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Abstract

This paper revisits the ideas of seeking unconstrainednmaitiiy following a continuous
steepest descent path (CSDP). We are especially interestbd merits of such an ap-
proach in regions where the objective function is non-caraed Newton-like methods
become ineffective. The paper combines ODE-trajectotgviohg with trust-region ideas
to give an algorithm which performs curvilinear searchesach iteration. Progress along
the CSDP is governed both by the decrease in function valdien@asures of the accuracy
of a local quadratic model. Experience with a prototype anptntation of the algorithm
is promising and it is shown to be competitive with more caotial line search and
trust region approaches. In particular, it is also showretdgsm well in comparison with
the, superficially similar, gradient-flow method proposgdehrman.

1 Introduction

In this paper, we are concerned with finding a local solutibthe unconstrained
optimisation problem

Minimise F(x), where x= (Xi,X2,...,X))" € R", (1.1)

whereF (x) is a single real valued function assumed to be twice contiauliffer-
entiable. Problems of this type arise in many practicalsituins such as finance,
science, engineering and management. As is well known, itstecfider neces-
sary condition at a local solutiog of (1.1) is given by the system ofnon-linear
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equations
OF () =0

and the second order condition is that the Hessian matff(x.) is positive-
definite.

There are many iterative numerical optimization techngguwhich can be applied
to (1.1). Most of these methods use an iteration of the form

Xk+1 = Xk + Ak Pk,

wherepyg is a descent search direction amgis a step length obtained by a one-
dimensional search to ensure tidi 1) < F(xc). Sometimes these techniques
enter a region where the Hessi@fF is not positive-definite and they may then
exhibit slow convergence or even fail. For instance, the tdawgearch direction

p=—0%F 0F,

may point towards a saddle or a local maximuniffF is not positive-definite.
Similarly, quasi-Newton methods, whose search directavasased an approxi-
mation of J°F, will be unable to use a standard updating formula to revisé t
Hessian estimate when a step is taken along a direction @ttimegurvature. In
fact, in a non-convex region, none of the iterative methokese search direction
is based on minimising a quadratic model function have mhebretical validity.

One approach which does make sense in non-convex regions tisist region
method[1] [2]. The strategy we discuss in this paper is related tisttregion
methods and is based on following tBentinuous Steepest Descent R&EBSDP).
This approach has already been looked at by a number of authay. [3], [4],
[51.[6], [7], [8], [9], [10]) and, essentially, it uses a sgm of ordinary differen-
tial equations to construct a path leading to the solutioproblem (1.1). Such
approaches have not been as widely used as search-diflscésearch methods,
such as the Newton, quasi-Newton and conjugate gradiettadgt perhaps be-
cause of the perceived difficulties inherent in accuratelyisg a system ohon-
linear ordinary differential equations.

The structure of this paper is as follows. In the next sectienintroduce the
idea of Continuous Steepest Descent Path methods for unaimesl optimiza-
tion. We look at ways of approximating the CSDP in order tovegroblems of
the form (1.1) and give an outline of some possible algorghin section 3, the
performance of these algorithms is illustrated and congparea small example.
In section 4, we look more closely at some of the algorithrhigices involved in
the CSDP method and give some numerical results in whicl piegformace is



compared with that of some other well known methods from tiAd MVAB opti-
mization toolbox [11]. Conclusions and a discussion oftfartwork are given in
section 5.

2 TheContinuous Stegpest Gradient Path

Consider the unconstrained optimization problem (1.1).SWfgpose it involves a
nonlinear twice continuously differentiable objectivaftionF (x). At each point

the gradient vector i§IF (x) and the Hessian iS2F (x) (which will sometimes be
denoted byG(x)).

Three well-known techniques based on a line search are
Steepest Descent

Xt 1 = X — AkOF (%), (2.1)
Newton
X1 = X — kG (%) OF (%), (2.2)
andQuasi-Newton
X1 = Xk — OkH (%) OF (%) (2.3)

whereH denotes a positive-definite approximationGf?(x) which is updated at
the end of each iteration. From a given starting pggnand the scalar step length
ak, (normally chosen to ensuFg(xx11) < F (X)) these iterative schemes generate
a sequence of pointsy, 1) designed to converge to the true solution

The Continuous Steepest Descent Patthich is analogous to (2.1) can be defined
as the solution to the initial value problem

dx

Fri —0OF(x(t)), X(0) = Xo. (2.4)

If the solutionx(t) of (2.4) fort > 0 has a limit point such that lim.. x(t) = X,
thenx, is a stationary point o (x) ([3], [4],[6], [7]). Since this point is reached
by a path of continuous descent thenmust be a local minimum or a saddle
point, depending on whether or ngtF (x,) is positive-definite.

A CSDP method can be outlined as follows. Fref@) = Xo, let p(t) be a curve,
with p(0) = 0, which is anapproximatiorto the integral curve(t) which solves
(2.4). The method then searches algtt) for t > 0, continuing to increaseas
long as the objective function is beisgfficiently reduce@nd p(t) is remaining
sufficiently closéo x(t). (We shall discuss these criteria in more detail later on.)
If the search along(t) is terminated at a poing (e.g. becausp(t) seems too far
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from x(t)) then another search pakit) is constructed as an approximate solution
of problem (2.4) with the initial condition changedx() = x;. A search along
p(t) will then yield a new poinky; and this process can be repeated until a point
is found that satisfies a convergence test sudfiC#s(x.)|| < €, wheree is some
specified tolerance.

A gradient flow methodf the kind just described has been proposed by Behrman
[3]. Thek-th iteration of Behrman'’s algorithm uses an approximatibtine vector
field —OJF aboutx = x, involving the integral curves of the linearised CSDP

dx 2

a4 =~ OF (%) = 0PF () (x = (25)
wherex, is the starting point of th&" iteration. Equation (2.5) has an analytical
solution throughxg given by

X(t) = X+ pr(t)

where
p(t) = —RAR gy (2.6)

andR = R(x) is the matrix whose columns are the normalised eigenvectors
[J%F (x«) while A is a diagonal matrix whose elements are derived from theneige
valuesds,...,d, via

Nii =

{ 1 (e*diit _ 1) for dj#0 (2.7)

“ for dj=0

From any given point, Behrman’s algorithm calculates a euhat is initially
tangent to the negative gradient. Hereex + pk(t)) is initially decreasing as
increases. A new poin 1 is found alongx + pk(t) such that (xc + pk(t)) <
F (X«) (and also certain other criteria are met) and the procespesated.

Theorem [3] Let x(t) be the solution to (2.5). For a fixegl> 0 if OF (x(t)) #0
for all t > to, thenF (x(t)) is strictly decreasing with respecttofor all t > to.
Proof: We know

d':é’t‘(t) = DF(x(t))sz—(tt) = —OF (x(t)) TOF (x(t)) = —||OF (x(t))||3.

SincedF (x(t)) # 0 whent > to, it follows that

dF(x(t)
dt

i.e. F(x(t) is strictly decreasing far> to.0

<0,
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It can be seen from (2.5) that, if the only information givdioat F at xi is its
gradient’]F (xx), we can usg(t) = —t0F (x«) as the solution to (2.5). Using the
ray xx + pk(t) to search for a new point that satisfies certain search ieriterd
repeating the process is just the steepest descent method.

For a quadratic objective function, the curve that Behrmaitgorithm calculates
Is the exact integral curve, and for a positive-definite qaadthe algorithm finds
the minimiser in one step. This is identical to the Newtompste

If F(x) is a general function for whichIF (x) and[0%F (x) are known then we
can use (2.6) to compute a pgif(t) corresponding to a quadratic approximation
of the function abouky. Starting at poinky, we computepp(t) and findx; along
the curvexp+ po(t). The search is continued in this way to find other poigts
and pathg(t). By joining these curvepi(t) together and pasting parts of them
to form a piecewise-smooth cury#t) we can connect the initial poing with

a critical pointx, of F as shown in Figure 1. (The dotted curves in Figure 1
represent the CSDP that would be obtained by solving (2 d3tgx)

=V (%)

%

n=x+pE)

xn=x+mQ)

X=X +py ()

Figure 1: An approximate CSDP

On each iteration, the algorithm’s search curve is ingigdingent to the negative
gradient, and if the Hessian at the initial point of the skararve is positive
definite, then the search curve will be bounded and the stigetend of the curve
is a Newton step. Hence, we can obtain quadratic convergesarethe solution.

The objective function value of an indefinite quadratic ibownded below. We
shall see in the next section how to deal with this case.

5



2.1 Approximating CSDP
In this section we consider practical algorithms for salvith.1), which approxi-
mate the CSDP by finding a numerical solution to (2.4).

Starting from the poinkx where the parametér= 0 and applyind=uler's method
to (2.4), a new estimate of the point on the gradient trajgatorresponding to
t = ot can be given by
X1 = X — OtOk (2.8)
wheregy = OF (x¢). On the other hand, by using thaplicit Euler methodve get
X1 = X — OlQk41. (2.9)

If Gy, denotesI?F (x), then (2.9) can be approximated by
Xit-1 = X — Ot (O + G (X1 — X«)) -
Hencexy 1 = Xk + px Wherepy is found by solving the system of equations
(I + 0tGk) px = —Otok. (2.10)

Even whenG is non-positive definite, (2.10) gives a stppwhich decreaseB,
so long asdt is sufficiently small.

We can also consider calculating, 1 by a second-order method which combines
(2.9) and (2.10) in a mixed explicit/implicit Euler step $@at

ot
X1 = X — E[ o+ (I +8tGy) ok | (2.11)

This can be written as 1
X+l = E(XEJrl ‘|‘XL+1)
wherexg, ; comes from (2.9) ang, . ; comes from (2.10).

Equation (2.10) gives a step similar to that of thest region methodw/hich use

(M +Gy) px = —0k (2.12)

wherepin (2.12) is effectively the reciprocal of the step lengthn (2.10). Equa-
tion (2.10) gives the Newton step &s— o while (2.12) gives the Newton step
whenpu = 0. Also equation (2.10) makgx parallel to—gx whendt = 0 while
(2.12) makegk tend to a steepest descent steas «. For a major survey of
trust region methods see [2].



WhenGy is non-positive definite we can trace out a path away frgioy using a
sequence glivaluesin (2.12). These must be chosen in a range > pmin > 0,
wherepmin = —dmin, the most negative eigenvalue Gf.

When solving (2.12) for several different valuesipfwe can either use a fresh
Cholesky factorisation of the coefficient matrix for egocbr determine the eigen-

system ofGy via the orthogonal factorisatidd = RDR' . In the second case, since
RR' = |, the system (2.12) can be written

R(HI+D)R" pc = —0k
and to solve for each value pfwe may use

Ok
U+ i’

G=R'og Pi= i=1,..,n px=—Rpk (2.13)
This calculation can be regarded as being comparable wiiketlused in the
Behrman correction [3] given by (2.6), (2.7).

For a single solution of (2.12), the eigenvalue calculatsamore expensive than a
Cholesky factorisation. But if many valuesioére tried then subsequent solutions
via (2.13) may be cheaper than re-factorisation. Therdfoegractical merit of
usingRDR' factors in the CSDP method depends on how far and how acburate
we want to pursue a curved path solution of (2.4).

We consider first the case wh&y is non positive definite (The Newton step with
nu=01In(2.12) is not appropriate because it is likely to leaddo¥g a maximum or
saddle point). Hence we try a sequence of valueg femin Wherepmin = |dpp|,
anddpp is the most negative elementin

To trace out an approximate CSDP frogmwe must first select a suitably large
initial value of u, — i.e. one which gives a quite small step in a near steepest
descent direction. We continue to use trials of decreaginglues toward$inin

so long as (2.12) yields a an improved poigt- px which isclose enougho the
CSDP. Our intention is to make a significant progress alorggptath to reach an
acceptable new poini + px where the Hessian will be recomputed.

2.2 Searching along the curved path

Our aim is to determing@ in (2.12) to ensure thah is downhill step which pro-
duces an acceptable reduction in the objective functionc&edo this by imitat-
ing the Wolfe condition for a conventional line search (sHef¢r instance). We

wantp to give F (X« + pk) < F(X«) and also to ensure botk (xx + px) — F (X«)|
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and||pk|| are bounded away from zero by a multipleljak||. This might be done
by comparing the actual changeknwith a first or second-order prediction. If we
chooseu and then compute the correspondimge can evaluaté * = F(x+ p),
gt = g(x+ p) and consider the following test ratios.

Fr—F F*—(F+p'g+3p"Gp)
D]_: T ) D2: T 1T
p'g IpTg+5p'Gpl
,_ (8+Gp'g"
lg+Gpll||g™]]

D; compares the actual changeRnwith a first order prediction. 1D1 ~ 1 this
suggests that the step is too short. On the other Band 0 indicates the search
has gone past the one-dimensional minimunt: i quadratic thef; = 0.5 at
the one dimensional minimum alomy

D, compares the actual changermwith the quadratic predicted reduction and if
the difference is relatively small then it seems reasontbt®ntinue to extrapo-
late along the CSDP (so long Bg > 0).

D3 compares the actual gradient with the quadratic model gnadin terms of
cosine of the angle between them). Thus it is reasonablegp &etrapolating if
D3 is close to 1 (again providdd; > 0).

Once we have computed the test ratios then we shall find either

1) X+ pis acceptable as a stopping point for the iteration

i) X+ pis acceptable but it is worth extrapolating further by dasnegp
iii) X+ pis unacceptable and we must interpolate by incregsing

2.3 Algorithm for searching along CSDP

We can now formalise the steps of an iteration which usesdbasi discussed
above. We consider first the case wl@&nis not positive definite.

Outline CSDP Algorithm for nonconvex regions

Given the parameters > 1, < 1,y < 1, D", D" D@ andDJ'aX
1) Setp= Olmin

2) Computep from (2.12) and hence g&t+ p, F, g*, D1 ,D» ,Da.
3) If D1 < D" setyu = W+ y(1— Hmin) (t0 interpolate) and go to (2)
4) If D1 > D"®andD; < DY'*and|1— D3| < D'

sety= p— B(KU— Kmin) (to extrapolate) and go to (2)

5) Otherwisex+ p is acceptable and the iteration is compete.
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In the case wher®y is positive definite we could revert to the standard well-
known linesearch version of the Newton method. Howeves dtill possible to
use a curvilinear search in termsoas previously described. The strategy is to
choose an initial value gft = 0 and then compute, X+ p andF = F(x+ p).

In the positive definite case, however, we simplify the deancd only use the
test ratioD1. Thus,ifD; is too close to 1, it may be reasonable to extrapolate by
decreasingt below zerpand this is done by replacingby

H< M= B(K— Hmin)- (2.14)

If D1 is too small or negative ther+ p is unacceptable anglis replaced by
M M+ Y(H— Hmin)- (2.15)

The curvilinear search algorithm sketched above can be icwdlwith several
different ways of calculatingy. If we use (2.13) then the resulting algorithm
will be referred to aNIMP1. The algorithm using Behrman’s calculation @f
from (2.6), (2.7) will be calleddMINH as in [3] (although we emphasise that the
curvilinear search in our implementation is not the sama &shrman’s). Finally,

if px is obtained from (2.11) we call the algorithmiMP2. In practice, the step
calculation inNIMP2 is done by first obtainingy from (2.12) then setting = py
and finally defining a nevpy as

= -0+
pk—2 O+ P)-

3 Numerical resultsfor test problem T1

As a simple test example we consider the funcidngiven by
F(x1,%2) = X1X%2 + (X4 + 2x5 — 10)%/100

with the initial conditionxg = (2.05,1.6)T. We look at CSDP solutions using the
following values for parameters in the algorithm of sectio8:

a=2 PB=05 y=025 DM=0.1 D=0,
DY**=0.1 and D5*=05

The results in Table 1 were obtained usMgTLAB implementations oNIMP1,
NIMP2 andUMINH along with the trust region method implementedasnunc
in theMATLAB optimization toolbox [11]. We denote this AyR.
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The method irfminunc is described in [12], [13] and itis comparable wiNlMP1

in that it uses the exact Hessian of the objective functiahworks with a trust-
region subproblem on every iteration. The approach diffieds NIMP1 how-
ever in not obtaining an exact solution to the trust-regiobpsoblem but rather
by restricting itself to a two-dimensional subspace. Thisspace is defined by
the negative gradientgy together witheitheran approximate Newton direction,
n= —G;lgk or a direction of negative curvaturs,such thas' Gys < 0. Obtain-

ing the Newton direction or a direction of negative curvataould involve the
solution of (2.12) withi = 0 or the calculation of the eigensystem@§. How-
ever the method ifiminunc seeks to avoid doing as much workNisMP1 on each
iteration and hence it findsor s, by applying a preconditioned conjugate gradi-
ent PCGQ method (see [14]) to the syste@n = —gx. When the search is far
from the optimum théCGmethod may be terminated with quite a low-accuracy
approximation to the Newton direction; and, in particuiaGy is found to be non
positive-definite theeCGmethod returns a direction of negative curvature, rather
than an approximation to the Newton direction.

Method | No of Its | No of fcn calls
NIMP1 7 12
NIMP2 6 20
UMINH 13 49

TR 8 9

Table 1: Results for the functionx; + (X% + 2x3 — 10)2/100

We can observe thatiMP1 and NIMP2 need fewer iterations thahR and —
perhaps more significantly — they appear to be considerablg refficient than
UMINH. We also note of course that the CSDP methods use more farestad-
uations than the trust-region approach. This is plainly ttustep size used in
tracing out the CSDP — and this, in turn, depends on the raleadjustingp.
We can surmise that a smaller valueooin step (1) of the outline algorithm or a
larger value of3 in (2.14) would have given the same solution in fewer functio
calls. The important point to be drawn from this first examipléhat the use of
curvilinear searches can reduce the number of iteraémashence also reduce
the associated cost of computing second derivatives

Clearly the results in Table 1 correspond to a single set cdmater values in
the outline CSDP algorithm. We shall consider the varianbrsome of these
parameters on a wider selection of problems in the nextsecti

The CSDP convergence paths liMP1, NIMP2andUMINH as shown in Figures
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2 - 4. The circled points mark the starts and ends of iteratsoml the dots indicate
points obtained with different values pfin (2.12) or (2.6),(2.7). Itis clear from
the figures that the solution by all the three CSDP methodevisl a different
curvilinear path through the non-convex region.

Iterations of nimp1l

Figure 3: The solution path fodIMP2 on problem T1.
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Iterations of behrman

Figure 4: The solution path fa#sMINH on problem T1.
4 Further algorithmic investigation

Results for problem T1 suggest that the CSDP techniqueshesedre worth fur-
ther investigation. The algorithm stated in section 2.®Ives several parameters
and in this section we shall consider how performance cafféeted by different
choices of two of them.

4.1 Varying the parameter D'

We can consider varying the threshold on the accuracy paeaig which con-
trols how far the search is pursued along the approximateFCEQures 5 — 7
relate to problenT 1 and show how th8lIMP1 path varies a®3'® changes. Fig-
ure 5 shows that, in some sense, the kst D3| < 0.5 lets the first iteration go
"too far” and obtains a point; lying some way off a direct route to the minimum.
On the other hand, insisting thdt— D3| < 0.05 or |1 — D3| < 0.01 (Figures 6
and 7) may not let the first search go far enough, leaving tbengkiteration with
some work still to do to escape from the non-convex regiorfaén, if we count
the dots, we find that the Figure 5 represents the solutiogube fewest function
evaluations.
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Iterations of nimp1
T T T

Figure 5: The solution path fotIMP1 on problemT 1 usingD5'®*= 0.5.

Iterations of nimp1
T T T

Figure 6: The solution path fo4IMP1 on problemT 1 usingD5'® = 0.05

4.2 Choosing an initial pfor each iteration

We look now ata which is involved in determining an initial value pfon each
iteration. As in the trust region methods we could relate thian estimate of the
size of the stefpy. Supposéy = ||xk —Xk—1||2 is the size of the step taken to reach
the current poinky (&p must be set arbitrarily). Because of the orthogonality of
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Iterations of nimp1
; T T

Figure 7: The solution path fotIMP1 on problemT 1 usingD5'®*= 0.01

the matrixR used in the calculation scheme (2.13) foMP1, we deduce that

[Ipxl| < llgll2,

K=+ Amin
and in order to give|pk||2 < O, we require

1 Ok

. lgll
H+Amin — [[9]]2

and squ> —— — Amin.
Ok

Since we must have > pmin, an initialpon an iteration can therefore be obtained
from the safeguarded formula

= Max (aumin, % —Amm) | @.1)

for somea > 1. Some results with this safeguarded formulae are givemlheT
2. The first rows of the table show what happens when the CSDRoa are
applied to problem T1 with fixed values afwhile the last row uses the formula
(4.1) witha = 2. The other parameter values are

%=1 Pp=05 y=025 DI=01 DI*=06

DY®=0.1 and D5*=0.5

It is clear that varyingn has an appreciable effect on the numbers of function
evaluations and, to a lesser extent, on the numbers ofidesatlt is clear that we
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a= NIMP1 | NIMP2 | UMINH
Its/Fcs | Its/Fcs| Its/Fcs

1.5 7/10 5/13 15/53
2 7/12 7/19 13/49
3 7114 7/21 16/55
4 7/16 5/18 15/50
5 7/16 7123 16/55
10 7/18 6/23 18/54
15 5/18 6/24 17/67
20 6/20 6/25 18/58
30 6/21 6/26 17/72
50 7124 5/26 18/62
100 7125 5/28 17/64
200 7127 5/30 17/68
1000 6/31 7139 18/78
4.)a=2| 6/13 6/18 18/47

Table 2: Results using different valuescofn CSDP applied to problem T1

cannot usex = 1 since this would make (2.12) a singular system. However it i
interesting that we can talcefairly close to 1 without encountering difficulties.
On the other hand, large valuesmfnay reduce the number of iterations but also
imply that more steps are taken along the curved path at ¢action, giving

a corresponding increase in function calls. The automéiitce (4.1) seems to
yield a good compromise.

5 Further numerical results

We now consider the performance of CSDP methods on a widgerahprob-
lems. These have been specially chosen to test the featuites GSDP method
and hence they involve functions with large non-convexaegi- and sometimes
saddle-points — which are quite close to local minima. Tlublams are:

T1 F =x1% + 0.01(x2 +2x3 — 10)2. Starting poinio = (2.05,1.6)"

TIr: F = —(1+@(x1,%2)) L where = x1%2 + (X2 + 2x3 — 10)?/100.
Starting pointxg = (2.05,1.6)T
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T2 F=—(14+@(x1, %)) 2 where 9= x1x + (X3 + 2x5 — 10)2/100.
Starting pointg = (2.05,1.6)T

Tla: F(xg,X2) = Xax2 +0.01 max{0, (x2 4 2x5 — 10)}2.
Starting pointg = (2.05,1.6)T

T1b: F(x1,%) = XXz +0.01 max{0, (x2 + 2x3 — 10) }2.
Starting pointxg = (0.26,0.16)"

Tlar: F(xg,X2) = —(1+@(x1,%2)) "2
where@(xy, X2) = X1%2 +0.01 max{0, (x2 +2x3 — 10) }°.
Starting pointxg = (0.26,0.16)"

T2: F(x1,%2) = X1X2 + 0.001(x2 + 2x3 — 10)4. Starting poinio = (2.5,1.6)7

T2r: F(xg,%2) = — (14 @(xq, %)) 7t
where @(x1,%2) = X1X2 +0.001(x2 + 2x3 — 10)4,
Starting pointg = (2.5,1.6)7

T3: F(X1,X2,X3) = X1XoXg + 0.01(X2 + 2x3 + 3x5 — 10)2.
Starting pointxp = (0.4,0.3,0.2)7

T4n): F=(1+x"Qx) 1
whereQ = H + 0.01l whereH is then x n Hilbert matrix.
Starting pointy = (3,3,...,3)"

T4r(n): F=—(1+@x))~ where ¢(x) = (1+x"Qx)~! andQ = H + 0.0l
whereH is the f1 x n) Hilbert matrix.
Starting pointy = (3,3,...,3)"

T5: F (4, %) =} + (4 + 2 — 10)%. Starting poino = (~1,0.1)"

T5a: F(x1,%) = X5 + (X2 +5%3 — 10)2. Starting pointo = (—1,0.1)"

The functions of the fornfF (x) = —1/1+ @(x))~! are suggested by the shape of
the famous Runge function used to demonstrate the inadeguaicpolynomial
interpolation. F(x) will have a local minimum at the same point @&), but
as x moves away from this minimum the function can be expectedetmine
non-convex and to flatten out. Figure 8 illustrates this b&ha by showing the
surface corresponding to problem T4(2). If an optimizagearch is started in a
flattened non-convex region of the kind shown in Figure 8 thsignificant test of
the CSDP approach will be to consider how effectively it iledb make progress
towards the convex area the minimum.
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Figure 8: Surface plot for Problem T4

In Tables 3 and 4 we summarise some results for the test pnsblsing the
parameter values

& =1, =0.5,y=0.25D""= 0.1, DI"™*= 0.6, DJ'**= 0.1 andDJ®*= 0.5.

(It is worth noting, in view of the comments in section 4.lattkhe results were
very little changed wheJ'® was set to 0.25.) The second column of Tables 3
and 4 shows the value of used to choose an initigl= apmin on each iteration.
The symbol 'a’ denotes the use of formula (4.1) wate= 2. The tables also show
the numbers of iterations and function calls needed by threited-Newton/trust-
region method from thé1ATLAB optimization toolbox. For each problem in
these tables we highlight in bold the entry which gives bestggmance measured
primarily in terms of numbers of iterations. Whenever theewhich represents
the best performance in terms of function evaluations iediht from the one
marked in bold we distinguish it by italics. Finally, to reftehe fact that we
are usually interested in both these measures, we undéngrentry which gives
the smallest sum of iterations and function calls. (We recog of course, that
these are rather unsophisticated ways of assessing parioenwhich overlook
the overhead algorithmic costs in computing search doastetc.)

The results in Tables 3 show thdiMP1 consistently does better thanmvP2 and
UMINH. In particular, it seems thaiMINH is rarely competitive.NIMP1 also
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usually outperform3R in terms of iteration count — appreciably so on problems
T1b and T3. The choice ai does not greatly affect the numbers of iterations
needed by the CSDP methods. All these remarks are fairlyistens with what
was observed on problem T1.

The results in Table 4 show some features different fromeahosrable 3. For
instance, on the various instances of problem T4, the CSORade are all much
more sensitive to the choice af Interestingly,UMINH appears to do better on
these problems than on the others in the test set, sometieeesng fewer itera-
tions than eitheNIMP1 or NIMP2. Even then, however, the number of function
evaluations is usually higher. We may also note tiéddP2 and UMINH behave

in a rather similar way on th&4 problems while on all the other examples the
performance oNIMP2 is more like that oNIMP1. NIMP1 is also less competitive
with TR on the T4 and T4r problems.

It is significant to note that the pilot version BMfMP1 often appears quite com-
petitive with the trust-region routin€R. In the next section we consider some
refinements to the CSDP algorithms which can be expectedpmwe their per-
formance.

6 Discussion and Conclusions

We have been considering two method8MP1 and NIMP2) derived from the
implicit Euler method to estimate the CSDP through a nonsermegion. Many
CSDP algorithms have already been proposed (see [3] — [LOJy® believe our
work differs in the way we uspg as a curvilinear search parameter and in the use
of a 2nd order estimate of the CSDP stepimP2.

In calculating correction steps in batiMP1 andNIMP2 we have to solve

(M+G)p=—g (6.1)

for a range of values fon. We have chosen to do these repeated solutions via a
once-and-for-all calculation of the eigenvalues®by anRDR' decomposition.
This approach is similar to that employed by another CSDmatktalledJMINH
which is due to Behrman [3] and is based on the exact solutiq2.4), also
making use of the eigenvalues and eigenvecto€ dio justify the cost of such an
expensive matrix decomposition on each iteration we wamtgke good progress
along the resulting curved path{). Hence the main purpose of this paper has
been to explore ways of choosing steps al@g) which keep sufficiently close

to CSDP while giving an acceptable decrease in the objefttivetion.
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Fctns| Methods| NIMP1 | NIMP2 | UMINH TR
o= Its/Fcs| Its/Fcs| Its/Fcs | Its/Fcs

T1 2 7/12 7/19 13/49
100 7125 5/28 17/64 8/9
a 6/13 6/18 18/47

T1r 2 8/14 8/35 15/42
100 8/33 7144 9/10 | 11/28
a 7/15 8/22 16/45

T1r2 2 9/13 7/19 16/43
100 7137 8/48 14/72 | 9/10
a 9/18 8/23 17/46

Tla 2 5/10 5/15 15/38
100 5/18 5/23 12/51 | 9/10
a 5/11 4/14 17/45

T1b 2 5/12 5/17 19/58
100 5/12 5/25 17/82 | 9/10
a 5/12 5/17 19/58

Tlar 2 6/14 7125 17/68
100 7/33 8/47 17/87 | 9/10
a 6/14 7124 16/50

T2 2 9/11 8/18 18/46
100 8/23 9/40 19/63 | 9/10
a 8/14 9/21 19/41

T2r 2 8/13 8/29 15/45
100 6/23 7/33 14/57 | 9/10
a 6/10 8/24 15/38

T3 2 7/20 7/36 | 23/78
100 7/33 6/39 | 21/106 | 14/15
a 7120 7/28 | 21/66

Table 3: Results fromlIMP1,NIMP2,UMINH andTR.

There is scope further work on the details of algorithms Wiajgproximate CSDP;
but preliminary results with our prototype implementaiare rather encourag-
ing. NIMP1 — and to a lesser exteNIMP2 — appear to outperforrdMINH com-

fortably. Moreover they also seem to do better (on some prob) than a trust
region approach. This applies particularly to the numbéremtions used rather
than the numbers of functions evaluations. This last remaderlines the need
for further work on the curvilinear search.
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Fctns | Methods| NIMP1 | NIMP2 | UMINH TR

o= Its/Fcs| Its/Fcs| Its/Fcs | Its/Fcs
T4.2 2 5/6 7/29 12/47
100 41/70 | 16/82 | 19/83 8/9
a 718 9/21 15/39
T4.4 2 15/38 | 9/60 12/90

100 | 53/90 | 18/99 | 19/107 | 22/23
a 23/25 | 12/35 | 14/46
T4 10 2 33/51 | 10/56 | 13/60
100 | 44/94 | 22/105| 24/121 | 12/13
a 33/34 | 15/30 | 18/36
T4 20 2 34/54 | 13/81 | 13/83
100 | 54/116| 25/125| 28/143 | 12/13
a 14/16 | 20/52 | 22/70
T4.50 2 34/65 | 13/87 | 16/101
100 | 39/114| 30/145| 32/147 | 15/16
a 21/23 | 26/65 | 28/79
T4100| 2 45/83 | 15/101| 9/42
100 | 47/132| 32/155| 36/176 | 17/18
a 16/19 | 29/83 | 32/105
T4r 20 2 34/40 | 11/66 | 11/88
100 | 55/120| 26/136| 26/135 | 12/13
a 14/16 | 15/31 | 19/40

T5 2 8/12 9/23 | 19/45
100 8/32 9/48 | 20/73 | 9/10
a 8/14 9/28 | 19/46
T5a 2 12/16 | 10/33 | 22/56
100 16/83 | 11/58 | 22/85 | 18/19
a 9/16 9/24 | 22/61

Table 4: Further results froldiMP1,NIMP2,UMINH andTR.

Perhaps the most important issue for the developmexitniP1 andNIMP2 is the
choice and adjustment of the paramaien (6.1) which controls progress along
the approximate CSDP. The automatic method (4.1) for cingasie initialp for
each iteration is quite closely related to the step calmnah NIMP1. This may
partly explain whyNIMP1 has proved to be the best of the CSDP methods in the
numerical tests we have reported; and it may be possiblevisalalternatives

to (4.1) which are more appropriate fdfMP2 andUMINH and which can bring
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about improvements in their performance.

As regards the adjustment pf the versions oNIMP1, NIMP2 and UMINH de-
scribed in this paper have all used rather simple exparatraction rules (2.15),
2.14). Itis, however, easy to imagine a more flexible strategich would, for
instance, allowt to decrease more whéy ~ 1 than wherD; ~ DI"®

Of possibly lesser importance, but still worth further istrgation, are choices

of thresholdsD{"" D'® DJ'& D3 \We have given some consideration to the
choice ofD§'® and have noted that the performance shown in Tables 3 ands4 doe
not seem to be much affected whB§®*is decreased from 0.5 to 0.75. We have
also shown in section 4.1, however, that setting the moreadeimg requirements
with D'®*< 0.1 may result in premature termination of the the curvilirssarch.

In other words the choice &@5'®*is of some significance but, within a reasonable
range, it does not appear to be critical We would expect amndmarks to be true

for the other parameters.

One further research question for the implementatiaxipfP1 andNIMP2 relates

to the repeated solution of the system (6.1) for differemties forp. Instead of
using theRDR' factors ofG in the calculation scheme (2.13) we could simply per-
form a freshLLT factorization for each value @f The eigenvalue decomposition
Is expensive and may well require more computing effort thewreral Cholesky
solutions. Such a change in the method of calculapifig) will, of course, not
change the counts of iterations and function evaluatioow/shn the comparison
tables: but it may well have an appreciable effect on thetimes for solving
larger problems.

As a final remark, it is worth pointing out that it one could Exp quasi-Newton
variants oNIMP1 andNIMP2 in which the exact Hessian is replaced by an updated
approximation which is not forced to be positive definite.
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