES, or the backward rate, and kcat is the catalytic
rate constant, which in this simplified model includes the S to P transformation itself
as well as the dissociation of the EP complex.

The kinetics of enzymatic reaction above can be modelled explicitly, or using the
simplified approaches proposed by Michaelis and Menten [Michaelis 1913] or Briggs
and Haldane [Briggs 1925].
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Figure 4.1: Mechanisms of enzymatic reactions. The active site of an enzyme
(E, blue) binds to a substrate compound (S, red) forming an enzyme-substrate
complex (ES, red & blue). In such a scheme, this is a reversible transformation in
which the ES complex can dissociate and result in E and S. However, the enzymatic
reaction can also result in a breakdown of the substrate into one or more products
(P , magenta). The product then diffuses away and the enzyme is again available
for binding to another substrate.

4.1.2.1 Explicit Enzyme-substrate Complex Kinetics

Considering the Law of Mass Action described in Section 4.1.1 and Equation 4.2, the
time evolution of concentrations of the substances of Reaction 4.6 may be calculated
by evaluating four nonlinear ODEs

d[E]

dt
= −kf [E][S] + (kb + kcat) [ES] , (4.7)

d[S]

dt
= −kf [E][S] + kb[ES] , (4.8)

d[ES]

dt
= kf [E][S]− (kb + kcat) [ES] , and (4.9)

d[P ]

dt
= kcat[ES] , (4.10)

where [E], [S], [ES] and [P ] are the concentration levels of compounds E, S, ES and
P . In the thesis, this modelling approach for enzymatic reactions is called explicit
ES complex kinetics (Figure 4.2).

Because complex signalling pathways comprise many enzymatic reactions, the
major problem with the explicit modelling described above is the large amount of
ODEs to simulate those signalling processes. Simpler methods for modelling enzy-
matic reactions, such as Michaelis-Menten kinetics, do not simulate concentration
variations of E and ES (Equations 4.7 and 4.9, respectively). This reduces the
number of ODEs, which in turn decreases the complexity of those mathematical
systems.
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Figure 4.2: Kinetics of enzymatic reactions. Temporal evolution of concen-
trations of the substances that compose the general enzyme-catalysed Reaction 4.6,
according to the explicit ES complex kinetics. This graph results from the numerical
solution of the system of Equations 4.7, 4.8, 4.9 and 4.10 that represents variations
in the concentrations of the free enzyme E (blue), the substrate S (red), the enzyme-
substrate ES (brown), and the product P of the reaction (magenta), respectively.
Values for the kinetic constants were arbitrarily chosen for demonstration purposes.

4.1.2.2 Michaelis-Menten Kinetics

Michaelis and Menten have proposed a model to explain the enhancement of re-
action rates caused by enzymes [Michaelis 1913] (see also [Briggs 1925, Cornish-
Bowden 2004]). The Michaelis-Menten kinetics is the best-known model that ac-
counts for the kinetic properties of enzymatic reactions.

The product of an enzymatic reaction is formed faster than uncatalysed reac-
tions, reaching equilibrium more rapidly. In enzyme kinetics, the concentrations
of intermediates quickly approach a steady state, i.e. after an initial burst phase,
the ES concentration remains nearly constant through much of the reaction (brown
in Figure 4.2), while the concentrations of substrates and products are changing
[Briggs 1925]. This phase is called quasi-steady-state approximation and lasts until
a significant amount of substrate has been consumed.

Because the velocities of formation and breakdown of the enzyme-substrate com-
plex are equal in a steady state, the concentration of the intermediate ES shown in
Reaction 4.6 may be assumed as constant [Berg 2002, Cornish-Bowden 2004], and

d[ES]

dt
= 0 . (4.11)
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Substituting Equation 4.11 in Equation 4.9, the concentration of the ES complex
can be written as

[ES] =
[E][S]

KM
, (4.12)

where KM is the Michaelis-Menten constant defined by

KM =
kb + kcat

kf
. (4.13)

Provided that the concentration of the substrate S is much greater than the
concentration of the free enzyme E [Berg 2002], the fraction of S that binds to E to
form the ES complex is negligible. Therefore, the total enzyme concentration [Et]

is
[Et] = [E] + [ES] . (4.14)

Rearranging Equation 4.14 and substituting the expression for [E] in Equa-
tion 4.12, the ES concentration can be rewritten as

[ES] = [Et]
[S]

[S] +KM
. (4.15)

In order to determine the catalytic rate (v) of Reaction 4.6, it is possible to
substitute Equation 4.15 in Equation 4.10 to obtain

v =
d[P ]

dt
= kcat [Et]

[S]

[S] +KM
. (4.16)

The maximum speed of the reaction is reached when the concentration of the
substrate is much greater than KM . Thus

[S]

[S] +KM
→ 1 , (4.17)

and the maximal reaction rate (Vmax) is

Vmax = kcat [Et] . (4.18)

Substituting Equation 4.18 in Equation 4.16, the Michaelis-Menten equation is then
obtained

v = Vmax
[S]

[S] +KM
. (4.19)

Therefore, using the Michaelis-Menten model, the system of Equations 4.7, 4.8,
4.9 and 4.10 that simulates the kinetics of Reaction 4.6 can be reduced to

d[S]

dt
= −kcat [Et]

[S]

[S] +KM
, and (4.20)

d[P ]

dt
= kcat [Et]

[S]

[S] +KM
, (4.21)
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and here the concentrations of E and ES are unchangeable over time, i.e. Equa-
tions 4.7 and 4.9 are equal to zero.

Enzyme-catalysed reactions exhibit saturation kinetics, which is the kinetics of
a reaction whose velocity approaches a maximal value, as the concentration of sub-
strate increases (Figure 4.3). At low substrate concentrations, the reaction rate
increases linearly with the concentration of the substrate, while at high amounts of
substrate, the speed of the reaction approaches a maximal rate, and the enzyme is
said to be saturated with respect to the substrate. In Equation 4.19, Vmax represents
the theoretical maximal velocity that the reaction achieves, while KM denotes the
substrate concentration at which the reaction rate is half Vmax.

Figure 4.3: Enzymatic reactions exhibit saturation kinetics. This figure il-
lustrates the effect of substrate concentrations on the enzymatic reaction velocity,
according to Michaelis-Menten Equation 4.19. The reaction has half its maximum
velocity (Vmax) when the substrate concentration is KM . The catalytic rate ap-
proaches Vmax but never reaches it. Inset. Enzymes (blue) become saturated at
high concentrations of substrate (red), i.e. all active sites are bound to substrate
molecules, and enzymes are operating at full capacity.
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4.1.3 Thermodynamics of Reactions

Many cellular activities require energy. Thermodynamics is the science that studies
energy transformations [Haynie 2001]. The kinetic model built in Chapter 7 contains
a few reaction rates whose values have, as yet, not been experimentally determined.
Thus, those parameter values were assumed in this thesis.

To determine hypothetical values for reactions rates under certain conditions,
calculations are needed not to violate principles of chemical thermodynamics in
biological systems. In the following, the concepts underlying those mathematical
calculations are briefly discussed.

4.1.3.1 Gibbs Free Energy

The Gibbs free-energy change ∆G, also called the chemical potential, is the variation
of energy suffered by a reaction when moving from its initial state to equilibrium,
with no alteration in pressure or temperature [Nelson 2005, Atkins 2009]. For in-
stance, considering the following biochemical reaction

A + B
kf−−⇀↽−−
kb

C + D , (4.22)

where C and D are products of the reaction. Changes in its Gibbs free energy are
given by

∆G = ∆G′o +RTln
[C][D]

[A][B]
, (4.23)

where ∆G′o is the standard Gibbs free-energy change, R is the gas constant, T is the
absolute temperature, and [A], [B], [C] and [D] denote the respective concentrations
of reactants A and B, and products C and D.

A chemical reaction tends to occur in the forward direction when ∆G is large
and negative, while for a large and positive ∆G, the reaction tends to go in the
backward direction. However, if ∆G = 0, the reaction has reached equilibrium.

4.1.3.2 The Equilibrium Constant

The tendency of a reaction to move toward equilibrium can be calculated by the
equilibrium constant Keq. For Reaction 4.22, the equilibrium constant is expressed
as [Atkins 2009]

Keq =
kf
kb

=
[C][D]

[A][B]
= e−

∆G′o
RT . (4.24)

High Keq values indicate that reactants have been almost completely converted into
products.
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Considering another scenario, signal transduction pathways can comprise cou-
pled biochemical reactions forming multiple pathways from one compound to an-
other (Figure 4.4). As described in Section 4.1.3.1, each reaction i contains its
specific free-energy change ∆Gi. For instance, in Figure 4.4, ∆GAB, ∆GBC , ∆GAD
and ∆GDC are the respective free-energy changes for reactions A −−⇀↽−− B, B −−⇀↽−− C,
A −−⇀↽−− D and D −−⇀↽−− C.

Based on the First Law of Thermodynamics which says that energy is neither
created nor destroyed but converted from one form to another, Hess has proposed a
law that relates this principle to chemical reactions [Hess 1840]. Hess’s law states
that the free-energy change depends only on the initial and final states of a reaction,
and is independent of the route by which the reaction may occur. For example, in
the case of Figure 4.4, the overall free-energy change from A to C can be expressed
as

∆GAB + ∆GBC = ∆GAD + ∆GDC . (4.25)

From Equations 4.23 and 4.24, and after some calculations, Equation 4.25 can be
rewritten as

KeqAB
KeqBC

= KeqAD
KeqDC

, (4.26)

where

KeqAB
=
kfAB

kbAB

, KeqBC
=
kfBC

kbBC

, KeqAD
=
kfAD

kbAD

, and KeqDC
=
kfDC

kbDC

. (4.27)

Equation 4.26 was adopted to estimate values for kinetic constants whose reac-
tions form thermodynamic cycles in the model developed in Chapter 7.

Figure 4.4: A biochemical reaction “loop”. This figure portrays a set of coupled
biochemical reactions that forms a “loop”. The kinetic constants kfAB

and kbAB
,

kfBC
and kbBC

, kfAD
and kbAD

, kfDC
and kbDC

represent the forward and backward
reaction rates for A −−⇀↽−− B, B −−⇀↽−− C, A −−⇀↽−− D and D −−⇀↽−− C, respectively.
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4.2 Simulators for Signalling Pathways in this Thesis

All models built in this thesis were implemented in XPPAUT (X-Windows Phase
Plane plus Auto). However, this document also presents the study of an existing
signalling model [Kuroda 2001], which was originally implemented in GENESIS
(GEneral NEural SImulation System) that uses the GENESIS/kinetikit library for
the simulation of reaction kinetics (Chapter 5). In the following, the features of
GENESIS/kinetikit and XPPAUT are summarised.

4.2.1 GENESIS/kinetikit

In 1988, Bower and Beeman released a simulator for the realistic modelling of bi-
ological and neural systems called GENESIS [Bower 2008]. This software platform
allows modellers to simulate a wide range of biological scenarios, ranging from simple
intracellular components to large complex networks.

GENESIS contains libraries from which different types of simulations can be
developed. For instance, Bhalla has developed a library named kinetikit whose en-
vironment provides a graphical interface for modelling a wide number of biochemical
reactions underlying signalling pathways [Vayttaden 2004, Bower 2008]. Kinetikit
shows a user-friendly interface in which compounds and reactions can be clicked
and dragged in a simple way, forming biochemical reactions that occur in signal
transduction processes (Figure 4.5).

4.2.2 XPPAUT

XPPAUT is a numerical tool developed by Bard Ermentrout for simulating dy-
namical systems [Ermentrout 2002]. This simulator numerically solves linear and
nonlinear ODEs, providing powerful analytical tools. To model biochemical reac-
tions using XPPAUT, it is necessary to create an input file that informs the initial
concentration of each compound, the rate constants of reactions, and the ODEs. For
example, Figure 4.6 represents the XPPAUT input file for solving Equations 4.7,
4.8, 4.9 and 4.10 that represent the kinetics of Reaction 4.6.
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Figure 4.5: GENESIS/kinetikit simulation of enzyme kinetics. These panels
illustrate the graphical interface of GENESIS/kinetikit after simulating the kinetics
of enzymatic Reaction 4.6, using the explicit ES complex kinetics (A) and the
Michaelis-Menten kinetics (B). In such a case, both kinetic models are identical
in GENESIS/kinetikit. However, a single button is responsible for switching the
reaction modelling approach (orange arrows). A. Explicit Enz complex indicates
that the simulated enzymatic reaction is modelled by explicit ES complex kinetics
(Section 4.1.2.1). This kinetic simulation replicates the results shown in Figure 4.2
(see graph in Concs 1 ). B. After pressing the button highlighted in A, Classical
Michaelis Menten shows that the Michaelis-Menten model is adopted for enzyme-
catalysed reactions (Section 4.1.2.2).
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1 init E=3 S=10
2

3 parameters kf=0.1 kb=0.1 kcat =0.1
4

5 dE/dt=-kf*E*S+(kb+kcat)*ES
6

7 dS/dt=-kf*E*S+kb*ES
8

9 dES/dt=kf*E*S-(kb+kcat)*ES
10

11 dP/dt=kcat*ES
12

13 @ Total =60 dt=0.01 meth=euler , xlo=0 xhi=60 \
14 ylo=0 yhi=10 maxstor =10000 BACK=white
15

16 done

Figure 4.6: XPPAUT source code for the simulation of enzyme kinetics.
This XPPAUT code simulates the kinetics of enzyme-catalysed Reaction 4.6, using
the explicit ES complex kinetics (Section 4.1.2.1). This is the source code that
generates the results shown in Figure 4.2. The initial concentrations of compounds
are presented after init. The command parameters initiates the definition of rate
constants. Following on from this, the ODEs that represent Equations 4.7, 4.8,
4.9 and 4.10 are listed. Total indicates the total time of the simulation, dt is the
simulation step size, and meth presents the numerical method adopted. Commands
xlo, xhi, ylo and yhi denote the axis limits on graphs, maxstor indicates the max-
imum number of stored data points, and BACK defines the background colour of
generated graphs. The source code is finalised with done.
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4.3 Chapter Conclusions

Computational modelling of signalling pathways is an important tool to study the
biological mechanisms that regulate cellular functions. These models simulate as-
pects of entire signalling networks and do not only focus on the behaviour of isolated
components, as in many experiments.

This chapter summarised the theory adopted for the development of all sig-
nalling models presented in this thesis. Signal transduction processes involve many
biochemical reactions, and ODEs can express how the concentration of reaction sub-
stances evolves over time. For instance, the Law of Mass Action presented here is
the basis for simulating velocities of all types of biochemical reactions.

Enzymes act in particular biochemical transformations and play an important
role in many cell signalling processes. Based on the Law of Mass Action, veloci-
ties of enzymatic reactions may be modelled by either the explicit ES kinetics that
simulates concentration variations of enzyme-substrate complexes, or the Michaelis-
Menten kinetics which assumes that the concentrations of enzymes and enzyme-
substrate complexes are unchangeable. Despite of the fact that the Michaelis-
Menten approach is widely adopted for simulating enzyme kinetics, the explicit ES
modelling is used to simulate all enzymatic reactions in the thesis. However, the
Michaelis-Menten kinetics is crucial to understanding a few aspects of the original
implementation of the signalling model [Kuroda 2001] analysed in Chapter 5.

Concepts underlying the thermodynamics of biochemical reactions were also
summarised here. Chapter 7 presents a kinetic model whose reactions may form
multiple pathways from one compound to another. In such a case, it is important to
ensure that the kinetic constants involved in those reactions do not alter the equi-
librium of the biological system. Equation 4.26 was crucial to determine values for
the assumed rate constants which participate in reactions that form thermodynamic
cycles.

Furthermore, two computational tools were adopted for simulating the math-
ematical modelling of intracellular signalling presented in this chapter: GENE-
SIS/kinetikit and XPPAUT. Simulations with GENESIS/kinetikit were used to
study the original implementation of the existing model presented in Chapter 5.
However, all models developed in this thesis were implemented in XPPAUT.

To build the first kinetic model of signalling pathways that regulate the induc-
tion of long-term depression (LTD) and long-term potentiation (LTP) in cerebellar
Purkinje cells including calcium-calmodulin dependent protein kinase II (CaMKII),
the rest of the thesis begins with an exploration of a widely-known cerebellar LTD
model [Kuroda 2001]. In the next chapter, a reimplementation of this kinetic sim-
ulation is proposed, and various discrepancies in its original implementation are
unravelled.
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Previous chapters have described experimental observations that indicate the
importance of calcium-calmodulin dependent protein kinase II (CaMKII) for

cerebellar plasticity. However, the exact role of CaMKII in the signalling cascades
underlying plasticity induction is yet to be unravelled. A kinetic model that simu-
lates the induction of long-term depression (LTD) and long-term potentiation (LTP)
is crucial to investigate how CaMKII regulates bidirectional plasticity in cerebellar
Purkinje cells. Interestingly, although many molecules have been characterised in
the signal transduction network that underlies cerebellar plasticity, CaMKII has not
been included in previous models of these signalling pathways.

My initial intention was to incorporate CaMKII into a commonly used model
of signalling in cerebellar LTD [Kuroda 2001]. A reimplementation of the Kuroda
model is therefore proposed in this chapter. The main results obtained by Kuroda
and collaborators are briefly summarised in the following section. The second section
of the chapter presents a study of the original implementation of the Kuroda model
in GENESIS/kinetikit, and demonstrates the replication of its results in XPPAUT.
Various inconsistencies were identified in their original implementation. The last
section summarises the corrections for all these discrepancies, and describes the
adjustments in kinetic parameters that were needed to eventually reproduce the
results in [Kuroda 2001].
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5.1 Results of the Study by Kuroda and Collaborators

At excitatory synapses in the hippocampus, LTD induction requires the activation of
protein phosphatases, whereas LTP depends on the activation of kinases [Din 2010,
Henley 2011]. In contrast, at cerebellar parallel fibre (PF) synapses onto Purkinje
cells, kinases are required for LTD induction, whereas protein phosphatases are
required for LTP induction.

Kuroda et al (2001) developed a model for the phosphorylation and dephos-
phorylation of AMPA receptors based on the activation of protein kinase C (PKC)
and the inhibition of protein phosphatase 2A (PP2A) (Figure 5.1). The molecular
mechanisms that are represented by this kinetic model were described in detail in
Section 2.5.

Figure 5.1: Signalling pathways underlying cerebellar LTD. The respective
phosphorylation and dephosphorylation of AMPA receptors are mediated by PKC
and PP2A. Adapted from [Kuroda 2001].

According to the results in [Kuroda 2001], the phosphorylation of AMPA re-
ceptors in cerebellar LTD occurs in three phases: an initial peak, an intermediate
phase, and a late stage (Figure 5.2A). The paired activation of PF and climbing
fibre (CF) for 5 min evoked increases in the concentration of phosphorylated AMPA
receptors that are caused by the activation of PKC.

The time course of PKC activation also consists of three stages that result from
the following molecular mechanisms: (i) the activation of PKC by calcium, arachi-
donic acid (AA) and diacylglycerol (DAG) that leads to its initial peak, (ii) the acti-
vation of the positive feedback loop mediated by mitogen-activated protein (MAP)
kinase that determines the intermediate phase of PKC activation, and (iii) a late
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stage caused by the inactivation of PKC activity (Figure 5.2B).

Figure 5.2: Phosphorylation of AMPA receptors in cerebellar LTD induc-
tion. Temporal evolution of the concentrations of biochemical species in response
to paired activation of PF and CF at 1 Hz for 5 min. A. Concentrations of unphos-
phorylated and phosphorylated AMPA receptors (solid and dashed, respectively).
B. Concentrations of complexes of PKC that express its activity: total PKC ac-
tivity (solid), calcium-activated PKC (dashed), DAG-activated PKC (dotted), and
AA-activated PKC (dashed-dotted). Adapted from [Kuroda 2001].

The cerebellar LTD model in [Kuroda 2001] was originally implemented in GEN-
ESIS/kinetikit. However, this simulation tool does not provide easy options to visu-
alise the underlying ordinary differential equations (ODEs), to edit them by hand,
or to analyse the behaviour of the signalling network using dynamical systems tech-
niques. It was therefore decided to reimplement the Kuroda model in XPPAUT;
this reimplementation is described in the following section.

5.2 Reimplementation of Kuroda Model

The original code of the Kuroda model in GENESIS/kinetikit was not available
online. However, it was possible to obtain a version of the original implementa-
tion from Kuroda’s collaborators. This code produced very similar results as in
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[Kuroda 2001] and facilitated the analysis and understanding of many details of the
model implementation.

The Kuroda model was reimplemented from scratch by coding the ODEs that
represent the kinetics involved in the LTD signalling in XPPAUT to numerically
solve these equations. The development of this new implementation was based on
the GENESIS/kinetikit code obtained, and on the supplementary information in
[Kuroda 2001] which gives details for signalling pathways and kinetic parameters.
The reimplementation of the Kuroda model in XPPAUT is called the Pinto imple-
mentation, while the original code of the model in GENESIS/kinetikit is referred to
as the Kuroda implementation.

The results for the phosphorylation of AMPA receptors obtained from both im-
plementations initially did not match (data not shown). Therefore, the Kuroda and
Pinto implementations were debugged using a bottom-up approach, that is, results
were compared starting from simple reactions and moving on to larger signalling
cascades. This investigation unveiled many issues in the Kuroda implementation.
The following sections describe the discrepancies found in the original code and
eventually present the replication of the Kuroda model.

5.2.1 Interpolation of Input Tables

Temporal waveforms representing concentrations of calcium, nitric oxide (NO) and
glutamate were adopted as input stimuli to the model in [Kuroda 2001]. These
concentration values were based on experimental observations. However, the initial
phase of the calcium and NO stimulations showed spurious concentration peaks
(Figure 5.3). Because these peaks did not correspond to the actual stimuli shown in
Figure 6 of [Kuroda 2001], the calcium and NO inputs were adjusted in this thesis.
These corrections caused no alteration to the LTD results.

A further investigation of the input tables in the Kuroda implementation re-
vealed that the data points of the Kuroda tables were not interpolated during the
simulation (Figure 5.3). Interpolation is an important method for creating new data
points between the values provided in the tables. Therefore, linear interpolation was
applied to the calcium, NO and glutamate tables in the Kuroda implementation.
Following suggestions from the creator of kinetikit, Upi Bhalla, the command line
table−>calc_mode 1 was added to the GENESIS/kinetikit code to activate the
linear interpolation.

These modifications slightly affected the original results obtained from the Kuroda
implementation (Figure 5.4). However, these small changes in concentration levels of
AMPA receptors during the intermediate phase were considered unimportant as the
same qualitative LTD behaviour was achieved. The precise concentration of AMPA
receptors over time in cerebellar LTD is not known. All further simulations were
compared to the results obtained from the interpolated Kuroda implementation.

After having set all input values to the model, its biochemical reactions were
incrementally simulated in both the Kuroda and Pinto implementations. New issues
arose that were related to the modelling of enzyme kinetics.
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Figure 5.3: Correction of inputs to the Kuroda model. Stimuli of calcium
(A), NO (B) and glutamate (C) at 1 Hz for 5 min were used as inputs to the Kuroda
model [Kuroda 2001]. The new input tables (red) correct the spurious concentration
peaks in the calcium and NO stimuli, and implement the linear interpolation in
the original tables from the Kuroda implementation (blue). Inset. Larger view
of a glutamate concentration peak that highlights the non-interpolated (blue) and
interpolated stimuli (red). All curves were integrated and plotted using a 5× 10−4

s time step.
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Figure 5.4: Effect of linear interpolation in the Kuroda implementation.
Time-evolution of the phosphorylation of AMPA receptors (A) and the activa-
tion of PKC (B) obtained from the Kuroda implementation that replicates Fig-
ure 5.2 [Kuroda 2001]. Here, the GENESIS/kinetikit simulation responds to the
calcium, NO and glutamate input tables in two distinct conditions: originally non-
interpolated (solid) and interpolated (dashed). A. Unphosphorylated and phospho-
rylated AMPA receptors (red and blue, respectively). B. Active forms of PKC:
total PKC activity (purple), calcium-activated PKC (brown), DAG-activated PKC
(green), and AA-activated PKC (cyan).

5.2.2 Kinetics of Enzymatic Reactions

According to Kuroda and co-authors (2001), all enzymatic reactions in their model
were described by Michaelis-Menten kinetics. However, results from the Kuroda
and Pinto implementations differed when enzymatic reactions were included (Fig-
ure 5.5A). A detailed analysis of the Kuroda implementation unveiled that the actual
concentration of enzyme-substrate (ES) complexes varied during model simulations.
This suggested that the ES species were expressed by ODEs in their model and that
enzymatic reactions were not modelled according to Michaelis-Menten principles.

The GENESIS/kinetikit interface for Kuroda’s enzymatic reactions revealed that
the button that allows users to switch from the explicit ES complex modelling to the
Michaelis-Menten kinetics was not pressed (example in Figure 4.5). This demon-
strated that none of the reactions in the Kuroda implementation were modelled
as Michaelis-Menten equations, even though [Kuroda 2001] states they are. The
Pinto implementation was therefore modified and enzymatic reactions were repre-
sented by explicit ES kinetics. These alterations led to identical results for both
implementations (Figure 5.5B).
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Figure 5.5: Enzymatic reactions are not modelled by Michaelis-Menten
kinetics in [Kuroda 2001]. The Kuroda and Pinto implementations simulate the
kinetics of the enzymatic reaction that produces cyclic guanosine monophosphate
(cGMP). A. The Pinto implementation initially modelled enzymatic reactions using
Michaelis-Menten kinetics, as stated in [Kuroda 2001] (dashed). However, results
from the original Kuroda implementation suggest that these reactions are modelled
by explicit ES complex kinetics (solid). B. After modifying the Pinto implemen-
tation to use kinetics of explicit ES complexes, both implementations demonstrate
identical results. This figure simulates Reactions A.37 and A.39.

The original speed of catalysis for a few enzymatic reactions also provoked dis-
crepancies between the results from both implementations (Figure 5.6). These rate
constants were set to zero in the Pinto implementation to replicate the results in
[Kuroda 2001] (Appendix B.1).

Still, the ODE for the enzymatic activity of PKC in the phosphorylation of Raf
and AMPA receptors was not included in the new implementation at this stage.
The kinetics of these reactions resulted in a PKC activity slightly different from the
original study (data not shown).

While several errors in the Kuroda implementation did not affect the outcome
of the simulations to a significant extent, more substantial problems were identified
in the signalling network modelling.
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Figure 5.6: Catalytic rate constants lead to inconsistencies in the Pinto im-
plementation. A. The adoption of original parameter values for a few catalytic rate
constants causes different results between the Kuroda and Pinto implementations
(solid and dashed, respectively). B. Results from both simulations are identical af-
ter setting these kinetic parameters to zero in the Pinto implementation. The figure
illustrates the temporal evolution of cGMP when modelling Reactions A.37-A.41.
The original catalytic rate constant for Reaction A.40 in the Pinto implementation
in A is kcat40 = 3.87 s−1, while kcat40 = 0 in B.

5.2.3 Significant Errors

All molecules of the LTD model analysed here reside in a single compartment
[Kuroda 2001]. This means that all species should be implemented in a spherical
volume with the same diameter. However, for some reason, MAP kinase, MAP ki-
nase phosphatase-1 (MKP1) and phosphorylated Raf had been assigned to a smaller
compartment that differs from the other compounds (diameter 0.10839 µm rather
than 0.14711 µm). Differences in the diameter of compartments influence the con-
centrations of the substances and, in turn, the reaction rates in the Kuroda imple-
mentation. As a result, the MAP kinase, MKP1 and phosphorylated Raf reactions
were about 25% slower than the other reactions involved in the signalling network.
The Pinto implementation was therefore modified to reproduce these errors and
replicate the results in [Kuroda 2001]. All rate constants in the ODEs for these
compounds were multiplied by 2.5, and their concentration values were then multi-
plied by 0.4. Based on this correction, MAP kinase, MKP1 and phosphorylated Raf
had the same concentrations as in the Kuroda implementation.

In addition to this significant error, a spare arrow from phosphorylated cytosolic
phospholipase A2 (PLA2P) to its enzymatic reaction was found in Kuroda’s code.
The detection of this error was not trivial because this arrow was hidden in the
original implementation (Figure 5.7). This inconsistency created two instances of
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PLA2P rather than one in Reaction A.25

2 PLA2P + APC −−⇀↽−− PLA2P_APC −−→ PLA2P + AA .

Although modelling two phosphorylated PLA2 enzymes makes no sense, the Pinto
implementation still accounts for this discrepancy to replicate the results in [Kuroda 2001].

Figure 5.7: A spare arrow is unveiled in the Kuroda implementation. This
figure illustrates part of the visual interface of the Kuroda implementation. A.
The yellow ellipse highlights the PLA2 enzymatic Reaction A.25. B. An arrow
that points from phosphorylated PLA2 to this enzymatic reaction was hidden in
the Kuroda implementation. The spare arrow is unveiled after dragging the PLA2

reaction button.

The Kuroda model comprises a few reactions whose compounds bind to the cell
membrane (Reactions A.32-A.35). The speed of formation of these reactions is much
faster than those of the biochemical reactions of the entire model. Due to these larger
parameter values, the integration of ODEs in the Pinto implementation crashed as
soon as the simulation was started. This problem occurred as a consequence of an
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unsuccessful integration of the Euler numerical method which was originally used.
To solve the problem in the numerical integration, the CVODE numerical method
was adopted. This method is provided by the XPPAUT analytical tool, and uses
a variable time step size. CVODE was chosen here based on a suggestion of the
XPPAUT creator, Bard Ermentrout.

The results from the original implementation of the Kuroda model were eventu-
ally replicated in XPPAUT (Figure 5.8). At this stage, the Pinto implementation
included the errors encountered in the Kuroda implementation to reproduce the
model in [Kuroda 2001] (Appendices B.1 and B.2). Various inconsistencies were
also detected in the supplementary information of the paper by Kuroda and co-
authors ([Kuroda 2001]; Appendix B.3). The biochemical reactions, ODEs, initial
concentrations and kinetic constants of the Pinto implementation that reproduces
the original results in [Kuroda 2001] are described in Appendix A.

Figure 5.8: Replication of [Kuroda 2001] in the Pinto implementation.
Simulation results from the Pinto implementation (dashed) reproduce the phospho-
rylation of AMPA receptors in [Kuroda 2001] obtained from the interpolated version
of the Kuroda implementation (solid). Here, the Pinto implementation mimics the
errors encountered in Kuroda’s code. A. Time-evolution of unphosphorylated and
phosphorylated AMPA receptors (red and blue, respectively). B. The active forms
of PKC over time: total PKC activity (purple), calcium-activated PKC (brown),
DAG-activated PKC (green), and AA-activated PKC (cyan).

Although the Pinto implementation replicated the Kuroda model, it mimicked
several issues identified in the original implementation. The following section de-
scribes how these errors were corrected in the Pinto implementation, while still
producing very similar results to those published in [Kuroda 2001].
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5.3 Correction of Errors from the Original
Implementation

The discrepancies that had been included in the Pinto implementation to replicate
the LTD model were eventually corrected as follows (Appendix B.4)

1. All kinetic constants that had been set to zero were replaced according to the
original parameter values published in [Kuroda 2001];

2. The ODE that models changes in the PKC concentration resulting from its
enzymatic activity in the phosphorylation of Raf and AMPA receptors was
included in the XPPAUT code;

3. Phosphorylated PLA2 was implemented as a single instance in its enzymatic
reaction rather than two;

4. The concentrations of MAP kinase, MKP1 and phosphorylated Raf were read-
justed to simulate all compounds within the same volume.

The results from the Pinto implementation after correcting these errors initially
did not match those published in [Kuroda 2001] (Figure 5.9A). The reduction of
the stoichiometry of phosphorylated PLA2 from 2 to 1 caused an increase in the
production of AA. Therefore, higher amounts of AA mediated a greater activation
of PKC during the intermediate phase which, in turn, led to alterations in the
phosphorylation of AMPA receptors. To compensate the loss of the duplicated
phosphorylated PLA2, the speed of PLA2 dephosphorylation was nearly doubled
(0.39 s−1 rather than 0.17 s−1 as in the original research). This modification led to
similar results as in [Kuroda 2001] (Figure 5.9B).

Although Kuroda et al state that the concentration levels of calcium in their
model were based on experimental observations in [Wang 2000], their calcium con-
centration peaks did not correspond to the results shown in the experimental paper.
Furthermore, the actual basal calcium concentration between pulses is not zero as in
their input tables (Figure 5.3). The following section gives the details for correcting
the calcium stimulus, and describes the new adjustments in kinetic constants for
the final replication of the results in [Kuroda 2001].
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Figure 5.9: Effect of the correction of errors from the Kuroda implemen-
tation. Temporal evolution of unphosphorylated and phosphorylated AMPA re-
ceptors (red and blue, respectively) and active forms of PKC: total PKC activity
(purple), calcium-activated PKC (brown), DAG-activated PKC (green), and AA-
activated PKC (cyan). A. All errors from Kuroda’s code (solid) were corrected in
the Pinto implementation (dashed). The correction of errors provoked concentration
increases of active PKC and phosphorylated AMPA receptors in the intermediate
phases. B. The rate of PLA2 dephosphorylation was then increased to compensate
the removal of the spare arrow illustrated in Figure 5.7. This alteration led to the
replication of [Kuroda 2001].
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5.3.1 Adoption of New Calcium Levels

The basal concentration of calcium within Purkinje cells is about 0.1 µM, and its
maximum concentration in response to the paired activation of PF and CF is nearly
10 µM [Wang 2000]. The sequence of calcium stimuli in the Pinto implementation
was therefore adjusted according to these values (Figure 5.10). To this aim, the
data in the original calcium table were transformed as follows

ynew = yold

(
max−min

max

)
+min , (5.1)

where ynew is the new data point in the calcium input table, yold is the original data
point in the Kuroda table, min denotes the basal calcium concentration, and max
is the calcium concentration peak at each stimulus.

Figure 5.10: Calcium stimulus transformation by changing the basal and
maximum concentrations. The new calcium input to the Kuroda model in re-
sponse to coincident PF and CF activation comprises a resting concentration of 0.1
µM and a maximum amount of 10 µM for each pulse. The total calcium stimulation
in the model lasts 5 min. Inset. Illustration of the calcium stimuli in the Pinto
implementation (dashed) after adjusting only the basal concentration in the Kuroda
implementation (solid).

The adoption of calcium levels that were 1,852% higher than in [Kuroda 2001]
drastically increased the rate of calcium-activated reactions (Figure 5.11B). This
resulted in a high initial peak for calcium-activated PKC and the disappearance of
the LTD intermediate phase. The lack of an LTD intermediate phase was due to
the fact that the high levels of calcium converted all available inactive PKC into
calcium-activated PKC, so that the also increased production of AA by calcium-
activated PLA2 could not result in PKC activation during the LTD intermediate
phase.



54 Chapter 5. Reimplementation of Cerebellar LTD Models

Figure 5.11: Effect of the adoption of new calcium levels. Comparison of the
simulation results from the Kuroda and Pinto implementations (solid and dashed,
respectively) after adopting the new calcium levels illustrated in Figure 5.10. A.
Time course of unphosphorylated and phosphorylated AMPA receptors (red and
blue, respectively). B. Temporal evolution of the active forms of PKC: total PKC
activity (purple), calcium-activated PKC (brown), DAG-activated PKC (green), and
AA-activated PKC (cyan).

To reproduce the results from the Kuroda model after modifying the calcium
input table, a few rates of calcium-mediated reactions were adjusted. These include
much slower rates of (i) production of AA via calcium-activated PLA2, (ii) activation
of PKC by calcium, and (iii) binding of calcium-activated PKC to the cell membrane.
In addition to these, the velocity of PLA2 dephosphorylation was again altered,
demonstrating that this kinetic parameter is crucial for the Kuroda model. The
dephosphorylation of PLA2 affects the concentration levels of the AMPA receptors
during the intermediate phase in [Kuroda 2001].

Similar results to those in [Kuroda 2001] were obtained after altering these reac-
tion rates (Figure 5.12) (Appendix B.5). Although the same qualitative behaviours
for the phosphorylation of AMPA receptors and the activation of PKC are obtained
in the Pinto implementation as in the Kuroda one, the concentration levels of these
compounds differ from those presented in [Kuroda 2001]. However, the true amounts
of AMPA receptors and PKC within cerebellar Purkinje cells are unknown.

After debugging the Kuroda implementation, another GENESIS/kinetikit im-
plementation was obtained that is mentioned in [Doi 2006]. This latest GENE-
SIS/kinetikit version of the Kuroda LTD model was implemented by Tomokazu
Doi, who is one of Kuroda’s collaborators but not a co-author in [Kuroda 2001].
The Doi implementation is briefly examined in the next section.
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Figure 5.12: Final replication of [Kuroda 2001] after adopting new calcium
levels. The Pinto implementation (B, dashed) qualitatively reproduces the results
obtained from the Kuroda implementation (A, solid) after adjusting the calcium
levels shown in Figure 5.10. Although the concentration levels of the unphosphory-
lated and phosphorylated AMPA receptors (red and blue, respectively) and active
PKC (purple) differ in both implementations, their behaviours over time are similar.
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5.3.2 Comparison with Doi Implementation

The Doi implementation [Doi 2006] proposes the correction of significant errors in the
Kuroda implementation. Their GENESIS/kinetikit code uses a uniform volume for
all compounds in the signalling network rather than different compartment volumes
for MAP kinase, MKP1 and phosphorylated Raf. It also corrects the spare arrow
that creates two instances of phosphorylated PLA2. However, the results from this
implementation are slightly different from the published data in [Kuroda 2001].

The time step size of the Doi implementation is smaller than that of the Kuroda
implementation and indeed corroborates the adoption of a smaller time step size
to match Pinto’s results (Appendix B.2). The arrow from glutamate to protein
tyrosine kinase Lyn is now deleted. However, for some reason, a new Lyn stimulus
was created and contains identical values as those in the glutamate stimulation.

Although the arrows from Ca_basal, Ca_pump, Ca_ext, Cachannel, and Ca_store
were corrected in the Doi implementation, these still have no role in the model (Ap-
pendix B.2). The input tables are still not interpolated, and the calcium stimulus is
identical to the original Kuroda table. Furthermore, a few values of kinetic constants
are different from the original data published in [Kuroda 2001]. Similar results are
obtained from the final implementations of Kuroda, Pinto and Doi (Figure 5.13).

Figure 5.13: Comparison of different implementations of the Kuroda
model. Results from the Doi implementation (dashed-dotted) are similar to those
obtained from the interpolated Kuroda simulation (solid) and the final Pinto im-
plementation (dashed). A. AMPA receptors in different states: unphosphorylated
(red and cyan) and phosphorylated (blue and magenta). B. Total activity of PKC.
The respective concentrations of phosphorylated AMPA receptors (dashed blue) and
active PKC (dashed purple) in the Pinto implementation are multiplied by 2.7 and
3.5 to fit the results in [Kuroda 2001].
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5.4 Chapter Conclusions

The biochemical model published in [Kuroda 2001] is an important kinetic simu-
lation of the signalling processes underlying cerebellar LTD. It models a key step
in the plasticity induction in Purkinje cells: the phosphorylation of AMPA recep-
tors. This chapter demonstrated the processes involved in the replication of the
Kuroda model. It described a new implementation of this model in a simulation
tool different from that used in the original study. Kinetic models developed in
XPPAUT provide an easier understanding of the mathematical processes involved
in the reaction kinetics.

Several errors were identified in the GENESIS/kinetikit implementation de-
scribed in [Kuroda 2001]. Some of these discrepancies such as the double instance of
phosphorylated PLA2 might have occurred due to the occasional instability of this
kinetic tool. The drag-and-drop inclusion of reactions sometimes provokes the ap-
pearance of spurious arrows from species to reactions. Other issues in these models
may also emerge given that the developer is not always aware of all features provided
by GENESIS/kinetikit. This may be the case for the lack of interpolation in the
input tables and for the adoption of a modelling approach for enzymatic reactions
different from that stated in [Kuroda 2001]. The resources for implementing these
features are not easily identified in this simulator. However, the modification of
the cell diameter for some species in the Kuroda model was indeed included by the
authors for an unknown reason.

The correction of the errors in the Kuroda implementation involved the ad-
justment of reaction rates to replicate the results in [Kuroda 2001]. Kuroda and
collaborators have demonstrated that the dephosphorylation of PLA2 regulates the
LTD intermediate phase but does not affect its initial peak. A faster rate of PLA2
dephosphorylation indeed restored the concentration levels of active PKC in the
intermediate phase (Figure 5.9). This was the single modification necessary for
the replication of [Kuroda 2001] after correcting the discrepancies in the original
implementation.

In addition to the importance of PLA2 to the LTD model, Kuroda et al have
suggested that AA also mediates the feedback loop and, in turn, is responsible for
the intermediate phase. Although [Kuroda 2001] showed that the PLA2 inactivation
evokes the disappearance of the intermediate phase, high calcium concentrations
may also block the activity of the feedback loop (Figure 5.11). Levels of calcium
much higher than the total PKC concentration may cause the saturation of PKC
with calcium. Therefore, AA cannot activate the intermediate phase of PKC as all
available forms of the kinase are bound to calcium.

Because most of the parameters in [Kuroda 2001] were assumed freely or adapted
from kinetic simulations that are also based on incomplete information [Bhalla 1999],
the modification of parameters to replicate the original study is a valid approach.
Most importantly, the Pinto implementation with more realistic calcium levels quali-
tatively reproduces the signalling mechanisms in cerebellar LTD as in [Kuroda 2001].
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To investigate the role of CaMKII in cerebellar plasticity, this kinase needs to be
incorporated into the Kuroda model. First, a model for the activation of CaMKII
is needed. A simple CaMKII activation model based on [Dupont 2003] is presented
in the next chapter. Interesting findings arose during the development of the new
CaMKII model and the study of [Dupont 2003]. The following chapter features the
main contributions of this thesis to scientific knowledge.
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For the study of calcium-calmodulin dependent protein kinase II (CaMKII) in
cerebellar plasticity, I adopt the simplest and commonly used model of CaMKII

activation developed by Dupont and collaborators [Dupont 2003]. This chapter pro-
poses a rationalized version of the Dupont model. The original aim of this implemen-
tation was to include the CaMKII autophosphorylation pathway in the long-term
depression model reimplemented in Chapter 5. However, interesting issues arose
during the study of [Dupont 2003] which led to important findings. The greatest
contributions of this thesis to knowledge are presented in this chapter.

Many studies have indicated that the CaMKII activation is sensitive to the
frequency of calcium oscillations [Hanson 1992, Meyer 1992, Hanson 1994, Michel-
son 1994, Dosemeci 1996, De Koninck 1998, Eshete 2001, Dupont 2003] (see Sec-
tion 3.3). The Dupont model of CaMKII activation by calcium-calmodulin replicates
the experiments by De Koninck and Schulman [De Koninck 1998], as shown in Fig-
ure 3.4. Both theoretical and experimental studies have argued that the CaMKII
phosphorylation depends on the calcium oscillation frequency.

The first section of this chapter presents a modified version of the CaMKII ac-
tivation model in [Dupont 2003]. The following sections exhibit an investigation of
the CaMKII frequency sensitivity studied in [De Koninck 1998, Dupont 2003]. This
thesis demonstrates that my modified version of the model used by Dupont et al re-
produces their results. However, my computer simulations unveil that the CaMKII
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phosphorylation is mostly determined by the average calcium-calmodulin concen-
tration, and therefore depends only indirectly on the actual frequency of calcium
oscillations. I show that the application of a constant level of calcium-calmodulin
with the same average concentration as in the pulsed protocol results in identical
levels of CaMKII phosphorylation.

To further investigate the behaviour of the model, a series of simulations were
carried out. I compare the results of the deterministic simulations with those ob-
tained using a stochastic model of CaMKII activation. The outcomes of stochastic
simulations corroborate the findings obtained with the deterministic model.

6.1 CaMKII Activation Model

In the simple model for CaMKII activation by calcium-calmodulin (Ca4CaM) con-
sidered here, all CaMKII subunits are in one of four states. Following the terminol-
ogy and notational convention used in [Dupont 2003], the four states are referred
to as Wi, Wb, Wp, and Wa, where the subscripts i, b, p, and a stand for inactive,
bound, phosphorylated, and autonomous, respectively. Wi and Wb are unphospho-
rylated, and Wp and Wa are phosphorylated states, whereas subunits in the Wb

and Wp states have Ca4CaM bound, and Wi and Wa have not. Figure 6.1A shows
the interconversion routes between the different CaMKII subunit states.

Subunits in the Wb, Wp, and Wa states have kinase activity, and can, therefore,
phosphorylate CaMKII’s targets, including adjacent subunits in the CaMKII multi-
mer. To be “ready” for phosphorylation, such adjacent subunits must be in the Wb

state themselves. By way of example, Figure 6.1B shows a possible phosphorylation
trajectory for a single 6-ring in the CaMKII dodecamer. The overall phosphoryla-
tion rate associated with this process is indicated as Va, which is calculated using
a phenomenological non-linear function of kinase subunits in the Wb, Wp and Wa

forms as in [Dupont 2003]

Va = Ka

(
(cbWb)2 + (cbWb) (cpWp) + (cbWb) (caWa)

)
, (6.1)

where cb, cp and ca are weighting factors proportional to the kinase activity of each
active state. In the equations described in this chapter, Wi, Wb, Wp, and Wa

represent fractions of CaMKII subunits in each possible state as in [Dupont 2003].
For example, Wb is a shorthand for the fraction of kinase subunits that is in the
bound state.

The earlier model [Dupont 2003] includes an empirical cubic function (Ka) to
model the neighbouring autophosphorylation, allowing the mathematical model to
reproduce the experimental results in [De Koninck 1998]. The equation for Ka is

Ka = K′a
(
aTac + bT2

ac + cT3
ac

)
, (6.2)

where the phenomenological rate for CaMKII autophosphorylation is K′a, the total
fraction of active subunits is Tac = Wb + Wp + Wa, and a, b and c are parameters
that Dupont et al adjusted to fit the experimental plots in [De Koninck 1998].
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The CaMKII autophosphorylation is assumed as a unidirectional process in the
model, that is, an active neighbour subunit can phosphorylate another subunit solely
in the same direction within the CaMKII multimer. The direction of autophospho-
rylation of the simulations in [Dupont 2003] is not completely clear due to ambiguity
or lack of information in the simulated protocols. However, as for the earlier model
[Dupont 2003], the autophosphorylation direction is irrelevant, and identical results
were obtained for the uni and bidirectional autophosphorylations by adjusting the
fitting parameters: K′a, a, b and c (not shown).

The equation that represents the temporal evolution of Wb fractions is therefore

dWb

dt
= kibWi [Ca4CaM]− kbiWb −Va , (6.3)

where [Ca4CaM] denotes the concentration of Ca4CaM.
When the kinase subunit is phosphorylated, Wp can release the Ca4CaM com-

plex and switch to the Wa form. Wp is expressed as

dWp

dt
= Va − kpaWp + kapWa [Ca4CaM] , (6.4)

and the amount of Wa can be calculated as

dWa

dt
= kpaWp − kapWa [Ca4CaM] . (6.5)

Wi fractions may be computed from the mass conservation relation

Wi = 1−Wb −Wp −Wa . (6.6)

As for the experimental and computational studies in [De Koninck 1998, Dupont 2003],
the cooperative binding of calcium and free CaM is considered to be in equilibrium
and, therefore, is modelled as an instantaneous process. The concentration of CaM
bound to four ions of calcium can be expressed as

[Ca4CaM] = CaMt
Ca4

t

Kd
4 + Ca4

t

(6.7)

as in [Dupont 2003], where CaMt and Cat are total quantities of CaM and calcium,
and Kd is the concentration of calcium required to achieve 50% Ca4CaM. In the
model, Cat is given by an input table with oscillatory quantities of calcium over
time at specific frequency, amplitude and duration. Furthermore, CaM is saturated
with calcium for Cat = 500 µM in all stimulation protocols, as in [De Koninck 1998,
Dupont 2003].
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Figure 6.1: Model of CaMKII activation by Ca4CaM. A. CaMKII subunit
states are represented as Wi, Wb, Wp, and Wa, where the subscripts i, b, p, and a
refer to the respective subunit states: inactive, bound to Ca4CaM, phosphorylated
and bound to Ca4CaM, and autonomous: phosphorylated, but dissociated from
Ca4CaM. The kinetic constants of the reversible Ca4CaM binding reactions are kib,
kbi, kpa and kap, and the rate of the irreversible phosphorylation of Wb is Va. B. A
possible phosphorylation trajectory for a single 6-ring in the CaMKII dodecamer.
The CaMKII activation initiates by the binding of Ca4CaM to a kinase subunit.
Wb is “ready” for phosphorylation (red) when its left neighbour within the CaMKII
ring is an active subunit (cyan): Wb, Wp or Wa.
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Meyer et al state that the affinity of CaM for CaMKII increases by a factor of
about 1,000 upon phosphorylation [Meyer 1992]. However, there is no indication in
their data that this “trapping” of CaM is, as the Dupont model [Dupont 2003] would
suggest, solely due to an increased affinity of apo-CaM (CaM without any calcium
ions bound) for phosphorylated CaMKII subunits. If equilibration of calcium and
free CaM is modelled as an instantaneous process, as in both Dupont’s and my
models, it is reasonable to model equilibration of CaMKII-bound CaM as an instan-
taneous process as well. Therefore, unlike the model in [Dupont 2003], the model
used here does not include a separate “trapped” state in which apo-CaM is bound to
CaMKII. As a result, the values for the rate constants between the “trapped” CaM
(Wt) and Wa states in [Dupont 2003] were adopted here as kap and kpa.

The kinetic parameters used in all simulations were based on the Dupont model
data (Appendix D). The value for K′a, which is considered as an unidirectional
modelling parameter in this thesis, is identical to the value stated for the bidirec-
tional autophosphorylation in [Dupont 2003]. This assumption does not influence
the outcome of the simulations as K′a is a hypothetical value. To replicate the re-
sults in [Dupont 2003], the fitting parameters a, b and c were then adjusted. Like
the Dupont model, the model developed here solely considers phosphorylation, and
omits any reverse CaMKII dephosphorylation reaction.

The simplified model was implemented in XPPAUT and the results were ob-
tained by numerically integrating Equations 6.1-6.7, using the Euler method and a
1 ms time step size.

6.2 Model Validation

As described above, the model used here is a rationalized version of the model
proposed in [Dupont 2003]. To examine whether the omission of Wt from the model
has a significant effect on its behaviour, I carried out a series of simulations under
the conditions used in [Dupont 2003] to explain key experimental observations of
[De Koninck 1998].

The results show that the trajectories of fractions of phosphorylated CaMKII
(Wp + Wt in the Dupont model; Wp in the rationalized version) overlap to a great
extent (Figure 6.2). The differences in the trajectories are caused by the differences
in kinase activity for the various phosphorylated species. In a model in which the
relative kinase activity of Wt is the same as that of Wp rather than that of Wa, these
slight differences disappear almost completely (not shown). Thus, the behaviour of
the original and rationalized versions of the model is to all intends and purposes the
same, as also demonstrated in Figures 6.3-6.7. For that reason, I use the simpler
version that does not explicitly specify “trapping” of apo-CaM in the investigations
described in the following.
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Figure 6.2: CaMKII phosphorylation in response to repetitive square
Ca4CaM pulses with the same amplitude at varying frequencies. Temporal
evolution of fractions of phosphorylated CaMKII (Wp in the rationalized version -
solid; Wp + Wt in the Dupont model - dashed) in response to one hundred 200 ms
square pulses of Ca4CaM (100 nM) at frequencies of 1 (solid blue and dashed black),
2.5 (solid red and dashed purple) and 4 Hz (solid magenta and dashed brown). In-
sets. Representations of Ca4CaM oscillations at these frequencies for 1 s (solid).
The product of the amplitude, frequency and duration of Ca4CaM pulses determines
the average (“effective”) Ca4CaM concentration (dashed). This figure replicates the
results of Figure 3.4.
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Figure 6.3: Replication of Figure 4 in [Dupont 2003]. Trajectories of Wi, Wb

and Wp fractions in response to the same protocol as in Figure 6.2 at frequencies
of 1 (A, for 20 s) and 4 Hz (B, for 10 s). The results obtained from the simplified
model replicate those in [Dupont 2003] (right and left panels, respectively). Insets.
Ca4CaM oscillations at 1 and 4 Hz for 1 s.
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Figure 6.4: Replication of Figure 3E in [Dupont 2003]. A. Frequency sensitiv-
ity of phosphorylated CaMKII in response to varying durations of Ca4CaM pulses
(100 nM) in [Dupont 2003]. Each data point is the maximal level of Wp after 6 s
of stimulation. B. Wp in the rationalized version of the Dupont model in response
to the same protocol as in A. The durations of the Ca4CaM pulses are 1,000 (blue
N), 500 (red �), 200 (green •) and 80 ms (magenta H).

Figure 6.5: Replication of Figure 6B in [Dupont 2003]. A. CaMKII frequency
sensitivity in response to Ca4CaM pulses with high amplitude (2.5 µM) at varying
short durations in [Dupont 2003]. Each data point represents the Wp maximal
level after 100 Ca4CaM spikes at each frequency. B. Wp in the simplified model in
response to the same protocol. The durations of the Ca4CaM pulses are 10 (blue
4), 5 (magenta H), 3 (cyan �), 2 (red N) and 1 ms (green ◦).
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Figure 6.6: Replication of Figure 6C in [Dupont 2003]. A. CaMKII frequency
sensitivity in response to Ca4CaM spikes with short duration (2 ms) at varying
high amplitudes in [Dupont 2003]. B. Wp in response to the same protocol in the
simplified model. The amplitudes of the Ca4CaM pulses are 5 (blue 4), 4 (•), 2.5
(pink �), 1.5 (green N) and 1 µM (◦).

Figure 6.7: Replication of Figure 7A in [Dupont 2003]. A. Frequency sen-
sitivity of phosphorylated CaMKII in response to varying numbers and durations
of Ca4CaM spikes (400 nM): 30 120 ms (green ×), 50 80 ms (red ◦) and 80 50 ms
(violet +). B. Wp in the rationalized version of the model in [Dupont 2003] in
response to the same conditions as in A.
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6.3 Effective Calcium-calmodulin Concentration Explains
CaMKII Frequency Sensitivity

De Koninck and Schulman in [De Koninck 1998] and Dupont et al in [Dupont 2003]
have presumed from experimental and computational observations that CaMKII
may “decode” the calcium pulse frequencies. The kinase therefore may depend on
the frequency of repetitive Ca4CaM oscillations, as shown in Figure 6.2. In their
protocols, CaMKII is subjected to repetitive square Ca4CaM pulses at varying fre-
quencies but with the same amplitude and duration. However, variations in the
oscillation frequency accompany changes in the average, or “effective”, Ca4CaM

concentration ([Ca4CaM]eff) which is calculated as

[Ca4CaM]eff = [Ca4CaM]pulse f L , (6.8)

where [Ca4CaM]pulse is the pulse amplitude, f is the pulse frequency, and L is
the pulse duration. Because in those protocols the Ca4CaM pulses contain the
same amplitude and duration at varying frequencies, the kinase phosphorylation
responds to different effective Ca4CaM concentrations, which in turn affect the
average amount of Wp (Figure 6.2). Hence, an affirmation that [De Koninck 1998]
and [Dupont 2003] demonstrate the CaMKII sensitivity to the frequency of calcium
spikes is a premature conclusion.

Is the CaMKII phosphorylation sensitive to the oscillation frequency or the ef-
fective concentration of Ca4CaM? For this investigation, the pulse amplitude was
rescaled to result in an equal effective Ca4CaM concentration at varying frequen-
cies, and the phosphorylation kinetics was then compared (Figure 6.8). Simulation
of the model’s behaviour showed that the levels of Wp at different frequencies are
identical after rescaling the amplitude of Ca4CaM pulses, i.e. stimuli with equal
effective Ca4CaM concentrations result in the same phosphorylation response. For
the frequencies examined here, these results strongly indicate that the CaMKII au-
tophosphorylation kinetics are dependent on the effective Ca4CaM concentration,
and therefore only indirectly on the actual pulse frequency.

6.4 Pulsed Application of Calcium-calmodulin is Not
Required

As CaMKII does not depend on the actual frequency of Ca4CaM pulses, the question
arises: are the kinase phosphorylation levels the same under constant and pulsed
concentrations of Ca4CaM, while keeping the appropriate effective concentrations?

Simulation results indeed show a superposition of fractions of the various CaMKII
subunit states in response to continuous and pulsed Ca4CaM concentrations (Fig-
ure 6.9). This behaviour is also observed for a wider range of frequencies (Fig-
ure 6.10). Again, the outcome of the model demonstrates that the effective concen-
tration of Ca4CaM mediates the CaMKII phosphorylation, and not the actual pulse
frequency.
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Figure 6.8: Effective Ca4CaM concentration determines the sensitivity of
CaMKII to the frequency of Ca4CaM oscillations. CaMKII phosphorylation
responds to one hundred 200 ms square pulses of Ca4CaM at 1 (blue), 2.5 (red)
and 4 Hz (magenta), but with scaled amplitudes to keep an equal effective Ca4CaM

concentration. Insets. Solid lines illustrate the rescaled amplitudes of Ca4CaM

pulses: 400 nM at 1 Hz (blue), 160 nM at 2.5 Hz (red) and 100 nM at 4 Hz (magenta).
Thus, CaMKII is subjected to the same effective concentration of Ca4CaM of 80
nM (dashed).
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Figure 6.9: Pulsed and continuous concentrations of Ca4CaM produce
identical CaMKII autophosphorylation kinetics. Temporal evolution of the
various forms of CaMKII subunits: phosphorylated (A), inactive (B), Ca4CaM-
bound (C) and autonomous (D). The solid lines indicate the CaMKII response
to one hundred 200 ms pulses of Ca4CaM (100 nM) at varying frequencies. These
correspond to effective Ca4CaM concentrations of 20 nM at 1Hz (blue), 50 nM at
2.5 Hz (red) and 80 nM at 4 Hz (magenta). The dashed lines represent the CaMKII
trajectories in response to the application of continuous concentrations of Ca4CaM

at the same levels: 20 nM for 100 s (black), 50 nM for 40 s (purple) and 80 nM for
25 s (brown). In panels B, C and D, the stimulated Ca4CaM pulses at 1 Hz (blue)
and the continuous Ca4CaM concentration of 20 nM (black) last 100 s.
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Figure 6.10: Pulsed Ca4CaM stimulation is irrelevant to CaMKII phos-
phorylation for a wide range of frequencies. Trajectories of phosphorylated
CaMKII in response to pulsed and continuous concentrations of Ca4CaM at varying
frequencies. The solid lines indicate the CaMKII response to one hundred 100 ms
pulses of Ca4CaM (100 nM) at varying frequencies: 3 (black), 5 (blue), 6 (purple)
and 8 Hz (light red). The dashed lines represent the Wp levels in response to con-
tinuous concentrations of Ca4CaM at the appropriate effective concentrations: 30
(cyan), 50 (dark red), 60 (green) and 80 nM (grey).

6.5 Stochastic Simulations Corroborate Findings with
the Deterministic Model

In the deterministic model used here, the CaMKII autophosphorylation rate is ex-
pressed as a phenomenological function as in [Dupont 2003] (Equation 6.1). To
examine whether this phenomenological process reflects the actual kinase autophos-
phorylation, the second supervisor of this thesis developed a stochastic model of
CaMKII activation (Appendix C). This model stochastically simulates how the au-
tophosphorylation process occurs within the CaMKII multimer, as illustrated in
Figure 6.1B.

Results obtained from stochastic simulations are very similar to the outcomes
of the deterministic model (Figure 6.11). The stochastic model corroborates all
findings with the deterministic one, and also demonstrates the dependence of the
overall autophosphorylation kinetics on the effective Ca4CaM concentration.
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Figure 6.11: Stochastic simulations corroborate findings with the determin-
istic model. Results obtained from the stochastic model described in Appendix C
reproduce the outcomes of the deterministic simulations. All curves in each panel
result from a single stochastic simulation with 100 CaMKII rings of 6 subunits each.
As for the deterministic results, Wi, Wb, Wp, and Wa represent fractions of CaMKII
subunits in each possible state. A. Fractions of phosphorylated CaMKII (Wp) in
response to Ca4CaM pulses with identical amplitude at 1 (blue), 2.5 (red) and 4
Hz (magenta). This figure replicates Figure 6.2. B. CaMKII phosphorylation in
response to the same protocol, but with scaled amplitudes of Ca4CaM to keep the
same effective concentration. This panel reproduces the results in Figure 6.8. C,
D, E and F. The kinase autophosphorylation kinetics respond to pulsed and con-
tinuous concentrations of Ca4CaM. These panels replicate Figures 6.9A, 6.9B, 6.9C
and 6.9D, respectively. In panel F, each curve step corresponds to a single subunit
in the autonomous form of CaMKII (Wa).
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6.6 Variations in the Frequency, Amplitude and
Duration of Calcium-calmodulin Oscillations

The effective concentration of Ca4CaM depends on the amplitude, frequency and
duration of Ca4CaM pulses (Equation 6.8). So far, simulation results demonstrated
that equal CaMKII phosphorylation levels are achieved at varying frequencies, while
rescaling solely the amplitude of Ca4CaM pulses and keeping the same effective
concentration (Figure 6.8). For a thorough investigation, I also test the CaMKII
phosphorylation in response to a wider range of frequencies, after rescaling the
amplitude and duration of Ca4CaM oscillations (Figure 6.12). As expected, the
results reveal that indeed variations in the frequency, amplitude and duration of
Ca4CaM pulses at the same effective concentration produce similar levels of Wp.
Very low frequencies produce distinct responses though. These differences mostly
occur due to the almost complete dissociation of Ca4CaM from CaMKII between
low frequency pulses (Figures 6.12B and 6.12D). In a model in which solely the
Wi −−⇀↽−−Wb reaction is simulated and any type of CaMKII phosphorylation is then
blocked, different responses for Wb fractions are yet observed (Figure 6.13).

6.7 Chapter Conclusions

Calcium is the major signalling substance in many cell types. The intracellular
calcium concentration exhibits repetitive spikes that vary in their frequency, am-
plitude and duration. These oscillations regulate many cellular functions, but the
intracellular mechanisms for responding to repetitive calcium spikes are not entirely
understood. For instance, the phosphorylation of CaMKII has been suggested as
a molecular mechanism for “decoding” the calcium pulse frequencies. For this rea-
son, many studies aimed at investigating the sensitivity of CaMKII to the frequency
of repetitive calcium signals. This chapter addressed the computer simulations in
[Dupont 2003] that replicate the experiments with immobilized CaMKII in [De Kon-
inck 1998]. Both studies have shown that the activation of CaMKII is sensitive
to the calcium oscillation frequency. Using a simplified version of the model in
[Dupont 2003], I have demonstrated that this assertion is misleading.

De Koninck and Schulman (1998) and Dupont et al (2003) delivered repetitive
square Ca4CaM pulses of equal amplitude at different frequencies. The variation
of frequencies in those studies affected the average concentration of Ca4CaM pulses
which depends on their frequency, amplitude and width. Therefore, simulation with
rescaled amplitudes of Ca4CaM oscillations, keeping the same average concentration,
produces identical levels of CaMKII phosphorylation. Furthermore, I have demon-
strated that a pulsed application of Ca4CaM is, in fact, not required at all. The
same level of phosphorylated CaMKII is obtained in response to steady and pulsed
stimulations of Ca4CaM at identical average concentrations. These findings strongly
indicate that CaMKII depends on the average Ca4CaM concentration and not on
the oscillation frequency per se as asserted in [De Koninck 1998, Dupont 2003].
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Figure 6.12: Variations in the frequency, amplitude and duration of
Ca4CaM pulses produce the same CaMKII phosphorylation level. Frac-
tions of phosphorylated CaMKII (Wp) and Ca4CaM-bound CaMKII (Wb) in re-
sponse to Ca4CaM stimuli with the same effective concentration of 80 nM for 500 s
at varying frequencies, amplitudes and durations. A and B. CaMKII is subjected
to a continuous Ca4CaM concentration of 80 nM (brown), and to 200 ms Ca4CaM

pulses at varying amplitudes and frequencies: 133.33 nM at 3 Hz (red), 400 nM at 1
Hz (purple), 1 µM at 0.4 Hz (blue) and 2 µM at 0.2 Hz (black). C and D. Stimuli
of oscillatory Ca4CaM pulses with amplitude of 400 nM at varying durations and
frequencies: 40 ms at 5 Hz (brown), 67 ms at 3 Hz (red), 200 ms at 1 Hz (purple),
500 ms at 0.4 Hz (blue) and 1 s at 0.2 Hz (black). E and F. CaMKII in reponse to
a continuous Ca4CaM concentration of 80 nM (brown), and to Ca4CaM pulses at
1 Hz with varying amplitudes and durations: 8 µM and 10 ms (black), 1.6 µM and
50 ms (blue), 800 nM and 100 ms (purple) and 400 nM and 200 ms (red).
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Figure 6.13: CaMKII phosphorylation is sensitive to lower Ca4CaM fre-
quencies in the model. Time-evolution of Wb in the absence of CaMKII phos-
phorylation (Va = 0) in response to Ca4CaM stimuli with high and low effective
Ca4CaM concentrations (A and B, respectively). Because Va = 0, the model con-
tains a single reaction: Wi −−⇀↽−−Wb. Results are shown as the average amount of
Wb fractions per period (T). A. CaMKII is subjected to a continuous Ca4CaM con-
centration of 96 nM (brown), and to 100 ms Ca4CaM pulses at varying amplitudes
and frequencies: 400 nM at 3 Hz (red), 1.2 µM at 1 Hz (purple), 3 µM at 0.4 Hz
(blue) and 6 µM at 0.2 Hz (black). B. CaMKII responds to a continuous Ca4CaM

concentration of 16.8 nM (brown), and to 100 ms Ca4CaM pulses at varying ampli-
tudes and frequencies: 70 nM at 3 Hz (red), 210 nM at 1 Hz (purple), 525 nM at
0.4 Hz (blue) and 1.05 µM at 0.2 Hz (black).

The experimental observations by De Koninck and Schulman (1998) are widely
cited. As a result, many theoretical studies also investigated the CaMKII sensitivity
to the calcium oscillation frequency as [Dupont 2003] did. Most of these studies,
however, mimic the misleading experimental protocols used in [De Koninck 1998] and
also use square calcium pulses with equal amplitude [Hanson 1994, Kubota 2001,
Dupont 2003]. Like my model, these models replicate the frequency sensitivity
observed in [De Koninck 1998], and their stimulation protocols also present different
average concentrations of Ca4CaM to CaMKII which, not surprisingly, produce
distinct levels of phosphorylated CaMKII at varying frequencies.

In contrast, a recent study proposed a model that simulates the frequency de-
pendence at constant average calcium signals [Salazar 2008]. The input protocols
developed by Salazar et al (2008) contain rescaled amplitudes of square calcium
pulses that stimulate the model with equal average calcium signal [Salazar 2008].
Although their findings corroborate the idea raised in this chapter, this study cannot
be compared to the investigation presented here because the authors simulate a dif-
ferent scenario from that described in this thesis and, consequently, do not directly
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address the studies in [De Koninck 1998, Dupont 2003]. They model the activation
of a generic kinase, not the CaMKII activation modelled here, and also include the
phosphorylation and dephosphorylation of a target protein, a process not considered
in [De Koninck 1998, Dupont 2003] and in my study.

Interestingly, Li et al (2012) recently proposed a CaMKII activation model that
indicates that the stimulation of a high amount of calcium at lower frequencies pro-
duces the same CaMKII phosphorylation level as a smaller amount at higher fre-
quencies. However, the complex model in [Li 2012] includes calcineurin, the dephos-
phorylation of CaMKII by protein phosphatase 1 (PP1), and other biochemical com-
pounds that differ from the model used in this thesis. Their study, therefore, models
a different, more complex system from the one observed by De Koninck and Schul-
man (1998) and modelled in Dupont et al (2003) and here. Moreover, the model by
Li et al (2012) simulates the actual dynamics of intracellular calcium concentration
induced by action potentials, which differs from [De Koninck 1998, Dupont 2003],
whose studies use square pulses. Furthermore, the stimulation protocols used in
[Li 2012] comprise calcium signals modulated solely on frequencies with the same
pulse amplitude. For instance, Figure 2b in [Li 2012] clearly demonstrates that
stimulations of calcium with the same input size at higher frequencies raise the in-
tracellular calcium concentration. As a result, CaMKII phosphorylation may again
depend on concentrations of calcium rather than the pulse frequency itself, as in
[De Koninck 1998, Dupont 2003]. Although Li et al state that a few stimulation
protocols in their study were “modulated” to generate the same amount of calcium
ions at varying frequencies, it is not clear how this has been done and in which
simulations these protocols were used.

The simple model of CaMKII activation developed in this chapter can be easily
used in models that simulate larger signalling cascades. For example, the CaMKII
phosphorylation mechanism illustrated in Figure 6.1 may be incorporated into com-
plex models that simulate plasticity in Purkinje cells as in Figure 5.1. The next
chapter presents the inclusion of the CaMKII activation model presented in this
chapter into a model of cerebellar long-term depression and long-term potentiation
to investigate the role of CaMKII isoforms in bidirectional plasticity at parallel
fibre-Purkinje cell synapses.
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Although it is known that calcium-calmodulin dependent protein kinase II
(CaMKII) is essential for plasticity in the cerebellum, the role of this kinase

in the mechanisms underlying cerebellar plasticity remains an enigma. Surprisingly,
biochemical models that simulate the molecular machinery between parallel fibres
(PF) and Purkinje cells (PCs) have never included CaMKII in their signalling path-
ways. Because experimental observations by themselves are not able to explain how
CaMKII mediates plasticity in PCs, a new dynamic model of cerebellar long-term
depression (LTD) and long-term potentiation (LTP) that includes CaMKII will con-
tribute significantly to cerebellar research.

For this purpose, the initial aim of this thesis was to incorporate the CaMKII ac-
tivation model discussed in Chapter 6 [Dupont 2003] into the cerebellar LTD model
reimplemented in Chapter 5 [Kuroda 2001]. However, because this LTD framework
accounts for a complex signalling network in which several biochemical reactions
occur simultaneously (Figure 5.1), the understanding of the actual role of CaMKII
in this model was limited by the complexity of its signalling pathways. For that
reason, I adopt a new strategy: the development of a simple model of LTD and LTP
induction to study the role of CaMKII in plasticity in cerebellar PCs. In particular,
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the simple model presented in this chapter aims at explaining the molecular mecha-
nisms underlying the experimental observations in [van Woerden 2009] (Figure 3.6).
Van Woerden et al have shown that βCaMKII mediates the bidirectional plasticity
at PF-PC synapses (Section 3.4).

The beginning of this chapter briefly summarises the experimental findings in
[van Woerden 2009]. The second section discusses the inclusion of CaMKII in the
Kuroda model [Kuroda 2001]. The third section presents the simple dynamic model
used to investigate the regulation of bidirectional plasticity in these experiments.
Following on from this, simulation results first demonstrate that the model repro-
duces the mechanisms of plasticity at PF-PC synapses, in response to both constant
and oscillatory calcium stimulations. The results obtained with the simple model
replicate the experimental observations in [van Woerden 2009], and reveal that the
filamentous actin (F-actin) binding may indeed enable βCaMKII to regulate the
bidirectional plasticity in cerebellar PCs.

I also carried out a series of simulations following suggestions from the authors
of [van Woerden 2009]. With new parameter values based on experimental obser-
vations, the model reproduces the observations of Van Woerden et al (2009) as well
as the model with the original values does. Similar results were also obtained with
a model that describes calcium-calmodulin binding to CaMKII in two steps rather
than one. Thus, this chapter presents the first dynamic model that simulates the
induction of LTD and LTP in cerebellar PCs mediated by CaMKII.

7.1 Results of the Study by Van Woerden and
Collaborators

Experiments with Camk2b knockout mice that lack the β isoform of CaMKII have
demonstrated that βCaMKII regulates the direction of plasticity at PF-PC synapses
[van Woerden 2009] (Section 3.4). Figure 7.1 schematically illustrates the experi-
mental results by Van Woerden et al. Calcium-dependent levels of kinase and phos-
phatase activities are represented for the Camk2b knockout mice and the wild-type
mice, which contain both αCaMKII and βCaMKII. LTD is induced when the ki-
nase concentration surpasses the phosphatase concentration, whereas the opposite
case generates LTP. These experiments showed that protocols that induce LTD in
wild-type mice lead to LTP in knockout mice that lack βCaMKII, and vice versa.

7.2 Including CaMKII in the Signalling Cascades
of the Kuroda Model

To incorporate CaMKII into the signalling cascades proposed by Kuroda and col-
laborators [Kuroda 2001], I included the model of CaMKII activation presented in
Chapter 6 in the Kuroda model reimplemented in Chapter 5. Because the Kuroda
model simulates LTD in cerebellar PCs and not LTP, the adaptation of this model
to simulate both LTD and LTP was unsuccessful, as discussed in the following.
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Figure 7.1: Schematic representation of bidirectional plasticity at PF-PC
synapses. The experimental results obtained by Van Woerden et al (Figure 3.6) are
schematically represented in this figure. The scheme illustrates how changes in the
CaMKII-driven pathway evoke different concentration levels of calcium-dependent
kinase (blue), resulting in the inversion of plasticity for wild-type and Camk2b knock-
out mice (solid and dashed, respectively). LTD is generated when the kinase concen-
tration (blue) surpasses the phosphatase concentration (red), whereas the opposite
case induces LTP. Adapted from [van Woerden 2009].

Kuroda et al (2001) simulated the inactivation of protein phosphatase 2A (PP2A)
in their kinetic model. This contributes to the induction of LTD in [Kuroda 2001] as
the concentration of protein kinase C surpasses the PP2A concentration. However,
to simulate LTP in cerebellar PCs, it is necessary that PP2A keeps activated even
when the calcium stimulation stops. The absence of the calcium stimulation after
the initial phase of the AMPA receptor phosphorylation inhibited the activation of
calcium-calmodulin dependent PP2A. This mechanism favours the LTD induction in
all simulations. Due this fact and because many mechanisms occur simultaneously
in the complex signalling network proposed by Kuroda and collaborators, I decided
to propose a new model that simulates the phosphorylation of AMPA receptors in
a simplified manner. Thus, to investigate the role of βCaMKII in the regulation
of bidirectional plasticity at PF-PC synapses, I propose a kinetic model of AMPA
receptor phosphorylation as follows.

7.3 Bidirectional Plasticity Model

A kinetic simulation of the phosphorylation and dephosphorylation of AMPA re-
ceptors by CaMKII and protein phosphatase 2B (PP2B) was developed here. This
model is based on the CaMKII activation model presented in Section 6.1.
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Because VanWoerden et al have suggested that the binding of F-actin to CaMKII
could underlie the direction switch of plasticity [van Woerden 2009] (Section 3.4),
the model then includes the binding of F-actin to CaMKII to simulate the plas-
ticity induction in wild-type mice, whereas the F-actin binding was omitted in the
knockout mice that lack βCaMKII.

The simple model for AMPA receptor phosphorylation consists of six reac-
tions (Figure 7.2): calcium-calmodulin (Ca4CaM)-dependent activation of CaMKII,
CaMKII binding to F-actin, binding of calcium to CaM to form Ca4CaM, PP2B ac-
tivation by Ca4CaM, and AMPA receptor phosphorylation and dephosphorylation
by, respectively, CaMKII and PP2B.

CaMKII subunits in the model for AMPA receptor phosphorylation in Camk2b
knockout mice are in one of four states: Wi, Wb, Wp, and Wa, as in the model
developed in Section 6.1 (Figure 7.2A). The CaMKII subunits in the wild-type model
can also be in states bound to F-actin (Ac): WiAc, WbAc, WpAc, and WaAc.

The formation of Ca4CaM in Chapter 6 was modelled, effectively, as an instan-
taneous process (Equation 6.7). Here, the actual binding of four calcium ions to
calmodulin (CaM) to form Ca4CaM is included in the model (Figure 7.2B). Fur-
thermore, the Ca4CaM complex not only activates CaMKII, but is also responsible
for the PP2B activation [Meyer 1992] (Figure 7.2C).

Because binding of βCaMKII to F-actin is thought to result in clustering of
the kinase holoenzyme [Meyer 1992], WbAc, WpAc and WaAc are unavailable for
AMPA receptor phosphorylation. In the model presented here, phosphorylation of
AMPA receptors is therefore mediated by the active CaMKII subunits that are not
bound to F-actin (CaMKIIac = Wb + Wp + Wa). All active PP2B regulates the
receptor dephosphorylation (Figure 7.2D).

The full kinetic model with its associated ordinary differential equations (ODEs)
is detailed in Appendix E.1, and the parameter values adopted in all model simula-
tions are given in Appendix E.3. All following results were obtained by numerically
integrating Equations E.1-E.25 in XPPAUT, using the CVODE method with 10−10

relative and absolute error tolerances.
Before investigating the experimental results of bidirectional plasticity in [van

Woerden 2009], it is necessary to validate the model developed here. For that
reason, I first simulate the suggested mechanisms of plasticity at PF-PC synapses,
as described in the following.

7.4 Plasticity in Purkinje Cells

The F-actin binding to CaMKII initially was not included in the model. The aim
of the following simulations is to reproduce the processes of plasticity induction in
PCs: low calcium concentrations mediate the induction of LTP, whereas LTD is
generated by high calcium concentration increases. For this purpose, the kinase and
phosphatase activations and the AMPA receptor phosphorylation were analysed in
response to two types of calcium stimulations: constant and oscillatory.
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Figure 7.2: Model of bidirectional plasticity at PF-PC synapses. A. CaMKII
activation by Ca4CaM, and its binding to F-actin (Ac). As in Figure 6.1A, CaMKII
subunits are in one of four states: Wi, Wb, Wp, and Wa for simulations of Camk2b
knockout mice, whereas solely in simulations of wild-type mice, the kinase can also
bind to Ac and be in the WiAc, WbAc, WpAc, and WaAc subunit states. The kinetic
constants of the reversible Ca4CaM binding reactions are kib, kbi, kpa, kap, kiacbac,
kbaciac, kpacaac and kaacpac, whereas kiiac, kiaci, kbbac, kbacb, kppac, kpacp, kaaac and
kaaca denote the speed of the reversible Ac binding reactions. The rates of the irre-
versible phosphorylation of Wb and WbAc are Va and Vac, respectively. B. Binding
of four calcium ions (4 Ca2+) to CaM to form Ca4CaM. kon and koff are the rate con-
stants of the reversible 4 Ca2+ binding reaction. C. PP2B activation by Ca4CaM.
PP2Bi and PP2Bac are the inactive and active forms of PP2B. The respective rates of
PP2B activation and inactivation are kppia and kppai. D. AMPA receptor phospho-
rylation and dephosphorylation by active CaMKII (CaMKIIac = Wb + Wp + Wa)
and PP2Bac.
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7.4.1 Constant Calcium Stimulation

Constant calcium levels stimulate the induction of LTD and LTP in the model (Fig-
ures 7.3 and 7.4). For low calcium concentrations, the amount of active phosphatase
(PP2Bac) exceeds the active kinase levels (CaMKIIac), resulting in LTP induction.
LTD is generated in response to high concentrations of calcium, where CaMKIIac

concentrations surpass PP2Bac levels (Figure 7.3A). Moreover, the induction of LTP
for low calcium concentrations results in higher levels of unphosphorylated AMPA
receptors than phosphorylated. Because high concentrations of calcium generate
LTD, the amount of phosphorylated AMPA receptors exceeds the unphosphory-
lated one for high constant calcium stimulations (Figure 7.3B).

Standard protocols of LTD and LTP induction normally involve repetitive cal-
cium stimuli (e.g. 1 Hz for 300 s). In the next section, results obtained with a model
that includes such pulsed calcium stimulation are described.

7.4.2 Pulsed Calcium Stimulation

To generate calcium pulses with concentrations that reflect experimental data [Wang 2000],
the simple model of bidirectional plasticity uses a calcium dynamics model (Equa-
tion E.1):

d[Ca]

dt
= −4kon[Ca]4[CaM] + 4koff [Ca4CaM] + γ(t)− κ ([Ca]− [Camin]) , (7.1)

where [x] denotes the concentration of substance x, e.g. [Ca] is the calcium concen-
tration. The term γ(t) − κ([Ca] − [Camin]) describes the simple model of calcium
dynamics I have adopted, where γ(t) denotes calcium concentration increases at
each time step which values originate from an input table, κ is a term that reflects
the calcium removal through diffusion, pumps, exchanges, and [Camin] is the basal
calcium concentration.

Input with high calcium influx rates (γ(t)) was used to stimulate the model to
generate realistic amplitudes of calcium in response to PF alone and PF + climbing
fibre (CF) stimulations (Figure 7.5).

As in the simulation with a constant calcium concentration, low amplitudes of
calcium spikes that represent PF stimulation alone generate LTP, whereas PF and
CF stimulation, which is represented by high amplitudes of calcium pulses, induces
LTD (Figures 7.6 and 7.7).

The adoption of oscillatory calcium concentrations requires modifications of ki-
netic parameters used for the constant stimulation protocol (Table E.1). Half the
rate of Ca4CaM dissociation from Wb and a hundred times faster Ca4CaM formation
rate are necessary to induce plasticity at PF-PC synapses in this case (Table E.2).

The simulation protocols used so far aimed at demonstrating that the simple
model reproduces the suggested mechanisms of plasticity in PCs. To simulate the
bidirectional plasticity at the PF-PC synapse and examine what may underlie the
process observed by Van Woerden et al (2009), the F-actin binding was then incor-
porated into the model.
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Figure 7.3: Plasticity at PF-PC synapses in response to constant calcium
stimulation. The figure illustrates average concentrations of the compounds in
Figure 7.2D as a function of constant calcium concentrations over a 300 s run. A.
Average concentration levels of PP2Bac (red) surpass the CaMKIIac levels (blue)
for low constant calcium concentrations, resulting in LTP induction, whereas the
opposite case occurs for high calcium concentrations in which LTD is generated.
B. The same mechanism is observed for average concentrations of unphosphory-
lated and phosphorylated AMPA receptors: AMPAR (red) and AMPARP (blue),
respectively.
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Figure 7.4: Plasticity at PF-PC synapses in response to constant calcium
stimulation. Plasticity induction at this synapse is also observed while plotting
the temporal evolution of the substances in Figure 7.3: unphosphorylated and phos-
phorylated AMPA receptors (top, red and blue), CaMKIIac and PP2Bac (bottom,
blue and red). A low constant calcium concentration evokes LTP (A, 1.8 µM), while
a high calcium concentration leads to LTD (B, 10 µM).
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Figure 7.5: Pulsed calcium stimulation for cerebellar PF-PC synapses.
Calcium influx rates (top, γ(t) in Equation E.1) are used as input to the model
developed in this chapter to generate the desired output of calcium spikes (bottom,
[Ca] in Equation E.1). These match experimental data in [Wang 2000, Kuroda 2001]
(dashed) which represent stimulations of PF alone (A, pulse amplitude of 1.8 µM)
and paired PF and CF (B, pulse amplitude of 10 µM). Both calcium stimulations
are applied at 1 Hz for 300 s.
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Figure 7.6: Plasticity at PF-PC synapses in response to pulsed calcium
stimulation. The figure shows average concentrations of the substances in Fig-
ure 7.2D in response to different stimulations of pulsed calcium over 300 s. A.
Concentration levels of PP2Bac (red) exceed the CaMKIIac levels (blue) for low
concentrations of oscillatory calcium, generating LTP, whereas the opposite case is
observed for high calcium concentrations in which LTD is induced. B. The same
mechanism occurs for respective concentrations of unphosphorylated and phospho-
rylated AMPA receptors: AMPAR (red) and AMPARP (blue).
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Figure 7.7: Plasticity at PF-PC synapses in response to pulsed calcium
stimulation. Time-evolution of unphosphorylated and phosphorylated AMPA re-
ceptors (top, red and blue), CaMKIIac and PP2Bac (bottom, blue and red) in re-
sponse to A. a low calcium concentration from the PF input alone (Figure 7.5A),
and B. a high calcium concentration as a result of the paired PF and CF stimulation
(Figure 7.5B).
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7.5 Bidirectional Plasticity in Purkinje Cells

7.5.1 Replication of the Study by Van Woerden and Collaborators

To replicate the experimental findings in [van Woerden 2009], I simulate the AMPA
receptor phosphorylation for wild-type and Camk2b knockout mice conditions. The
F-actin binding to CaMKII was included to model the wild-type mice that con-
tain both α and β kinase isoforms, while for the Camk2b knockout mice that lack
βCaMKII the F-actin binding was omitted. Moreover, because the cerebellum con-
tains four times as much βCaMKII as αCaMKII [Fink 2002], the total CaMKII
concentration for the Camk2b knockout mice is five times lower.

The simple bidirectional plasticity model presented here replicates the experi-
mental observations in [van Woerden 2009], suggesting that the binding of F-actin to
βCaMKII may indeed contribute to the control of bidirectional plasticity at PF-PC
synapses (Figures 7.8, 7.9 and 7.10).

The model predicts that the sign reversal of synaptic plasticity is based on a
combination of three mechanisms operating at different calcium concentrations. At
the low calcium concentrations that result from PF input alone, the loss of F-actin
binding in the knockout mice leads to increased availability of active CaMKII com-
pared to the wild-type mice, and to induction of LTD rather than LTP (Figure 7.8A).
At the high calcium concentrations that are triggered by paired PF and CF input,
the reduced CaMKII concentration in the knockout mice favours the dephosphory-
lation of AMPA receptors by PP2B, and the induction of LTP instead of LTD. This
effect is exacerbated by the increased availability of Ca4CaM that results from the
decreased CaMKII levels, which further increases the activation of PP2B.

To reproduce the results in [van Woerden 2009], it was necessary to adjust a few
rate constants previously adopted for the plasticity induction in response to pulsed
calcium stimulation (Section 7.4.2): a higher CaMKII total concentration, more
realistic kinetic constants for the phosphorylation and dephosphorylation of AMPA
receptors, a faster Ca4CaM formation, and a slower PP2B activation (Table E.3).

The next section gives simulation results of bidirectional plasticity with param-
eter values suggested by the authors of Van Woerden et al (2009).
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Figure 7.8: Bidirectional plasticity at PF-PC synapses: replication of the
experimental findings in [van Woerden 2009]. This figure reproduces the
experimental observations illustrated in Figure 7.1 [van Woerden 2009]. Low calcium
concentrations that induce LTP in wild-type mice (solid) lead to LTD in Camk2b
knockout mice (dashed), and vice versa. In the model, the F-actin binding to
CaMKII occurs in wild-type mice, whereas knockout mice that lack βCaMKII do not
bind to F-actin. A. Average concentrations of CaMKIIac (blue) and PP2Bac (red) as
a function of average concentrations of pulsed calcium. B. Average concentrations of
unphosphorylated and phosphorylated AMPA receptors (red and blue, respectively)
in response to the same stimulation protocols.
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Figure 7.9: Bidirectional plasticity at PF-PC synapses: replication of the
experimental findings in [van Woerden 2009]. The mechanisms of bidirec-
tional plasticity at this synapse are also observed while plotting the temporal evo-
lution of unphosphorylated and phosphorylated AMPA receptors (red and blue,
respectively) for wild-type and Camk2b knockout mice (solid and dashed, respec-
tively) in response to a low calcium concentration from the PF input alone (A), and
a high calcium concentration as a result of the paired PF and CF stimulation (B).

7.5.2 Parameter Values Based on Experimental Observations

Following suggestions from experimentalists of the Erasmus Medical Center Rotter-
dam, who are co-authors of [van Woerden 2009], new values for a few parameters
used in the bidirectional plasticity model were included in the model (Table E.4).
Although the cerebellum comprises four times as much βCaMKII as αCaMKII
[Fink 2002], the actual α:β CaMKII ratio is 1:1 in PCs [Hansel 2006, van Wo-
erden 2009]. Therefore, the CaMKII concentration for Camk2b knockout mice is
now half the kinase concentration for wild-type mice, which was reduced as in [Lis-
man 2002]. Observations by [Brocke 1999] suggest that CaMKII isoforms have differ-
ent affinities for Ca4CaM, which is reflected in the new parameter values: βCaMKII
has a greater affinity (0.02 µM) for Ca4CaM than αCaMKII (0.04 µM). Moreover,
the basal calcium concentration was reduced from 0.1 µM to 0.045 µM, based on
observations described in [Airaksinen 1997, Schmidt 2003, Antunes 2012].

The experimentalists also pointed out that the calcium concentration levels trig-
gered by PF input alone and PF + CF used in the model were higher than those
observed by [Canepari 2008]. Thus, the maximum peak of calcium concentration in
result to coincident PF and CF stimulation is now 1.8 µM [Canepari 2008] rather
than 10 µM [Wang 2000], whereas PF input alone triggers a maximal calcium con-



7.5. Bidirectional Plasticity in Purkinje Cells 91

Figure 7.10: Bidirectional plasticity at PF-PC synapses: replication of the
experimental findings in [van Woerden 2009]. Time-evolution of CaMKIIac

(blue) and PP2Bac (red) in wild-type mice (top, solid) and Camk2b knockout mice
(bottom, dashed) in response to low calcium concentrations as a result of the PF
input alone (A), and high calcium concentrations from the coincident PF and CF
stimulation (B).

centration of 0.18 µM [Canepari 2008] instead of 1.8 µM [Wang 2000].
Simulations obtained with the simple model also replicate the experiments in

[van Woerden 2009] when using new parameter values suggested by the authors of
this paper (Figures 7.11, 7.12 and 7.13). As the new calcium concentration values are
much lower than those reported in [Wang 2000], here Ca4CaM formation is 25,000
times faster than in previous simulations. A slightly slower PP2B inactivation and
the adjustment of a few parameters for F-actin dissociation from CaMKII were
also necessary to simulate the bidirectional plasticity as in [van Woerden 2009]
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(Table E.4).

Figure 7.11: Adoption of new experimental data still replicates the results
in [van Woerden 2009]: lower calcium stimulation. New values for a few
parameters used to obtain the results in Figures 7.8, 7.9 and 7.10 were adopted here,
following suggestions from the authors of [van Woerden 2009] (Table E.4). These
include the adoption of lower amplitudes of calcium pulses that represent the PF
input alone and the coincident PF and CF activation. A. Average concentrations
of CaMKIIac (blue) and PP2Bac (red) as a function of average concentrations of
pulsed calcium in wild-type mice (solid) and in Camk2b knockout mice (dashed). B.
Average concentrations of unphosphorylated and phosphorylated AMPA receptors
(red and blue, respectively) as a function of average concentrations of oscillatory
calcium.
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Figure 7.12: Adoption of new experimental data still replicates the results
in [van Woerden 2009]: lower calcium stimulation. Temporal evolution of
unphosphorylated and phosphorylated AMPA receptors (red and blue, respectively)
in wild-type and Camk2b knockout mice (solid and dashed, respectively) in response
to lower calcium concentrations from the PF input alone (A, pulse amplitude of 0.18
µM) and the paired PF and CF stimulation (B, pulse amplitude of 1.8 µM).
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Figure 7.13: Adoption of new experimental data still replicates the re-
sults in [van Woerden 2009]: lower calcium stimulation. Time-evolution
of CaMKIIac (blue) and PP2Bac (red) in wild-type mice (top, solid) and Camk2b
knockout mice (bottom, dashed) in response to lower calcium concentrations from
the PF input alone (A, pulse amplitude of 0.18 µM) and the paired PF and CF
stimulation (B, pulse amplitude of 1.8 µM).

Although the new simulations reproduce the results in [van Woerden 2009],
a much greater rate for Ca4CaM formation and very low calcium concentrations
may not represent real biological scenarios. For that reason, I readopt the original
Ca4CaM formation rate and the previous calcium concentrations as in Figure 7.5
(Table E.3). The adoption of these values still produces similar results as in [van
Woerden 2009] (Figures 7.14, 7.15 and 7.16).
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Figure 7.14: Adoption of new experimental data still replicates the re-
sults in [van Woerden 2009]: original calcium stimulation. The original
calcium concentrations used in Figures 7.5-7.10 were readopted here. The figure
demonstrates that the model again simulates the bidirectional plasticity at PF-PC
synapses for higher calcium concentrations, while adopting the suggested experimen-
tal data in Table E.4. A. Average concentrations of CaMKIIac (blue) and PP2Bac

(red) as a function of average concentrations of pulsed calcium in wild-type mice
(solid) and in Camk2b knockout mice (dashed). B. Average concentrations of un-
phosphorylated and phosphorylated AMPA receptors (red and blue, respectively)
as a function of average concentrations of oscillatory calcium.
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Figure 7.15: Adoption of new experimental data still replicates the results
in [van Woerden 2009]: original calcium stimulation. Temporal evolution of
unphosphorylated and phosphorylated AMPA receptors (red and blue, respectively)
in wild-type and Camk2b knockout mice (solid and dashed, respectively) in response
to low calcium concentrations from the PF input alone (A, pulse amplitude of
1.8 µM), and high calcium concentrations as a result of the paired PF and CF
stimulation (B, pulse amplitude of 10 µM).

In the kinetic simulation developed here, CaM directly binds to four calcium
ions in a single reaction, resulting in Ca4CaM. However, the kinetics of calcium-
induced CaM activation has not been resolved yet. The following section tests
whether the bidirectional plasticity occurs at PF-PC synapses while modelling the
CaM activation in two steps rather than one.

7.5.3 Two-step Calcium-calmodulin Binding

The bidirectional plasticity model was modified here to simulate the CaM binding
to four calcium ions as follows: first two calcium ions bind to apo-CaM and form
the Ca2CaM complex, and then the complete saturation of CaM with two more
calcium ions results in Ca4CaM (Figure 7.17). Due to these modifications, apo-CaM
and Ca2CaM may bind to Wi and form the respective Wb0 (CaM-bound CaMKII
without any calcium ion bound) and Wb2 (Ca2CaM-bound CaMKII), or to WiAc

and result in Wb0Ac (Ac- and CaM-bound CaMKII without any calcium ion bound)
and Wb2Ac (Ac- and Ca2CaM-bound CaMKII), respectively. Wb0 and Wb2 then
recruit two additional calcium ions to, respectively, form Wb2 and Wb (Ca4CaM-
bound CaMKII), whereas Wb0Ac and Wb2Ac can also bind to two calcium ions and
result in Wb2Ac and WbAc (Ac- and Ca4CaM-bound CaMKII), respectively. The
new Wb0 and Wb2 states may bind to Ac and switch to Wb0Ac and Wb2Ac.
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Figure 7.16: Adoption of new experimental data still replicates the re-
sults in [van Woerden 2009]: original calcium stimulation. Time-evolution
of CaMKIIac (blue) and PP2Bac (red) in wild-type mice (top, solid) and Camk2b
knockout mice (bottom, dashed) in response to low calcium concentrations from the
PF input alone (A, pulse amplitude of 1.8 µM), and high calcium concentrations as
a result of the paired PF and CF stimulation (B, pulse amplitude of 10 µM).

The new bidirectional plasticity model also replicates the results in [van Woer-
den 2009], while modelling the CaM activation by calcium in two steps instead of
one (Figures 7.18, 7.19 and 7.20). The mathematical alterations of the model due to
the new CaM binding modelling are described in Section E.2. Because new reactions
have been added to the model, kinetic parameters were created. Their values were
either assumed or calculated according to Hess’s law presented in Section 4.1.3.2
(Table E.5).
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Figure 7.17: Model of bidirectional plasticity including a two-step Ca4CaM

binding at PF-PC synapses. The bidirectional plasticity model illustrated in
Figure 7.2 was modified here to account for a two-step Ca4CaM binding. Therefore,
this figure substitutes Figures 7.2A and 7.2B. Ca4CaM is formed in two steps: first
two calcium ions (2 Ca2+) bind to apo-CaM resulting in the Ca2CaM complex, and
then 2 Ca2+ bind to Ca2CaM and complete the saturation of CaM. Due to these
modifications, Wi and WiAc can also bind to (i) apo-CaM and form the respective
Wb0 and Wb0Ac, or (ii) Ca2CaM and form Wb2 and Wb2Ac, respectively. As a result
of the two-step Ca4CaM binding, here activation of CaMKII by Ca4CaM also occurs
in two phases: Wb0 and Wb0Ac can bind to two calcium ions and form, respectively,
Wb2 and Wb2Ac, which may again bind to 2 Ca2+ and activate CaMKII, forming
the respective Wb and WbAc. The kinetic constants of the new model are described
in Table E.5.
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Figure 7.18: Modelling a two-step Ca4CaM binding still replicates the re-
sults in [van Woerden 2009]. The bidirectional plasticity model was modified to
simulate the Ca4CaM formation in two steps as illustrated in Figure 7.17. A. Aver-
age concentrations of CaMKIIac (blue) and PP2Bac (red) as a function of average
concentrations of pulsed calcium in wild-type mice (solid) and in Camk2b knockout
mice (dashed). B. Average concentrations of unphosphorylated and phosphorylated
AMPA receptors (red and blue, respectively) as a function of average concentrations
of oscillatory calcium.
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Figure 7.19: Modelling a two-step Ca4CaM binding still replicates the re-
sults in [van Woerden 2009]. Temporal evolution of unphosphorylated and phos-
phorylated AMPA receptors (red and blue, respectively) in wild-type and Camk2b
knockout mice (solid and dashed, respectively) in response to low calcium concen-
trations from the PF input alone (A, pulse amplitude of 1.8 µM), and high calcium
concentrations as a result of the paired PF and CF stimulation (B, pulse amplitude
of 10 µM).
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Figure 7.20: Modelling a two-step Ca4CaM binding still replicates the
results in [van Woerden 2009]. Time-evolution of CaMKIIac (blue) and PP2Bac

(red) in wild-type mice (top, solid) and Camk2b knockout mice (bottom, dashed) in
response to low calcium concentrations from the PF input alone (A, pulse amplitude
of 1.8 µM) and high calcium concentrations as a result of the paired PF and CF
stimulation (B, pulse amplitude of 10 µM).
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7.6 Chapter Conclusions

Long-term plasticity at PF-PC synapses is thought to mediate cerebellar motor
learning. PF LTD can be induced by the paired activity of the PF and CF inputs to
PCs, and PF LTP induction requires the PF activity alone. However, the β isoform
of CaMKII was recently demonstrated to regulate the bidirectional inversion of PF-
PC plasticity [van Woerden 2009]. Because the cellular events that underlie these
experimental findings are still poorly understood, this chapter aimed at unravelling
how βCaMKII controls the direction of plasticity at PF-PC synapses.

Belmeguenai and Hansel (2005) suggested that a kinase/phosphatase switch reg-
ulates the bidirectional plasticity in the cerebellum, and also showed that PP2B is
involved in plasticity induction at PF-PC synapses [Belmeguenai 2005]. Moreover,
it is known that LTD and LTP are mediated by AMPA receptor phosphorylation
[Lee 2000, Kuroda 2001]. For those reasons, I proposed a simple model of phospho-
rylation and dephosphorylation of AMPA receptors by CaMKII and PP2B to inves-
tigate the experiments in [van Woerden 2009]. In the model, the F-actin binding was
included to simulate wild-type mice that contain the α and β isoforms of CaMKII,
and it was omitted in Camk2b knockout mice conditions that lack βCaMKII. This
mechanism was implemented here because only βCaMKII is responsible for targeting
the kinase to F-actin in neuronal cells [Shen 1998].

The bidirectional plasticity model presented in this chapter replicates the exper-
imental observations in [van Woerden 2009]. For the first time, simulation results
obtained from this model indicate the mechanisms that underlie the bidirectional
inversion of cerebellar plasticity. As suggested by Van Woerden et al (2009), the
F-actin binding indeed enables βCaMKII to regulate the bidirectional plasticity at
PF-PC synapses. At low calcium concentrations that evoke LTP in wild-type mice,
the induction of LTD in knockout mice is only possible due to the loss of F-actin
that leads to the precocious activation of CaMKII even in low-calcium conditions.
In contrast, different mechanisms are responsible for the induction of LTP at higher
concentrations of calcium: the loss of βCaMKII in Camk2b knockout mice causes a
significant reduction in the total concentration of CaMKII. This phenomenon con-
tributes to a higher availability of Ca4CaM for PP2B activation which, in turn, leads
to LTP induction rather than LTD.

I also explored the bidirectional plasticity model developed here. This model was
found to replicate the experimental observations in [van Woerden 2009] in response
to different scenarios such as the adoption of parameter values suggested by the
authors of [van Woerden 2009], and a two-step modelling of the Ca4CaM binding.
All simulation results demonstrated here reproduce the bidirectional inversion of
PF-PC plasticity as in [van Woerden 2009]. These observations suggest that the
model is relatively robust.
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Although there are many models for PF LTD induction, none of these was set
up to investigate the induction of LTP at PF-PC synapses. Indeed, the CaMKII
pathway has, so far, not been included in the signalling cascades of existing PF-PC
plasticity models. Therefore, this thesis presents the first model for induction of
LTD and LTP at PF-PC synapses in which CaMKII plays a prominent role.
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The aim of this thesis was to contribute to a better understanding of the molecu-
lar mechanisms that regulate the induction of synaptic plasticity in cerebellar

Purkinje cells (PCs). The focus of the thesis was to investigate the role of the β
isoform of calcium-calmodulin dependent protein kinase II (CaMKII) in the bidirec-
tional modulation of plasticity induction at parallel fibre (PF)-PC synapses. The
following four questions were addressed:

1. What are the mechanisms that determine the sensitivity of CaMKII to the
frequency of calcium oscillations?

2. Does CaMKII decode the frequency of calcium oscillations?

3. How does the network of intracellular signalling molecules in cerebellar PCs
implement the induction of long-term depression (LTD) and potentiation (LTP)
at the PF-PC synapse?

4. In particular, how do different isoforms of CaMKII contribute to the bidirec-
tional modulation of synaptic plasticity at this synapse?

To address these questions, computational models were constructed to simulate
the CaMKII activation by calcium-calmodulin and the signalling network that me-
diates the plasticity induction at PF-PC synapses. Results of the computer simula-
tions led to several contributions to knowledge in neuroscience that are summarised
in the following section.
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8.1 Main Contributions

The main contributions of this thesis to neuroscience are:

• CaMKII is not sensitive to the actual frequency of calcium-calmodulin
oscillations. Simulations with a simplified version of the CaMKII activa-
tion model proposed in [Dupont 2003] demonstrated that CaMKII does not
depend on the frequency of calcium-calmodulin pulses as stated in [De Kon-
inck 1998, Dupont 2003].

• The average calcium-calmodulin concentration determines the sen-
sitivity of CaMKII to the frequency of calcium-calmodulin oscilla-
tions. The application of calcium-calmodulin pulses with the same average
concentration produces identical levels of phosphorylated CaMKII at varying
frequencies. Therefore, the CaMKII phosphorylation is determined by the
average concentration of calcium-calmodulin in the system, and not by its
oscillation frequency.

• Oscillatory applications of calcium-calmodulin are not required. The
same level of CaMKII phosphorylation is obtained in response to pulsed and
constant applications of calcium-calmodulin with identical average concentra-
tions. This indicates that the idea of CaMKII as a “decoder” of the calcium
oscillation frequency is misleading [De Koninck 1998, Dupont 2003]. This
thesis suggests new experimental tests with rescaled amplitudes of calcium-
calmodulin pulses keeping the same mean concentration.

• Proposing the first dynamic model of LTD and LTP at PF-PC
synapses that includes CaMKII. Existing theoretical studies of plasticity
at these synapses have only focused on LTD induction. Moreover, CaMKII
was never included in the signalling network proposed by these kinetic models.
This thesis presents the first model of phosphorylation and dephosphorylation
of AMPA receptors by CaMKII and protein phosphatase 2B (PP2B) that
simulates the induction of LTD and LTP at the PF-PC synapse.

• A CaMKII/PP2B switch mechanism underlies plasticity induction
at PF-PC synapses. The results of computer simulations of a simple math-
ematical model suggest that the balance of CaMKII-mediated phosphoryla-
tion and PP2B-mediated dephosphorylation of AMPA receptors determines
whether LTD or LTP occurs at the PF-PC synapse. PF activity alone evokes
PP2B concentration levels higher than CaMKII, leading to LTP induction.
Instead, LTD occurs when the CaMKII concentration levels surpass the PP2B
concentration in response to the paired activation of PF and climbing fibre
(CF).
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• Filamentous actin binding enables βCaMKII to regulate bidirec-
tional plasticity at PF-PC synapses. The binding of filamentous actin
(F-actin) to CaMKII was included into the model of AMPA receptor phospho-
rylation to simulate the induction of plasticity in wild-type mice, whereas in
the knockout mice that lack βCaMKII, the F-actin binding was omitted. Sim-
ulation results replicate the experimental observations in [van Woerden 2009]
and unravel how the βCaMKII isoform can control the sign reversal of plastic-
ity at PF-PC synapses. This thesis demonstrates that the binding of F-actin
to βCaMKII can indeed contribute to the control of bidirectional plasticity at
these synapses, as suggested in [van Woerden 2009].

The computational model of intracellular signalling constructed in this thesis
advances the understanding of the mechanisms of synaptic plasticity induction in
the cerebellum. This simple model is a significant tool for future research by the
scientific community.

8.2 Future Research

The following ideas are suggested as extensions to the study presented in this thesis:

• Implementation of a more biologically realistic bidirectional plas-
ticity model at PF-PC synapses. The computer simulations that were
described in this thesis predicted the underlying mechanisms regulating the
bidirectional plasticity at these synapses. However, the biological realism
of the simple bidirectional plasticity model can be incrementally extended
by adding components of the existing model reimplemented in Chapter 5
[Kuroda 2001]. The comparison of results obtained from the simple bidirec-
tional plasticity model with a more complex one should indicate the indirect
contribution of other substances to regulating the sign reversal of plasticity at
PF-PC synapses.
Previous models of cerebellar LTD have measured synaptic plasticity by quan-
tifying the concentration of phosphorylated AMPA receptors [Kuroda 2001,
Tanaka 2007]. Indeed, this is the case for the simple dynamic model proposed
in this thesis. However, Antunes and De Schutter have recently suggested that
the extent of synaptic depression should be measured as a reduction in the
number of synaptic AMPA receptors, rather than the concentration of phos-
phorylated receptors [Antunes 2012]. Thus, a next step of this research should
be the inclusion of the AMPA receptor trafficking modelled by Antunes and
De Schutter into the more complex model of plasticity induction at PF-PC
synapses. Moreover, several concentrations of compounds and rate kinetic con-
stants of biochemical reactions are free parameters in computational models
due to the lack of experimental data in the literature. Additional experiments
on PCs are necessary to provide realistic parameter values and to test the
computational model at the PF-PC synapse. Experimental data will lead to
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an incremental improvement of the computational model, which in turn may
suggest new experiments that need to be conducted.

• Study of the involvement of calcium and CaMKII in the tempo-
ral integration of PF and CF inputs to PCs. Synaptic plasticity in
PCs is strongly dependent on the timing of PF and CF inputs to these cells
[Kuroda 2001, van Woerden 2009]. The order as well as the timing of the PF
and CF stimuli have been thought to play a significant role in the activation of
protein kinase C (PKC) [Kotaleski 2002]. It is important to investigate the un-
derlying mechanisms of the temporal requirements of PF and CF stimulation
for the activation of CaMKII at the PF-PC synapse.

• Study of the effects of diffusion and stochasticity in subcellular re-
gions at the PF-PC synapse. Most studies of intracellular signalling
are based on the assumption that molecular concentrations are continuous.
This type of analysis leads to deterministic solutions of systems of differ-
ential equations that describe mass-action kinetics. However, it is known
that many signalling cascades involve very small numbers of molecules, and
they should therefore be analysed using stochastic calculations [Bhalla 2004a,
Bhalla 2004b, Rao 2002]. As a complement to the deterministic model of the
PF-PC synapse, a stochastic model of bidirectional plasticity at this synapse,
which accounts for spatial aspects of cellular signalling, should be developed.
Results obtained from both deterministic and stochastic computational models
should then be compared.

8.3 Publications and Conferences

In addition to this thesis, I have made scientific contributions to the discipline
during the three years of my PhD. Seven international conferences were attended,
at which two full conference papers and four abstracts were published. Two other
abstracts were also accepted for publication at an international conference in July
2013. The work presented in this thesis was awarded with merit-based grants,
and presented in contributed talks at two of these conferences and invited talks to
prestigious research groups such as the Erasmus Medical Center Rotterdam whose
experimentalists are co-authors in [van Woerden 2009]. One peer-reviewed journal
paper is under review by the Journal of Theoretical Biology, and another journal
paper about the work presented in Chapter 6 is nearly ready for submission to PLoS
Computational Biology. The details of these contributions are listed below.

As a result of the work presented in Chapter 6, the following papers were pub-
lished:

• TM Pinto, MJ Schilstra and V Steuber. The Effective Calcium/calmodulin
Concentration Determines the Sensitivity of CaMKII to the Frequency of Cal-
cium Oscillations. Lecture Notes in Computer Science, vol. 7223, pages 131-
135, 2012 (Appendix F). This full conference paper was presented orally at
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the Ninth International Conference on Information Processing in Cells and
Tissues (IPCAT 2012) in Cambridge, UK.

• TM Pinto, MJ Schilstra and V Steuber. CaMKII activation by Ca4-CaM does
not depend on the actual frequency of oscillatory Ca2+ signals. FENS Forum
Abstr, vol. 75.29, 2012 (Appendix G). This abstract was presented as a poster
at the Eighth FENS Forum of Neuroscience (FENS Forum 2012) in Barcelona,
Spain.

• TM Pinto, MJ Schilstra and V Steuber. Does CaMKII decode Ca2+ oscil-
lations? BMC Neuroscience, vol. 13, O15, 2012 (Appendix H). This is also
an abstract presented orally at the Twentieth First Annual Computational
Neuroscience Meeting (CNS 2012) in Atlanta/Decatur, USA. This work was
awarded with travel grants.

• TM Pinto, MJ Schilstra and V Steuber. The Average Calcium-calmodulin
Concentration Regulates the CaMKII Dependence on the Frequency of Calcium-
calmodulin Oscillations. This peer-reviewed journal paper is nearly ready for
submission to PLoS Computational Biology.

The following papers summarise some of the results presented in Chapter 7:

• TM Pinto, MJ Schilstra and V Steuber. Modelling the role of βCaMKII in
regulating bidirectional plasticity at parallel fibre-Purkinje cell synapses. Fron-
tiers in Computational Neuroscience, vol. 6, page 188, 2012 (Appendix I).
This abstract was presented as a poster at the Bernstein Conference on Com-
putational Neuroscience (BCCN 2012) in Munich, Germany. This conference
was held consecutively with INCF Neuroinformatics 2012.

• TM Pinto, MJ Schilstra and V Steuber. Filamentous actin binding enables
βCaMKII to regulate bidirectional plasticity in cerebellar Purkinje cells. BMC
Neuroscience, 2013 (Appendix J). This abstract was accepted for publication
in BMC Neuroscience and will be presented as a poster at the Twentieth
Second Annual Computational Neuroscience Meeting (CNS 2013) in Paris,
France.

The following publications were written during my PhD, however, these present
results obtained from extensions to my Masters study. Although these papers are the
outcome of my Masters rather than my PhD project, they portray my contribution
to knowledge as an academic researcher:

• TM Pinto, RS Wedemann and CM Cortez. A Comparison of the Electric Po-
tential through the Membranes of Ganglion Neurons and Neuroblastoma Cells.
Lecture Notes in Computer Science, vol. 6792, pages 103-110, 2011 (Ap-
pendix K). This full conference paper was presented as a poster at the Twen-
tieth First International Conference on Artificial Neural Networks (ICANN
2011) in Helsinki, Finland.
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• TM Pinto, RS Wedemann and CM Cortez. Computational modeling of the
electric potential in biological membrane. A comparison between healthy and
cancerous neurons. BMC Neuroscience, vol. 12, P47, 2011 (Appendix L).
Abstract presented as a poster at the Twentieth Annual Computational Neu-
roscience Meeting (CNS 2011) in Stockholm, Sweden.

• TM Pinto, RS Wedemann and CM Cortez. The behavior of the electric po-
tential across neuronal membranes of spinal ganglion and neuroblastoma cells.
BMC Neuroscience, 2013 (Appendix M). This abstract was accepted for pub-
lication in BMC Neuroscience and will also be presented as a poster at CNS
2013 in Paris, France.

• TM Pinto, RS Wedemann and CM Cortez. Modeling the electric potential
across neuronal membranes: The effect of fixed charges on spinal ganglion
neurons and neuroblastoma cells (Appendix N). This is a peer-reviewed journal
paper that is under review by the Journal of Theoretical Biology.
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Appendix A

Reimplementation of
Kuroda Model

A.1 Biochemical Reactions

A.1.1 mGluR/Gq/PLC Pathway

mGluR + Gαβγ

kf1−−⇀↽−−
kb1

mGluR_Gq (A.1)

mGluR_Gq + Glu
kf2−−⇀↽−−
kb2

Glu_mGluR_Gq (A.2)

Glu_mGluR_Gq

kf3−−→ Glu_mGluR + Gβγ + GTP_Gα (A.3)

Glu_mGluR
kf4−−→ mGluR + Gludec (A.4)

GTP_Gα

kf5−−→ GDP_Gα (A.5)

GTP_Gα + PLC
kf6−−⇀↽−−
kb6

GTP_Gα_PLC (A.6)

GTP_Gα_PLC
kf7−−→ GDP_Gα + PLC (A.7)

GTP_Gα_PLC + PIP2

kf8−−⇀↽−−
kb8

GTP_Gα_PLC_PIP2

kcat8−−−→ GTP_Gα_PLC + IP3 + DAG (A.8)

IP3

kf9−−→ IP3dec
(A.9)

3 IP3 + IP3R
kf10−−→ IP3_IP3R (A.10)

IP3_IP3R
kf11−−→ IP3_IP3Rdec (A.11)

DAG
kf12−−→ DAGdec (A.12)

GDP_Gα + Gβγ

kf13−−→ Gαβγ (A.13)
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A.1.2 PLA2 Pathway

PLA2 + Ca
kf14−−−⇀↽−−−
kb14

PLA2_Ca (A.14)

PLA2_Ca + APC
kf15−−−⇀↽−−−
kb15

PLA2_Ca_APC
kcat15−−−−→ PLA2_Ca + AA (A.15)

PLA2_Ca + DAG
kf16−−−⇀↽−−−
kb16

PLA2_Ca_DAG (A.16)

PLA2_Ca_DAG + APC
kf17−−−⇀↽−−−
kb17

PLA2_Ca_DAG_APC

kcat17−−−−→ PLA2_Ca_DAG + AA (A.17)

PLA2 + PIP2

kf18−−−⇀↽−−−
kb18

PLA2_PIP2 (A.18)

PLA2_PIP2 + APC
kf19−−−⇀↽−−−
kb19

PLA2_PIP2_APC
kcat19−−−−→ PLA2_PIP2 + AA (A.19)

AA
kf20−−→ APC (A.20)

PIP2 + PLA2_Ca
kf21−−−⇀↽−−−
kb21

PLA2_Ca_PIP2 (A.21)

PLA2_Ca_PIP2 + APC
kf22−−−⇀↽−−−
kb22

PLA2_Ca_PIP2_APC

kcat22−−−−→ PLA2_Ca_PIP2 + AA (A.22)

MAPK_PP + PLA2

kf23−−−⇀↽−−−
kb23

MAPK_PP_PLA2

kcat23−−−−→ MAPK_PP + PLA2_P (A.23)

PLA2_P
kf24−−→ PLA2 (A.24)

2 PLA2_P + APC
kf25−−−⇀↽−−−
kb25

PLA2_P_APC
kcat25−−−−→ PLA2_P + AA (A.25)
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A.1.3 PKC Pathway

PKC + Ca
kf26−−−⇀↽−−−
kb26

PKC_Ca (A.26)

PKC_Ca + DAG
kf27−−−⇀↽−−−
kb27

PKC_Ca_DAG (A.27)

PKC + DAG
kf28−−−⇀↽−−−
kb28

PKC_DAG (A.28)

PKC_DAG + AA
kf29−−−⇀↽−−−
kb29

PKC_DAG_AA (A.29)

PKC + AA
kf30−−−⇀↽−−−
kb30

PKC_AA (A.30)

PKC_Ca + AA
kf31−−−⇀↽−−−
kb31

PKC_Ca_AA (A.31)

PKC_Ca
kf32−−→ PKC_Ca_mem (A.32)

PKC_Ca_DAG
kf33−−→ PKC_Ca_DAG_mem (A.33)

PKC_DAG
kf34−−→ PKC_DAG_mem (A.34)

PKC_DAG_AA
kf35−−→ PKC_DAG_AA_mem (A.35)

PKC_Ca_mem + PKC_Ca_DAG_mem + PKC_DAG_mem +

PKC_DAG_AA_mem + PKC_AA + PKC_Ca_AA +

PKCactive

kf36−−→ PKCactivedec
(A.36)

A.1.4 NO/cGMP Pathway

NO + GC
kf37−−−⇀↽−−−
kb37

NO_GC (A.37)

NO_GC
kf38−−→ NOdec + GC (A.38)

NO_GC + GTP
kf39−−−⇀↽−−−
kb39

NO_GC_GTP
kcat39−−−−→ NO_GC + cGMP (A.39)

PDE + cGMP
kf40−−−⇀↽−−−
kb40

PDE_cGMP
kcat40−−−−→ PDE + 5′GMP (A.40)

cGMP + PKG
kf41−−−⇀↽−−−
kb41

cGMP_PKG (A.41)
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Gsub + cGMP_PKG
kf42−−−⇀↽−−−
kb42

Gsub_cGMP_PKG

kcat42−−−−→ cGMP_PKG + Gsub_P (A.42)

Gsub_P
kf43−−→ Gsub (A.43)

PP2A + Gsub_P
kf44−−−⇀↽−−−
kb44

PP2A_Gsub_P (A.44)

A.1.5 AMPA Receptor and PKC

PKCactive + AMPAR
kf45−−−⇀↽−−−
kb45

PKCactive_AMPAR

kcat45−−−−→ PKCactive + AMPAR_P (A.45)

PP2A + AMPAR_P
kf46−−−⇀↽−−−
kb46

PP2A_AMPAR_P
kcat46−−−−→ PP2A + AMPAR (A.46)

PKCactive + Raf
kf47−−−⇀↽−−−
kb47

PKCactive_Raf
kcat47−−−−→ PKCactive + Raf_P (A.47)

A.1.6 CRHR Pathway

CRHR + CRF
kf48−−−⇀↽−−−
kb48

CRHR_CRF (A.48)

CRHR_CRF
kf49−−→ CRFdec + CRHR (A.49)

CRHR_CRF + Raf
kf50−−−⇀↽−−−
kb50

CRHR_CRF_Raf

kcat50−−−→ CRHR_CRF + Raf_P (A.50)

A.1.7 Lyn Pathway

Lynactive + Raf
kf51−−−⇀↽−−−
kb51

Lynactive_Raf
kcat51−−−−→ Lynactive + Raf_P (A.51)

Lynactive

kf52−−→ Lynactivedec
(A.52)
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A.1.8 Raf/MEK/MAPK Pathway

PP2A + Raf_P
kf53−−−⇀↽−−−
kb53

PP2A_Raf_P
kcat53−−−−→ PP2A + Raf (A.53)

Raf_P + MEK
kf54−−−⇀↽−−−
kb54

Raf_P_MEK
kcat54−−−−→ Raf_P + MEK_P (A.54)

Raf_P + MEK_P
kf55−−−⇀↽−−−
kb55

Raf_P_MEK_P
kcat55−−−−→ Raf_P + MEK_PP (A.55)

PP2A + MEK_PP
kf56−−−⇀↽−−−
kb56

PP2A_MEK_PP
kcat56−−−−→ PP2A + MEK_P (A.56)

PP2A + MEK_P
kf57−−−⇀↽−−−
kb57

PP2A_MEK_P
kcat57−−−−→ PP2A + MEK (A.57)

MEK_PP + MAPK
kf58−−−⇀↽−−−
kb58

MEK_PP_MAPK

kcat58−−−−→ MEK_PP + MAPK_P (A.58)

MEK_PP + MAPK_P
kf59−−−⇀↽−−−
kb59

MEK_PP_MAPK_P

kcat59−−−−→ MEK_PP + MAPK_PP (A.59)

MKP1 + MAPK_P
kf60−−−⇀↽−−−
kb60

MKP1_MAPK_P
kcat60−−−−→ MKP1 + MAPK (A.60)

MKP1 + MAPK_PP
kf61−−−⇀↽−−−
kb61

MKP1_MAPK_PP

kcat61−−−−→ MKP1 + MAPK_P (A.61)



126 Appendix A. Reimplementation of Kuroda Model

A.2 Ordinary Differential Equations

dNO_GC

dt
= kf37 ×GC×NO− kb37 ×NO_GC−

kf38 ×NO_GC− kf39 ×GTP×NO_GC +

(kb39 + kcat39)×NO_GC_GTP (A.62)

dGC

dt
= −kf37 ×GC×NO + kb37 ×NO_GC + kf38 ×NO_GC (A.63)

dNO_GC_GTP

dt
= kf39 ×GTP×NO_GC−

(kb39 + kcat39)×NO_GC_GTP (A.64)

dcGMP

dt
= kcat39 ×NO_GC_GTP− kf40 × PDE× cGMP +

kb40 × PDE_cGMP− kf41 × cGMP× PKG +

kb41 × cGMP_PKG (A.65)

dPDE

dt
= −kf40 × PDE× cGMP + (kb40 + kcat40)× PDE_cGMP (A.66)

dPDE_cGMP

dt
= kf40 × PDE× cGMP−

(kb40 + kcat40)× PDE_cGMP (A.67)

dcGMP_PKG

dt
= kf41 × cGMP× PKG− kb41 × cGMP_PKG−

kf42 ×G_Sub× cGMP_PKG +

(kb42 + kcat42)×Gsub_cGMP_PKG (A.68)

dPKG

dt
= −kf41 × cGMP× PKG + kb41 × cGMP_PKG (A.69)

dGsub_cGMP_PKG

dt
= kf42 ×G_Sub× cGMP_PKG−

(kb42 + kcat42)×Gsub_cGMP_PKG (A.70)

dGsub

dt
= −kf42 ×G_Sub× cGMP_PKG +

kb42 ×Gsub_cGMP_PKG + kf43 ×Gsub_P (A.71)
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dGsub_P

dt
= kcat42 ×Gsub_cGMP_PKG−

kf44 ×Gsub_P× PP2A +

kb44 × PP2A_Gsub_P− kf43 ×Gsub_P (A.72)

dPP2A_Gsub_P

dt
= kf44 ×Gsub_P× PP2A−

kb44 × PP2A_Gsub_P (A.73)

dPP2A

dt
= −kf44 ×Gsub_P× PP2A + kb44 × PP2A_Gsub_P−
−kf57 × PP2A×MEK_P + (kb57 + kcat57)× PP2A_MEK_P−
−kf53 × PP2A× Raf_P + (kb53 + kcat53)× PP2A_Raf_P−
−kf56 × PP2A×MEK_PP + (kb56 + kcat56)× PP2A_MEK_PP−
−kf46 × PP2A×AMPAR_P +

(kb46 + kcat46)× PP2A_AMPAR_P (A.74)

dCRHR

dt
= −kf48 × CRHR× CRF + kb48 × CRHR_CRF +

kf49 × CRHR_CRF (A.75)

dCRHR_CRF

dt
= kf48 × CRHR× CRF− kb48 × CRHR_CRF−

kf49 × CRHR_CRF− kf50 × CRHR_CRF× Raf +

(kb50 + kcat50)× CRHR_CRF_Raf (A.76)

dmGluR_Gq

dt
= −kf2 ×mGluR_Gq×Glu + kb2 ×Glu_mGluR_Gq +

kf1 ×mGluR×Gαβγ − kb1 ×mGluR_Gq (A.77)

dGlu_mGluR_Gq

dt
= kf2 ×mGluR_Gq×Glu− kb2 ×Glu_mGluR_Gq−

kf3 ×Glu_mGluR_Gq (A.78)

dmGluR

dt
= −kf1 ×mGluR×Gαβγ + kb1 ×mGluR_Gq +

kf4 ×Glu_mGluR (A.79)

dGαβγ

dt
= kf13 ×GDP_Gα ×Gβγ − kf1 ×mGluR×Gαβγ +

kb1 ×mGluR_Gq (A.80)
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dGlu_mGluR

dt
= −kf4 ×Glu_mGluR + kf3 ×Glu_mGluR_Gq (A.81)

dGβγ

dt
= −kf13 ×GDP_Gα ×Gβγ + kf3 ×Glu_mGluR_Gq (A.82)

dGDP_Gα

dt
= kf5 ×GTP_Gα − kf13 ×GDP_Gα ×Gβγ +

kf7 ×GTP_Gα_PLC (A.83)

dGTP_Gα

dt
= −kf5 ×GTP_Gα − kf6 ×GTP_Gα × PLC +

kb6 ×GTP_Gα_PLC + kf3 ×Glu_mGluR_Gq (A.84)

dPLC

dt
= −kf6 ×GTP_Gα × PLC + kb6 ×GTP_Gα_PLC +

kf7 ×GTP_Gα_PLC (A.85)

dGTP_Gα_PLC

dt
= kf6 ×GTP_Gα × PLC− kb6 ×GTP_Gα_PLC−

kf7 ×GTP_Gα_PLC− kf8 ×GTP_Gα_PLC× PIP2 +

(kb8 + kcat8)×GTP_Gα_PLC_PIP2 (A.86)

dGTP_Gα_PLC_PIP2

dt
= kf8 ×GTP_Gα_PLC× PIP2 −

(kb8 + kcat8)×GTP_Gα_PLC_PIP2 (A.87)

dIP3

dt
= kcat8 ×GTP_Gα_PLC_PIP2 −

kf9 × IP3 − kf10 × IP3
3 × IP3R (A.88)

dDAG

dt
= kcat8 ×GTP_Gα_PLC_PIP2 − kf12 ×DAG−

kf27 × PKC_Ca×DAG + kb27 × PKC_Ca_DAG−
kf28 × PKC×DAG + kb28 × PKC_DAG−
kf16 × PLA2_Ca×DAG + kb16 × PLA2_Ca_DAG (A.89)

dIP3R

dt
= −kf10 × IP3

3 × IP3R (A.90)

dIP3_IP3R

dt
= kf10 × IP3

3 × IP3R− kf11 × IP3_IP3R (A.91)
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dLynactive

dt
= −kf52 × Lynactive − kf51 × Lynactive × Raf +

(kb51 + kcat51)× Lynactive_Raf (A.92)

dRaf

dt
= −kf51 × Lynactive × Raf + kb51 × Lynactive_Raf −

kf47 × PKCactive × Raf + kb47 × PKCactive_Raf −
kf50 × CRHR_CRF× Raf + kb50 × CRHR_CRF_Raf +

kcat53 × PP2A_Raf_P (A.93)

dLynactive_Raf

dt
= kf51 × Lynactive × Raf −

(kb51 + kcat51)× Lynactive_Raf (A.94)

dRafP

dt
= (kcat51 × Lynactive_Raf + kcat47 × PKCactive_Raf +

kcat50 × CRHR_CRF_Raf − kf54 × Raf_P×MEK +

(kb54 + kcat54)× Raf_P_MEK− kf55 × Raf_P×MEK_P +

(kb55 + kcat55)× Raf_P_MEK_P− kf53 × PP2A× Raf_P +

kb53 × PP2A_Raf_P)× 2.5 (A.95)

Raf_P = RafP× 0.4 (A.96)

dPKCactive_Raf

dt
= kf47 × PKCactive × Raf −

(kb47 + kcat47)× PKCactive_Raf (A.97)

dCRHR_CRF_Raf

dt
= kf50 × CRHR_CRF× Raf −

(kb50 + kcat50)× CRHR_CRF_Raf (A.98)

dMEK

dt
= −kf54 × Raf_P×MEK + kb54 × Raf_P_MEK +

kcat57 × PP2A_MEK_P (A.99)

dRaf_P_MEK

dt
= kf54 × Raf_P×MEK−

(kb54 + kcat54)× Raf_P_MEK (A.100)

dMEK_P

dt
= kcat54 × Raf_P_MEK− kf55 × Raf_P×MEK_P +

kb55 × Raf_P_MEK_P− kf57 × PP2A×MEK_P +

kb57 × PP2A_MEK_P + kcat56 × PP2A_MEK_PP (A.101)
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dRaf_P_MEK_P

dt
= kf55 × Raf_P×MEK_P−

(kb55 + kcat55)× Raf_P_MEK_P (A.102)

dMEK_PP

dt
= kcat55 × Raf_P_MEK_P− kf56 × PP2A×MEK_PP +

kb56 × PP2A_MEK_PP− kf58 ×MEK_PP×MAPK +

(kb58 + kcat58)×MEK_PP_MAPK−
kf59 ×MEK_PP×MAPK_P +

(kb59 + kcat59)×MEK_PP_MAPK_P (A.103)

dPP2A_MEK_P

dt
= kf57 × PP2A×MEK_P−

(kb57 + kcat57)× PP2A_MEK_P (A.104)

dPP2A_Raf_P

dt
= kf53 × PP2A× Raf_P−

(kb53 + kcat53)× PP2A_Raf_P) (A.105)

dPP2A_MEK_PP

dt
= kf56 × PP2A×MEK_PP−

(kb56 + kcat56)× PP2A_MEK_PP (A.106)

dAMPAR_P

dt
= −kf46 × PP2A×AMPAR_P + kb46 × PP2A_AMPAR_P +

kcat45 × PKCactive_AMPAR (A.107)

dAMPAR

dt
= kcat46 × PP2A_AMPAR_P− kf45 × PKCactive ×AMPAR +

kb45 × PKCactive_AMPAR (A.108)

dPP2A_AMPAR_P

dt
= kf46 × PP2A×AMPAR_P−

(kb46 + kcat46)× PP2A_AMPAR_P (A.109)

dPKCactive_AMPAR

dt
= kf45 × PKCactive ×AMPAR−

(kb45 + kcat45)× PKCactive_AMPAR (A.110)

dMAPK2

dt
= (−kf58 ×MEK_PP×MAPK + kb58 ×MEK_PP_MAPK +

kcat60 ×MKP1_MAPK_P)× 2.5 (A.111)
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MAPK = MAPK2 × 0.4 (A.112)

dMEK_PP_MAPK

dt
= kf58 ×MEK_PP×MAPK−

(kb58 + kcat58)×MEK_PP_MAPK (A.113)

dMAPK_P

dt
= kcat58 ×MEK_PP_MAPK− kf59 ×MEK_PP×MAPK_P +

kb59 ×MEK_PP_MAPK_P− kf60 ×MKP1 ×MAPK_P +

kb60 ×MKP1_MAPK_P +

kcat61 ×MKP1_MAPK_PP (A.114)

dMEK_PP_MAPK_P

dt
= kf59 ×MEK_PP×MAPK_P− (kb59 +

kcat59)×MEK_PP_MAPK_P (A.115)

dMAPK_PP

dt
= kcat59 ×MEK_PP_MAPK_P− kf61 ×MKP1 ×MAPK_PP +

kb61 ×MKP1_MAPK_PP− kf23 ×MAPK_PP× PLA2 +

(kb23 + kcat23)×MAPK_PP_PLA2 (A.116)

dMKP1

dt
= (−kf60 ×MKP1 ×MAPK_P + (kb60 + kcat60)×

MKP1_MAPK_P− kf61 ×MKP1 ×MAPK_PP +

(kb61 + kcat61)×MKP1_MAPK_PP)× 2.5 (A.117)

MKP1 = MKP1× 0.4 (A.118)

dMKP1_MAPK_P

dt
= kf60 ×MKP1 ×MAPK_P−

(kb60 + kcat60)×MKP1_MAPK_P (A.119)

dMKP1_MAPK_PP

dt
= kf61 ×MKP1 ×MAPK_PP−

(kb61 + kcat61)×MKP1_MAPK_PP (A.120)

dPLA2

dt
= −kf23 ×MAPK_PP× PLA2 +

kb23 ×MAPK_PP_PLA2 + kf24 × PLA2_P−
kf14 × PLA2 × Ca + kb14 × PLA2_Ca−
kf18 × PLA2 × PIP2 + kb18 × PLA2_PIP2 (A.121)
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dMAPK_PP_PLA2

dt
= kf23 ×MAPK_PP× PLA2 −

(kb23 + kcat23)×MAPK_PP_PLA2 (A.122)

dPLA2_P

dt
= kcat23 ×MAPK_PP_PLA2 − kf25 × (PLA2_P)2 ×APC +

(kb25 + kcat25)× PLA2_P_APC− kf24 × PLA2_P (A.123)

dPLA2_Ca

dt
= kf14 × PLA2 × Ca− kb14 × PLA2_Ca−

kf16 × PLA2_Ca×DAG + kb16 × PLA2_Ca_DAG−
kf21 × PIP2 × PLA2_Ca + kb21 × PLA2_Ca_PIP2 −
kf15 × PLA2_Ca×APC +

(kb15 + kcat15)× PLA2_Ca_APC (A.124)

dPLA2_PIP2

dt
= kf18 × PLA2 × PIP2 − kb18 × PLA2_PIP2 −

kf19 × PLA2_PIP2 ×APC +

(kb19 + kcat19)× PLA2_PIP2_APC (A.125)

dPKC_Ca

dt
= −kf27 × PKC_Ca×DAG + kb27 × PKC_Ca_DAG−

kf31 × PKC_Ca×AA + kb31 × PKC_Ca_AA +

kf26 × PKC× Ca− kb26 × PKC_Ca−
kf32 × PKC_Ca + kb32 × PKC_Ca_mem (A.126)

dPKC_Ca_DAG

dt
= kf27 × PKC_Ca×DAG− kb27 × PKC_Ca_DAG−

kf33 × PKC_Ca_DAG +

kb33 × PKC_Ca_DAG_mem (A.127)

dPKC

dt
= −kf28 × PKC×DAG + kb28 × PKC_DAG−
−kf30 × PKC×AA + kb30 × PKC_AA−
kf26 × PKC× Ca + kb26 × PKC_Ca (A.128)

dPKC_DAG

dt
= kf28 × PKC×DAG− kb28 × PKC_DAG−

kf29 × PKC_DAG×AA + kb29 × PKC_DAG_AA−
kf34 × PKC_DAG + kb34 × PKC_DAG_mem (A.129)
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dPLA2_Ca_DAG

dt
= kf16 × PLA2_Ca×DAG− kb16 × PLA2_Ca_DAG−

kf17 × PLA2_Ca_DAG×APC +

(kb17 + kcat17)× PLA2_Ca_DAG_APC (A.130)

dPLA2_Ca_PIP2

dt
= kf21 × PIP2 × PLA2_Ca− kb21 × PLA2_Ca_PIP2 −

kf22 × PLA2_Ca_PIP2 ×APC +

(kb22 + kcat22)× PLA2_Ca_PIP2_APC (A.131)

dAA

dt
= −kf20 ×AA− kf30 × PKC×AA +

kb30 × PKC_AA− kf31 × PKC_Ca×AA +

kb31 × PKC_Ca_AA− kf29 × PKC_DAG×AA +

kb29 × PKC_DAG_AA + kcat17 × PLA2_Ca_DAG_APC +

kcat15 × PLA2_Ca_APC + kcat19 × PLA2_PIP2_APC +

kcat22 × PLA2_Ca_PIP2_APC + kcat25 × PLA2_P_APC (A.132)

dPKC_AA

dt
= kf30 × PKC×AA− kb30 × PKC_AA−

kf36 × PKC_AA (A.133)

dPKC_Ca_AA

dt
= kf31 × PKC_Ca×AA− kb31 × PKC_Ca_AA−

kf36 × PKC_Ca_AA (A.134)

dPKC_DAG_AA

dt
= kf29 × PKC_DAG×AA− kb29 × PKC_DAG_AA−

kf35 × PKC_DAG_AA +

kb35 × PKC_DAG_AA_mem (A.135)

dPLA2_Ca_DAG_APC

dt
= kf17 × PLA2_Ca_DAG×APC−

(kb17 + kcat17)×
PLA2_Ca_DAG_APC (A.136)

dPLA2_Ca_APC

dt
= kf15 × PLA2_Ca×APC−

(kb15 + kcat15)× PLA2_Ca_APC (A.137)

dPLA2_PIP2_APC

dt
= kf19 × PLA2_PIP2 ×APC−

(kb19 + kcat19)× PLA2_PIP2_APC (A.138)
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dPLA2_Ca_PIP2_APC

dt
= kf22 × PLA2_Ca_PIP2 ×APC−

(kb22 + kcat22)×
PLA2_Ca_PIP2_APC (A.139)

dPLA2_P_APC

dt
= kf25 × (PLA2_P)2 ×APC−

(kb25 + kcat25)× PLA2_P_APC (A.140)

dPKC_DAG_mem

dt
= kf34 × PKC_DAG− kb34 × PKC_DAG_mem−

kf36 × PKC_DAG_mem (A.141)

dPKC_Ca_mem

dt
= kf32 × PKC_Ca− kb32 × PKC_Ca_mem−

kf36 × PKC_Ca_mem (A.142)

dPKC_Ca_DAG_mem

dt
= kf33 × PKC_Ca_DAG−

kb33 × PKC_Ca_DAG_mem−
kf36 × PKC_Ca_DAG_mem (A.143)

dPKC_DAG_AA_mem

dt
= kf35 × PKC_DAG_AA−

kb35 × PKC_DAG_AA_mem−
kf36 × PKC_DAG_AA_mem (A.144)

PKCact = PKC_DAG_mem + PKC_Ca_DAG_mem +

PKC_DAG_AA_mem + PKC_AA + PKC_Ca_AA +

PKC_Ca_mem + PKCactive (A.145)

dPKCactive

dt
= −kf47 × PKCact × Raf + (kb47 + kcat47)× PKCactive_Raf −

kf45 × PKCact ×AMPAR +

(kb45 + kcat45)× PKCactive_AMPAR (A.146)
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A.3 Kinetic Parameters

Reaction kfi (µM−1s−1) kbi (s−1) kcati (s−1)

A.1 0.5988 1
A.2 16.667 0.1
A.3 0.1
A.4 0.1
A.5 0.1
A.6 2.5189 0.1
A.7 10
A.8 25 77 48
A.9 10
A.10 50
A.11 5
A.12 10
A.13 1
A.14 0.01 0.1
A.15 30 546 54
A.16 0.05 0.1
A.17 30 540 60
A.18 2× 10−10 0.5
A.19 10 188.96 11.04
A.20 0.001
A.21 2× 10−10 0.5
A.22 10 164 36
A.23 10 236 20
A.24 0.17
A.25 10 80 120
A.26 0.013 0.13
A.27 0.03 0.015
A.28 0.03 0.015
A.29 0.2 10
A.30 0.2 10
A.31 0.2 10
A.32 2× 105 1
A.33 1× 106 1
A.34 1× 106 1
A.35 1× 106 1
A.36 0.004
A.37 0.01 0.0025
A.38 0.673
A.39 50 517.65 7.35
A.40 50 96.13 3.87
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Reaction kfi (µM−1s−1) kbi (s−1) kcati (s−1)

A.41 2 0.1
A.42 5 0.28 0.72
A.43 0.0001
A.44 1 0.27
A.45 5 16.5 1.5
A.46 5 72.283 6
A.47 5 57.466 0.0335
A.48 1 0.0001
A.49 0.02
A.50 5 87.497 0.0025
A.51 5 125 0.001
A.52 0.001
A.53 5 72.283 6
A.54 10 1.486 0.105
A.55 10 1.486 0.105
A.56 5 72.283 6
A.57 5 72.283 6
A.58 10 0.313 0.15
A.59 10 0.313 0.15
A.60 20 0.3334 1
A.61 20 0.3334 1
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A.4 Initial Concentrations

Compound Initial concentration (µM)
AMPAR 0.5
APC 0.5
CRHR 0.5
Gαβγ 0.89513
GC 3
Glu_mGluR_Gq 0.10465
Gsub 10.8
GTP 10
IP3R 0.016643
MAPK2 1
MEK 0.5
mGluR 0.19524
MKP1 0.0032
PDE 2
PIP2 10
PKC 1
PKC_Ca_DAG 8.4632× 10−23

PKC_DAG 1.161× 10−16

PKC_DAG_AA 2.5188× 10−19

PKG 2.445
PLA2 0.4
PLC 0.8
PP2A 2.7
Raf 0.5





Appendix B

Alterations in the
Reimplementation of

Kuroda Model

B.1 Modifications in the Pinto Implementation

The alterations needed in the Pinto implementation to replicate the original results
in [Kuroda 2001] are summarised as follows (Figure 5.8)

1. kcat40 = 0 in Equation A.66;

2. kcat55 = 0 in Equation A.95;

3. kf24 = 0 and kcat25 = 0 in Equation A.123;

4. kcat19 = 0 in Equation A.125;

5. squaring phosphorylated PLA2 in Equations A.123 and A.140;

6. rescaling the concentrations of MAP kinase, MKP1 and phosphorylated Raf
whose modifications follow: adding Equations A.96, A.112 and A.118 to the
LTD model, and multiplying Equations A.95, A.111 and A.117 by 2.5;

7. deleting Equation A.146 that models the enzymatic reactions between PKC
and two different species: Raf and AMPA receptor. Therefore, PKCactive = 0

in Equation A.145.

B.2 Alterations in the Kuroda Implementation

The modifications performed in the Kuroda implementation to obtain the results
illustrated in Figure 5.8 are following described

1. setting the linear interpolation in the calcium, NO and glutamate input tables;

2. deleting the arrow from glutamate (mGlu in Kuroda’s code) to Lyn;

3. deleting the following compounds: CRH_pkc, PKC_CRH_mem, Ca_basal,
Ca_pump, Ca_ext, Cachannel, and Ca_store that are useless in the model;

4. changing the time step size from 5× 10−4 s to 5× 10−5 s.
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B.3 Inconsistencies in [Kuroda 2001]

Various inconsistencies were also detected in the supplementary information (SI) of
the paper by Kuroda and co-authors [Kuroda 2001]:

• Reactions A.7, A.10 and A.11 need to be included in SI 9;

• Reaction A.20 is missing from the PLA2 kinase pathway in SI 7;

• Reactions A.32-A.35 are also not included in SI 8.

Some reactions listed in the SI of [Kuroda 2001] were not modelled in the Kuroda
implementation and need to be modified in their documentation, as follows

• Reaction A.38 replaces NO −−→ NOdec in SI 5;

• Reaction A.49 substitutes CRF −−→ CRFdec in SI 2;

• PKCactive −−→ PKCactivedec
in SI 1 is modelled as in Reaction A.36 instead;

• Reaction A.23 is a correction from Reaction 9 in SI 7;

• Reaction A.47 corrects Reaction 1 in SI 6.

Moreover, the correct PDE concentration in Table 1 of [Kuroda 2001] is 2 µM
rather than 5 µM, and Km from enzymatic reaction 3 is 10.5 µM rather than 45
µM.

B.4 Correction of Errors from the Kuroda
Implementation

The correction of the errors adopted in the XPPAUT code due to inconsistencies in
the Kuroda implementation is following demonstrated (Figure 5.9)

1. kcat40 = 3.87 µM−1s−1 in Equation A.66;

2. kcat55 = 0.105 s−1 in Equation A.95;

3. kf24 = 0.39 s−1 and kcat25 = 120 s−1 in Equation A.123;

4. kcat19 = 11.04 s−1 in Equation A.125;

5. Reaction A.25 was corrected by introducing a single phosphorylated PLA2
instance instead of two. Therefore, phosphorylated PLA2 is not squared in
Equations A.123 and A.140;

6. the same volume was used to all compounds in the model. The equations
for MAP kinase, MKP1 and phosphorylated Raf were then altered. Equa-
tions A.96, A.112 and A.118 were deleted, and Equations A.95, A.111 and
A.117 are not multiplied by 2.5;
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7. Equation A.146 was included to model changes in PKCactive which, in turn,
also influences Equation A.145 in which the PKCactive concentration is not
zero;

8. kf24 = 0.39 s−1 to compensate the loss of the double instance of phosphorylated
PLA2 and to restore the LTD intermediate phase.

B.5 Modifications After Adopting New Calcium Levels

Parameter Previous Value New Value
kf15 30 µM−1s−1 0.1 µM−1s−1

kf24 0.39 s−1 0.013 s−1

kf26 0.13 µM−1s−1 0.013 µM−1s−1

kf32 2 × 105 s−1 50 s−1

Table B.1: Modified kinetic constants to reproduce the results in
[Kuroda 2001] after adopting new calcium levels (Figure 5.12).





Appendix C

Stochastic Model of
CaMKII Activation

This section was written by Dr Maria Schilstra.

For the purpose of the stochastic simulations, calcium-calmodulin (Ca4CaM)
dependent protein kinase II (CaMKII) molecules are assumed to be organised in
6-membered rings. As it is necessary to keep track of individual CaMKII subunits,
each subunit has a ring coordinate cr, with 0 ≤ cr < 6, and a ring number nr,
with 0 ≤ nr < NR, where NR is the total number of rings used in the simulation.
Subunits are numbered consecutively, so that the subunits directly to the “left” and
“right” of a subunit have ring coordinates (cr − 1) modulo 6, and (cr + 1) modulo 6,
respectively. Thus, subunit 3 is to the “left” of subunit 4, and subunit 0 is to the
“right” of subunit 5, and so on.

Each CaMKII subunit is either unphosphorylated (indicated as Kin0 ) or phos-
phorylated (KinP), and may be bound to one Ca4CaM complex (Cm). Association
and dissociation of the Cm-Kin0 and Cm-KinP complexes are described by the
kinetic and thermodynamic constants specified for the deterministic model. Phos-
phorylation is irreversible, and can only happen to a subunit that is “ready” to be
phosphorylated. A subunit with a ring coordinate c is ready only when it is un-
phosphorylated (Cm-Kin0 ), and the subunit on its left (with ring coordinate (c−1)
modulo 6) has kinase activity, i.e. is in the Cm-Kin0, KinP, or Cm-KinP state.
Asterisks are used to indicate that a particular subunit is ready. To keep the model
as simple as possible, subunits that are ready for phosphorylation (Kin0* and Cm-
Kin* ) have the same probability to become phosphorylated, independent of the
state of their left neighbours.

Thus, there are a total of six different CaMKII states: Kin0 (1), Kin0* (2),
Cm-Kin0 (3), Cm-Kin0* (4), KinP (5), and Cm-KinP (6), which are involved in
a total of eight different reactions: Kin0 + Cm → Cm-Kin0 (1), Kin0* + Cm
→ Cm-Kin0* (2), Cm-Kin0 → Kin0 + Cm (3), Cm-Kin0* → Kin0* + Cm (4),
KinP + Cm → Cm-KinP (5), Cm-KinP → KinP + Cm (6), Kin0* → KinP
(7), and Cm-Kin0* → Cm-KinP (8). Reactions 1, 2, 5, and 6 are second order
reactions that involve binding of Ca4CaM. However, the model assumes that the
total concentration of Ca4CaM, Cmtot, is much larger than that of CaMKII, so
that none of these reactions is capable of depleting the concentration of unbound
Ca4CaM. As a result, all reactions in the system will exhibit first order kinetics,
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and it is not necessary to specify a reaction volume.
At any time t, the instantaneous rate (flux), Ji, for each reaction i is computed

as Ji = kEffi × nRi. Here, the effective rate constant kEffi is equal to the actual
first-order rate constant ki for reactions 3, 4, 6, 7, and 8, and equal to ki × Cmtot

for the remaining pseudo-first order reactions (1, 2, 5, 6). Furthermore, nRi is the
number of reactant CaMKII subunits for each reaction i present at time t.

Simulations were performed using a variant of Gillespie’s next reaction algorithm
[Gillespie 1977], implemented in Python with extensive use of Python’s numerical
library numpy. In short, simulations are started with all 6 × NR individual subunits
in stateKin0, and during the simulation a tally is kept of the state of each subunit. In
each simulation step, a random number, rndi, between 0 (included) and 1 (excluded)
is drawn for each reaction i with finite (i.e. non-zero) flux Ji, and a provisional time
interval, ∆ti, between the current simulated time, t, and the next event is computed
as ∆ti = ln(1− rndi)/Ji. The reaction ri that generates the shortest time interval,
∆tmin, is then selected as the next reaction, rnext, to occur at t+∆tmin. The actual
subunit that will undergo this transition is then randomly chosen out of the nRnext
subunits that are present at time t in the reactant pool for rnext. Once the time
for the next event, the transition, and the actual subunit have been established, the
simulated time is increased to t+ ∆tmin, and the state of the selected subunit and,
where necessary, that of its left neighbour is updated. The process is then repeated
until t+ ∆tmin exceeds a pre-set maximum simulation time.



Appendix D

Parameters for CaMKII
Activation Models

Table D.1: Values of kinetic parameters for deterministic and stochastic
simulations of CaMKII activation.

Parameter description Symbol Value Reference
Rate of association of Ca4CaM to a Wi subunit kib 0.01 nM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a Wb subunit kbi 0.8 s−1 [Dupont 2003]
Rate of association of Ca4CaM to a Wa subunit kap 0.01 nM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a Wp subunit kpa 0.0008 s−1 [Dupont 2003]
Ca4CaM binding half maximal concentration Kd 1× 103 nM [Dupont 2003]
Amplitude of calcium pulses Cat 500× 103 nM [Dupont 2003]
Phenomenological rate of kinase autophosphorylation K′a 0.29 s−1 [Dupont 2003]
Rate of autophosphorylation for stochastic simulations kPhos 0.12 s−1

Coefficient of the kinase activity at Wb subunit cb 75 % [Dupont 2003]
Coefficient of the kinase activity at Wp subunit cp 100 % [Dupont 2003]
Coefficient of the kinase activity at Wa subunit ca 80 % [Dupont 2003]
Fitting parameter a a 0.5
Fitting parameter b b 1.956
Fitting parameter c c −1.8

The parameters Kd, Cat, K′a, cb, cp, ca, a, b and c are exclusive for the deter-
ministic model, while kPhos is used in the stochastic model. The other parameter
values are adopted in both the deterministic and stochastic simulations.





Appendix E

Bidirectional Plasticity Model

E.1 Model Description

In the simple model that simulates the bidirectional plasticity in Purkinje cells
(Figure 7.2), changes in calcium concentration are expressed as

d[Ca]

dt
= −4kon[Ca]4[CaM] + 4koff [Ca4CaM] + γ(t)− κ ([Ca]− [Camin]) , (E.1)

where [x] denotes the concentration of substance x, e.g. [Ca] is the calcium concen-
tration. The term γ(t) − κ([Ca] − [Camin]) describes the simple model of calcium
dynamics adopted here to obtain calcium pulses with concentrations that reflect
experimental data [Wang 2000]. Calcium concentration increases at each time step
are denoted by γ(t) which values originate from an input table (Figure 7.5A), κ is
a term that reflects the calcium removal through diffusion, pumps, exchanges, and
[Camin] is the basal calcium concentration.

The temporal evolution of CaM is written as

d[CaM]

dt
= −kon[Ca]4[CaM] + koff [Ca4CaM] . (E.2)

Ca4CaM results from the binding of four calcium ions to CaM, and activates PP2B,
Wb, Wp, WbAc and WpAc. The equation that represents the evolution of Ca4CaM

concentration is

d[Ca4CaM]

dt
= kon[Ca]4[CaM]− koff [Ca4CaM]−

kppia[PP2Bi] [Ca4CaM] + kppai[PP2Bac]−
kib[Wi] [Ca4CaM] + kbi[Wb] +

kpa[Wp]− kap[Wa] [Ca4CaM]−
kiacbac [WiAc] [Ca4CaM] + kbaciac [WbAc] +

kpacaac [WpAc]− kaacpac [WaAc] [Ca4CaM] . (E.3)

The CaMKII activation model described in Section 6.1 was adapted here to
include the CaMKII subunit states bound to Ac (Figure 7.2), and also to express all
kinase states in concentrations rather than fractions. Therefore, Equation 6.6 was
modified to express the Wi concentration as

[Wi] = [Wtot]− [Wb]− [Wp]− [Wa]− [WiAc]− [WbAc]− [WpAc]− [WaAc] , (E.4)
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where [Wtot] is the total concentration of CaMKII. The phenomenological model
to calculate the CaMKII autophosphorylation is again adopted here. Equations 6.1
and 6.2 were slightly modified to account for Wtot, as follows

Va =
Ka

(
(cb[Wb])2 + (cb[Wb]) (cp[Wp]) + (cb[Wb]) (ca[Wa])

)

[Wtot]
2 , (E.5)

Ka = K′a
(
aTac + bT2

ac + cT3
ac

)
, (E.6)

and here
Tac =

[Wb] + [Wp] + [Wa]

[Wtot]
. (E.7)

Once Ca4CaM binds to Wi, the resulting Wb form can either be phosphorylated,
release Ca4CaM, or bind to Ac. Wb is an active CaMKII subunit that can also
phosphorylate AMPA receptors (AMPARs). The equation for Wb is therefore

d[Wb]

dt
= −Va[Wtot] + kib[Wi] [Ca4CaM]− kbi[Wb]−

kbbac[Wb] [Ac] + kbacb [WbAc]−
kfphos

[Wb] [AMPAR] +
(
kbphos

+ kcatphos

)
[WbAMPAR] , (E.8)

where [WbAMPAR] is the concentration of Wb bound to AMPARs. The Wp subunit
can release Ca4CaM, switching to the Wa state, or bind to Ac and form WpAc. As
for Wb, Wp also phosphorylates AMPARs. The amount of Wp is calculated as

d[Wp]

dt
= Va[Wtot]− kpa[Wp] + kap[Wa] [Ca4CaM]−

kppac[Wp] [Ac] + kpacp [WpAc]−
kfphos

[Wp] [AMPAR] +
(
kbphos

+ kcatphos

)
[WpAMPAR] , (E.9)

where [WpAMPAR] is the concentration of the complex of Wp bound to AMPARs.
Wa can bind to either Ca4CaM or Ac, and phosphorylate AMPARs as well. Thus

d[Wa]

dt
= kpa[Wp]− kap[Wa] [Ca4CaM]−

kaaac[Wa] [Ac] + kaaca [WaAc]−
kfphos

[Wa] [AMPAR] +
(
kbphos

+ kcatphos

)
[WaAMPAR] , (E.10)

and [WaAMPAR] is the amount of Wa trapped to AMPARs.
WiAc binds to Ca4CaM and changes to the active WbAc form, or dissociates

from Ac and switches to the Wi state. Changes in WiAc concentration are

d[WiAc]

dt
= kiiac[Wi] [Ac]− kiaci [WiAc]−

kiacbac [WiAc] [Ca4CaM] + kbaciac [WbAc] . (E.11)

WbAc can be phosphorylated by neighbouring active Ac-bound subunits: WbAc

itself, WpAc or WaAc. The autophosphorylation process for Ac-bound CaMKII is
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analogous to the mechanism of autophosphorylation of the kinase unbound to Ac

(Equations E.5, E.6 and E.7). The autophosphorylation rate for Ac-bound CaMKII
subunits (Vac) is therefore

Vac =
Kac

(
(cb [WbAc])2 + (cb [WbAc]) (cp [WpAc]) + (cb [WbAc]) (ca [WaAc])

)

[Wtot]
2 ,

(E.12)
where

Kac = K′a
(
aTAc + bT2

Ac + cT3
Ac

)
, (E.13)

and
TAc =

[WbAc] + [WpAc] + [WaAc]

[Wtot]
. (E.14)

WbAc can also switch to WiAc once Ca4CaM dissociates from this kinase subunit,
or dissociate from Ac and change to Wb. Thus

d[WbAc]

dt
= −Vac[Wtot] + kiacbac [WiAc] [Ca4CaM]− kbaciac [WbAc] +

kbbac[Wb] [Ac]− kbacb [WbAc] . (E.15)

The phosphorylated Ac- and Ca4CaM-bound form of CaMKII can release Ca4CaM

and switch to the WaAc form, or dissociate from Ac and swap to the Wp state. The
concentration of WpAc at each time step is expressed as

d[WpAc]

dt
= Vac[Wtot]− kpacaac [WpAc] + kaacpac [WaAc] [Ca4CaM] +

kppac[Wp] [Ac]− kpacp [WpAc] , (E.16)

whereas WaAc can bind to Ca4CaM and switch to WpAc, or dissociate from Ac

and turn into Wa. The equation for WaAc is

d[WaAc]

dt
= kpacaac [WpAc]− kaacpac[WaAc] [Ca4CaM] +

kaaac[Wa] [Ac]− kaaca [WaAc] . (E.17)

Ca4CaM not only activates CaMKII, but can also bind to the inactive form of
PP2B (PP2Bi). The phosphatase then gets activated and switches to the PP2Bac

form. PP2Bac mediates the dephosphorylation of AMPA receptors. The temporal
evolution of PP2Bi concentration is

d[PP2Bi]

dt
= −kppia[PP2Bi] [Ca4CaM] + kppai[PP2Bac] , (E.18)

whereas PP2Bac concentration changes are expressed as

d[PP2Bac]

dt
= kppia[PP2Bi] [Ca4CaM]− kppai[PP2Bac]−

kfdephos
[PP2Bac] [AMPARP] +(

kbdephos
+ kcatdephos

)
[PP2BacAMPARP] , (E.19)
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where [PP2BacAMPARP] expresses the concentration of PP2Bac bound to phospho-
rylated AMPA receptors (AMPARPs). Moreover, the evolution of unphosphorylated
AMPA receptors at each time step is

d[AMPAR]

dt
= −kfphos

[Wb] [AMPAR] + kbphos
[WbAMPAR]−

kfphos
[Wp] [AMPAR] + kbphos

[WpAMPAR]−
kfphos

[Wa] [AMPAR] + kbphos
[WaAMPAR] +

kcatdephos
[PP2BacAMPARP] , (E.20)

where
d[WbAMPAR]

dt
= kfphos

[Wb] [AMPAR]−
(
kbphos

+ kcatphos

)
[WbAMPAR] , (E.21)

d[WpAMPAR]

dt
= kfphos

[Wp] [AMPAR]−
(
kbphos

+ kcatphos

)
[WpAMPAR] , (E.22)

d[WaAMPAR]

dt
= kfphos

[Wa] [AMPAR]−
(
kbphos

+ kcatphos

)
[WaAMPAR] , (E.23)

and
d[PP2BacAMPARP]

dt
= kfdephos

[PP2Bac] [AMPARP]−
(
kbdephos

+ kcatdephos

)
[PP2BacAMPARP] . (E.24)

At last, the equation that represents the evolution of AMPARPs is

d[AMPARP]

dt
= kcatphos

[WbAMPAR] + kcatphos
[WpAMPAR] +

kcatphos
[WaAMPAR]− kfdephos

[PP2Bac] [AMPARP] +

kbdephos
[PP2BacAMPARP] . (E.25)

E.2 Modelling Two-step Calcium-calmodulin Binding

The bidirectional plasticity model described above was modified to simulate the
calcium-dependent CaM activation in two steps rather than one (Section 7.5.3).
These modifications led to the creation of new ODEs and to the amendment of a
few equations, as follows:

d[Ca]

dt
= −2kon2 [Ca]2[CaM] + 2koff2 [Ca2CaM]−

2kon[Ca]2[Ca2CaM] + 2koff [Ca4CaM]−
kb2b[Wb2 ][Ca]2 + kbb2 [Wb]−
kb0b2 [Wb0 ][Ca]2 + kb2b0 [Wb2 ]−
kb0acb2ac[Wb0Ac][Ca]2 + kb2acb0ac[Wb2Ac]−
kb2acbac[Wb2Ac][Ca]2 + kbacb2ac[WbAc] +

γ(t)− κ ([Ca]− [Camin]) , (E.26)
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d[CaM]

dt
= −kon2 [Ca]2[CaM] + koff2 [Ca2CaM]−

kib0 [Wi][CaM] + kb0i[Wb0 ]−
kiacb0ac[WiAc][CaM] + kb0aciac[Wb0Ac] , (E.27)

d[Ca2CaM]

dt
= kon2 [Ca]2[CaM]− koff2 [Ca2CaM]−

kon[Ca]2[Ca2CaM] + koff [Ca4CaM]−
kib2 [Wi] [Ca2CaM] + kb2i[Wb2 ]−
kiacb2ac [WiAc] [Ca2CaM] + kb2aciac [Wb2Ac] , (E.28)

d[Ca4CaM]

dt
= kon[Ca]2[Ca2CaM]− koff [Ca4CaM]−

kppia[PP2Bi] [Ca4CaM] + kppai[PP2Bac]−
kib[Wi] [Ca4CaM] + kbi[Wb] +

kpa[Wp]− kap[Wa] [Ca4CaM]−
kiacbac [WiAc] [Ca4CaM] + kbaciac [WbAc] +

kpacaac [WpAc]− kaacpac [WaAc] [Ca4CaM] , (E.29)

[Wi] = [Wtot]− [Wb0 ]− [Wb2 ]− [Wb]−
[Wp]− [Wa]− [WiAc]− [Wb0Ac]−
[Wb2Ac]− [WbAc]− [WpAc]− [WaAc] , (E.30)

d[Wb0 ]

dt
= kib0 [Wi] [CaM]− kb0i[Wb0 ]−

kb0b2 [Wb0 ][Ca]2 + kb2b0 [Wb2 ]−
kb0b0ac[Wb0 ][Ac] + kb0acb0 [Wb0Ac] , (E.31)

d[Wb2 ]

dt
= kib2 [Wi] [Ca2CaM]− kb2i[Wb2 ]−

kb2b[Wb2 ][Ca]2 + kbb2 [Wb] +

kb0b2 [Wb0 ][Ca]2 − kb2b0 [Wb2 ]−
kb2b2ac[Wb2 ][Ac] + kb2acb2 [Wb2Ac] , (E.32)
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d[Wb]

dt
= −Va[Wtot] + kib[Wi] [Ca4CaM]− kbi[Wb] +

kb2b[Wb2 ] [Ca]2 − kbb2 [Wb]−
kbbac[Wb] [Ac] + kbacb [WbAc]−
kfphos

[Wb] [AMPAR] +
(
kbphos

+ kcatphos

)
[WbAMPAR] , (E.33)

d[WiAc]

dt
= kiiac[Wi] [Ac]− kiaci [WiAc]−

kiacbac [WiAc] [Ca4CaM] + kbaciac [WbAc]−
kiacb0ac[WiAc] [CaM] + kb0aciac [Wb0Ac]−
kiacb2ac[WiAc] [Ca2CaM] + kb2aciac [Wb2Ac] , (E.34)

d[Wb0Ac]

dt
= kiacb0ac[WiAc] [CaM]− kb0aciac [Wb0Ac] +

kb0b0ac [Wb0 ] [Ac]− kb0acb0 [Wb0Ac]−
kb0acb2ac[Wb0Ac] [Ca]2 + kb2acb0ac [WbAc] , (E.35)

d[Wb2Ac]

dt
= kiacb2ac[WiAc] [Ca2CaM]− kb2aciac [Wb2Ac] +

kb2b2ac [Wb2 ] [Ac]− kb2acb2 [Wb2Ac] +

kb0acb2ac[Wb0Ac] [Ca]2 − kb2acb0ac [Wb2Ac]−
kb2acbac[Wb2Ac] [Ca]2 + kbacb2ac [WbAc] , (E.36)

d[WbAc]

dt
= −Vac[Wtot] + kiacbac [WiAc] [Ca4CaM]−

kbaciac [WbAc] + kbbac[Wb] [Ac]− kbacb [WbAc] +

kb2acbac[Wb2Ac] [Ca]2 − kbacb2ac [WbAc] . (E.37)
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E.3 Model Parameters

E.3.1 Plasticity in Purkinje Cells

E.3.1.1 Constant Calcium Stimulation

Parameter description Symbol Value Reference
CaMKII total concentration Wtot 20 µM [Lisman 2002]
Unphosphorylated AMPA receptor initial concentration AMPAR 0.5 µM [Kuroda 2001]
Phosphorylated AMPA receptor initial concentration AMPARP 0.5 µM [Kuroda 2001]
Basal calcium concentration Camin 0.1 µM [Wang 2000]
CaM initial concentration CaM 36 µM

Inactive PP2B initial concentration PP2Bi 15 µM

Rate of association of Ca4CaM to a Wi subunit kib 10 µM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a Wb subunit kbi 0.8 s−1 [Dupont 2003]
Rate of association of Ca4CaM to a Wa subunit kap 10 µM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a Wp subunit kpa 0.008 s−1 [Meyer 1992]
Rate of association of Ca4CaM to PP2Bi kppia 10 µM−1s−1

Rate of dissociation of Ca4CaM from PP2Bac kppai 0.1 s−1

Rate of association of calcium to CaM kon 2× 102 µM−4s−1

Rate of dissociation of calcium from Ca4CaM koff 2.3× 107 s−1

Rates of AMPA receptor phosphorylation by CaMKII kfphos
5 µM−1s−1 [Kuroda 2001]

kbphos
72.283 s−1 [Kuroda 2001]

kcatphos
6,000 s−1

Rates of AMPA receptor dephosphorylation by PP2B kfdephos
5 µM−1s−1 [Kuroda 2001]

kbdephos
72.283 s−1 [Kuroda 2001]

kcatdephos
6,000 s−1

Phenomenological rate of CaMKII autophosphorylation K′a 0.29 s−1 [Dupont 2003]
Coefficient of CaMKII activity at Wb subunit cb 75 % [Dupont 2003]
Coefficient of CaMKII activity at Wp subunit cp 100 % [Dupont 2003]
Coefficient of CaMKII activity at Wa subunit ca 80 % [Dupont 2003]
Fitting parameter a a 0.500
Fitting parameter b b 1.956
Fitting parameter c c −1.800

Table E.1: Values of kinetic parameters for the constant calcium stimula-
tion protocol (Figures 7.3 and 7.4).

E.3.1.2 Pulsed Calcium Stimulation

Parameter description Symbol Value
Rate of dissociation of Ca4CaM from a Wb subunit kbi 0.4 s−1

Rate of association of calcium to CaM kon 2× 104 µM−4s−1

Parameter that reflects calcium removal κ 4× 103

Table E.2: Modified values of rate constants for the pulsed calcium stim-
ulation protocol (Figures 7.6 and 7.7).
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E.3.2 Bidirectional Plasticity in Purkinje Cells

E.3.2.1 Replication of the Study by Van Woerden and Collaborators

Parameter description Symbol Value Reference
CaMKII total concentration for wild-type mice Wtot 30 µM

CaMKII total concentration for Camk2b knockout mice Wtot 7.5 µM [Fink 2002]
F-actin total concentration Ac 40 µM [Sanabria 2009]
Rate of association of Ca4CaM to a WiAc subunit kiacbac 10 µM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a WbAc subunit kbaciac 2 s−1

Rate of association of Ca4CaM to a WaAc subunit kaacpac 10 µM−1s−1 [Dupont 2003]
Rate of dissociation of Ca4CaM from a WpAc subunit kpacaac 0.04 s−1 [Meyer 1992]
Rate of association of F-actin to a Wi subunit kiiac 10 µM−1s−1

Rate of dissociation of F-actin from a WiAc subunit kiaci 60.2 s−1

Rate of association of F-actin to a Wb subunit kbbac 10 µM−1s−1

Rate of dissociation of F-actin from a WbAc subunit kbacb 301 s−1

Rate of association of F-actin to a Wp subunit kppac 10 µM−1s−1

Rate of dissociation of F-actin from a WpAc subunit kpacp 301 s−1

Rate of association of F-actin to a Wa subunit kaaac 10 µM−1s−1

Rate of dissociation of F-actin from a WaAc subunit kaaca 60.2 s−1

Rate of association of Ca4CaM to PP2Bi kppia 5 µM−1s−1

Rate of dissociation of Ca4CaM from PP2Bac kppai 0.5 s−1

Rate of association of calcium to CaM kon 2× 103 µM−4s−1

Rate of dissociation of calcium from Ca4CaM koff 2.3× 106 s−1

Rates of AMPA receptor phosphorylation by CaMKII kfphos
0.5 µM−1s−1

kcatphos
6 s−1 [Kuroda 2001]

Rates of AMPA receptor dephosphorylation by PP2B kfdephos
0.5 µM−1s−1

kcatdephos
6 s−1 [Kuroda 2001]

Table E.3: Modified values of kinetic parameters for the replication of [van
Woerden 2009] (Figures 7.8, 7.9 and 7.10).

E.3.2.2 Parameter Values Based on Experimental Observations

Parameter description Symbol Value Reference
Basal calcium concentration Camin 0.045 µM [Antunes 2012]
CaMKII total concentration for wild-type mice Wtot 20 µM [Lisman 2002]
CaMKII total concentration for Camk2b knockout mice Wtot 10 µM [van Woerden 2009]
Rate of dissociation of Ca4CaM from Wb for wild-type mice kbi 0.2 s−1 [Brocke 1999]
Rate of dissociation of Ca4CaM from Wp for wild-type mice kpa 0.004 s−1 [Meyer 1992]
Rate of dissociation of Ca4CaM from WbAc kbaciac 1 s−1

Rate of dissociation of Ca4CaM from WpAc kpacaac 0.02 s−1 [Meyer 1992]
Rate of dissociation of F-actin from WiAc kiaci 30.1 s−1

Rate of dissociation of F-actin from WbAc kbacb 150.5 s−1

Rate of dissociation of F-actin from a WpAc kpacp 1,505 s−1

Rate of dissociation of F-actin from WaAc kaaca 301 s−1

Rate of dissociation of Ca4CaM from PP2Bac kppai 0.4 s−1

Rate of association of calcium to CaM kon 5× 107 µM−4s−1

Table E.4: Modified values of kinetic parameters following suggestions
from the authors of [van Woerden 2009] (Figures 7.11-7.16).
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E.3.2.3 Two-step Calcium-calmodulin Binding

Parameter description Symbol Value
Rate of association of two calcium ions to Ca2CaM kon 2× 102 µM−2s−1

Rate of dissociation of two calcium ions from Ca4CaM koff 2.3× 103 s−1

Rate of association of two calcium ions to apo-CaM kon2 20 µM−2s−1

Rate of dissociation of two calcium ions from Ca2CaM koff2 2.3× 103 s−1

Rate of association of apo-CaM to Wi kib0 10 µM−1s−1

Rate of dissociation of apo-CaM from Wb0 for wild-type mice kb0i 2× 103 s−1

Rate of dissociation of apo-CaM from Wb0 for Camk2b knockout mice kb0i 4× 103 s−1

Rate of association of Ca2CaM to Wi kib2 10 µM−1s−1

Rate of dissociation of Ca2CaM from Wb2 for wild-type mice kb2i 2× 103 s−1

Rate of dissociation of Ca2CaM from Wb2 for Camk2b knockout mice kb2i 4× 103 s−1

Rate of association of two calcium ions to Wb0 kb0b2 20 µM−2s−1

Rate of dissociation of two calcium ions from Wb2 kb2b0 2.3× 103 s−1

Rate of association of two calcium ions to Wb2 kb2b 2× 102 µM−2s−1

Rate of dissociation of two calcium ions from Wb kbb2 2.3× 10−1 s−1

Rate of association of two calcium ions to Wb0Ac kb0acb2ac 2× 102 µM−2s−1

Rate of dissociation of two calcium ions from Wb2Ac kb2acb0ac 2.3× 10−2 s−1

Rate of association of two calcium ions to Wb2Ac kb2acbac 2× 102 µM−2s−1

Rate of dissociation of two calcium ions from WbAc kbacb2ac 2.3× 10−1 s−1

Rate of association of apo-CaM to WiAc kiacb0ac 10 µM−1s−1

Rate of dissociation of apo-CaM from Wb0Ac kb0aciac 1× 1010 s−1

Rate of association of Ca2CaM to WiAc kiacb2ac 10 µM−1s−1

Rate of dissociation of Ca2CaM from Wb2Ac kb2aciac 1× 104 s−1

Rate of association of F-actin to Wb0 kb0b0ac 10 µM−1s−1

Rate of dissociation of F-actin from Wb0Ac kb0acb0 1.505× 108 s−1

Rate of association of F-actin to Wb2 kb2b2ac 10 µM−1s−1

Rate of dissociation of F-actin from Wb2Ac kb2acb2 1.505× 102 s−1

Table E.5: Modified values of kinetic parameters while modelling a two-
step Ca4CaM binding (Figures 7.18, 7.19 and 7.20).
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Abstract. Calcium/calmodulin-dependent protein kinase II (CaMKII)
is involved in the induction of many forms of synaptic plasticity in the
brain. Experimental and computational studies have shown that CaMKII
is sensitive to the frequency of oscillatory Ca2+ signals. Here we de-
monstrate that in a simple, commonly used kinetic model of CaMKII
phosphorylation, the overall phosphorylation rate under sustained appli-
cation of Ca4 − CaM pulses ultimately depends on the average (‘effec-
tive’) concentration of Ca4 − CaM in the system, rather than on the
pulse frequency itself. As a corollary, equal phosphorylation levels are
achieved in response to pulsed and constant applications of equal effec-
tive concentrations of Ca4 − CaM.

Keywords: CaMKII, calmodulin, Ca2+ oscillations.

1 Introduction

Calcium/calmodulin-dependent protein kinase II (CaMKII), which is present in
high concentrations in the brain, is a multifunctional protein kinase involved
in Ca2+ signalling systems that underlie the induction of synaptic plasticity.
Brief Ca2+ signals can activate CaMKII, and stimulate an autophosphorylation
reaction that allows the kinase to maintain its activation level [1].

Earlier computer simulations based on a widely used CaMKII autophospho-
rylation model indicated that CaMKII activation is sensitive to the frequency
of Ca2+ oscillations [2–5], and in vitro experiments have demonstrated that the
kinase does indeed respond differently to different frequencies of Ca2+ spikes [6].

Here, we present a somewhat simplified version of the CaMKII activation
model developed by Dupont et al. [5], and show that this model reproduces
the results of the more complex one. Further, we demonstrate that CaMKII
activation by Ca2+ and calmodulin (CaM) in the model is mostly determined
by the effective Ca4 − CaM concentration, which varies with the frequency of
Ca4 − CaM pulses, but does not depend on the actual frequency of Ca2+ oscilla-
tions. Moreover, we show that the application of a constant level of Ca4 − CaM
with the same mean concentration as in the pulsed protocol results in the same
level of CaMKII phosphorylation.

M.A. Lones et al. (Eds.): IPCAT 2012, LNCS 7223, pp. 131–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 CaMKII Activation Model

In the simplified CaMKII activation model (Fig. 1), CaMKII can be in four
different states: inactive (Wi), bound to Ca4 − CaM (Wb), phosphorylated and
bound to Ca4 − CaM (Wp), and autonomous (Wa): phosphorylated, but disso-
ciated from Ca4 − CaM. As in the earlier model [5], we assume that Ca4 − CaM
formation is rapid and complete. Binding of Ca4 − CaM to a CaMKII subunit
results in the activation of the subunit’s kinase function, allowing it to phospho-
rylate its substrates. These substrates include the subunit’s nearest neighbours
in the CaMKII multimer. The autophosphorylation rate associated with this
process is indicated as Va, and is described using the phenomenological non-
linear function of the concentrations of Wb, Wp and Wa as in [5]. Dissociation
of Ca4 − CaM from the phosphorylated form yields the so-called autonomous
form of CaMKII, which retains some or all of its kinase activity.

Different from the Dupont model [5], we do not model a “trapped” state [7],
mainly because dissociation of Ca2+ and CaM cannot be distinguished experi-
mentally (nor described thermodynamically) as two distinct processes.

Fig. 1. Model of the activation of CaMKII by Ca4 − CaM. kib, kbi, kpa and kap are
the rate constants of the reversible Ca4 − CaM binding reactions, and Va is the rate
of the irreversible phosphorylation of Wb

The model was implemented as a set of 4 coupled ordinary differential equa-
tions (ODEs), which were solved numerically using the XPPAUT software (X-
Windows Phase Plane plus Auto).

3 Results

To examine whether the omission of trapped state had any significant effect, and
to investigate the dependence of the overall autophosphorylation kinetics on the
frequency of Ca4 − CaM oscillations, we replicated the simulations presented
in [5] with our simplified model. Figure 2b shows the simulated response to 100
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Fig. 2. CaMKII phosphorylation and its dependence on the effective Ca4 − CaM con-
centration. (a) Temporal evolution of the phosphorylated form of CaMKII (Wp) in
response to 100 200 ms square pulses of Ca4 − CaM (100 nM) at frequencies of 1 Hz
(solid squares), 2.5 Hz (solid triangles) and 4 Hz (solid circles) in the Dupont model [5].
(b) Wp in response to the same protocol in our simplified model. (c) Wp in response
to 100 200 ms square pulses of Ca4 − CaM at 1, 2.5 and 4 Hz, but with scaled pulse
amplitudes so that the effective concentration of Ca4 − CaM is 80 nM. The amplitudes
of Ca4 − CaM pulses are 400 nM at 1 Hz (solid), 160 nM at 2.5 Hz (dashed) and 100
nM at 4 Hz (dashed-dotted).
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Fig. 3. Temporal evolution of Wp (a), Wi (b), Wb (c) and Wa (d) in response to
pulsed and continuous applications of Ca4 − CaM. In all panels, the solid lines represent
the CaMKII responses to 100 200 ms pulses of Ca4 − CaM (100 nM) at 1, 2.5 and 4
Hz, corresponding to the effective Ca4 − CaM concentrations of 20 nM, 50 nM and 80
nM, respectively. The dashed lines indicate the CaMKII response to the application of
continuous Ca4 − CaM concentrations at the same levels.

square Ca4 − CaM pulses with amplitude of 100 nM and duration of 200 ms
each, applied at 1, 2.5 and 4 Hz. The results are very similar to those presented
in [5] (cf Fig. 2a).

Dupont et al. [5] argue that CaMKII autophosphorylation is dependent on
the frequency of Ca2+ oscillations, and that, therefore, CaMKII may act as a
decoder of Ca2+ spike frequencies. A change in pulse frequency is accompanied
by a change in average, or ‘effective’ Ca4 − CaM concentration, [Ca4 − CaM]eff ,
which is computed as [Ca4 − CaM]eff = [Ca4 − CaM]pulse × f × L (where
[Ca4 − CaM]pulse is the pulse amplitude, f is the pulse frequency, and L the pulse
duration). Thus, CaMKII is subjected to different effective Ca4 − CaM concen-
trations, which in turn affects the average concentration of Wb and Wp, and the
autophosphorylation kinetics. To investigate whether the autophosphorylation
kinetics are primarily determined by the pulse frequency, or by the accompany-
ing variation in [Ca4 − CaM]eff , we rescaled the Ca4 − CaM concentrations to
an equal effective concentration of 80 nM, and compared the phosphorylation
kinetics.
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Figure 2c shows that the phosphorylation kinetics at 1, 2.5 and 4 Hz pulses are
identical after rescaling the Ca4 − CaM concentration. This strongly indicates
that, at least for the frequency range examined here, the CaMKII autophospho-
rylation kinetics are independent of the pulse frequency itself.

We also investigated whether the autophosphorylation kinetics are the same
under constant and pulsed Ca4 − CaM concentrations at the appropriate effec-
tive concentrations. Figure 3 shows a superposition of concentrations of the va-
rious species under pulsed and continuous Ca4 − CaM concentration conditions.
Again, these results indicate that the CaMKII autophosphorylation kinetics in
this model are determined by the effective Ca4 − CaM concentration, not by the
actual pulse frequency.
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Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays an important role in the induction of 
synaptic plasticity, by linking neuronal Ca2+ signals with the phosphorylation of neurotransmitter 
receptors. A crucial step in this biochemical cascade is the Ca2+ / calmodulin (Ca4-CaM) dependent 
autophosphorylation of CaMKII. Previous experimental (De Koninck and Schulman, 1998) and 
computational (Dupont et al., 2003) studies have demonstrated that the extent of 
autophosphorylation of CaMKII is determined by the frequency of repetitive Ca2+ signals. In the 
present study, we use a simplified version of the CaMKII activation model by Dupont and 
collaborators to unravel the mechanism that underlies this observed frequency dependence. In the 
simulations by Dupont et al., CaMKII was subjected to different average, or 'effective', Ca4-CaM 
concentrations, which in turn affected the average concentration of the CaMKII subunits, and the 
autophosphorylation kinetics. After demonstrating that our model reproduces the results of the 
Dupont model, we therefore rescale the Ca4-CaM concentration to an equal effective concentration, 
and demonstrate that the CaMKII autophosphorylation kinetics in the model are determined by this 
effective Ca4-CaM concentration and not by the actual pulse frequency. We also show that the 
application of a constant level of Ca4-CaM with the same mean concentration as in the pulsed 
protocol results in the same level of CaMKII phosphorylation. Our simulation results indicate that 
the notion of CaMKII as a decoder of Ca2+ oscillations is misleading and suggest experimental tests 
with rescaled Ca2+ concentrations.  
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Ca2+/calmodulin-dependent protein kinase II (CaMKII),
which is present in high concentrations in the brain,
contributes to many forms of synaptic plasticity. The
induction of synaptic plasticity by CaMKII involves an
intracellular signalling cascade that links neuronal Ca2+

signals with the phosphorylation of neurotransmitter
receptors; an important step in this biochemical cascade
is the autophosphorylation of CaMKII after binding of
Ca2+/calmodulin (Ca4-CaM).
The dependence of this autophosphorylation reaction

on the temporal structure of Ca4-CaM signals has been
investigated in previous experiments [1] and computer
simulations [2]. These experimental and theoretical stu-
dies have indicated that the autophosphorylation of
CaMKII is sensitive to the frequency of repetitive Ca2+

pulses, and it has been concluded that CaMKII can
decode oscillatory Ca2+ signals [1,2].

Here, we apply a simplified version of the commonly
used CaMKII activation model by Dupont and colla-
borators [2] to investigate the mechanism that underlies
the dependence of the overall autophosphorylation
kinetics on the frequency of Ca2+ oscillations. In the
simulations by Dupont et al., CaMKII was subjected to
different average, or ‘effective’, Ca4-CaM concentrations,
which in turn affected the average concentration of the
CaMKII subunits, and the autophosphorylation kinetics.
We first replicate the simulation results presented in

[2] with our simplified model (Figure 1A). To identify
the mechanism that underlies the observed frequency
dependence, we then rescale the Ca4-CaM concentra-
tions to an equal effective concentration, and compare
the phosphorylation kinetics (Figure 1B). We demon-
strate that in our model the overall phosphorylation rate
under sustained application of Ca4-CaM pulses depends
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Figure 1 CaMKII phosphorylation and its dependence on the effective Ca4-CaM concentration. (A) Temporal evolution of the phosphorylated
form of CaMKII (Wp) in response to one hundred 200 ms square pulses of Ca4-CaM (100 nM) at frequencies of 1 Hz (solid blue), 2.5 Hz (dashed
red) and 4 Hz (dashed-dotted magenta) in our simplified model. (B) Wp in response to one hundred 200 ms square pulses of Ca4-CaM at 1, 2.5
and 4 Hz, but with scaled pulse amplitudes so that the effective concentration of Ca4-CaM is 80 nM. The amplitudes of Ca4-CaM pulses are 400
nM at 1 Hz (solid blue), 160 nM at 2.5 Hz (dashed red) and 100 nM at 4 Hz (dashed-dotted magenta).
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on the average (‘effective’) concentration of Ca4-CaM in
the system, rather than on the pulse frequency itself.
Moreover, we show that the application of a constant
level of Ca4-CaM with the same mean concentration as
in the pulsed protocol results in the same level of CaM-
KII phosphorylation.
Our simulation results indicate that the notion of

CaMKII as a decoder of Ca2+ oscillations is misleading
and suggest experimental tests with rescaled Ca4-CaM
concentrations.
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Synaptic plasticity, the strengthening and weakening of connections between neurons, is crucial for learning and 

memory in neuronal circuits. However, a better comprehension of the mechanisms of many forms of synaptic 

plasticity is limited by the complexity of the underlying intracellular signalling pathways. 

Cerebellar long-term depression (LTD) and potentiation (LTP) are calcium-dependent forms of synaptic 

plasticity that weaken and strengthen synapses between parallel fibres (PF) and Purkinje cells (PCs). While LTD is 

induced by large increases in intracellular calcium concentrations in response to paired PF and climbing fibre (CF) 

input, smaller calcium concentration increases that result from PF input alone lead to LTP. The induction of LTD 

and LTP is mediated by enzymes such as calcium/calmodulin-dependent kinase type II (CaMKII) and protein 

phosphatase 2B (PP2B) that regulate the phosphorylation and dephosphorylation of postsynaptic AMPA receptors. 

The CaMKII holoenzyme is composed of αCaMKII and βCaMKII isoforms. Recent experiments with Camk2b 

knockout mice have revealed that βCaMKII, which is the predominant CaMKII isoform in the cerebellum, controls 

the direction of plasticity at the PF–PC synapse (van Woerden et al., 2009). More specifically, protocols that induce 

LTD in wild-type mice result in LTP in knockout mice that lack βCaMKII, and vice versa.  

Here, we use a simple model of the phosphorylation and dephosphorylation of AMPA receptors by CaMKII and 

PP2B to investigate the mechanisms that underlie the regulation of bidirectional plasticity at the PF–PC synapse. 

The model is based on our recent model of CaMKII activation (Pinto et al., 2012). In the model, the binding of 

calcium to calmodulin (CaM), the activation of CaMKII and PP2B by calcium/calmodulin (Ca4–CaM), and the 

AMPA receptor phosphorylation and dephosphorylation are represented by coupled ordinary differential equations.  

Van Woerden et al. (2009) suggested that the sign reversal of synaptic plasticity in the Camk2b knockout mice is 

due to a biochemical difference between the α and βCaMKII isoforms. The βCaMKII, but not αCaMKII, subunits 

can bind to filamentous actin (F-actin), which could result in clustering of the CaMKII holoenzyme to F-actin, 

making it unavailable for AMPA receptor phosphorylation. We included the binding of CaMKII to F-actin in our 

simulations of synaptic plasticity induction in wild-type mice, whilst omitting it when modelling plasticity induction 

in Camk2b knockout mice. Moreover, Purkinje cells contain about four times as much βCaMKII as αCaMKII, and 

the loss of βCaMKII did not result in up-regulation of αCaMKII in the knockout mice. Thus, we also included the 

corresponding reduction in CaMKII concentration in our simulations of knockout mice.  

We simulate the induction of synaptic plasticity in response to PF stimulation with and without paired CF 

stimulation in our model by applying calcium pulses with concentrations that reflect experimental data, and we 

record the resulting phosphorylation and dephosphorylation of AMPA receptors. Our simulations replicate the 

experimental findings by van Woerden et al. (2009), suggesting that the binding of βCaMKII to F-actin can indeed 

contribute to the control of bidirectional plasticity at PF–PC synapses. Our model predicts that the sign reversal of 

synaptic plasticity is based on a combination of three mechanisms operating at different calcium concentrations. At 

the low calcium concentrations that result from PF input alone, the loss of F-actin binding in the knockout mice 

leads to increased availability of active CaMKII compared to the wild-type mice, and to induction of LTD rather 

than LTP. At the high calcium concentrations that are triggered by paired PF and CF input, the reduced CaMKII 

concentration in the knockout mice favours the dephosphorylation of AMPA receptors by PP2B, and the induction 

of LTP instead of LTD. This effect is exacerbated by the increased availability of Ca4–CaM that results from the 

decreased CaMKII levels, which further increases the activation of PP2B.  
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Synaptic plasticity is an activity-dependent alteration in the strength of synaptic connections between pre and 

postsynaptic neurons. The long-term strengthening and weakening of synapses are known as long-term potentiation 
(LTP) and long-term depression (LTD), respectively. Long-lasting changes in synaptic strength are thought to be the 
basis of learning and the formation of memories. In particular, these calcium-dependent forms of plasticity are 
involved in learning and pattern recognition by cerebellar Purkinje cells (PCs). Different levels of intracellular 
calcium mediate the induction of LTD and LTP between parallel fibres (PF) and PCs. The coincident activation of 
PF and climbing fibre (CF) input evokes large concentrations of intracellular calcium, which in turn lead to LTD. In 
contrast, the induction of LTP is induced by small increases in intracellular calcium concentration in response to PF 
input alone. 

Research has pointed out that complex interactions between many intracellular signalling components underlie 
cerebellar plasticity. In particular, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein 
phosphatase 2B (PP2B) mediate the phosphorylation and dephosphorylation of AMPA receptors, regulating LTD 
and LTP in cerebellar PCs. The CaMKII holoenzyme comprises different isoforms such as αCaMKII and βCaMKII. 
Although βCaMKII is the predominant isoform of CaMKII in the cerebellum, its role in cerebellar learning and 
memory has yet to be established.  

Recent experiments with Camk2b knockout mice, which lack the β isoform of CaMKII, have addressed the role 
of βCaMKII in plasticity in cerebellar PCs. These studies have revealed that βCaMKII regulates the direction of 
plasticity at PF-PC synapses [1]. Experimental protocols that induce LTP in wild-type mice, which contain both α 
and βCaMKII isoforms, result in LTP in knockout mice that lack βCaMKII, and vice versa. However, the 
underlying mechanism that may explain these experimental findings is not clear. Van Woerden et al. [1] have 
suggested that the binding of CaMKII to F-actin could underlie the switch of direction of synaptic plasticity. The 
βCaMKII, but not αCaMKII, isoform can bind to F-actin, which could result in clustering of the CaMKII 
holoenzyme to F-actin, making it unavailable for phosphorylation of AMPA receptors. 

To investigate the role of βCaMKII in the regulation of bidirectional plasticity at PF-PC synapses, we developed 
a simple kinetic model of the phosphorylation and dephosphorylation of AMPA receptors by CaMKII and PP2B. 
The model is based on our recent model of CaMKII activation by calcium/calmodulin [2,3]. We then included the 
binding of F-actin to CaMKII to simulate the induction of plasticity in wild-type mice, while in the knockout mice 
that lack βCaMKII F-actin binding was omitted. 

Our simulation results replicate the experimental observations by van Woerden et al. [1] and unravel how the 
βCaMKII isoform can control the sign reversal of plasticity at PF-PC synapses. We demonstrate that the binding of 
F-actin to βCaMKII can indeed contribute to the control of bidirectional plasticity at these synapses. At low 
concentrations of calcium in response to PF stimulation alone, the loss of F-actin binding in the knockout mice 
enhances the availability of active CaMKII when compared to the wild-type mice. This mechanism leads to the 
induction of LTD instead of LTP. However, for the large increases of calcium concentrations that result from 
coincident activation of PF and CF, the reduction in the CaMKII concentration in the knockout mice leads to AMPA 
receptor dephosphorylation by PP2B, favouring the induction of LTP rather than LTD. 
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Abstract. We have modeled the electric potential profile, across the
membranes of the ganglion neuron and neuroblastoma cells. We consi-
dered the resting and action potential states, and analyzed the influence
of fixed charges of the membrane on the electric potential of the surface
of the membranes of these cells, based on experimental values of mem-
brane properties. The ganglion neuron portrays a healthy neuron, and
the neuroblastoma cell, which is tumorous, represents a pathologic neu-
ron. We numerically solved the non-linear Poisson-Boltzmann equation,
by considering the densities of charges dissolved in an electrolytic solu-
tion and fixed on both glycocalyx and cytoplasmic proteins. We found
important differences among the potential profiles of the two cells.

Keywords: Membrane model, electric potential, electrophoresis,
neuroblastoma.

1 Introduction

We study the influence of surface electric charges on the stability of the neural
cell membrane, by modeling the electric potential profile. This profile describes
the behavior of the potential along the axis perpendicular to the cell membrane,
from the outer bulk region to the inner one [1,2,3]. It has been shown that the
electrophoretic behavior of neuroblastoma cells provides information about its
surface charge, in different phases of the cellular cycle [4,5]. This evidence shows
that membrane anionic groups are mainly responsible for the surface charges of
murine neuroblastoma cells. These groups are distributed in a 0.2 e/nm3 density,
in a layer that covers the cell’s outer surface, with a 10 nm thickness.

We compare the effects of fixed charges in the glycocalyx and those associa-
ted with cytoplasmic proteins, on the electric potential on the surfaces of the
membranes of the lipid bilayer of the ganglion neuron and the neuroblastoma
cells, considering both natural states of neuronal cells, i.e. the resting and the
action potential (AP) states. The AP state refers to the state in which the neu-
ron has been stimulated enough and is firing. We also calculated the potential
profile across the membrane, including data from electrophoretic experiments

T. Honkela et al. (Eds.): ICANN 2011, Part II, LNCS 6792, pp. 103–110, 2011.
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in our model. We have thus applied a model devoloped in [1,2,3] to the gan-
glion neuron, which is a healthy neuron, and to the neuroblastoma cell, which
is a tumorous pathologic neuron. Although there are models for studying mor-
phological and mechanical properties of cell membranes, we know of no other
models for predicting the electric potential along an axis perpendicular to the
membrane.

2 The Membrane Model

In the neuron membrane model we have adopted [2] shown in Fig. 1, four different
regions are represented: extracellular, glycocalyx, bilayer and cytoplasm. The bi-
layer thickness is h and the width of the glycocalyx is hg. Surface potentials are
represented as φ−∞e for the potential in −∞ in the electrolytic extracellular
phase, φSeg for the potential on the surface between the extracellular and glyco-
calyx regions, φSgb

is the potential on the surface between the glycocalyx and the
bilayer, φSbc

is the potential on the surface between the bilayer and cytoplasm,
and φc+∞ is the potential in +∞, i.e. in the bulk cytoplasmic region.

Fig. 1. Model for a neuron membrane. Different regions are represented, with the
corresponding symbols for the potentials in the regions and on surfaces dividing regions.
Symbols are explained in the text.

2.1 The Electric Potential in the Membrane Regions

In order to determine the potential profile across the membrane, we first consi-
dered as in [2] the Poisson equation, including the fixed charges on the surfaces
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∇2φi(x, y, z) =
−4π(ρi + ρfi)

εi
for i = ext, g, b, c , (1)

where φi(x, y, z) is the electric potential in any region i; i = ext for the outer
electrolytic region; i = g for the glycocalyx; i = b for the bilayer; i = c for the
cytoplasm. The volumetric charge density due to the electrolytes in solution of
area i is ρi, and ρfi is the density of charges fixed onto proteins of area i.

In a situation where the Boltzmann condition for equilibrium of the electro-
chemical potential for ionic solutes in a diluted solution holds, it is possible to use
the Boltzmann distribution with the above Poisson equation Eq. (1) [2]. Con-
sidering a homogeneous charge distribution in directions x and y, Boltzmann
equilibrium and Eq. (1), we obtain [2,6]

∂

∂z
φi(z) =

√
Qmi coshβ (φi − φSi)

β
+

Qdi cosh2 β (φi − φSi)

β
+ giφi + Wi ,

(2)
where

Qmi =

[
8πeη1,Si

εi

]
, Qdi =

[
16πeη2,Si

εi

]
, β =

e

KT
, and gi = −4πρfi

εi
, (3)

and φi is the electric potential at any point within region i; φSi is the limiting
electric potential at surface Si; e is the electron charge; K is Boltzmann’s cons-
tant; T is the temperature; εi is the dielectric constant in region i; Wi is an
integration constant for region i; the monovalent ionic concentration is η1,Si

and the divalent ionic concentration is η2,Si , both on surface Si. Eq. (2) is the
Poisson-Boltzmann equation for the electric potential in region i [2,6].

2.2 Surface Potentials

Considering the discontinuity of the displacement of the electric field vector on
the surface Sgb and considering the solution of the Poisson-Boltzmann equation
in the cytoplasmic and electrolytic regions, we have obtained [2,6]

φSbc
= φSgb

− 4πQSgb
h

εb
+

εgh

εb

√
α , (4)

where,

α = 2
Qmg sinh2(β

2

(
φg − φSeg

)
)

β
+

Qdg sinh2(β
(
φg − φSeg

)
)

β
+

gg

(
φg − φSeg

)
+

(
4πQSeg − εext∇φext|Seg

εg

)2

, (5)

and QSgb
and QSeg stand for the charge density on the surfaces between the

regions, glycocalyx and the bilayer, and electrolytic and glycocalyx, respectively.
Applying the same procedure for the Sbc surface,
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φSgb
= φSbc

− 4πQSbc
h

εb
+

εch

εb
×

√

2
Qmc sinh2 β

2 (φc − φc+∞)

β
+

Qdc sinh2 β (φc − φc+∞)

β
+ gc (φc − φc+∞) .(6)

We have used data obtained from experimental results [5,7] for values of pa-
rameters, in order to solve the first order ordinary differential equations, obtained
from the Poisson-Boltzmann Eq. (2), for the different regions of the membrane.
Some experimental values were obtained from electrophoresis experiments. Since
each kind of cell presents a specific electrophoretic mobility, the values of some
parameters are different for the ganglion neuron and the neuroblastoma, in our
calculations. Due to space limitations, we refer the reader to [6] for a table with
all experimental values of the paramenters used to solve the equations. We have
thus examined the influence of parameters representing electric properties of the
membrane, over resting and AP states, analyzing the differences between the
healthy ganglion neuron and a neuroblastoma cell.

We implemented an algorithm for finding roots of functions, to calculate φSgb

and φSbc
from Eqs. (4) and (6), in C. The potential φSeg was calculated from

data obtained from electrophoretic experiments. We numerically calculated val-
ues of the potential profiles with Eq. (2), using the Runge-Kutta method, also
in C.

3 Results

We examined the bilayer surface potentials as a function of ρfc/ρfg (ρfc and ρfg

are the fixed charge densities in the cytoplasm and in the glycocalyx, respecti-
vely). Figs. 2 and 3 present the behavior of φSgb

and φSbc
with the variation

of ρfc/ρfg, considering the same QSbc
value, for both cells. During the resting

potential state, results in Fig. 2 show that, while φSgb
remains constant while

increasing ρfc/ρfg, by making the fixed charges in the cytoplasm more negative
(decreasing negative values of ρfc), φSbc

decreases expressively, for both QSgb
= 0

(Fig. 2(a)) and QSgb
�= 0 (Fig. 2(b)). However, comparing Figs. 2(a) and 2(b), we

see that the increase of negativity of QSgb
visibly decreases the value of φSgb

, for
the ganglion neuron. The same behavior is observed, when comparing Figs. 3(a)
and 3(b). During the AP state (Fig. 3), the potential φSbc

of both cells shows
a quick drop, when ρfc/ρfg < 20, becoming almost constant for ρfc/ρfg > 20.
However, φSgb

remains constant for all values of ρfc/ρfg.
In Fig. 4, we compared the electric potential profile across the membranes

of both cells. We verify that the gradual decrease of the potential along the
z axis, up to the surface of the glycocalyx (z < −hg − h/2) is higher for the
ganglion neuron than for the neuroblastoma cell, and both curve shapes are
similar. Through the glycocalyx (−hg − h/2 < z < −h/2) we can see that
the fall continues for the ganglion neuron, but is negligible for the cancerous
cell. During the resting potential state, the value of the intracellular poten-
tial increases exponentially, from the bilayer surface to the bulk cytoplasmic
region.
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Fig. 2. φSbc and φSgb as a function of ρfc/ρfg, during resting state, on the ganglion neu-

ron and neuroblastoma membranes. In both figures, QSbc = −5.4×10−2 C/m2. QSeg =
−0.012 e/nm2 and φR = −69 mV for the ganglion neuron. QSeg = −0.02 e/nm2 and
φR = −64 mV for the neuroblastoma. (a) QSgb = 0. (b) QSgb = −3.20 × 10−3 C/m2,

for the neuroblastoma; and QSgb = −1.92 × 10−3 C/m2, for the ganglion neuron. The
resting transmembrane potential is φR.

4 Conclusions

Simulation experiments maintaining constant values of QSbc
and QSeg , resulted

in no detectable changes in φSgb
, but φSbc

of both neurons decreases gradually
with the increase of ρfc/ρfg, by making the fixed charges in the cytoplasm more
negative (decreasing negative values of ρfc), during the resting potential state
(Fig. 2) and also during the AP state (Fig. 3). For the AP state, the drop in
the values of φSbc

occurred mainly for the small values of ρfc/ρfg, tending to
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Fig. 3. φSbc and φSgb as a function of ρfc/ρfg, during action state, on ganglion neuron

and neuroblastoma membranes. In all curves, QSbc = −5.4 × 10−2 C/m2. QSeg =
−0.012 e/nm2 and φR = −69 mV for the ganglion neuron. QSeg = −0.02 e/nm2 and
φR = −64 mV for the neuroblastoma. (a) QSgb = 0. (b) QSgb = −3.20 × 10−3 C/m2,

for the neuroblastoma; and QSgb = −1.92 × 10−3 C/m2, for the ganglion neuron.

become constant for higher values. Comparing Figs. 2(a) and 2(b), we verify,
for QSgb

�= 0, that φSgb
for the ganglion neuron is more negative than when

QSgb
= 0, which was the only detectable alteration with this change in charge

value. The results obtained for the ganglion neuron match those for the squid
axon membrane found by Cortez et al. [2]. Using a model with similar equations
as we used in this study, the authors observed variations of the surface potentials
with a change in surface charge QSgb

compatible with those observed here.
During the resting potential state, the net value of the protein charge in the cy-

toplasm is predominantly negative [2]. However, in our simulation experiments,
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Fig. 4. Electric potential profile, during the resting state, across the ganglion neuron
membrane, for φSbc = −193.39mV, φSgb = −28.42mV, φSeg = −25.10mV, QSgb =

−1.92 × 10−3C/m2 and φR = −69mV. Same profile for the neuroblastoma membrane,
for φSbc = −199.08mV, φSgb = −20.65mV, φSeg = −19.52mV, QSgb = −3.20 ×
10−3C/m2, φR = −64mV. In both curves, QSbc = 30 × QSgb and ρfc = 20ρfg.

the contribution of these charges to the inner potential profile was smaller than
the effect of the fixed charges in the inner surface of the bilayer, due to the cur-
vature of the potential in this region, whereas the calculated value of φSbc

was
smaller than the bulk region φSbc

. It is known that the neuroblastoma cells, like
all other cancerous cells, multiply themselves quickly. Alterations of the dynam-
ics of cellular multiplication implicate changes in the synthesis, structure and
degradation of the membrane components [8], which result in deformations in
structure and composition of the plasma membrane surface [9]. These deforma-
tions implicate changes in the electric charge of the membrane.

Our results indicate that the alteration of the fixed electric charges of the
membrane influences the behavior of its surface electric potential. Although we
used the same model and equations for both types of cells, contrary to what was
observed for the ganglion neuron, using the parameters of the neuroblastoma
cells led to solutions of the equation for the electric potential, where a change
of values of QSgb

and ρfc charges practically didn’t affect the surface potentials.
It corroborates results of experimental observations, that the resting potential
and the generation of action potentials in human neuroblastoma cells depend on
the degree of the morphologic differentiation of the cell. Some of these cells are
relatively non-excitable [10,11]. These properties should affect the transmission
of signals through networks of these neurons and the functions of storage and
communication of information.

The different values of the potential in the glycocalyx for the neuroblastoma
and the spinal ganglion neuron must represent important alterations in the trans-
port function of the membrane, due to the outer electric field, which is responsible
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for the orientation of the charged particles which are closer to the membrane.
Also, the potential at the outer surface of the membrane is determinant for many
cell processes, such as the beginning of the process of triggering of the action
potential, which depends on the opening of specific Na+ channels.
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We have studied the behavior of the electric potential
profile across the membrane of the ganglion neuron and
the neuroblastoma cell. We considered the physico-
chemical conditions during the resting and action
potential (AP) states of the neuronal cells, and analyzed
the influence of the fixed charges of the membrane on
the surface electric potential of these cells, based on
values of electric parameters obtained from experimen-
tal results. The ganglion neuron portrays a healthy
neuron and the neuroblastoma cell, which is a tumorous
cell, represents a pathologic neuron. We solved the non-
linear Poisson-Boltzmann equation, by considering the
volumetric charge densities due to charges dissolved in
an electrolytic solution, and also charges fixed on both
glycocalyx and cytoplasmic proteins.
Data obtained from experimental results [1,2] have

been used to solve the first order ordinary differential
Poisson-Boltzmann equations [3,4], which have been
obtained for the regions of the membrane model we
have adopted. Therefore, we have examined the influ-
ence of the electric parameters during resting and AP
states, analyzing the differences between the healthy
ganglion neuron and a neuroblastoma cell.
We implemented an algorithm for finding roots of

functions with a program in C language, to calculate the
surface potentials between the glycocalyx and the
bilayer, and between the bilayer and the cytoplasm,
regions of the membrane. The surface potential between
the electrolytic region and the glycocalyx has been
calculated from electrophoretic experimental data. We
have calculated the potential profiles using the Runge-
Kutta method, also implemented in C language.

We analyzed the electric potential profile across the
membranes. Comparing both neuronal types, we verified
that the gradual potential fall from the electrolytic
region to the surface of glycocalyx is higher for the
ganglion neuron than for the neuroblastoma cell, and
both curve shapes are similar. Through the glycocalyx
we could see that the fall continues for the ganglion
neuron, but this fall is negligible for the cancerous cell.
The intracellular potential, during the resting state,
increases exponentially from the bilayer surface to the
bulk cytoplasmic region.
During the resting state, the net value of the protein

charge in the cytoplasm is predominantly negative [4].
However, in our neuron model the contribution of these
charges to the inner potential profile was smaller than
the effect of the fixed charges in the inner surface of the
bilayer, due to the curvature of the potential in this
region, whereas the calculated potential on the surface
between the bilayer and the cytoplasm was smaller than
the potential in the bulk region. It is known that the
neuroblastoma cells, like all the other cancerous cells,
multiply themselves quickly. Alterations of the dynamics
of the cellular multiplication cause changes in the synth-
esis, structure and promotes degradation of the mem-
brane components [5], which results in deformations in
structure and composition of the plasma membrane.

Conclusions
Our results may also contribute to the understanding
of the neuroblastoma resistance to certain chemothera-
peutic treatments. The small change of the surface
potential as a response to changes in the culture (pH,
for instance) and in the fixed electric charges, due to
alterations in the composition and structure of the
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membrane, may be the electric property responsible
for the low pharmacological response.
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Electrical signals underlie the propagation of information in the nervous system. It is known that neuronal cells 
can generate electric potentials by diffusing ions across the neuronal membrane. We have previously studied the 
effects of electric charges fixed onto the inner surface of the membrane, on the potential of the membrane surfaces 
of healthy and cancerous neuronal cells [1,2]. Based on this work, we have developed a computational model that 
simulates the electric potential profile across neuronal membranes. This profile shows the behavior of the electric 
potential along the axis (z), perpendicular to the membrane, from the extracellular region to the inner cytoplasmic 
region. In particular, we compared the electric potential profile of the membranes of spinal ganglion and 
neuroblastoma cells, during the resting and action potential (AP) states. The spinal ganglion neurons represent 
healthy cells, while neuroblastomas denote tumorous neurons.  

To analyze the electric potential profile of neuronal membranes, we numerically solved the Poisson-Boltzmann 
equation [1,3]. The model considers the following electric charges: (i) fixed on surfaces of the glycocalyx and the 
lypidic bilayer, (ii) dissolved in the electrolytic solutions for regions of the membrane model we have adopted, and 
(iii) fixed on the cytoplasmic proteins. All parameter values are based on measurements collected from experimental 
observations [4,5]. 

For the resting and AP states of spinal ganglion neurons and neuroblastoma cells, simulation results indicate that 
the electric potential significantly decreases along the z axis from the extracellular region to the surface of the 
glycocalyx. The decay of the potential is more expressive for the neuroblastoma than for the ganglion neuron. An 
interesting observation is that the electric potential continues to decrease across the glycocalyx region of the spinal 
ganglion neuron. This however does not occur for the neuroblastoma cells, whose potential does not change in this 
region of the membrane. 

Because there is no electric charge within the lypidic bilayer, our results demonstrate linear variations of the 
potential across the bilayer of neuronal membranes. Furthermore, the intracellular potential of both spinal ganglion 
neurons and neuroblastoma cells exponentially increases from the inner membrane surface to the bulk cytoplasmic 
region during the resting state. However, during the AP state, the electric potential remains unchanged in the 
cytoplasm. 

Our simulation results match those obtained for the membrane of the squid axon [3], whose mathematical model 
is based on similar ordinary differential equations to those of this study. Moreover, the different behavior of the 
electric potential observed in the spinal ganglion when compared to the neuroblastoma cells, in the glycocalyx 
region, may explain the difference in the electrophoretic behavior of these cells, as observed in experiments [4,5]. 
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Abstract

We present a model for the electric potential profile across the membranes of neuronal cells. We considered
the resting and action potential states, and analyzed the influence of fixed charges of the membrane on its
electric potential, based on experimental values of membrane properties of the spinal ganglion neuron and
the neuroblastoma cell. The spinal ganglion neuron represents a healthy neuron, and the neuroblastoma
cell, which is tumorous, represents a pathological neuron. We numerically solved the non-linear Poisson-
Boltzmann equation for the regions of the membrane model we have adopted, by considering the densities
of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic proteins.
Our model predicts that there is a difference in the behavior of the electric potential profiles of the two
types of cells, in response to changes in charge concentrations in the membrane. Our results also describe
an insensitivity of the neuroblastoma cell membrane, as observed in some biological experiments. This
electrical property may be responsible for the low pharmacological response of the neuroblastoma to certain
chemotherapeutic treatments.

Keywords: neuronal membrane model, electric potential, electrophoresis, neuroblastoma

1. Introduction

Electrostatic forces affect the passive and active
transport of charged particles through biological
membranes. The flow rate of ions through the mem-
brane depends on the strength of the intramem-
branous electric field. These forces also affect the
robustness of some ligands of the membrane (Iglic
et al., 1997).

We study the influence of surface electric charges
on the stability of the cell membrane, by modeling
the electric potential profile. The profile describes
the behavior of the potential along the axis per-
pendicular to the cell membrane, from the outer
bulk region to the inner cytoplasmic region (Hein-
rich et al., 1982; Cortez and Bisch, 1993; Cortez
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Email addresses: thiagomatos@ime.uerj.br (Thiago
M. Pinto), roseli@ime.uerj.br (Roseli S. Wedemann),
ccortezs@ime.uerj.br (Célia M. Cortez)

et al., 2008; Cruz et al., 2000). We did not yet con-
sider time variations of the electric potential, and
treat only the electrostatic case in this work.

The electric potential on a cell surface is de-
termined as the difference of potential between
the membrane-solution interface and the bulk re-
gion (Iglic et al., 1997). It has been shown that
the electrophoretic behavior of neuroblastoma cells
provides information about their surface charges,
in different phases of the cellular cycle (Belan
et al., 1987; Dolgaya et al., 1985; Hernandez et al.,
1996). These experiments show that membrane an-
ionic groups are mainly responsible for the surface
charges of murine neuroblastoma cells (Hernandez
et al., 1996). It is known that neuroblastoma cells,
like all other cancerous cells, multiply quickly. Al-
terations of the dynamics of cellular multiplication
compromise the synthesis and structure of compo-
nents of the membrane, with possible degradation
of these components, promoting deformations of the
structure and composition of the plasma membrane
(Dehlinger and Schimke, 1971).
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We have applied a model developed by Cortez
and collaborators (Cortez and Bisch, 1993; Cortez
et al., 2008; Cruz et al., 2000) to the spinal gan-
glion neuron, which is a healthy neuron, and to the
neuroblastoma cell, which is a tumorous neuron.
With simulations of this model, we compare the ef-
fects of charges fixed onto the inner surface of the
membrane and those associated with cytoplasmic
proteins, on the electric potential on the surfaces of
the membranes of both types of cells, considering
both natural states of neurons, the resting and the
action potential (AP) states. The AP state refers to
the state in which the neuron has been stimulated
enough and is firing. We also calculated the po-
tential profile across the membrane, including data
from electrophoretic experiments in our model.

2. The Membrane Model

In the neuronal membrane model we have
adopted, shown in Fig. (1), four different regions
are presented: extracellular, glycocalyx, bilayer and
cytoplasm. The bilayer thickness is h and the width
of the glycocalyx is hg. Surface potentials are repre-
sented as φSeg for the potential on the surface Seg,
between the extracellular and glycocalyx regions,
φSgb is the potential on the surface Sgb, between
the glycocalyx and the bilayer, and φSbc is the po-
tential on the surface Sbc, between the bilayer and
cytoplasm. We denote by φ−∞ and φ+∞ the poten-
tials at −∞, in the electrolytic extracellular phase,
and at +∞, in the bulk cytoplasmic region, respec-
tively.

2.1. The Electric Potential in the Membrane Re-
gions

To determine the potential profile across the
membrane, we first consider the Poisson equa-
tion (Cortez and Bisch, 1993; Verwey and Over-
beek, 1948),

∇2φi(x, y, z) =
−4πρi(z)

εi
,

for i ∈ {ext, g, b, c} , (1)

where φi(x, y, z) is the electric potential in any re-
gion i; i = ext for the outer electrolytic region;
i = g for the glycocalyx; i = b for the bilayer; and
i = c for the cytoplasm. The volumetric charge
density due to the electrolytes in solution of area i
is ρi(z), and εi is the dielectric constant in region i.

There is no charge in the bilayer (i = b), due to its
hydrophobic property, and thus ρb(z) = 0.

We consider the further boundary conditions to
calculate the constants of integration:

1. When z tends to an extreme value, z → −∞
(in region ext) or z → +∞ (in the cytoplasm),
the electric potential tends to limiting values
represented by φ−∞ and φ+∞, respectively.
Ionic concentrations assume values ηγ,ext(z)
and ηγ,c(z), where γ represents an ion, such
as Na+, K+, or Cl−.

2. When z = −hg − h/2 and z = ±h/2, we con-
sider the continuity of the electric potentials,
φSeg , φSgb and φSbc , respectively.

3. There is a discontinuity of the electric field vec-
tor on the surfaces between regions.

2.1.1. The Effect of Fixed Charges

When we include the effect of fixed charges in the
solution, Poisson Eq. (1) becomes

∇2φi(x, y, z) =
−4π(ρi(z) + ρfi)

εi
, (2)

where, as in (Cortez et al., 2008), ρfi is the density
of charges fixed onto proteins of area i (ρfext = 0,
for the outer electrolytic region, ρfg for the glyco-
calyx, and ρfc for the cytoplasm).

The volumetric charge density ρi(z) is the sum
of the charge densities of positive and negative ions
in the solution (Cortez and Bisch, 1993)

ρi(z) =
∑

γ+

eVγ+ηγ+,i(z) +
∑

γ−

eVγ−ηγ−,i(z) , (3)

where γ+ represents a positive ion, and γ−, a nega-
tive ion. The molar density for an ion γ in region i
is ηγ,i(z), and Vγ is the valency of ion γ. For exam-
ple, VCa2+ = 2 and VCl− = −1. The absolute value
of the electron charge is e. Due to the electroneu-
trality condition (Cortez and Bisch, 1993; Cortez
et al., 2008), we can write

∑

γ+

eVγ+ηγ+,i(z) = −
∑

γ−

eVγ−ηγ−,i(z) . (4)

In our model, we suppose that the dimensions of
the membrane tend to infinity, in the x and y di-
rections, perpendicular to z, and that the distribu-
tion of charges in these directions is homogeneous
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Figure 1: Model for a neuronal membrane. Different regions are presented, with the corresponding symbols for the potentials
on the surfaces dividing regions. Symbols are explained in the text.

(Cortez and Bisch, 1993; Cortez et al., 2008). Con-
sidering this and substituting Eq. (3) in Eq. (2), we
obtain

d2φi(z)

dz2
= −4π

εi


∑

γ+

eVγ+ηγ+,i(z)+

∑

γ−

eVγ−ηγ−,i(z)


+ ai , (5)

where

ai = −4πρfi
εi

. (6)

To determine ηγ,i(z), we use the equation for the
electrochemical potential, due to an ionic solute in
a diluted solution (Cortez and Bisch, 1993; Cortez
et al., 2008)

µγ,i(z) = µ0
γ,i(P, T ) +KTln(ηγ,i(z)) +

eVγφi(z) , (7)

where K is Boltzmann’s constant, T is the tem-
perature, µ0

γ,i(P, T ) is the standard chemical po-
tential, dependent on pressure and temperature,
KTln(ηγ,i(z)) is a term that expresses the influence
of the ionic concentration ηγ,i(z), and eVγφi(z) is
the contribution of the electric potential.

Applying the ~∇ operator in Eq. (7) (Cortez et al.,
2008) and again considering the homogeneous dis-
tribution of charges in the directions perpendicular
to z, we verify that

dµγ,i(z)

dz
=
dµ0

γ,i(P, T )

dz
+

KT
d

dz
ln(ηγ,i(z)) + eVγ

dφi(z)

dz
. (8)

In a situation where the Boltzmann condition for
equilibrium of the electrochemical potential for

ionic solutes in a diluted solution holds,
dµγ,i(z)
dz = 0

and
dµ0
γ,i(P,T )

dz = 0 (Cortez et al., 2008), and Eq. (8)
becomes

0 = KT
d

dz
ln(ηγ,i(z)) + eVγ

dφi(z)

dz
. (9)

The integration of Eq. (9) from z in one of the
three regions, extracellular, glycocalyx and cyto-
plasm, to the closest surface in the direction of the
bilayer, such as z in −hg − h/2 < z < −h/2 to
−h/2, or z in h/2 < z < +∞ to h/2, considering
the electrolytes distributed over the adjacency of
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the bilayer gives
∫ ηγ,Sij

ηγ,i(z)

KT
d

dηγ,i
ln(ηγ,i(z))dηγ,i =

−
∫ φSij

φi(z)

eVγ
dφi(z)

dφi
dφi , (10)

where φSij is the electric potential on surface Sij be-
tween regions i and j, and ηγ,Sij is the ionic concen-
tration of γ on surface Sij . The solution of Eq. (10)
results in

ηγ,i(z) = exp

(−eVγ∆φi(z)

KT

)
ηγ,Sij , (11)

where
∆φi(z) = φi(z)− φSij . (12)

The molar density for a positive γ ion is thus
given by

ηγ+,i(z) = exp

(−eZ
γ+∆φi(z)

KT

)

ηγ+,Sij , (13)

and for a negative γ ion

ηγ−,i(z) = exp

(
eZ
γ−∆φi(z)

KT

)

ηγ−,Sij , (14)

where
Zγ = |Vγ | . (15)

Equations (13) and (14) are the Boltzmann dis-
tribution of charges due to the presence of positive
and negative γ ions (Verwey and Overbeek, 1948),
respectively, in the phases adjacent to the bilayer.
Substituting Eqs. (13) and (14) in Eq. (5), we ob-
tain

d2φi(z)

dz2
= −4π

εi
×


∑

γ+

eZγ+ exp

(−eZ
γ+∆φi(z)

KT

)

ηγ+,Sij −

∑

γ−

eZγ− exp

(
eZ
γ−∆φi(z)

KT

)

ηγ−,Sij


+

ai . (16)

We can rewrite Eq. (16), considering Eq. (4), as

d2φi(z)

dz2
= −

∑

γ

4πeZγηγ,Sij
εi

×
(

exp

(−eZγ∆φi(z)

KT

)
− exp

(
eZγ∆φi(z)

KT

))
+

ai . (17)

If we consider that

exp

(−eZγ∆φi(z)

KT

)
− exp

(
eZγ∆φi(z)

KT

)
=

−2 sinh

(
eZγ∆φi(z)

KT

)
, (18)

we can write Eq. (17) as

d2φi(z)

dz2
=

∑

γ

(
8πeZγηγ,Sij

εi
sinh

[
eZγ∆φi(z)

KT

])
+

ai . (19)

Our model only considers mono (Z1 = 1) and
divalent (Z2 = 2) ions, as in (Cortez et al., 2008).
We thus limit the γ sum to

d2φi(z)

dz2
=

[
8πeη1,Sij

εi

]
sinh

(
e∆φi(z)

KT

)
+

[
16πeη2,Sij

εi

]
sinh

(
2e∆φi(z)

KT

)
+

ai . (20)

To simplify further calculations, we denote

Ai =
8πeη1,Sij

εi
, Bi =

16πeη2,Sij
εi

,

β =
e

KT
, (21)

and Eq. (20) may be expressed as

d2φi(z)

dz2
= Ai sinh (β∆φi(z)) +

Bi sinh (2β∆φi(z)) + ai . (22)

Considering that

sinh (2β∆φi(z)) =

2 sinh (β∆φi(z)) cosh (β∆φi(z)) , (23)

Eq. (22) can be rewritten as

d2φi(z)

dz2
=

Ai sinh (β∆φi(z)) +

2Bi sinh (β∆φi(z)) cosh (β∆φi(z)) +

ai . (24)

Multiplying Eq. (24) by

2dφi = 2
dφi(z)

dz
dz , (25)
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and integrating, we have
∫

2
d2φi(z)

dz2
dφi(z)

dz
dz =

∫
2Ai sinh (β∆φi(z)) dφi +

∫
4Bi sinh (β∆φi(z)) cosh (β∆φi(z)) dφi +

∫
2aidφi , (26)

whose solution is
(
dφi(z)

dz

)2

=
2Ai cosh (β∆φi(z))

β
+

2Bi cosh2 (β∆φi(z))

β
+ 2aiφi(z) +

Wi , (27)

where Wi is a constant of integration for region i.
To further simplify symbolic representation of the

equations, considering Eqs. (6) and (21), we denote

Qmi = 2Ai , Qdi = 2Bi , and,

gi = 2ai . (28)

Eq. (27) is thus expressed as

(
dφi(z)

dz

)2

=
Qmi cosh (β∆φi(z))

β
+

Qdi cosh2 (β∆φi(z))

β
+ giφi(z) +

Wi . (29)

We can rewrite Eq. (29) as

dφi(z)

dz
=
√
ξi(z) + giφi(z) +Wi , (30)

where

ξi(z) =
Qmi cosh (β∆φi(z))

β
+

Qdi cosh2 (β∆φi(z))

β
. (31)

Equation (30) is the Poisson-Boltzmann equation
for the electric potential in any region i (Cortez
et al., 2008; Pinto, 2010).

2.1.2. Solution of the Poisson-Boltzmann Equation
for the Extracellular Region (i = ext)

In the extracellular region, the effect of fixed
charges is negligible (ρfext = 0 and gext = 0), and

the solution of Eq. (30) therefore only considers the
electrolytic charges. Moreover, the electric poten-
tial in z = −∞ is constant and we can write

dφext(z)

dz

∣∣∣∣
(z=−∞)

= 0 . (32)

In order to use Eq. (30) to calculate the potential
in the extracellular region, we must find the value of
Wext. We thus consider an imaginary surface S−∞,
perpendicular to the z−axis, at z1 � (−hg − h/2),
where ρfext = 0. We then integrate Eq. (30) from
another position z2 < z1 to z1. Since both z1 and z2
are in the−∞ region, φ−∞ = φext(z1) = φext(z2) =
φS−∞ , and ∆φext(z2) = φext(z2) − φS−∞ = 0. We
can then substitute Eq. (32) and ∆φext(z2) = 0 in
Eq. (30), to calculate Wext as

0 =
Qmext
β

cosh (0) +
Qdext
β

cosh2 (0) +

Wext , (33)

and

Wext =
−Qmext −Qdext

β
. (34)

We then substitute Eq. (34) in Eq. (30) to obtain
the differential equation for φext(z), for any position
z < (−hg − h/2), in the extracellular region

dφext(z)

dz
=
√
λext(z) + σext(z) , (35)

where

λext(z) =
Qmext [cosh (β∆φext(z))− 1]

β
,

σext(z) =
Qdext

[
cosh2 (β∆φext(z))− 1

]

β
,

and, ∆φext(z) = φext(z)− φ−∞ . (36)

Equation (35) can be simplified to

dφext(z)

dz
=
√
χext(z) + ωext(z) , (37)

where

χext(z) = 2
Qmext sinh2

(
β
2 ∆φext(z)

)

β
,

and,

ωext(z) =
Qdext sinh2 (β∆φext(z))

β
. (38)
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2.1.3. Solution of the Poisson-Boltzmann Equation
for the Cytoplasmic Region (i = c)

Because, in the cytoplasmic region, the potential
in z = +∞ is also constant,

dφc(z)

dz

∣∣∣∣
(z=+∞)

= 0 . (39)

As we did for the extracellular region, to calcu-
late the potential in the cytoplasmic region using
Eq. (30), we must first find the value of Wc. We
thus consider an imaginary surface S+∞, perpen-
dicular to the z−axis, at z3 � (h/2). We then
integrate Eq. (30) from another position z4 > z3
to z3. As both z3 and z4 are in the +∞ region,
φ+∞ = φc(z3) = φc(z4) = φS+∞ , and ∆φc(z4) =
φc(z4) − φS+∞ = 0. We thus substitute Eq. (39)
and ∆φc(z4) = 0 in Eq. (30), to obtain Wc as

0 =
Qmc
β

cosh (0) +
Qdc
β

cosh2 (0) +

gcφ+∞ +Wc . (40)

The constant of integration Wc is

Wc =
−Qmc −Qdc

β
− gcφ+∞ . (41)

We then substitute Eq. (41) in Eq. (30) to ob-
tain the differential equation for φc(z), for any
z > (h/2), in the cytoplasmic region

dφc(z)

dz
=
√
λc(z) + σc(z) + gc∆φc(z) , (42)

where

λc(z) =
Qmc [cosh (β∆φc(z))− 1]

β
,

σc(z) =
Qdc

[
cosh2 (β∆φc(z))− 1

]

β
,

and, ∆φc(z) = φc(z)− φ+∞ . (43)

Equation (42) can be simplified to

dφc(z)

dz
=
√
χc(z) + ωc(z) + gc∆φc(z) , (44)

where

χc(z) = 2
Qmc sinh2

(
β
2 ∆φc(z)

)

β
, and,

ωc(z) =
Qdc sinh2 (β∆φc(z))

β
. (45)

2.1.4. Solution of the Poisson-Boltzmann Equation
for the Glycocalyx Region (i = g)

We consider that the potential φSeg on the sur-
face Seg is

dφg(z)

dz

∣∣∣∣
(z=−hg−h/2)

ẑ = ~Eg|Seg , (46)

where ẑ is the unit vector in the z direction, and
~Ek|Sij is the electric field in region k, ~Ek(zij), at zij ,
the position of surface Sij between regions i and j,

e.g., ~Eg|Seg = ~Eg(−hg − h/2) is the electric field in
the glycocalyx region at the position of surface Seg.

In order to use Eq. (30) to calculate the potential
in the glycocalyx region, we need to find the value
of Wg. We thus solve Eq. (30) at z = −hg−h/2, on
the surface Seg, and take φg(−hg−h/2) = φSeg , and
∆φg(−hg − h/2) = φg(−hg − h/2)− φSeg = 0. We
can then substitute Eq. (46) and ∆φg(−hg−h/2) =
0 in Eq. (30), to calculate Wg as

(
~Eg|Seg

)2
=
Qmg
β

cosh(0) +

Qdg
β

cosh2(0) +

ggφSeg +Wg . (47)

The constant of integration Wg, for the glycocalyx
region, is therefore

Wg =
(
~Eg|Seg

)2
−
(
Qmg +Qdg

β

)
−

ggφSeg . (48)

We then substitute Eq. (48) in Eq. (30) to obtain
the differential equation for φg(z), for any position
(−hg−h/2) < z < (−h/2), in the glycocalyx region

dφg(z)

dz
=
√
λg(z) + σg(z) + gg∆φg(z) + ~Eg|2Seg ,

(49)
where

λg(z) =
Qmg [cosh (β∆φg(z))− 1]

β
,

σg(z) =
Qdg

[
cosh2 (β∆φg(z))− 1

]

β
,

and, ∆φg(z) = φg(z)− φSeg . (50)

Equation (49) can be further simplified to

dφg(z)

dz
=
√
χg(z) + ωg(z) + gg∆φg(z) + ~Eg|2Seg ,

(51)
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where

χg(z) = 2
Qmg sinh2

(
β
2 ∆φg(z)

)

β
, and,

ωg(z) =
Qdg sinh2 (β∆φg(z))

β
. (52)

2.1.5. Solution of the Poisson-Boltzmann Equation
for the Bilayer (i = b)

As mentioned earlier, because the bilayer is
highly hydrophobic, ρb(z) = 0 (Cortez and Bisch,
1993; Cortez et al., 2008). Equation (2) assumes
the form (Cortez et al., 2008)

∇2φb(x, y, z) = 0 , (53)

and its solution is a family of linear functions. The
electric field within the bilayer (see Eq. (58)), ~Eb,
is therefore (Cortez et al., 2008)

~Eb =
φSgb − φSbc

h
ẑ . (54)

2.2. Surface Potentials

In order to solve the differential Eqs. (37), (44)
and (51) for the extracellular, cytoplasmic and gly-
cocalyx regions of the neuronal membrane, respec-
tively, we must know the values of the surface po-
tentials φSeg , φSgb and φSbc . Although membrane
surface potentials in cells cannot be measured ex-
perimentally, it is possible to obtain analytical pre-
dictions for the values of φSeg , φSgb and φSbc , from
basic electrostatic relations, as we will now show.

Considering the surface densities of electric
charges, Gauss’ law, and the discontinuity of the
electric field vector on the surfaces Seg, Sgb and
Sbc, we obtain (Cortez et al., 2008; Pinto, 2010)

εg ~Eg|Seg − εext ~Eext|Seg = 4πQSeg ẑ , (55)

εb ~Eb|Sgb − εg ~Eg|Sgb = 4πQSgb ẑ , and (56)

εc ~Ec|Sbc − εb ~Eb|Sbc = 4πQSbc ẑ , (57)

respectively, where ~Eb|Sgb = ~Eb|Sbc = ~Eb (see
Eq. (54)). In the above, QSeg , QSgb and QSbc stand
for the charge density on the Seg, Sgb and Sbc sur-
faces, respectively.

As

~Ei = −~∇φi(z) = −dφi(z)
dz

ẑ , (58)

in order to determine the discontinuity of the elec-
tric field vector on the surfaces Seg, Sgb and Sbc, we

substitute Eq. (58) in Eqs. (55), (56) and (57), and
obtain

~Eg|Seg =
4πQSeg − εext dφext(z)dz |(z=−hg−h/2)

εg
ẑ ,

(59)

~Eb =
4πQSgb − εg dφg(z)dz |(z=−h/2)

εb
ẑ , and (60)

~Eb =
−4πQSbc − εc dφc(z)dz |(z=h/2)

εb
ẑ . (61)

As we have previously obtained the expression
that determines the electric field within the bilayer,
~Eb, we substitute Eq. (54) into Eqs. (60) and (61),
and obtain

φSbc = φSgb −
h

εb

(
4πQSgb − εg

dφg(z)

dz
|(z=−h/2)

)
, (62)

φSgb = φSbc −
h

εb

(
4πQSbc + εc

dφc(z)

dz
|(z=h/2)

)
, (63)

respectively.
Substituting Eqs. (51) and (59) in Eq. (62), we

determine the expression to calculate the surface
potential φSbc

φSbc = φSgb −
4πQSgbh

εb
+
εgh

εb

√
α , (64)

where

α = χg(−h/2) + ωg(−h/2) +

gg∆φg(−h/2) +
(

4πQSeg − εext dφext(z)dz |(z=−hg−h/2)
εg

)2

(65)

and here, ∆φg(−h/2) = φSgb − φSeg . In the same
manner, substituting Eq. (44) in Eq. (63), we de-
termine the expression to calculate the surface po-
tential φSgb

φSgb = φSbc −
4πQSbch

εb
− εch

εb

√
κ , (66)

where

κ = χc(h/2) + ωc(h/2) +

gc∆φc(h/2) , (67)

and here, ∆φc(h/2) = φSbc − φ+∞.
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The electric potential on the surface Seg, φSeg , is
determined from electrophoresis experiments (Dol-
gaya and Mironov, 1984; Dolgaya et al., 1985;
Mironov and Dolgaya, 1985) and the Helmholts-
Smoluchowski equation (Cortez and Bisch, 1993)

µ =
εiζi
4πνi

, (68)

where µ is the electrophoretic mobility; ζi = φSeg −
φ−∞ is the zeta potential; and νi is the viscosity of
region i. As, in our model, we define the potential
φ−∞ = 0, the surface potential φSeg is

φSeg =
4πνiµ

εi
. (69)

3. Model Calculations for Spinal Ganglion
Neurons and Neuroblastoma Cells

We have used data obtained from experimental
observations (Dolgaya and Mironov, 1984; Dolgaya
et al., 1985; Mironov and Dolgaya, 1985) for val-
ues of parameters, in order to solve the first or-
der ordinary differential equations, obtained from
the Poisson-Boltzmann Eq. (30), for the differ-
ent regions of the membrane. Some experimental
values were obtained from electrophoretic experi-
ments. Since each kind of cell presents a specific
electrophoretic mobility, the values of some param-
eters are different for the spinal ganglion neuron
and the neuroblastoma, in our calculations. Ta-
bles (1) and (2) show all experimental values of
the parameters used to solve the equations for the
spinal ganglion neuron and the neuroblastoma. The
difference φ+∞−φ−∞ is called the transmembrane
potential and is denoted as φR in the resting state,
and φA in the AP state. We have defined φ−∞ = 0
in our calculations, so that φR = φ+∞ in the rest-
ing state, and φA = φ+∞ in the AP state. We have
thus examined the influence of parameters repre-
senting electric properties of the membrane, on the
resting and AP states, and analyzed the differences
between the healthy spinal ganglion neuron and a
neuroblastoma cell.

We implemented an approximate heuristic for
finding roots of functions, to calculate φSgb and
φSbc from Eqs. (64) and (66) (see Appendix A).
As mentioned earlier, the potential φSeg was calcu-
lated with Eq. (69), from data obtained from elec-
trophoretic experiments.

As we included the density of charges fixed onto
proteins within the membrane regions in the Pois-
son Eq. (1), we obtained a non-linear Poisson-
Boltzmann Eq. (30), whose analytical solution has
not been found (Cortez and Bisch, 1993; Cortez
et al., 2008). We therefore calculated values of the
potential profiles with Eqs. (37), (44) and (51) nu-
merically, using the Runge-Kutta method.

4. Results from Simulations

With our mathematical model, we first inves-
tigate the effect of QSbc and ρfc on the electric
potential on the surfaces of the neuronal mem-
branes of the spinal ganglion and the neuroblas-
toma. However, there is little information in the
literature, regarding experimentally obtained quan-
tities related to electric charges, fixed within biolog-
ical membranes. This is mainly due to the difficul-
ties involved in obtaining these experimental mea-
surements. Therefore, we estimate values for fixed
charges in the cytoplasm (QSbc/QSeg and ρfc/ρfg),
as a function of known experimental data for fixed
electric charges in the glycocalyx, and examine the
behaviour of the potentials φSgb and φSbc .

Figure (2) shows the behavior of φSgb and φSbc
as a function of variations in QSbc . We notice that
for both the resting and AP states, a negative in-
crease of QSbc has almost no effect on the surface
potentials of both neuronal membranes. These vari-
ations in QSbc only determine a small gradual decay
of φSbc during the resting state of the cells. Val-
ues for φSgb and φSbc are different between these
types of cells, due to their specific membrane prop-
erties. We also observe that φSgb remains constant
at −34.97 mV and −25.17 mV, respectively for the
spinal ganglion and neuroblastoma cells, when they
switch from the resting to AP states, and vice versa.
Moreover, during the AP state, φSbc assumes values
near the transmembrane potentials (Fig. (2B)).

We also examine the electric potential on the sur-
faces of the membranes of the healthy and the can-
cerous cells, in response to variations in the densi-
ties of charges fixed onto proteins of the cytoplasm.
Figure (3) presents the resulting φSgb and φSbc as a
function of variations in ρfc. For both the resting
and AP states, φSgb remains constant when values
of ρfc vary. However, a decrease in ρfc (more neg-
ative values, corresponding to increasing values of
ρfc/ρfg) causes an expressive fall of φSbc , for both
types of cells, at resting and AP states. At the AP
state, φSbc presents a quick drop when ρfc/ρfg < 20
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Parameter Symbol Value Value in CGS1 References

Dielectric constant in region b εb 2 2 (Cortez and Bisch, 1993; Cortez et al., 2008)
Dielectric constant in region i
(i = ext, g, c)

εi 81 81 (Cortez et al., 2008)

Glycocalyx width hg 2.5 nm 2.50× 10−7 cm (Cortez et al., 2008; Dolgaya and Mironov,
1984; Dolgaya et al., 1985)

Bilayer thickness h 7.5 nm 7.50× 10−7 cm (Cortez and Bisch, 1993; Cortez et al., 2008;
Dolgaya and Mironov, 1984; Dolgaya et al.,

1985)
Ionic concentration of monova-
lent ions on Seg

η1,Seg 0.154 M 9.27× 1019 cm−3 (Clay and Shrier, 2001; Dolgaya and
Mironov, 1984; Inoue, 2002; Mironov and

Dolgaya, 1985)
Ionic concentration of monova-
lent ions on Sgb

η1,Sgb 0.154 M 9.27× 1019 cm−3 (Clay and Shrier, 2001; Dolgaya and
Mironov, 1984; Inoue, 2002; Mironov and

Dolgaya, 1985)
Ionic concentration of divalent
ions on Seg

η2,Seg 0.002 M 1.20× 1018 cm−3 (Clay and Shrier, 2001; Dolgaya and
Mironov, 1984; Inoue, 2002; Mironov and

Dolgaya, 1985)
Ionic concentration of divalent
ions on Sgb

η2,Sgb 0.002 M 1.20× 1018 cm−3 (Clay and Shrier, 2001; Dolgaya and
Mironov, 1984; Inoue, 2002; Mironov and

Dolgaya, 1985)
Ionic concentration of monova-
lent ions on Sbc

η1,Sbc 0.154 M 9.27× 1019 cm−3 (Clay and Shrier, 2001; Inoue, 2002;
Rosenheck, 1998)

Ionic concentration of divalent
ions on Sbc

η2,Sbc 0.0004 M 2.41× 1017 cm−3 (Clay and Shrier, 2001; Inoue, 2002)

Potential in −∞, the extracellu-
lar region

φ−∞ 0 mV 0 statV (Cortez and Bisch, 1993; Cortez et al., 2008)

Temperature T 310 K 310 K (Cortez et al., 2008)
Boltzmann’s constant K 1.38× 10−23 J/K 1.38× 10−16 erg/K (Walker et al., 2011)
Absolute value of electron charge e 1.60× 10−19 C 4.80× 10−10 statC (Walker et al., 2011)
Viscosity of region i νi 0.1 Pa · s 1 P (Cortez and Bisch, 1993)

Table 1: Values of parameters used for calculations for the spinal ganglion neuron and the neuroblastoma cell.

Parameter Symbol
Spinal Ganglion Neuron Neuroblastoma

Value Value in CGS Reference Value Value in CGS Reference

Fixed charge
density in
glycocalyx

ρfg −0.12 e/nm3 −5.76× 1010 statC/cm3 (Dolgaya and
Mironov, 1984)

−0.2 e/nm3 −9.61× 1010 statC/cm3 (Dolgaya et al.,
1985)

Charge density
on Seg

QSeg −0.012 e/nm2 −5.76× 102 statC/cm2 (Dolgaya and
Mironov, 1984)

−0.02 e/nm2 −9.61× 102 statC/cm2 (Dolgaya et al.,
1985)

Charge density
on Sgb

QSgb −1/1000 e/Å
2 −4.80× 103 statC/cm2 (Becchetti

et al., 1992)
−1/385 e/Å

2 −1.25× 104 statC/cm2 (Becchetti
et al., 1992)

Resting trans-
membrane
potential

φR −69 mV −2.30× 10−4 statV (Dolgaya and
Mironov, 1984;
Rosenthal and

Bezanilla, 2002)

−64 mV −2.13× 10−4 statV (Hernandez
et al., 1996)

Action trans-
membrane
potential

φA 40 mV 1.33× 10−4 statV (Guyton and
Hall, 1997)

30 mV 1.00× 10−4 statV (Tosetti et al.,
1999)

Electrophoretic
mobility

µ −1.40 µm.cm/V.s −4.20× 10−2 cm2/statV.s (Dolgaya and
Mironov, 1984;
Dolgaya et al.,

1985)

−1.80 µm.cm/V.s −5.40× 10−2 cm2/statV.s (Dolgaya et al.,
1985)

Table 2: Values of parameters used for calculations for the spinal ganglion neuron and the neuroblastoma cell.

and tends to an asymptotic value, for decreasing
values of ρfc, for both types of cells.

Besides investigating the effect of fixed charges on
the potential on the surfaces of these membranes,
we study how the electric potential profile changes
across the membranes of spinal ganglion neurons
and neuroblastoma cells, for the resting and AP
states (Figs. (4) and (5), respectively, considering
QSbc = 30QSeg and ρfc = 20ρfg). For both nat-
ural states of these cells, we verify an accentuated
decrease of the potential along the z axis, from the
extracellular region to the surface of the glycoca-

lyx. This decay is slightly more expressive for the
neuroblastoma than for the spinal ganglion neuron,
although the shapes of both curves are very similar.

In the spinal ganglion neuron, the potential main-
tains an expressive drop across the glycocalyx. In-
terestingly, this phenomenon does not occur for the
cancerous cells, whose electric potential remains al-
most unchanged in this region. We observe linear
variations of the potential across the bilayer of these
cells, for both resting and AP states. During rest,

1CGS is the centimeter-gram-second system of units.
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the electric potential assumes much lower values
on Sbc than the asymptotic value in the bulk cy-
toplasmic region, while during the AP state, these
values are similar. Before reaching the transmem-
brane potential value, the intracellular potential ex-
ponentially increases from the inner surface of the
membrane to the bulk cytoplasmic region, during
the resting condition, while during the AP state,
we see no alterations in the electric potential in the
cytoplasm, for both cells.

5. Conclusions

Our simulations demonstrate that variations in
the electric charges fixed onto the inner surface of
the membrane have a small effect on the electric
potential of the surfaces that compose the neuronal
membranes (Fig. (2)). We observe only a gentle
gradual drop in φSbc of the spinal ganglion and
the neuroblastoma cells during the resting state, as
charges fixed on Sbc decrease (more negative val-
ues). However, our model shows that decreasing
the density of charges fixed onto proteins of the cy-
toplasm (increasing |ρfc| and ρfc/ρfg) results in an
expressive decay of φSbc , in both cells (Fig. (3)).

Nonetheless, variations of intracellular charges
fixed on the membrane and on the cytoplasmic
proteins have no effect on the potential on Sgb
(Figs. (2) and (3)). This is related to the fact that
the membrane plays a role in electrically isolating
the intracellular and extracellular regions, due to
the absence of charges within the lipidic bilayer (see
Eq. (53)).

The results we have obtained for the spinal gan-
glion and the neuroblastoma cells match those ob-
tained for the squid axon membrane, by Cortez
et al. (2008). These authors used a similar model to
the one we used in this study, and also observed gen-
tle variations of the surface potentials, in response
to variations of charges fixed on Sbc.

An interesting result of our calculations is that,
in the spinal ganglion neuron, the electric potential
across the glycocalyx decreases, and this does not
occur in the neuroblastoma cell. This reveals an
important discrepancy of the electric fields in the
glycocalyx of both types of cells (Figs. (4) and (5)),
and may explain the difference between their elec-
trophoretic behavior, which was observed in experi-
ments by Dolgaya and Mironov (1984) and Dolgaya
et al. (1985). As expected, the electric potential
presents a linear behavior within the bilayer of the

membrane during the resting and AP states, due to
the absence of electric charges in this region.

The strong negative electric potential on Sbc is
a characteristic of the potential profile in the rest-
ing state, and this probably occurs for all types of
neuronal cells (Fig. (4)). The steep increase of the
potential from Sbc towards the bulk cytoplasmic re-
gion is regulated by the negative charges spatially
distributed in the cytoplasm. Even though the net
value of charges of proteins is predominantly neg-
ative in the cytoplasm (Cortez et al., 2008), our
simulations indicate that the contribution of these
charges to the intracellular potential profile is much
smaller than the effect of charges fixed on Sbc. This
is shown by the curvature of the potential in the cy-
toplasmic region.

The neuroblastoma cells, like all cancerous cells,
multiply themselves quickly. Alterations of the dy-
namics of cellular multiplication mediate changes
in the synthesis, structure and degradation of the
membrane components (Dehlinger and Schimke,
1971), which result in deformations on the struc-
ture and composition of the surfaces of membranes
(Schubert et al., 1971). These deformations pro-
voke changes in the composition of electric charges
on the membrane. Our results indicate that the
alteration of these charges and of those within the
cells may influence the behavior of the potential on
the inner surface of the neuroblastoma cells.

Experimental observations have suggested that
the resting state and the generation of action po-
tentials in human neuroblastoma cells depend on
the degree of the morphologic differentiation of the
cell. Some of these cells are relatively non-excitable
(Gèrard et al., 1998; Kuramoto et al., 1981). Ku-
ramoto et al. (1977) stimulated the growth of
SK-N-SH human neuroblastoma cells under stan-
dard culture conditions. These cancerous cells re-
mained morphologically undifferentiated, partially
responded to injections of pulses of electric current,
and presented deficiency of the depolarizing com-
ponent of the mechanism that generates the action
potential. In our simulations, the results shown
in Fig. (5) corroborate these experimental findings,
where depolarization of the electric potential in the
neuroblastoma, during generation of the action po-
tential, is less intense than in the healthy spinal
ganglion neuron. The neuroblastoma should gener-
ate a less intense firing pattern in response to its
input excitation. We conclude that these proper-
ties may affect the transmission of signals through
networks of these neurons and their functions of

10



Figure 2: Electric potential on the surfaces of regions of the membranes of the spinal ganglion neuron (×) and the neuroblastoma
cell (∗), as a function of the ratio of charge density, QSbc/QSeg , as QSeg is kept constant. Results for the resting potential are
depicted in (A) and for the AP state, in (B). In both graphs, ρfc = 20ρfg .

Figure 3: Electric potentials φSbc and φSgb as a function of ρfc/ρfg , as ρfg is kept constant, for the spinal ganglion neuron

(×) and the neuroblastoma cell (∗). Results for the resting potential are depicted in (A) and for the AP state, in (B). In both
graphs, QSbc = 30QSeg .
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Figure 4: Electric potential profile across the membranes of the spinal ganglion neuron (solid) and the neuroblastoma cell
(dashed), during the resting state. For the spinal ganglion neuron, φSeg = −19.52 mV, φSgb = −34.97 mV, and φSbc =
−192.22 mV. For the neuroblastoma cell, φSeg = −25.10 mV, φSgb = −25.17 mV, and φSbc = −200.66 mV. For all
simulations, QSbc = 30QSeg and ρfc = 20ρfg .
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Figure 5: Electric potential profile across the membranes of the spinal ganglion neuron (solid) and the neuroblastoma cell
(dashed), during the AP state. For the spinal ganglion neuron, φSeg = −19.52 mV, φSgb = −34.97 mV, and φSbc = 39.99 mV.
For the neuroblastoma cell, φSeg = −25.10 mV, φSgb = −25.17 mV, and φSbc = 29.99 mV. For all simulations, QSbc = 30QSeg
and ρfc = 20ρfg .
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storage and communication of information.
Mironov and Dolgaya (1985) have suggested that

the outer electric charges for the neuroblastoma
cells and erythrocytes are similar, but the spinal
ganglion neurons strongly differ from these cells.
Therefore, the molecular structure (and the result-
ing constitution of charges) on the outer surface of
the membrane of the neuroblastoma cells would be
similar to the erythrocytes, and may be constituted
by ' 40% of peripheral proteins and ' 60% of gan-
gliosides. Our results illustrate that the drop of the
potential across the glycocalyx for the neuroblas-
toma cell is much smaller than for the spinal gan-
glion neuron, during both resting and AP states.
This corroborates previous studies which show a
smaller decay of the potential for the erythrocyte in
the glycocalyx than for the neuron (Cortez et al.,
2008; Cruz et al., 2000; Heinrich et al., 1982). The
different behaviour of the potential across the gly-
cocalyx, for the neuroblastoma and the spinal gan-
glion neuron, should indicate important differences
among these cells, of the properties that enable the
transmission of electric signals through the mem-
brane. This occurs due to the fact that different
molecular structures of these membranes interact
differently with (i) the outer electric field, which is
responsible for the orientation of the charged par-
ticles that are closer to the membrane, and (ii)
the potential on the outer surface of the mem-
brane. The nature of these interactions are crucial
for many cell processes, such as the beginning of the
process of triggering of the action potential, which
depends on the opening of specific Na+ channels.

Our results may also contribute to the under-
standing of the resistance of the neuroblastoma
to certain chemotherapeutic treatments (Lindskog
et al., 2004; Michaelis et al., 2001). The smaller
change of the potential, in response to changes in
properties of cellular cultures (pH values, for in-
stance) and to the amount of fixed charges present
in the membrane due to alterations in its compo-
sition and structure, may be an electric property
responsible for the low pharmacological response.

Appendix A. Roots of the System of Non-
linear Equations

Because there is no experimental method to di-
rectly measure values of the surface potentials, φSgb
and φSbc , we use Eqs. (64) and (66) that form a sys-
tem of non-linear equations with two variables, φSgb
and φSbc , to determine these values. Some research

work (Cortez and Bisch, 1993; Cortez et al., 2008;
Mironov and Dolgaya, 1985; Dolgaya and Mironov,
1984; Dolgaya et al., 1985) indicates that the val-
ues of these potentials in real cells are in a limited
region of the φSgb×φSbc plane. This means that we
are looking for one of the roots of Eqs. (64) and (66),
in a known region.

We can write the system of Eqs. (64) and (66) as

φSgb = G (φSbc)

φSbc = F
(
φSgb

)
. (A.1)

Our simple method for finding the roots of this
system consists in the steps described in Algo-
rithm Roots, shown in Fig. (A.1). At the resting
state, min = −250 mV and max = −50 mV, while,
at the AP state, min = 10 mV and max = 100 mV.

Algorithm Algorithm Roots
Step 0: δφmin = 10−4 mV
Step 1: Choose an initial value for φSbc

in min < φSbc < max
Step 2: δφ = 20 mV
Step 3: While δφ > δφmin do

begin
φSgb = G(φSbc)
φ∗Sbc = F (φSgb)
If |φSbc − φ∗Sbc | < δφ then
δφ = |φSbc − φ∗Sbc |
φSbc = φ∗Sbc

else
return to Step 1

end if
end While

Figure A.1: Algorithm for determining φSgb and φSbc , for
the spinal ganglion neuron and the neuroblastoma cell.

With the φSbc value found with this procedure,
we use Eq. (66) to obtain the corresponding φSgb
value. The surface potentials φSgb and φSbc for the
spinal ganglion neuron and the neuroblastoma cell,
whose values are shown in Section 4, were obtained
with Algorithm Roots.
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