JADES NIRSpec Spectroscopy of GN-z11: Lyman-$α$ emission and possible enhanced nitrogen abundance in a $z=10.60$ luminous galaxy
We present JADES JWST/NIRSpec spectroscopy of GN-z11, the most luminous candidate z>10 Lyman break galaxy in the GOODS-North field with MUV =-21.5. We derive a redshift of z = 10.603 (lower than previous determinations) based on multiple emission lines in our low and medium resolution spectra over 0.7- 5.3 μm. We significantly detect the continuum and measure a blue rest-UV spectral slope of β =-2.4. Remarkably, we see spatially extended Lyman-α in emission (despite the highly neutral intergalactic medium expected at this early epoch), offset 555 km s-1 redwards of the systemic redshift. From our measurements of collisionally excited lines of both low and high ionisation (including [O II] λ3727, [Ne III] λ3869, and C III] λ1909), we infer a high ionisation parameter (log U ∼-2). We detect the rarely seen N IV] λ1486 and N III] λ1748 lines in both our low and medium resolution spectra, with other high ionisation lines seen in the low resolution spectrum, such as He II (blended with O III]) and C IV (with a possible P-Cygni profile). Based on the observed rest-UV line ratios, we cannot conclusively rule out photoionisation from an active galactic nucleus (AGN), although the high C III]/He II and N III]/He II ratios are compatible with a star formation explanation. If the observed emission lines are powered by star formation, then the strong N III] λ1748 observed may imply an unusually high N/O abundance. Balmer emission lines (Hγ, Hδ) are also detected, and if powered by star formation rather than an AGN, we infer a star formation rate of ∼20-30 M⊙ yr-1 (depending on the initial mass function) and low dust attenuation. Our NIRSpec spectroscopy confirms that GN-z11 is a remarkable galaxy with extreme properties seen 430 Myr after the Big Bang.
Item Type | Article |
---|---|
Additional information | © 2023 The Author(s), published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ |
Keywords | galaxies: abundances, galaxies: evolution, galaxies: groups: individual: gn-z11, galaxies: high-redshift, astronomy and astrophysics, space and planetary science |
Date Deposited | 15 May 2025 15:14 |
Last Modified | 31 May 2025 00:39 |