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Abstract

Synchronization of memristive neural networks (MNNs) by using network con-

trol scheme has been widely and deeply studied. However, these researches are

usually restricted to traditional continuous-time control methods for synchro-

nization of the first-order MNNs. In this paper, we study the robust exponen-

tial synchronization of inertial memristive neural networks (IMNNs) with time-

varying delays and parameter disturbance via event-triggered control (ETC)

scheme. First, the delayed IMNNs with parameter disturbance are changed into

first-order MNNs with parameter disturbance by constructing proper variable

substitutions. Next, a kind of state feedback controller is designed to the re-

sponse IMNN with parameter disturbance. Based on feedback controller, some

ETC methods are provided to largely decrease the update times of controller.

Then, some sufficient conditions are provided to realize robust exponential syn-

chronization of delayed IMNNs with parameter disturbance via ETC scheme.

IResearch supported in part by the Major Research Plan of the National Natural
Science Foundation of China (91964108), the National Natural Science Foundation of
China (6197118, 62201204), the Natural Science Foundation of Hunan Province, China
(2022JJ40514, 2021JJ40555).

∗Corresponding author
Email addresses: yaowei@csust.edu.cn (Wei Yao )

Preprint submitted to Neural Networks April 13, 2023



Moreover, the Zeno behavior will not happen in all ETC conditions shown in

this paper. Finally, numerical simulations are given to verify the advantages of

the obtained results such as anti-interference performance and good reliability.

Key words: Event-triggered control, inertial memristive neural networks,

robust exponential synchronization, parameter disturbance.

1. Introduction

Currently, complex networks are widely researched in the world [1, 2, 3, 4, 5].

In recent decades, neural networks and their dynamic behaviors have attracted

increasing attention [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. It is known that neural

networks are usually applied in artificial intelligence field via adjusting synaptic5

weight. Using memristor to simulate synapse on account of the nonvolatile-

memory characteristic of memristor, human brain can be emulated by con-

structing memristive neural networks (MNNs) model [16, 17, 18, 19, 20, 21, 22].

Up to now, synchronization which is an important dynamic behavior of complex

systems has been applied to some potential areas [23, 24, 25], for instance, secure10

communication and image encryption. Therefore, some works on synchroniza-

tion of MNNs have been studied [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In [26],

exponential synchronization of recurrent MNNs with time-varying delays was

reseached by utilizing fuzzy theory and Lyapunov functional. Wang et al. stud-

ied exponential synchronization of coupled MNNs and proved that the coupled15

systems can be synchronized by a small fraction of controlled subsystems under

a mild topology condition [27]. Using impulsive control method, dynamical and

static multisynchronizations were realized to deal with coupled multistable neu-

ral networks in [29, 30]. Combining dynamical and static multisynchronizations,

hybrid multisynchronization for delayed coupled MNNs was studied [31]. By us-20

ing Halanary inequality, lay synchronization of coupled MNNs was investigated

in [34].

It is worth noting that the major concern of these studies [26, 27, 28, 29, 30,

31, 32, 33, 34, 35] is the first-order differential MNNs. In recent years, inertial
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MNNs (a type of second-order differential systems) and their dynamic behaviors25

were broadly researched [36, 37, 38, 39, 40, 41, 42, 43], because the inertial term

of inertial MNNs (IMNNs) is regarded as an important tool to produce com-

plicated chaos behavior. By utilizing matrix measure method, pinning synchro-

nization of delayed IMNNs was addressed in [36]. Nonsmooth analysis and Lya-

punov stability theories were used to deal with global stability of IMNNs with30

unbounded distributed delays [37]. It is found that synchronization of IMNNs

can be achieved by using different control methods [39, 40, 41, 42, 43, 44]. For

example, a kind of feedback control method was provided to achieve finite-time

synchronization of delayed IMNNs in [39]. Alimi et al. realized fixed-time and

finite-time synchronization of delayed inertial neural networks by using different35

state feedback controllers [40]. In [41], finite-time synchronization for delayed

IMNNs was researched by using state feedback control method. Gong et al.

achieved exponential synchronization of IMNNs and delayed coupled IMNNs via

nonlinear control method in [42] and [43]. In [44], finite-time synchronization of

delayed IMNNs was studied by using delay-dependent control method. These40

network control schemes designed in [39, 40, 41, 42, 43, 44], such as nonlinear

control method and state feedback control method, have been broadly studied

on account of high efficiency. However, these network control schemes are based

on continuous-time feedback controllers, which means heavy computing burden,

even congestion of communication channels will happen.45

Event-triggered control (ETC) [45, 46, 47, 48, 49, 50, 51, 52] which is a

kind of important sampling control scheme can effectively reduce computing

cost and communication resources. Moreover, compared with time-triggered

control method [53], ETC can ensure the performance of controlled system and

distinctly decrease update times of controller. Hence, a growing number of50

researchers used ETC scheme to realize certain features of controlled systems

[45, 46, 47, 48, 49, 50, 51, 52]. In [46], Zhou et al. investigated exponential syn-

chronization problem of Markovian jump delayed complex networks by using

a randomly occurring ETC method. For synchronizing coupled switched neu-

ral networks with communication delays, an ETC law which could effectively55
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decrease the number of control updates was provided [47]. In [48], asymptotic

stability of delayed MNNs was investigated via a discrete sampling ETC scheme

for the first time. In [49], quasi-synchronization of delayed MNNs was achieved

by using an impulsive ETC method. Furthermore, Zeno behavior did not appear

in the controlled MNNs under ETC condition proposed in [49]. By introducing60

the discontinuous sign term and linear diffusive term, two event-based control

schemes were proposed to realize the global synchronization for delayed MNNs

[50]. Moreover, under the event-triggering conditions proposed in [50], Zeno

behavior did not happen. However, these ETC methods are applied in the

first-order systems [46, 47, 48, 49, 50, 51], which cannot be directly used in the65

second-order systems such as IMNNs due to requiring two types of errors. For

synchronizing second-order IMNNs via ETC method, dynamic ETC method

and static ETC method were provided to realize the asymptotic synchroniza-

tion of IMNNs in [52]. As far as we know, there is little work on synchronization

of second-order IMNNs under the influence of parameter disturbance via ETC70

scheme. What’s more important is that there usually exist uncertain parameter

disturbances in MNNs because of dependence on state for parameters of MNNs

and some environmental disturbances. Thus, the uncertain parameter distur-

bances cannot be ignored on account of their unpredictable influence for MNNs

[54, 55, 56, 57].75

Inspired by the above discussion, this paper studies the robust synchroniza-

tion of second-order IMNNs with time-varying delays under the influence of

parameter disturbance via ETC scheme. The main contributions are summa-

rized as follows.

1) A kind of state feedback controller is designed in this paper, which does80

not change value until the next event-triggered instant.

2) Several types of ETC methods based on state feedback controller are

designed to deal with the robust synchronization problems and enhance anti-

interference performance and reliability of second-order IMNNs.

3) For realizing robust exponential synchronization of delayed IMNNs with85

the influence of parameter disturbance, some sufficient conditions are provided
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by using state feedback controller and ETC scheme.

4) Using ETC methods proposed in this paper, the computing burden and

update times of feedback controller can be effectively decreased for the disturbed

IMNNs. Moreover, the Zeno behavior does not happen in all ETC conditions.90

The rest of the paper is organized as follows. In Section 2, the drive and

response IMNNs with parameter disturbance are introduced and these IMNNs

are changed into first-order MNNs with parameter disturbance by constructing

proper variable substitutions. A kind of state feedback controller and some ETC

methods are presented to achieve robust exponential synchronization of delayed95

IMNNs with parameter disturbance in Section 3. Section 4 provides numerical

simulations to verify the validity of the obtained results. Finally, conclusions

are given in Section 5.

2. Preliminaries

Notations: For a given vector a = (a1, a2, . . . , ar)
T , ‖a‖1 =

r∑
k=1

|ak|. For100

a given matrix x = [xkh]r×r, ‖x‖1 = max
1≤h≤r

r∑
k=1

|xkh|. λ1 = min{λ(x)} and

λ2 = max{λ(x)} represent the minimum and maximal eigenvalues of matrix x,

respectively.

Consider a delayed IMNN as follows.

d2xk(t)
dt2 = −vk dxk(t)

dt − okxk(t) +
r∑

h=1

αkh(xk(t))

×fh(xh(t)) +
r∑

h=1

βkh(xk(t))fh(xh(t− τkh(t)))

+Ik(t), k = 1, 2, . . . , r,

(1)

where d2xk(t)
dt2 represents an inertial term, xk(t) denotes the state of the kth

neuron, vk and ok are constants, time-varying delay τkh(t) satisfies 0 ≤ τkh(t) ≤

τ , where τ is a positive constant, fh(·) represents the activation function, Ik(t)

expresses the external input. αkh(xk(t)) and βkh(xk(t)) represent memristive

connection weights, which are given by

αkh(xk(t)) =

 α1kh, Ψk1

α2kh, Ψk2,
(2)
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and

βkh(xk(t)) =

 β1kh, Ψk1,

β2kh, Ψk2,
(3)

where α1kh, α2kh, β1kh and β2kh are constants, Ψk1 and Ψk2 represent |xk(t)| ≤

`k and |xk(t)| > `k, respectively, positive constant `k > 0 denotes a switching105

jump.

Because of dependence on state for parameters of MNNs and some environ-

mental disturbances, there usually exist uncertain bounded parameter distur-

bances in MNNs, actually. Hence, the more realistic delayed IMNN system can

be written as follows.

d2xk(t)
dt2 = −vk dxk(t)

dt − okxk(t) +
r∑

h=1

[αkh(xk(t))

+∆αkh(t)] fh(xh(t)) +
r∑

h=1

[βkh(xk(t)) + ∆βkh(t)]

×fh(xh(t− τkh(t))) + Ik(t), k = 1, 2, . . . , r,

(4)

where ∆αkh(t) and ∆βkh(t) represent the uncertain parameters, and they are

bounded as

|∆αkh(t)| ≤ ς(1)
kh , (5)

|∆βkh(t)| ≤ ς(2)
kh , (6)

where ς
(1)
kh and ς

(2)
kh are positive constants.

Set α̂kh = max{|α1kh|, |α2kh|}, β̂kh = max{|β1kh|, |β2kh|}, υ̂ = [α̂kh]r×r,

Ω̂ = [β̂kh]r×r. The initial conditions of the delayed IMNN (4) are considered as

 xk(s) = Υk(s),

dxk(s)
ds = Θk(s), −τ ≤ s ≤ 0.

(7)

Consider a constant γk and let qk(t) = dxk(t)
dt + γkxk(t), k = 1, 2, . . . , r, then
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system (4) can be rewritten as

dxk(t)
dt = −γkxk(t) + qk(t),

dqk(t)
dt = −(vk − γk)qk(t)− [ok + γk(γk − vk)]

×xk(t) +
r∑

h=1

[αkh(xk(t)) + ∆αkh(t)] fh(xh(t))

+
r∑

h=1

[βkh(xk(t)) + ∆βkh(t)] fh(xh(t− τkh(t)))

+Ik(t)

∆
= −ṽkqk(t)− õkxk(t) +

r∑
h=1

[αkh(xk(t))

+∆αkh(t)] fh(xh(t)) +
r∑

h=1

[βkh(xk(t)) + ∆βkh(t)]

×fh(xh(t− τkh(t))) + Ik(t),

(8)

where ṽk = vk − γk, õk = ok + γk(γk − vk).110

Then the initial conditions of the delayed IMNN (8) can be presented by xk(s) = Υk(s),

qk(s) = Θk(s) + γkΥ(s), −τ ≤ s ≤ 0.
(9)

Let system (4) be the drive IMNN with parameter disturbance, then the

response IMNN with uncertain bounded parameter disturbance can be written

as
d2yk(t)

dt2 = −vk dyk(t)
dt − okyk(t) +

r∑
h=1

[αkh(yk(t))

+∆ηkh(t)] fh(yh(t)) +
r∑

h=1

[βkh(yk(t)) + ∆µkh(t)]

×fh(yh(t− τkh(t))) + Ik(t) + uk(t), k = 1, 2, . . . , r,

(10)

where uk(t) is the controller, ∆ηkh(t) and ∆µkh(t) denote the uncertain param-

eters, and they are bounded as

|∆ηkh(t)| ≤ ρ(1)
kh , (11)

|∆µkh(t)| ≤ ρ(2)
kh , (12)

where ρ
(1)
kh and ρ

(2)
kh are positive constants.
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Similarly, let pk(t) = dyk(t)
dt + γkyk(t), k = 1, 2, . . . , r. Then the response

IMNN (10) can be rewritten as

dyk(t)
dt = −γkyk(t) + pk(t),

dpk(t)
dt = −ṽkpk(t)− õkyk(t) +

r∑
h=1

[αkh(yk(t))

+∆ηkh(t)] fh(yh(t)) +
r∑

h=1

[βkh(yk(t)) + ∆µkh(t)]

×fh(yh(t− τkh(t))) + Ik(t) + uk(t),

(13)

where ṽk = vk − γk and õk = ok + γk(γk − vk).

Set errors Ek(t) = yk(t)− xk(t) and Jk(t) = pk(t)− qk(t). Then we can get

errors as 

dEk(t)
dt = −γkEk(t) + Jk(t),

dJk(t)
dt = −ṽkJk(t)− õkEk(t) +

r∑
h=1

αkh(yk(t))

×gh(Eh(t)) +
r∑

h=1

[αkh(yk(t))− αkh(xk(t))] fh(xh(t))

+
r∑

h=1

[∆ηkh(t)fh(yh(t)) −∆αkh(t)fh(xh(t))]

+
r∑

h=1

βkh(yk(t))gh(Eh(t− τkh(t)))

+
r∑

h=1

[βkh(yk(t))− βkh(xk(t))] fh(xh(t− τkh(t)))

+
r∑

h=1

[∆µkh(t)fh(yh(t− τkh(t)))

−∆βkh(t)fh(xh(t− τkh(t)))] + uk(t).

(14)

where gh(Eh(t)) = fh(yh(t)) − fh(xh(t)). Moreover, the vector form of system

(14) can be written as

dE(t)
dt = −WE(t) + J(t),

dJ(t)
dt = −Ṽ J(t)− ÕE(t) + υ(y(t))g(E(t))

+ [υ(y(t))− υ(x(t))] f(x(t))

+∆(η(t))f(y(t))−∆(α(t))f(x(t))

+Ω(y(t))g(E(t− τ(t)))

+ [Ω(y(t))− Ω(x(t))] f(x(t− τ(t)))

+ [∆(µ(t))f(y(t− τ(t)))

−∆(β(t))f(x(t− τ(t)))] + u(t).

(15)
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Figure 1: The mechanism of ETC scheme.

where E(t) = (E1(t), E2(t), . . . , Er(t))
T , J(t) = (J1(t), J2(t), . . . , Jr(t))

T , W =

diag{γ1, γ2, . . . , γr}, u(t) = (u1(t), u2(t), . . . , ur(t))
T , Ṽ = diag{ṽ1, ṽ2, . . . , ṽr},

Õ = diag{õ1, õ2, . . . , õr}, g(E(t)) = (g1(E1(t)), g2(E2(t)), . . . , gr(Er(t)))
T , f(x(t)) =115

(f1(x1(t)), f2(x2(t)), . . . , fr(xr(t)))
T , υ(y(t)) = [αkh(y(t))]r×r, υ(x(t)) = [αkh(x(t))]r×r,

∆(η(t)) = [∆ηkh(t)]r×r, ∆(α(t)) = [∆αkh(t)]r×r, Ω(y(t)) = [βkh(y(t))]r×r,

Ω(x(t)) = [βkh(x(t))]r×r, ∆(µ(t)) = [∆µkh(t)]r×r, ∆(β(t)) = [∆βkh(t)]r×r.

Set measured error as Q(t) = J(ti) − J(t), ∀t ∈ [ti, ti+1). ti is an event-

triggered instant, where i = 1, 2, 3, . . .. For well activating ETC, set the first120

event-triggered instant t1 = 0. The mechanism of ETC scheme is presented in

Figure 1. The controller will be updated under a new triggering event when the

measured error oversteps the threshold designed in ETC strategy in advance.

3. ETC for Robust Exponential Synchronization of IMNNs

A kind of state feedback controller is considered as

u(t) = −ΛJ(ti)−Hsgn(J(ti)), t ∈ [ti, ti+1), (16)

where positive definite matrix Λ = diag(Λ1,Λ2, . . . ,Λr)
T ; H = diag(H1,H2, . . . ,Hr)

T ;125

sgn() is the sign function; ti represents an event-triggered instant.

To get the main results, some necessary definition and assumptions will be

presented.

Definition 1. The response IMNN (10) and the drive IMNN (4) with pa-

rameter disturbance are said to be robustly exponentially synchronized, if error
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system (15) is robustly exponentially stable, i.e., there exist positive constants

Y and X such that

‖E(t)‖1 ≤ Y sup
−τ≤s≤0

‖E(s)‖1e
−Xt (17)

for all t ≥ 0, where sup
−τ≤s≤0

‖E(s)‖1 6= 0.

Assumption 1. Function fh satisfies Lipschitz and bounded conditions, i.e.,130

|fh(a1)− fh(a2)| ≤ Mh |a1 − a2| and |fh(a1)| ≤ Nh for any a1, a2 ∈ R, h =

1, 2, . . . , r, where Mh and Nh are positive constants.

Assumption 2. τkh(t) satisfies

τ̇kh(t) ≤ θ < 1, (18)

where θ > 0 is a constant.

Next, we will present some theorems and corollaries about robust exponential

synchronization via ETC method.135

Theorem 1. IMNN systems (10) and (4) with parameter disturbance can be

robustly exponentially synchronized under the controller (16), Assumptions 1

and 2 and the following ETC condition

‖Q(t)‖1 ≤ ϕ1
(ϑ‖J(t)‖1 + κ)

λ2(Λ)
, (19)

for t ∈ [ti, ti+1), if

λ1(W ) > δ + max
{
|λ(Õ)|

}
+Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1
+Mmax‖υ̂‖1

(20)

 Hk > σk, if sgn(Jk(t))sgn(Jk(ti)) > 0,

Hk ≤ −σk, otherwise,
(21)

and

σk >
r∑

h=1

[|α1kh − α2kh|+ |β1kh − β2kh|

+ρ
(1)
kh + ς

(1)
kh + ρ

(2)
kh + ς

(2)
kh

]
Nh,

(22)

where ϕ1 ∈ (0, 1], Mmax = max
1≤h≤r

{Mh}, ϑ = −δ−1+λ1(Ṽ )+λ1(Λ) > 0, and κ =

r∑
k=1

{σk−
r∑

h=1

[|α1kh − α2kh|+ |β1kh − β2kh| +ρ
(1)
kh + ς

(1)
kh + ρ

(2)
kh + ς

(2)
kh

]
Nh

}
.
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Proof. Consider a Lyapunov functional as

F (t) = eδt
r∑

k=1

[|Ek(t)|+ |Jk(t)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ t
t−τkh(t)

|gh(Eh(s))| eδ(s+τ)ds.
(23)
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For t ∈ [ti, ti+1), the upper right Dini-derivative of F (t) can be given as

D+F (t) = δeδt
{

r∑
k=1

[|Ek(t)|+ |Jk(t)|]
}

+eδt[sgnT (E(t))Ė(t) + sgnT (J(t))J̇(t)]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

[
|gh(Eh(t))| eδ(t+τ)

−(1− τ̇kh(t)) |gh(Eh(t− τkh(t)))| eδ(t−τkh(t)+τ)
]

≤ δeδt [‖E(t)‖1 + ‖J(t)‖1] + eδtsgnT (E(t))

× [−WE(t) + J(t)] + eδtsgnT (J(t))

×
{
−Ṽ J(t)− ÕE(t) + υ(y(t))g(E(t))

+ [υ(y(t))− υ(x(t))] f(x(t)) + ∆(η(t))f(y(t))

−∆(α(t))f(x(t)) + Ω(y(t))g(E(t− τ(t)))

+ [Ω(y(t))− Ω(x(t))] f(x(t− τ(t)))

+ [∆(µ(t))f(y(t− τ(t)))−∆(β(t))f(x(t− τ(t)))]

−ΛJ(ti)−Hsgn(J(ti))}+
r∑

k=1

r∑
h=1

eδtβ̂kh

×
[

1
1−θ |gh(Eh(t))| eδτ − |gh(Eh(t− τkh(t)))|

]
≤ δeδt [‖E(t)‖1 + ‖J(t)‖1]

+eδt [−λ1(W )‖E(t)‖1 + ‖J(t)‖1]

+eδt
{
−λ1(Ṽ )‖J(t)‖1 + max

{
|λ(Õ)|

}
‖E(t)‖1

+Mmax‖υ̂‖1‖E(t)‖1}+ eδtsgnT (J(t))

×{[υ(y(t))− υ(x(t))] f(x(t))

+∆(η(t))f(y(t))−∆(α(t))f(x(t))

+ [Ω(y(t))− Ω(x(t))] f(x(t− τ(t)))

+∆(µ(t))f(y(t− τ(t)))−∆(β(t))f(x(t− τ(t)))

−ΛJ(ti)−Hsgn(J(ti))}

+eδtsgnT (J(t))Ω(y(t))g(E(t− τ(t)))

−
r∑

k=1

r∑
h=1

eδtβ̂kh |gh(Eh(t− τkh(t)))|

+Mmaxe
δt

1−θ

∥∥∥Ω̂
∥∥∥

1
‖E(t)‖1eδτ

(24)

Combining with Q(t) = J(ti)− J(t), we get

−sgnT (J(t))ΛJ(ti) = −sgnT (J(t))Λ [J(t) +Q(t)]

≤ −λ1(Λ)‖J(t)‖1 + λ2(Λ)‖Q(t)‖1.
(25)
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According to Assumption 1 and the bounded conditions of uncertain param-

eters in (5)-(6) and (11)-(12), the following inequalities hold.

sgnT (J(t)) {[υ(y(t))− υ(x(t))] f(x(t))

+∆(η(t))f(y(t))−∆(α(t))f(x(t))

+ [Ω(y(t))− Ω(x(t))] f(x(t− τ(t)))

+∆(µ(t))f(y(t− τ(t)))−∆(β(t))f(x(t− τ(t)))

−Hsgn(J(ti))}

≤
r∑

k=1

r∑
h=1

[|α1kh − α2kh|+ |β1kh − β2kh|

+ρ
(1)
kh + ς

(1)
kh + ρ

(2)
kh + ς

(2)
kh

]
Nh

−
r∑

k=1

sgn(Jk(t))sgn(Jk(ti))Hk

≤ −
r∑

k=1

{σk−
r∑

h=1

[|α1kh − α2kh|+ |β1kh − β2kh|

+ρ
(1)
kh + ς

(1)
kh + ρ

(2)
kh + ς

(2)
kh

]
Nh

}
= −κ < 0.

(26)

In addition, we can obtain

eδtsgnT (J(t))Ω(y(t))g(E(t− τ(t)))

−
r∑

k=1

r∑
h=1

eδtβ̂kh |gh(Eh(t− τkh(t)))|

= eδt
r∑

k=1

r∑
h=1

[sgn(Jk(t))βkh(yk(t))gh(Eh(t− τkh(t)))

−β̂kh |gh(Eh(t− τkh(t)))|
]

≤ 0.

(27)

Thus, it can be gained that

D+F (t) ≤ eδt
[
δ − λ1(W ) + max

{
|λ(Õ)|

}
+Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1
+Mmax‖υ̂‖1

]
‖E(t)‖1

+eδt
[
δ + 1− λ1(Ṽ )− λ1(Λ)

]
‖J(t)‖1

+eδtλ2(Λ)‖Q(t)‖1 − eδtκ

≤ eδt(ϕ1 − 1) [ϑ‖J(t)‖1 + κ] ≤ 0.

(28)

Therefore,

eδt‖E(t)‖1 ≤ F (t) ≤ F (0), (29)

13



and

F (0) =
r∑

k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds.

(30)

If sup
−τ≤s≤0

‖E(s)‖1 6= 0, there exists a positive constant P1, such that

r∑
k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds

≤ P1 sup
−τ≤s≤0

‖E(s)‖1.

(31)

Therefore, it can be acquired that

‖E(t)‖1 ≤ P1 sup
−τ≤s≤0

‖E(s)‖1e
−δt. (32)

Thus, the IMNN (10) can achieve robust exponential synchronization and

the IMNN (4) under the ETC condition (19).

Remark 1. Combining the state feedback controller (16) and ETC condition140

(19), the controller (16) just makes one update when measured error violates

ETC condition (19). Therefore, the state feedback controller (16) does not

be updated so long as measured error satisfies ETC condition (19). ETC can

decrease the computational burden compared with the traditional continuous-

time control [39, 40, 41, 42, 43, 44]. Therefore, it is very meaningful for ETC145

to realize synchronization of IMNNs.

Corollary 1. If inequalities (20)-(22) hold, IMNN systems (10) and (4) with

parameter disturbance can be robustly exponentially synchronized under the

controller (16), Assumptions 1 and 2 and the following ETC condition

‖Q(t)‖1 ≤
ϕ1ϑ‖J(t)‖1 + ϕ2κ

λ2(Λ)
, (33)

for t ∈ [ti, ti+1), and ϕ1, ϑ and κ are given in Theorem 1, ϕ2 ∈ (0, 1].

14



Proof. Using (33) and the proof of Theorem 1, it can be gained that

D+F (t) ≤ eδt
[
δ − λ1(W ) + max

{
|λ(Õ)|

}
+Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1
+Mmax‖υ̂‖1

]
‖E(t)‖1

+eδt
[
δ + 1− λ1(Ṽ )− λ1(Λ)

]
‖J(t)‖1

+eδtλ2(Λ)‖Q(t)‖1 − eδtκ

≤ eδt(ϕ1 − 1)ϑ‖J(t)‖1 + eδt(ϕ2 − 1)κ ≤ 0.

(34)

The rest of proof is same as the proof of Theorem 1. Hence, the IMNN (10)

can achieve robust exponential synchronization and the IMNN (4) under the

ETC condition (33).150

Corollary 2. If inequalities (20)-(22) hold, IMNN systems (10) and (4) with

parameter disturbance can be robustly exponentially synchronized under the

controller (16), Assumptions 1 and 2 and the following ETC condition

‖Q(t)‖1 ≤
ϕ1 (ϑ‖J(ti)‖1 + κ)

λ2(Λ) + ϕ1ϑ
, (35)

for t ∈ [ti, ti+1), and ϕ1, ϑ and κ are given in Theorem 1.

Proof. Transforming the inequality (35), we can get

λ2(Λ)‖Q(t)‖1 ≤ ϕ1 (ϑ‖J(ti)‖1 + κ)− ϕ1ϑ‖Q(t)‖1
= ϕ1ϑ (‖J(ti)‖1 − ‖Q(t)‖1) + ϕ1κ

≤ ϕ1ϑ (‖J(ti)−Q(t)‖1) + ϕ1κ = ϕ1ϑ‖J(t)‖1+ϕ1κ,

(36)

for t ∈ [ti, ti+1).

Thus, inequality (19) can be acquired from inequality (35), that is to say, the

conditions of Theorem 1 are satisfied. Therefore, the IMNN (10) can achieve

robust exponential synchronization and the IMNN (4) under the ETC condition155

(35).

Remark 2. If the following condition holds,

lim
n→∞

n∑
i=0

(ti+1 − ti) = Q, (37)

then Zeno behavior will happen in event-triggered system [58], whereQ is a finite

constant. Obviously, Zeno behavior is not expected in event-triggered system.

15



When execution time t̄i = ti+1 − ti is bigger than a positive constant, that is

to say, event-triggered release times in finite time is finite, then event-triggered160

system will not exhibit Zeno behavior.

Theorem 2. If the ETC condition of Theorem 1 holds, then IMNN systems

(10) and (4) with parameter disturbance can be robustly exponentially synchro-

nized without Zeno behavior, and the execution time t̄i = ti+1 − ti satisfies the

following condition

t̄i >
1

‖Ṽ ‖
1

ln

[
ϕ1‖Ṽ ‖

1
(ϑ‖J(t)‖1+κ)
λ2(Λ)Z + 1

]
≥ 1

‖Ṽ ‖
1

ln

[
ϕ1‖Ṽ ‖

1
κ

λ2(Λ)Z + 1

]
,

(38)

where Z =
(∥∥∥Ṽ ∥∥∥

1
+ ‖Λ‖1 +

∥∥∥Õ∥∥∥
1

)
F (0) + ‖H‖1 + (2‖υ̂‖1 + 2

∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh

+ ρ
(1)
kh + ρ

(2)
kh )Nmax, Nmax = max

1≤h≤r
{Nh}.

Proof. When event is triggered for t ∈ [ti, ti+1), we can have

‖Q(ti+1)‖1 > ϕ1
(ϑ‖J(t)‖1 + κ)

λ2(Λ)
. (39)

In addition,

d
dt‖Q(t)‖1 ≤

∥∥ d
dtQ(t)

∥∥
1

=
∥∥∥J̇(t)

∥∥∥
1

=
∥∥∥−Ṽ J(t)− ÕE(t) + υ(y(t))f(y(t))

−υ(x(t))f(x(t)) + ∆(η(t))f(y(t))−∆(α(t))f(x(t))

+Ω(y(t))f(y(t− τ(t)))− Ω(x(t))f(x(t− τ(t)))

+∆(µ(t))f(y(t− τ(t)))−∆(β(t))f(x(t− τ(t)))

−ΛJ(ti)−Hsgn(J(ti))‖1
≤
∥∥∥Ṽ ∥∥∥

1
‖J(t)‖1 +

∥∥∥Õ∥∥∥
1
‖E(t)‖1

+
(

2‖υ̂‖1 + 2
∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh + ρ

(1)
kh + ρ

(2)
kh

)
Nmax

+‖Λ‖1‖J(ti)‖1 + ‖H‖1
≤
∥∥∥Ṽ ∥∥∥

1
‖Q(t)‖1 +

(∥∥∥Ṽ ∥∥∥
1

+ ‖Λ‖1
)
‖J(ti)‖1

+
∥∥∥Õ∥∥∥

1
‖E(t)‖1 + ‖H‖1

+
(

2‖υ̂‖1 + 2
∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh + ρ

(1)
kh + ρ

(2)
kh

)
Nmax.

(40)

Combining with the expression of F (t) and D+F (t) ≤ 0, we can get

eδt‖E(t)‖1 ≤ F (t) ≤ F (0), (41)
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eδt‖J(t)‖1 ≤ F (t) ≤ F (0). (42)

That is to say,

‖E(t)‖1 ≤ e
−δtF (0) ≤ F (0), (43)

and

‖J(ti)‖1 ≤ e
−δtiF (0) ≤ F (0). (44)

Then,

d
dt‖Q(t)‖1 ≤

∥∥∥Ṽ ∥∥∥
1
‖Q(t)‖1 +

(∥∥∥Ṽ ∥∥∥
1

+ ‖Λ‖1
)
F (0)

+
∥∥∥Õ∥∥∥

1
F (0) + ‖H‖1

+
(

2‖υ̂‖1 + 2
∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh + ρ

(1)
kh + ρ

(2)
kh

)
Nmax

≤
∥∥∥Ṽ ∥∥∥

1
‖Q(t)‖1 + Z.

(45)

Because Q(ti) = 0, we can have

‖Q(t)‖1 ≤
Z∥∥∥Ṽ ∥∥∥

1

[
e‖Ṽ ‖1(t−ti) − 1

]
, (46)

for t ∈ [ti, ti+1). Therefore,

ϕ1
(ϑ‖J(t)‖1+κ)

λ2(Λ) < ‖Q(ti+1)‖1
≤ Z

‖Ṽ ‖
1

[
e‖Ṽ ‖1(ti+1−ti) − 1

]
,

(47)

and

ti+1 − ti > 1

‖Ṽ ‖
1

ln

[
ϕ1

∥∥∥Ṽ ∥∥∥
1

(ϑ‖J(t)‖1+κ)
λ2(Λ)Z + 1

]
≥ 1

‖Ṽ ‖
1

ln

[
ϕ1‖Ṽ ‖

1
κ

λ2(Λ)Z + 1

]
.

(48)

Therefore, under the conditions of Theorem 1, IMNNs systems (10) and (4)

with parameter disturbance can be robustly exponentially synchronized without165

Zeno behavior.

Corollary 3. If the ETC condition of Corollary 1 holds, then IMNN systems

(10) and (4) with parameter disturbance can be robustly exponentially synchro-

nized without Zeno behavior, and the execution time t̄i = ti+1 − ti satisfies the
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following condition

t̄i >
1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
(ϕ1ϑ‖J(t)‖1+ϕ2κ)

λ2(Λ)Z + 1

]
≥ 1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
ϕ2κ

λ2(Λ)Z + 1

]
,

(49)

where Z and Nmax are given in Theorem 2.

Corollary 4. If the ETC condition of Corollary 2 holds, then IMNN systems

(10) and (4) with parameter disturbance can be robustly exponentially synchro-

nized without Zeno behavior, and the execution time t̄i = ti+1 − ti satisfies the

following condition

t̄i >
1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
ϕ1(ϑ‖J(ti)‖1+κ)

(λ2(Λ)+ϕ1ϑ)Z + 1

]
≥ 1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
ϕ1κ

(λ2(Λ)+ϕ1ϑ)Z + 1

]
,

(50)

where Z and Nmax are given in Theorem 2.

Set a dynamic variable χ1(t) which satisfies the following condition

χ̇1(t) = −χ1(t) + ϕ1 (ϑ‖J(t)‖1 + κ)− λ2(Λ)‖Q(t)‖1, (51)

where ϕ1, ϑ and κ are given in Theorem 1. The initial value of equality (51) is

χ1(0) and satisfies χ1(0) ≥ 0.170

Then some ETC conditions which contain the dynamic variable χ1(t) will be

provided to achieve robust exponential synchronization between IMNNs systems

(10) and (4) with parameter disturbance.

Theorem 3. If inequalities (20)-(22) hold, IMNN systems (10) and (4) with

parameter disturbance can be robustly exponentially synchronized under the

controller (16), Assumptions 1 and 2 and the following ETC condition

‖Q(t)‖1 ≤ χ1(t) + ϕ1
(ϑ‖J(t)‖1 + κ)

λ2(Λ)
, (52)

for t ∈ [ti, ti+1), and ϕ1, ϑ and κ are given in Theorem 1.

Proof. From (51) and (52), it can be gained that

χ̇1(t) = −χ1(t) + ϕ1 (ϑ‖J(t)‖1 + κ)− λ2(Λ)‖Q(t)‖1
≥ −χ1(t) + λ2(Λ) (‖Q(t)‖1 − χ1(t))− λ2(Λ)‖Q(t)‖1
= − (1 + λ2(Λ))χ1(t).

(53)
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It can be obtained that the solution χ(t) satisfies χ(t) ≥ 0 for the equation175

χ̇(t) = −(1 + d)χ(t) with d > 0 and χ(0) ≥ 0. Therefore, we can get that

χ1(t) ≥ 0 according to comparison lemma.

Set the following Lyapunov functional

F1(t) = F (t) + eδtχ1(t)

= eδt
r∑

k=1

[|Ek(t)|+ |Jk(t)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ t
t−τkh(t)

|gh(Eh(s))| eδ(s+τ)ds

+eδtχ1(t),

(54)

where δ ∈ (0, 1). For t ∈ [ti, ti+1), the upper right Dini-derivative of F1(t) can

be written as

D+F1(t) = D+F (t) + δeδtχ1(t) + eδtχ̇1(t)

≤ eδt
[
δ − λ1(W ) + max

{
|λ(Õ)|

}
+ Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1

+Mmax‖υ̂‖1] ‖E(t)‖1 + eδt
[
δ + 1− λ1(Ṽ )− λ1(Λ)

]
×‖J(t)‖1 + eδtλ2(Λ)‖Q(t)‖1 − eδtκ

+δeδtχ1(t) + eδt [−χ1(t) + ϕ1 (ϑ‖J(t)‖1 + κ)

−λ2(Λ) ‖Q(t)‖1]

≤ −eδtϑ‖J(t)‖1 − eδtκ+ δeδtχ1(t)

+eδt [−χ1(t) + ϕ1 (ϑ‖J(t)‖1 + κ)]

≤ eδt(ϕ1 − 1) (ϑ‖J(t)‖1 + κ) + (δ − 1)eδtχ1(t)

≤ 0.

(55)

Therefore,

eδt‖E(t)‖1 ≤ F1(t) ≤ F1(0), (56)

and

F1(0) =
r∑

k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds

+χ1(0).

(57)
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If sup
−τ≤s≤0

‖E(s)‖1 6= 0, there exists a positive constant P2, such that

r∑
k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds+ χ1(0)

≤ P2 sup
−τ≤s≤0

‖E(s)‖1.

(58)

Therefore, it can be gained that

‖E(t)‖1 ≤ P2 sup
−τ≤s≤0

‖E(s)‖1e
−δt, (59)

where δ ∈ (0, 1).

Thus, the IMNN (10) can achieve robust exponential synchronization and

the IMNN (4) under the ETC condition (52).180

Set another dynamic variable χ2(t) which satisfies

χ̇2(t) = −χ2(t) + ϕ1ϑ‖J(t)‖1
+ϕ2κ− λ2(Λ)‖Q(t)‖1,

(60)

where ϕ1, ϑ and κ are given in Theorem 1, ϕ2 ∈ (0, 1]. The initial value of

equality (60) is χ2(0) and satisfies χ2(0) ≥ 0.

Then new ETC conditions which contain χ2(t) will be provided, such that

IMNN systems (10) and (4) with parameter disturbance can be robustly expo-

nentially synchronized.185

Theorem 4. If inequalities (20)-(22) hold, IMNN systems (10) and (4) with

parameter disturbance can be robustly exponentially synchronized under the

controller (16), Assumptions 1 and 2 and the following ETC condition

‖Q(t)‖1 ≤ χ2(t) +
ϕ1ϑ‖J(t)‖1 + ϕ2κ

λ2(Λ)
, (61)

for t ∈ [ti, ti+1), and ϕ1, ϑ and κ are given in Theorem 1, and ϕ2 ∈ (0, 1].
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Proof. From (60) and (61), it can be gained that

χ̇2(t) = −χ2(t) + ϕ1ϑ‖J(t)‖1 + ϕ2κ

−λ2(Λ)‖Q(t)‖1
≥ −χ2(t) + λ2(Λ) (‖Q(t)‖1 − χ2(t))

−λ2(Λ)‖Q(t)‖1
= − (1 + λ2(Λ))χ2(t).

(62)

Similarly, we can obtain that χ2(t) ≥ 0 according to comparison lemma.

Set another Lyapunov functional

F2(t) = F (t) + eδtχ2(t)

= eδt
r∑

k=1

[|Ek(t)|+ |Jk(t)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ t
t−τkh(t)

|gh(Eh(s))| eδ(s+τ)ds+ eδtχ2(t),

(63)

where δ ∈ (0, 1). For t ∈ [ti, ti+1), the upper right Dini-derivative of F2(t) can

be obtained as

D+F2(t) = D+F (t) + δeδtχ2(t) + eδtχ̇2(t)

≤ eδt
[
δ − λ1(W ) + max

{
|λ(Õ)|

}
+ Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1

+Mmax‖υ̂‖1] ‖E(t)‖1 + eδt
[
δ + 1− λ1(Ṽ )− λ1(Λ)

]
×‖J(t)‖1 + eδtλ2(Λ)‖Q(t)‖1 − eδtκ

+δeδtχ2(t) + eδt [−χ2(t) + ϕ1ϑ‖J(t)‖1
+ϕ2κ− λ2(Λ)‖Q(t)‖1]

≤ −eδtϑ‖J(t)‖1 − eδtκ+ δeδtχ2(t)

+eδt [−χ2(t) + ϕ1ϑ‖J(t)‖1 + ϕ2κ]

≤ eδt(ϕ1 − 1)ϑ‖J(t)‖1 + eδt(ϕ2 − 1)κ

+(δ − 1)eδtχ2(t)

≤ 0.

(64)

Therefore,

eδt‖E(t)‖1 ≤ F2(t) ≤ F2(0), (65)

and

F2(0) =
r∑

k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds+ χ2(0).

(66)
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If sup
−τ≤s≤0

‖E(s)‖1 6= 0, there exists a positive constant P3, such that

r∑
k=1

[|Ek(0)|+ |Jk(0)|]

+
r∑

k=1

r∑
h=1

β̂kh
1−θ

∫ 0

−τkh(0)
|gh(Eh(s))| eδ(s+τ)ds+ χ2(0)

≤ P3 sup
−τ≤s≤0

‖E(s)‖1.

(67)

Hence, we can gain

‖E(t)‖1 ≤ P3 sup
−τ≤s≤0

‖E(s)‖1e
−δt, (68)

where δ ∈ (0, 1).

Thus, the IMNN (10) can achieve robust exponential synchronization and

the IMNN (4) under the ETC condition (61).190

Subsequently, some theorems and corollaries will be presented to verify that

IMNNs systems (10) and (4) with parameter disturbance can be robustly ex-

ponentially synchronized without Zeno behavior under the ETC conditions of

Theorems 3 and 4.

Theorem 5. If the ETC condition of Theorem 3 holds, then IMNN systems

(10) and (4) with parameter disturbance can be robustly exponentially synchro-

nized without Zeno behavior, and the execution time t̄i = ti+1 − ti satisfies the

following condition

t̄i >
1

‖Ṽ ‖
1

ln

{
‖Ṽ ‖

1

Z

[
χ1(t) + ϕ1

(ϑ‖J(t)‖1+κ)
λ2(Λ)

]
+ 1

}
≥ 1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
ϕ1κ

λ2(Λ)Z1
+ 1

]
,

(69)

where Z1 =
(∥∥∥Ṽ ∥∥∥

1
+ ‖Λ‖1 +

∥∥∥Õ∥∥∥
1

)
F1(0) +‖H‖1 + (2‖υ̂‖1 + 2

∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh195

+ ρ
(1)
kh + ρ

(2)
kh )Nmax, and Nmax is given in Theorem 2.

Corollary 5. If the ETC condition of Theorem 4 holds, then IMNN systems

(10) and (4) with parameter disturbance can be robustly exponentially synchro-

nized without Zeno behavior, and the execution time t̄i = ti+1 − ti satisfies the
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following condition

t̄i >
1

‖Ṽ ‖
1

ln

{
‖Ṽ ‖

1

Z

[
χ2(t) +

ϕ1ϑ‖J(t)‖1+ϕ2κ

λ2(Λ)

]
+ 1

}
≥ 1

‖Ṽ ‖
1

ln

[
‖Ṽ ‖

1
ϕ2κ

λ2(Λ)Z2
+ 1

]
,

(70)

where Z2 =
(∥∥∥Ṽ ∥∥∥

1
+ ‖Λ‖1 +

∥∥∥Õ∥∥∥
1

)
F2(0) +‖H‖1 + (2‖υ̂‖1 + 2

∥∥∥Ω̂
∥∥∥

1
+ ς

(1)
kh + ς

(2)
kh

+ ρ
(1)
kh + ρ

(2)
kh )Nmax, and Nmax is given in Theorem 2.

Remark 3. Currently, there are increased researchers using ETC scheme

to realize certain features of controlled systems [45, 46, 47, 48, 49, 50, 51, 52].200

However, these ETC methods are presented in the first-order systems [46, 47,

48, 49, 50, 51], which cannot be directly utilized in the second-order IMNNs

due to requiring two kinds of errors. On the other hand, there usually exist

uncertain parameter disturbances in MNNs because of dependence on state for

parameters of MNNs and some environmental disturbances. Thus, the uncertain205

parameter disturbances cannot be ignored on account of their unpredictable

influence for MNNs [54, 55, 56, 57]. However, there is little work on ETC

for achieving synchronization of second-order IMNNs under the influence of

parameter disturbance. Therefore, this paper studies the robust synchronization

of second-order delayed IMNNs under the influence of parameter disturbance210

via ETC scheme.

Remark 4. Compared with traditional control methods for achieving syn-

chronization of MNNs [39, 40, 41, 42, 43, 44], such as nonlinear control method

and state feedback control method, the ETC method proposed in this pa-

per can decrease the computing burden and update times of feedback con-215

troller. Compared with these ETC methods applied in the first-order systems

[46, 47, 48, 49, 50, 51], the ETC method proposed in this paper can deal with

second-order systems. Compared with these results without the influence of

parameter disturbance [45, 46, 47, 48, 49, 50, 51, 52], this exponential synchro-

nization of delayed IMNNs under parameter disturbance via ETC has many220

advantages, such as anti-interference performance and good reliability.

Remark 5. In this paper, different types of ETC schemes are obtained in
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Theorems 1, 3, 4 and Corollaries 1,2. The rule which produces different types

of ETC schemes is to let the upper right Dini-derivative of Lyapunov functional

be not more than 0. Take Theorem 1 and Corollary 1 for examples. To let225

D+F (t) ≤ 0 shown in inequalities (28) and (34), the ETC conditions (19) and

(33) can be obtained. Thus, different types of ETC conditions can be produced

according to the rule of letting the upper right Dini-derivative of Lyapunov

functional be not more than 0.

4. Simulation230

The section will present an example to verify the effectiveness of the obtained

ETC.

Example. Consider a drive IMNN with parameter disturbance as

d2xk(t)
dt2 = −vk dxk(t)

dt − okxk(t) +
2∑

h=1

[αkh(xk(t))

+∆αkh(t)] fh(xh(t)) +
2∑

h=1

[βkh(xk(t)) + ∆βkh(t)]

×fh(xh(t− τkh(t))) + Ik(t), k = 1, 2,

(71)

where v1 = v2 = 4.2, o1 = o2 = 2.2, external input I1(t) = I2(t) = 0. τkh(t) =

0.05+0.05 sin(t), k, h = 1, 2, then we can choose τ = 0.1 and θ = 0.05. Uncertain

parameters ∆α11(t) = 0.2 cos(t) + 0.1, ∆α12(t) = ∆α21(t) = 0, ∆α22(t) =235

0.16 cos(t) − 0.04, ∆β11(t) = ∆β21(t) = 0, ∆β12(t) = 0.2 sin(t), ∆β22(t) =

0.14 cos(t) + 1.12, then their bounded values can be chosen as ς
(1)
11 = 0.3, ς

(1)
12 =

ς
(1)
21 = 0, ς

(1)
22 = 0.2, ς

(2)
11 = ς

(2)
21 = 0, ς

(2)
12 = 0.2, ς

(2)
22 = 1.26.

Memristive connection weights can be chosen as:

α11(x1(t)) =

 0.38, Ψ11,

0.25, Ψ12,
(72)

α12(x1(t)) =

 0.16, Ψ11,

−0.26, Ψ12,
(73)

α21(x2(t)) =

 0.39, Ψ21,

−0.24, Ψ22,
(74)
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α22(x2(t)) =

 0.06, Ψ21,

−0.35, Ψ22,
(75)

β11(x1(t)) =

 0.34, Ψ11,

−0.62, Ψ12,
(76)

β12(x1(t)) =

 0.13, Ψ11,

−0.46, Ψ12,
(77)

β21(x2(t)) =

 −0.45, Ψ21,

0.32, Ψ22,
(78)

β22(x2(t)) =

 0.26, Ψ21,

−0.34, Ψ22.
(79)

where switching jump `1 = `2 = 1.5.

Then, we can get that υ̂ =

 0.38 0.26

0.39 0.35

, Ω̂ =

 0.62 0.46

0.45 0.34

 and240

‖υ̂‖1=0.77,
∥∥∥Ω̂
∥∥∥

1
= 1.07.

Let γ1 = γ2 = 4 and qk(t) = dxk(t)
dt + 4xk(t), k = 1, 2. Then λ1(W ) = 4 and

system (71) can be rewritten as

dx1(t)
dt = −4x1(t) + q1(t),

dx2(t)
dt = −4x2(t) + q2(t),

dq1(t)
dt = −0.2q1(t)− 1.4x1(t) +

2∑
h=1

[α1h(x1(t))

+∆α1h(t)] fh(xh(t)) +
2∑

h=1

[β1h(x1(t))

+∆β1h(t)] fh(xh(t− τ1h(t))),

dq2(t)
dt = −0.2q2(t)− 1.4x2(t) +

2∑
h=1

[α2h(x2(t))

+∆α2h(t)] fh(xh(t)) +
2∑

h=1

[β2h(x2(t))

+∆β2h(t)] fh(xh(t− τ2h(t))).

(80)
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Then, we get the response IMNN as

dy1(t)
dt = −4y1(t) + p1(t),

dy2(t)
dt = −4y2(t) + p2(t),

dp1(t)
dt = −0.2p1(t)− 1.4y1(t) +

2∑
h=1

[α1h(y1(t))

+∆η1h(t)] fh(yh(t)) +
2∑

h=1

[β1h(y1(t))

+∆µ1h(t)] fh(yh(t− τ1h(t))) + u1(t),

dp2(t)
dt = −0.2p2(t)− 1.4y2(t) +

2∑
h=1

[α2h(y2(t))

+∆η2h(t)] fh(yh(t)) +
2∑

h=1

[β2h(y2(t))

+∆µ2h(t)] fh(yh(t− τ2h(t))) + u2(t),

(81)

where uncertain parameters ∆η11(t) = 0.15 + 0.1 sin(t), ∆η12(t) = ∆η22(t) = 0,

∆η21(t) = 0.15 sin(t)+0.13, ∆µ11(t) = 0.12 sin(t)−0.04, ∆µ12(t) = ∆µ21(t) = 0,

∆µ22(t) = 0.04 cos(t) + 0.22. Thus, their bounded values can be chosen as

ρ
(1)
11 = 0.25, ρ

(1)
12 = ρ

(1)
22 = 0, ρ

(1)
21 = 0.28, ρ

(2)
11 = 0.16, ρ

(2)
12 = ρ

(2)
21 = 0, ρ

(2)
22 = 0.26.245

Memristive connection weights are the same as the drive IMNN (80).

Setting fh(x) = |x+1|−|x−1|
2 , it can be gained that Mh = 1, Nh = 1, h = 1, 2,

Mmax = Nmax = 1. Combining with

2∑
h=1

[|α11h − α21h|+ |β11h − β21h|

+ρ
(1)
1h + ς

(1)
1h + ρ

(2)
1h + ς

(2)
1h

]
Nh = 3.01

(82)

and
2∑

h=1

[|α12h − α22h|+ |β12h − β22h|

+ρ
(1)
2h + ς

(1)
2h + ρ

(2)
2h + ς

(2)
2h

]
Nh = 4.41,

(83)

we can choose σ1 = 3.05, σ2 = 4.43. Then it can be obtained that κ =
2∑
k=1

{σk−
2∑

h=1

[|α1kh − α2kh|+ |β1kh − β2kh| +ρ
(1)
kh + ς

(1)
kh + ρ

(2)
kh + ς

(2)
kh

]
Nh

}
= 0.06,

and we can set H as follows H1 = 3.08, if sgn(J1(t))sgn(J1(ti)) > 0,

H1 = −3.08, otherwise,
(84)
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and  H2 = 4.48, if sgn(J2(t))sgn(J2(ti)) > 0,

H2 = −4.48, otherwise.
(85)

Considering δ = 0.05, then it can be acquired that

δ + max
{
|λ(Õ)|

}
+ Mmaxe

δτ

1−θ

∥∥∥Ω̂
∥∥∥

1
+Mmax‖υ̂‖1

= 0.05 + 1.4 + 1×e0.05×0.1

1−0.05 × 1.07 + 1× 0.77

= 3.352 < λ1(W ).

(86)

Choosing Λ= diag{1.0, 1.2}, we can get that ϑ = −δ − 1 + λ1(Ṽ ) + λ1(Λ)

= −0.05− 1 + 0.2 + 1.0 = 0.15 > 0.

Thus, the following ETC conditions can be gained.

1) ETC condition in Theorem 1:

‖Q(t)‖1 ≤ ϕ1
(0.15‖J(t)‖1+0.06)

1.2

= ϕ1 (0.125‖J(t)‖1 + 0.05) ,
(87)

2) ETC condition in Theorem 4:

‖Q(t)‖1 ≤ χ2(t) +
0.15ϕ1‖J(t)‖1+0.06ϕ2

1.2

= χ2(t) + 0.125ϕ1‖J(t)‖1 + 0.05ϕ2,
(88)

for t ∈ [ti, ti+1), ϕ1 ∈ (0, 1], ϕ2 ∈ (0, 1], where χ̇2(t) = −χ2(t)+0.15ϕ1‖J(t)‖1 +250

0.06ϕ2 − 1.2‖Q(t)‖1, χ2(0) = 0.14 ≥ 0.

It can be acquired from the conditions of Theorems 1 and 4 that IMNN sys-

tems (80) and (81) with parameter disturbance can be robustly exponentially

synchronized under the controller (16), Assumptions 1 and 2 and the ETC

conditions (87) and (88). When the initial conditions are (x1(s), x2(s))T =255

(1.05, 0.08)T ,
(

dx1(s)
ds , dx2(s)

ds

)T
= (0.12, 0.09)T , (y1(s), y2(s))T = (0.17, 1.12)T ,(

dy1(s)
ds , dy2(s)

ds

)T
= (0.54, 0.16)T , we can get (q1(t), q2(t))T = (4.32, 0.41)T ,

(p1(t), p2(t))T = (1.22, 4.64)T . Considering ϕ1 = 0.5, ϕ2 = 0.6, the robust

exponential synchronization of IMNN systems (80) and (81) with parameter

disturbance under ETC condition (87) in Theorem 1 and ETC condition (88)260

in Theorem 4 are revealed in Figs. 2-14. Figs. 2 and 8 exhibit the synchro-

nization errors E1(t) and E2(t) of IMNN systems (80) and (81) with parameter
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Figure 2: Robust exponential synchronization errors E1(t) and E2(t) of IMNN systems (80)

and (81) with parameter disturbance under ETC condition (87) in Theorem 1 and ϕ1 = 0.5.

disturbance under ETC conditions (87) and (88), respectively. It clearly shows

the synchronization of IMNN systems (80) and (81) with parameter disturbance

under ETC condition and verifies the effectiveness of the obtained results.265

It is shown from Figs. 3 and 9 that errors J1(t) and J2(t) converge to zero

under ETC conditions (87) and (88), respectively. Sample error Jk(ti) and

measured error Qk(t) under ETC conditions (87) and (88) are shown in Figs.

4, 10 and Figs. 5, 11, respectively. It can be acquired from Figs. 4 and 10 that

sample error Jk(ti) does not change if measured error Qk(t) does not breach the270

ETC conditions (87) and (88). It is shown in Figs. 6, 7 and Figs. 12, 13, when

measured error Qk(t) breaches the ETC conditions (87) and (88), that is to

say, ‖Q(t)‖1 oversteps the threshold ϕ1 (0.125‖J(t)‖1 + 0.05) of Theorem 1 and

χ2(t)+0.125ϕ1‖J(t)‖1 +0.05ϕ2 of Theorem 4, the event is triggered. The finite

number of event-triggered instants displayed in Figs. 7 and 13 reveals that the275

update times of feedback controller are effectively decreased. Furthermore, the

subgraphs of Figs. 7 and 13 illustrate that the Zeno behavior will not happen in

ETC conditions provided in this paper. Fig. 14 shows the trajectory of dynamic
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Figure 3: Synchronization errors J1(t) and J2(t) of IMNN systems (80) and (81) with param-

eter disturbance under ETC condition (87) in Theorem 1 and ϕ1 = 0.5.
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Figure 4: Sample errors J1(ti) and J2(ti) of IMNN systems (80) and (81) with parameter

disturbance under ETC condition (87) in Theorem 1 and ϕ1 = 0.5.
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Figure 5: Measured errors Q1(t) and Q2(t) of IMNN systems (80) and (81) with parameter

disturbance under ETC condition (87) in Theorem 1 and ϕ1 = 0.5.
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systems (80) and (81) with parameter disturbance under ETC condition (87) in Theorem 1

and ϕ1 = 0.5.
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Figure 7: Event-triggered instants of IMNN systems (80) and (81) with parameter disturbance

under ETC condition (87) in Theorem 1 and ϕ1 = 0.5.

variable χ2(t).

From Figs. 2-14, we can conclude that IMNN systems (80) and (81) with280

parameter disturbance can be robustly exponentially synchronized under ETC

condition (87) in Theorem 1 and ETC condition (88) in Theorem 4. By utilizing

ETC and a state feedback controller, the disturbed IMNNs can overcome the

influence of parameter disturbance to achieve the exponential synchronization

shown in Figs. 2 and 8, which means the disturbed IMNNs have anti-interference285

performance and good reliability. Moreover, the IMNNs can largely decrease the

computing burden and update times of feedback controller via ETC scheme.

The obtained results of this paper are effective.

5. Conclusion

This paper deals with the robust exponential synchronization problem of290

delayed IMNNs with parameter disturbance by utilizing ETC. A controller and

some sufficient conditions based on ETC scheme are provided to realize robust
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Figure 8: Robust exponential synchronization errors E1(t) and E2(t) of IMNN systems (80)

and (81) with parameter disturbance under ETC condition (88) in Theorem 4 and ϕ1 = 0.5,

ϕ2 = 0.6.
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Figure 9: Synchronization errors J1(t) and J2(t) of IMNN systems (80) and (81) with param-

eter disturbance under ETC condition (88) in Theorem 4 and ϕ1 = 0.5, ϕ2 = 0.6.
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Figure 10: Sample errors J1(ti) and J2(ti) of IMNN systems (80) and (81) with parameter

disturbance under ETC condition (88) in Theorem 4 and ϕ1 = 0.5, ϕ2 = 0.6.
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Figure 11: Measured errors Q1(t) and Q2(t) of IMNN systems (80) and (81) with parameter

disturbance under ETC condition (88) in Theorem 4 and ϕ1 = 0.5, ϕ2 = 0.6.
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of IMNN systems (80) and (81) with parameter disturbance under ETC condition (88) in

Theorem 4 and ϕ1 = 0.5, ϕ2 = 0.6.

Figure 13: Event-triggered instants of IMNN systems (80) and (81) with parameter distur-

bance under ETC condition (88) in Theorem 4 and ϕ1 = 0.5, ϕ2 = 0.6.
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Figure 14: Dynamic variable χ2(t) of ETC condition (88) in Theorem 4.

exponential synchronization of IMNNs under parameter disturbance. By using

ETC scheme, the computing burden and update times of controller are effec-

tively reduced. Compared with some existing results, this exponential synchro-295

nization of delayed IMNNs under parameter disturbance via ETC has many

advantages, such as anti-interference performance and good reliability. Con-

sidering the excellent performance of ETC, it is very meaningful to research

dynamical behaviors of different classes of MNNs via ETC scheme in the future.
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