Weighted competing risks quantile regression models and variable selection
The proportional subdistribution hazards (PSH) model is popularly used to deal with competing risks data. Censored quantile regression provides an important supplement as well as variable selection methods due to large numbers of irrelevant covariates in practice. In this paper, we study variable selection procedures based on penalized weighted quantile regression for competing risks models, which is conveniently applied by researchers. Asymptotic properties of the proposed estimators, including consistency and asymptotic normality of non-penalized estimator and consistency of variable selection, are established. Monte Carlo simulation studies are conducted, showing that the proposed methods are considerably stable and efficient. Real data about bone marrow transplant (BMT) are also analyzed to illustrate the application of the proposed procedure.
Item Type | Article |
---|---|
Additional information | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords | bone marrow transplant, competing risks, cumulative incidence function, re-distribution method, computer science (miscellaneous), engineering (miscellaneous), general mathematics |
Date Deposited | 15 May 2025 15:16 |
Last Modified | 31 May 2025 00:39 |