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Abstract 

The aims of this research were to assess the incidence of dsRNA viruses in five 

different plant pathogenic fungi, including Hymenoscyphus fraxineus, Dothistroma 

septosporum, Leptosphaeria species (Leptosphaeria maculans and Leptosphaeria 

biglobosa) and Pyrenopeziza brassicae, as their incidence has not been reported 

previously in these species, and then to investigate the effects of mycoviruses on the 

growth and pathogenicity of the fungi. Hence, 57 L. maculans and 16 L. biglobosa 

isolates were screened and 11 L. biglobosa isolates possessed dsRNA elements while 

only one of the 45 D. septosporum isolates was found to contain a mycovirus 

subsequently identified as a chrysovirus. In contrast, none of the 162 H. fraxineus and 

10 Pyrenopeziza brassicae isolates appeared to contain dsRNA elements. 

Further research was carried out on L. biglobosa because of the excellent recovery of 

dsRNA elements and the fact that it is also responsible for causing phoma stem canker 

which is an economically important disease of oilseed rape worldwide. However, not 

only L. biglobosa but also the more damaging L. maculans causes phoma stem 

canker. They are closely related and co-existing plant pathogens. Mycoviruses are a 

specific group of viruses that infect and replicate in fungi.  They can be associated 

with hypovirulence or hypervirulence but are normally cryptic. Three different 

mycoviral dsRNAs were identified from L. biglobosa isolate C-Rox 12.8.1, ranging in 

size from ca. 4.0-4.9 kbp. Sequence analysis of LbMV-1 dsRNAs 1 and 2 revealed 

that they are most closely related to members of the family Totiviridae. However, 

attempts to characterise LbMV-1 dsRNA 3 failed. On the other hand, four mycoviral 

dsRNAs were identified from D. septosporum isolate D 752.1, ranging in size from ca. 

2.8-3.5 kbp. Molecular characterisation of DsCV-1 showed that it is very similar to the 

chrysoviruses. 

To obtain information on the effects of dsRNAs on their host, cycloheximide treatment 

was used to eradicate dsRNA elements from L. biglobosa isolate W10. Subsequently, 

comparative growth experiments to assess radial growth and mycelial weight for virus-

infected and virus-free W10 isolates were performed. These experiments showed that 

the LbMV-1 infection increased the growth of the fungus. To investigate the influence 
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of mycoviruses on the pathogenicity of L. biglobosa, pathogenicity tests were 

performed using isogenic lines of the W10 isolate inoculated onto oilseed rape 

cotyledons and disease symptoms were analysed at different time periods; 

mycoviruses were found to increase fungal pathogenicity. In addition to this, effects of 

pre-treatment of B. napus leaves with conidia of virus-infected or virus-free L. 

biglobosa on infection by conidia of L. maculans and development of disease (phoma 

leaf spot) were studied in a controlled-environment conditions. Pre-treatment of first 

true leaves with virus-infected L. biglobosa decreased the phoma leaf spot lesion area 

on second true leaves (systemic effect) as compared to pre-treatment with virus-free 

L. biglobosa. 
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1.1 Mycoviruses 

Whereas animal and plant viruses have been studied extensively, mycoviruses have 

been studied to a much lesser extent. Moreover, full molecular characterisation of 

large numbers of mycoviruses is yet to be achieved (Pearson et al., 2009). The 

importance of viruses is mainly because of their ability to cause disease in plants, 

animals and humans; however, their role in mutualistic symbiosis has also been 

demonstrated in recent decades (Roossinck, 2011). 

Mycoviruses are viruses that infect fungi and are widespread in filamentous fungi, 

yeasts, mushrooms and oomycetes (Wu et al., 2012). The majority of the mycoviruses 

possess single-stranded (ss) or double-stranded (ds) RNA as their genetic material. 

Mycoviruses have diverse genome structures: viruses of the families 

Chrysoviridae, Partitiviridae, Endornaviridae, Megabirnaviridae, Quadriviridae, 

Reoviridae and Totiviridae have a dsRNA genome, while those of Alphaflexiviridae, 

Gammaflexiviridae, Hypoviridae, Narnaviridae, and Barnaviride have a ssRNA 

genome (Ghabrial et al., 2015). Furthermore, Metaviridae and Pseudoviridae do not 

encode a RNA-dependent RNA polymerase (RdRP) but use a reverse transcriptase 

(Wu et al., 2012). 

Frequently, several unclassified dsRNA viruses have been isolated from fungi. 

Mycoviruses RnQV-1 and RnQV-2, isolated from Rosellinia necatrix and Amasya 

cherry disease-associated mycovirus, containing four-segment dsRNA genomes, 

were classified into a new family, Quadriviridae. Alternaria alternata dsRNA mycovirus 

and Aspergillus mycovirus 341 contain four-segment dsRNA genomes, although they 

are significantly different from viruses in Chrysoviridae and Quadriviridae families.  

Some novel non-segmented dsRNA viruses including SsNsV-L, Diplodia scrobiculata 

RNA virus 1, Grapevine associated totivirus-2, and Phlebiopsis gigantea mycovirus 

dsRNA 2, Fusarium graminearum dsRNA mycovirus-3, are phylogenetically related to 

each other but are distant from totiviruses (Xie & Jiang, 2014). 

Recently, mycoviruses of an endophytic fungus have been reported to replicate in two 

different plant hosts (Nerva et al., 2017). There is also some evidence which confirms 

the ability of viruses to adapt their replication to host species from different kingdoms. 
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For example, plant viruses, brome mosaic virus (BMV) (Janda & Ahlquist, 1993), 

tomato bushy stunt virus (TBSV) (Panavas & Nagy, 2003) and tobacco mosaic virus 

(TMV) (Mascia & Gallitelli, 2016) can replicate in different ascomycetous species. 

Circular DNA virus of the genus Genomovirus was also shown to replicate in both 

insect and fungal cells (Liu et al., 2016). A relationship between plant viruses and 

mycoviruses was first revealed for Hypoviruses, which are phylogenetically related to 

plant-infecting Potyviruses (Koonin et al., 1991). 

The origin of mycoviruses is a mystery but two main hypotheses have been proposed 

to describe the origin of mycoviruses (Pearson et al., 2009). The “ancient coevolution 

hypothesis” suggests that the association between mycoviruses and fungi is ancient 

and indicates long-term coevolution. In contrast, the “plant virus hypothesis,” states 

that plant viruses are the origin of mycoviruses; i.e. the original mycovirus was a plant 

virus which transferred from plant to fungus within the same host plant. Similar 

explanations might also be given for the origin of plant viruses; i.e. plant viruses 

originated from mycoviruses that may have moved from fungus to plant (Nibert et al., 

2014).  

1.1.1 Totiviridae 

Members of this family contain mono-segmented dsRNA genomes, 4.6-7.0 kbp in 

size, and usually encompass two overlapping open reading frames (ORFs) on one 

strand. These two ORFs encode the capsid protein (CP) and the RNA-dependent RNA 

polymerase (RdRP). Members belonging to this family are divided into two genera: 

Toti- and Victoriviruses (King et al., 2011; Ghabrial, 2008). Viruses infecting smut fungi 

and yeasts have been placed in the genus Totivirus and viruses infecting filamentous 

fungi in the genus Victorivirus (Ghabrial & Nibert, 2009).  

There are reports of three different strategies used for RdRP expression among 

members of this family: (1) fusion protein (CP/RdRP) consequent to ribosomal frame-

shifting, for example in parasitic protozoa viruses and Saccharomyces cerevisiae virus 

L-A (ScV-L-A) (Dinman et al., 1991); (2) fusion protein following fusion with the CP 

gene without ribosomal frame-shifting, as in Ustilago maydis virus H1 (Kang et al., 

2001); and (3) non-fused protein by a termination-reinitiation mechanism, as shown 
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for victoriviruses and Helminthosporium victoriae virus 190S (HvV190S) (Huang & 

Ghabrial, 1996; Li et al., 2011; Soldevila & Ghabrial, 2000). 

1.1.2 Partitiviridae 

Members of this family have bisegmented genomes 1.4-2.4 kbp in length. Both 

segments encompass ORFs. The larger ORF encodes RdRP and smaller ORF 

encodes CP. Two separate virus particles are produced at the end of the packaging 

process of two genome segments. There are three different genera in this family: 

Alpha-, Beta-, and Gammapartitivirus (Nibert et al., 2014).  Gammapartitiviruses only 

infect filamentous fungi, whereas Alpha- and Betapartitiviruses infect not only 

filamentous fungi but also plants. 

1.1.3 Megabirnaviridae 

Megabirnavirus is the only current genus in this family and Rosellinia necatrix 

Megabirnavirus 1 (RnMBV1) is the prototype.  It has two genome segments and both 

are packaged into separate virus particles, which are encapsidated in isometric 

particles ~50 nm in diameter. DsRNA 1 encompasses two overlapping ORFs encoding 

CP and RdRP, which are expressed as a fusion product with CP via ribosomal frame-

shifting (Salaipeth et al., 2014; Chiba et al., 2009). DsRNA 2 encompasses two non-

overlapping ORFs. 

1.1.4 Chrysoviridae  

Chrysovirus is the only genus of this family and Penicillium chrysogenum virus (PcV) 

is the prototype of the genus (Ghabrial & Caston, 2011). It contains four dsRNA 

segments, 2.4-3.6 kbp in size, and these segments are separately encapsidated in 

virions. DsRNA 1 and dsRNA 2 encode RdRP and CP, respectively. DsRNA 3 and 

dsRNA 4 encode P3 and P4 proteins of unknown function. The 5’- and 3’- terminal 

sequences of these four dsRNAs have been found to be highly conserved (Jiang & 

Ghabrial, 2004).  
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1.1.5 Quadriviridae 

The genus of this family Quadrivirus includes one species to date, Rosellinia necatrix 

quadrivirus 1. Two well characterized strains of this species were isolated from 

different locations in Japan (Lin et al., 2012; 2013). Members of this family have four 

monocistronic genome segments, ranging from 3.7-4.9 kbp in length, which are 

encapsidated in isometric virus particles ~45 nm in diameter. DsRNA 1 encodes a 

product of unknown function, while dsRNA 2 and dsRNA 4 encode CPs, and dsRNA 

3 encodes the RdRP. Each quadrivirus genome segment contains “CAA” repeats at 

5’ UTR (Ghabrial et al., 2015). 

1.1.6 Reoviridae  

In 1994, “reo-like” virus particles were first observed in a fungus (Enebak et al., 1994) 

and these viruses were placed in a genus Mycoreovirus. Mycoreovirus 1-3 (MyRV1-

3) were accommodated in this genus. MyRV1 and -2 were found in Cryphonectria 

parasitica, and MyRV3 was found in Rosellinia necatrix (Hillman & Suzuki, 2004; Wei 

et al., 2004). These mycoreoviruses were reported to confer hypovirulence to their 

natural hosts. Mycoreoviruses contain monocistronic genome segments with 5’-caps 

on their positive-stranded RNAs. MyRV1 and -2 are composed of 11 genome 

segments while MyRV3 has 12 genome segments and each virus ranges in size from 

0.7- 4.1 kbp (Kanematsu et al., 2004). 

1.1.7 Endornaviridae  

In the 9th ICTV report, some mycoviruses were assigned to family Endornaviridae with 

dsRNA viruses though they are phylogenetically closely related to alpha-like ssRNA 

viruses (Ghabrial & Suzuki, 2009; Hacker et al., 2005). Endornaviruses contain a 

linear dsRNA genome ca. 14-17 kbp in size and encode long polypeptides such as 

RNA helicases, RdRPs and UDP glucosyltransferases. Endornaviruses do not 

produce true virions and they are normally found in cytoplasmic vesicles of infected 

fungi, plants and oomycetes. 



- 6 - 
 

1.2 Satellite or defective dsRNA viruses 

Subviral RNA forms such as defective RNA (D-RNA) and defective interfering RNA 

(DI-RNA) have been identified amongst a wide variety of mycoviruses that occur 

naturally and/or during conservation in the laboratory (Marriott & Dimmock, 2010; 

Simon et al., 2004). These RNAs are known as ‘defective’ because they do not have 

capacity to encode the essential viral proteins and to replicate in the absence of the 

parent (helper) virus. DI-RNAs are called ‘interfering’ as they can attenuate the 

symptoms caused by the helper virus. However, some defective RNAs do not interfere 

with multiplication of their helper viruses; they are known as D-RNAs. Satellite RNAs 

do not show intensive sequence similarities with their helper viruses and the origin of 

their nucleic acid sequences remain uncertain, whereas DI-RNA contains closely 

related, shorter forms of parental viral genomes (Simon et al., 2004). DI-RNAs are 

normally produced by recombination and/or deletion that is frequent at specific regions 

rather than occurring randomly throughout the parental genome (Cheng et al., 2003; 

Nagy & Simon, 1997). 

DI-RNA generally has a negative effect on replication and symptom expression of the 

helper viruses (Marriott & Dimmock, 2010; Simon et al., 2004). Recently, a 

hypovirulent strain of Sclerotinia sclerotiorum was found to contain Sclerotinia 

sclerotiorum botybirnavirus 1 (SsBRV1) and a satellite-like RNA that had no obvious 

effect on the colony morphology but reduced the growth rate and virulence of  the host 

fungus (Liu et al., 2015). There are a few hypotheses that support this phenomenon, 

such as the suggestions that the DI-RNA may interfere with viral replication or that DI-

RNA stimulates RNA silencing that degrades helper viral mRNAs as an antiviral 

defence mechanism and reduces symptom induction (Havelda et al., 1998; Szittya et 

al., 2002). 

Two groups of D-RNAs are recognized; one group that is associated with S. cerevisiae 

is known as M satellites and other group is associated with Trichomonas vaginalis T1 

virus (TVTV) of the eponymous protozoan. D-RNAs have also been reported in 

association with mycoviruses belonging to the families Hypoviridae, Narnaviridae, 

Partitiviridae and Totiviridae (Palukaitis et al., 2008). M satellite dsRNA encodes a 

toxin which kills other yeasts not containing this dsRNA, offering immunity to the host 

carrying it (Palukaitis et al., 2008). 
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1.3 Discovery and distribution of fungal viruses 

Mycoviruses have been described in over 60 species from approximately 50 genera 

of fungi (Lemke & Nash, 1974). A disease of cultivated mushroom (Agaricus bisporus) 

reported in 1950 (Sinden & Hauser, 1950) caused premature degradation of 

mushroom tissue and altered morphology during the development of the mushroom 

and decreased mushroom production. Sinden was the first to propose that a virus 

might be associated with the disease (Sinden & Hauser, 1957). The virus itself was 

first observed by the use of transmission electron microscopy (Gandy & Hollings, 

1962). Subsequently, three morphologically distinct viruses were identified in diseased 

mushrooms (Hollings, 1962; 1965; Hollings et al., 1963; 1965). The infective and 

pathogenic characteristics of these viruses were studied after their partial purification 

by density-gradient centrifugation. 

 Another group of fungi, the Penicillium moulds, were also found to contain viruses. 

They were discovered during studies of P. stoloniferum and P. funiculosum. The 

search for effective compounds active against poliovirus developed interest in 

research for antiviral substances produced by these two Penicillium species (Powell, 

1952; Shope, 1953). Polyhedral virus particles were isolated from the antiviral fraction 

of P. stoloniferum and visualised through electron microscopy (Ellis & Kleinschmidt, 

1967). Simultaneously, it was discovered that the virus particles associated with P. 

stoloniferum contained dsRNAs, which were responsible for the antiviral activity of the 

two moulds (Banks et al., 1968).   

In early 1936, the presence of virus in yeast was presumed, and later Lindegren and 

co-workers suggested that a lytic phenomenon in yeast was presumably associated 

with a viral infection (Hirano et al., 1962; Lindegren et al., 1962).  

Many other fungi have been implicated in transmission of viral diseases to plants. 

Olpidium brassicae, Polymyxa graminis (Estes & Brakke, 1966) and Synchytrium 

endobioticum are some examples of fungi which function as vectors for the 

transmission of viruses to higher plants (Campbell, 1962; Estes & Brakke, 1966; Fry, 

1958; Grogan, 1958; Nienhaus & Stille, 1965).  
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1.4 Structural features of mycoviruses 

DsRNA viruses of the families Totiviridae, Partitiviridae, Chrysoviridae and Reoviridae 

contain icosahedral capsids (Ghabrial & Suzuki, 2009). Mycoreoviruses are assumed 

to have concentric, double-shelled structures whereas partitiviruses, chrysoviruses 

and totiviruses have simple single-shelled icosahedral capsids (Ghabrial & Suzuki, 

2009). 

To date, 3D structural analyses have focused on the mycoviruses with dsRNA 

genomes and single-layered icosahedral capsids, despite the wide diversity of fungal 

viruses. Virus particles are purified in large amounts for their characterisation by 3D 

electron microscopy and/or X-ray crystallography.  Structural analyses of dsRNA 

viruses have presented ubiquitous characteristics in a broad spectrum of dsRNA 

mycoviruses, together with those that infect prokaryotes and complex eukaryotes.            

Totiviruses L-A and P4, infecting the yeast S. cerevisiae and the smut fungus U. 

maydis, respectively, were the first illustrated viruses with an unusual T=1 capsid 

formed by 12 decamers (Cheng et al., 1994). “T=2” capsid of dsRNA viruses is 

identified as the inner or core capsid in the multi-layered capsids of Reoviridae 

members (Grimes et al., 1998; Reinisch et al., 2000). These capsids remain 

structurally intact during the viral life cycle and mediate multiple activities (Fig. 1.1); 

they assist in sequestering the dsRNA genome and avoiding induction of dsRNA-

signalled host defence mechanisms which operate in some hosts. In addition to this, 

unusual capsid stoichiometry and architecture are presumed to be related with RNA 

synthesis activities, such as assembly of the packaged dsRNA molecules and capsid-

bound RdRP complexes for replication and transcription processes; release of the 

positive-strand transcripts for protein synthesis or packaging into new virions and 

addition of 5’ caps to those transcripts.  

1.5 Transmission of fungal viruses 

It was anticipated that mycoviruses are not infectious as free particles and lack an 

extracellular phase in their life cycle. It is generally considered that viral transmission 

is limited to the intracellular routes and it depends on their fungal hosts (Buck, 1998). 

More specifically, mycoviruses are transmitted horizontally by heterokaryosis or 

vertically by sporulation. However, recently DNA mycovirus particles purified from an  
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Figure 1.1 Hypothetical model of a transcriptionally active L-A virion. Polymerase 

(Pol) is covalently adhered to a Gag subunit, which is assumed to be integrated into 

the icosahedral surface lattice. The capsid wall perforated by many holes functions as 

a molecular sieve which can retain dsRNA inside but allow passage of an ssRNA 

molecule (Castón et al., 1997). 
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infected host, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 

(SsHADV-1), were demonstrated to be infectious when applied extracellularly to 

hyphae of virus-free host Sclerotinia sclerotiorum grown on PDA or sprayed on leaves 

of Arabidopsis thaliana and Brassica napus. SsHADV-1 can suppress the 

development of lesions on leaves, thus reduce disease severity and enhance 

rapeseed yield significantly under field conditions. Nevertheless, SsHADV-1 has a 

narrow host range; it could only infect sister species of S. sclerotiorum and cause 

debilitation of the host fungi, but could not infect or transfect other fungi tested. Hence, 

SsHADV-1 was demonstrated to have potential as a natural fungicide (Yu et al., 2013). 

Initial experiments were done by Lhoas, who confirmed the transmission of viruses in 

fungi through heterokaryosis (Lhoas, 1970; 1971). He did an experiment with 

genetically marked strains of P. stoloniferum and Aspergillus niger and demonstrated 

the transmission of virus from the virus-infected strain to the non-infected strain. 

During anastomosis, hyphal fusion occurs between different fungal strains; this 

permits the exchange of cytoplasm and genetic material, including mycoviruses. 

Successful anastomosis depends on vegetative compatibility of the two fungi. This 

process is controlled by vegetative incompatibility and heterokaryon incompatibility 

genes in ascomycetes (Glass & Dementhon, 2006; Saupe, 2000). Therefore, the 

spread of viruses through heterokaryosis is restricted by the incompatibility between 

fungi, which affects the host range of a mycovirus.  

Vegetative incompatibility is considered as non-self-recognition to counteract 

microbial antagonism and causes programmed cell death (PCD) of contacted fungal 

cells. Mycoviruses can only be transmitted efficiently if they can suppress the host 

vegetative-incompatibilty reaction (Xie & Jiang, 2014). It was determined that CHV1 

could suppress the host vegetative-incompatibility reaction and transfer in the host 

(Biella et al., 2002).  Moreover, CHV1- host (Ep773) induced the down-regulation of 

genes that are involved in PCD (Shang et al., 2008). Recently, successful horizontal 

transmission of the Cryphonectria hypovirus 1 (CHV1) was detected in different fungal 

species of Cryphonectria (Liu et al., 2003). Similar phenomena have been described 

in different taxa of ascomycetes and basidiomycetes (Ikeda et al., 2005). This 

occurrence indicated that hypoviruses might suppress the vegetative-incompatibility 
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reactions. However, the degree of suppression is different, based on individual 

mycoviruses and their hosts. 

Horizontal transmission via protoplasmic fusion is a successful route of transmission 

of mycoviruses between different fungal strains (Suzaki et al., 2005; Xie et al., 2006). 

Interestingly, transmission of mycoviruses between different species has been 

reported, despite the lack of mechanical or vector transmission (Pearson et al., 2009). 

In addition, the ability of mycoviruses for interspecies transmission between Fusarium 

poae and black Aspergillus spp. through protoplast fusion was demonstrated and 

infection was found to be stable even after several rounds of sub-culturing (Van 

Diepeningen  et al., 2000). 

Vertical transmission by spores is another primary mode of mycovirus dispersal; 

nevertheless, the rate of transmission depends on the fungus/virus combination and 

the spore type (sexual or asexual). Mycoviruses are more easily transmitted by the 

asexual spores produced from modified hyphae (Buck, 1998), while the rate of 

transmission through sexual spores has been reported to be less, at least for fungi 

with an extended sexual stage in their life cycle (Varga  et al., 2003).  

There has been no evidence of infection of intact filamentous fungi by purified virus 

particles; however, protoplasts of many fungi have been infected with purified 

mycoviruses under experimental conditions (Pearson et al., 2009). For example, 

protoplasts of S. cerevisiae were successfully transfected with virus-like particles 

(VLPs) (Schmitt & Breinig, 2002). 

1.6 Replication of dsRNA viruses 

Mycoviruses have several modes of replication, which vary considerably in different 

fungi. There are very few studies on the replication of mycoviruses due to the cellular 

complexity of their hosts and, interestingly, they replicate in parallel without killing their 

host (Lemke & Nash, 1974). Mycoviruses may replicate using conservative (Nemeroff 

& Bruenn, 1986; Wickner, 1996) or semi-conservative mechanisms (Buck, 1978). As 

in ssRNA viruses, dsRNA does not function as mRNA and dsRNA is transcribed into 

mRNA following amplification by RdRP. These mRNA transcripts are translated into 

structural and regulatory viral proteins. These (+) strands can be encapsidated and 
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form immature virions. The mRNA transcripts also serve as template for the synthesis 

of complementary (-) strands (Castón et al., 1997); thus, the complete mature virions 

are produced with encapsidated dsRNA.  

1.7 Effects of mycoviruses on host phenotypes 

Mycoviruses can induce advantageous or destructive effects on host fungi, but most 

mycoviral infections are latent and asymptomatic (Buck, 1998). Some effects caused 

by mycoviruses have been elucidated. However, the function of mycoviruses in 

regulating host ecology is not known (Hyder et al., 2013). 

1.7.1 Symptomless infection (cryptic) 

The term ‘cryptic’ indicates that the viruses might induce symptoms only under specific 

environmental conditions. Although they are widespread and there is often absence 

of obvious impact, many investigators consider that mycoviruses do not affect fungal 

biology (Pearson et al., 2009). Although producing no obvious phenotypic changes 

under one set of conditions, small effects might be elicited. This was confirmed by Van 

Diepeningen et al. (2006), who observed small but significant effects on spore 

production and growth rate in isogenic lines of Aspergillus spp.   

1.7.2 Hypovirulence (reduced fungal pathogenicity) 

Some mycoviruses affect the growth rate of their host, which may or may not be 

accompanied by obvious phenotypic changes. Mycoviruses have been reported to 

reduce pigmentation, sexual and asexual sporulation, together with mycelial growth. 

In other words, they reduce the virulence of fungi, a phenomenon known as 

hypovirulence. CHV1 is the best example of a mycovirus responsible for the 

hypovirulent phenotype of its fungal host, Cryphonectria parasitica (Choi & Nuss, 

1992; Nuss, 2005) In general, viruses belonging to the genus Hypovirus cause 

hypovirulence (Fauquet et al., 2005). 

In addition, mitoviruses are another group of viruses which infect the mitochondria of 

fungi and confer hypovirulent traits on them; for example, Botrytis cinerea was found 

to contain a mitovirus that causes hypovirulence, together with reduced laccase 
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activity and sporulation (Castro et al., 2003). The Dutch elm disease fungus 

Ophiostoma novo-ulmi also exhibited virus-induced fungal debilitation. It contains 

different-sized dsRNA elements, which are responsible for reducing the level of 

mitochondrial cytochrome c oxidase resulting in respiratory deficiency of the fungus 

and this debilitated fungus was unable to infect elm trees. 

White stem rot causing fungus S. sclerotiorum has a wide range of hosts, including 

important arable and vegetable crops such as beans, lettuce and rapeseed. This 

fungus can quickly destroy plants and produce dormant fungal bodies (sclerotia) on 

affected parts residing in the soil. These sclerotia can again infect the bases of nearby 

plants. Due to the absence of resistant crop cultivars, control is not usually effective. 

Recently, mycoviruses were found to confer hypovirulence to S. sclerotiorum strains, 

which could offer potential to exploit mycoviruses to reduce virulence and control 

fungal diseases of field crops (Xie & Jiang, 2014). 

There are also some reports of economically important diseases resulting from the 

virus infection. Virus infection in oyster mushroom Pleurotus florida decreased the 

growth rate and increased the growth abnormalities, thus resulting in 30% reduction 

in fruit body yield (Go et al., 1992). Similarly in P. pulmonarius, 50% yield losses were 

due to mycovirus infection (Rinker et al., 1993). 

1.7.3 Hypervirulence (enhanced fungal pathogenicity) 

In contrast to hypovirulence, there are also some reports of beneficial effects resulting 

from mycovirus infection. In the root pathogen Nectria radicicola, a 6 kbp dsRNA was 

found to interfere with signal transduction pathways and increase pathogen virulence 

(Ahn & Lee, 2001).  

It was also reported that dsRNA mycovirus infection conferred thermal tolerance to 

the host plant and the pathogen, so that they could both survive at high temperatures 

(Márquez et al., 2007). 

The killer phenomenon is the most studied phenotype linked with virus infection of 

fungi and it was first discovered by Bevan and Makower in 1963 in a Saccharomyces 

cerevisiae strain.  In this phenomenon, dsRNA genomes encode a proteinaceous 
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toxin to which the host fungus is immune but which is lethal to other strains of the 

same fungus that do not produce the toxin. Killer toxins help host strains to eliminate 

competitor strains occupying the same niche (McCabe et al., 1999). 

1.8 Interactions between host fungi and mycoviruses 

Study of interactions between the hypovirulence-associated virus and its host provide 

good opportunities to recognise virus-associated elements which are responsible for 

altering fungal host phenotypes and to understand the molecular basis of fungal 

biology. Additionally, genomic sequences of pathogenic fungi facilitate investigation of 

pathogen-virus interactions at the molecular level. Previously, two host-mycovirus 

interaction systems have been well-characterised: C. parasitica–hypovirus and H. 

victoriae–HvV190S. 

Researchers have extensively studied biological control, virus replication, RNAi 

response to virus infection, virus transmission and ecology and virus distribution and 

diversity using the C. parasitica-hypovirus system (Dawe and Nuss, 2001; 2013; 

Ghabrial and Suzuki, 2009; Hillman and Suzuki, 2004; McCabe et al., 1999; Milgroom 

& Cortesi, 2004; Nuss, 1992; 1996; 2005; 2011; Nuss & Koltin, 1990; Pearson et al., 

2009). Using the H. victoriae-HvV190S system, the virion structure of HvV190S, the 

molecular mechanism of HvV190S translation and the interaction between HvV190S 

and its host have been characterised (Castón et al., 2006; de Sa et al., 2010; Dunn et 

al., 2013; Ghabrial et al., 2002; Ghabrial et al., 2013; Ghabrial & Havens, 1992; 

Ghabrial & Suzuki, 2009; Li et al., 2011). There are also recent advances in study of 

other host-virus interaction systems. 

S. sclerotiorum-mycovirus interaction system revealed the down-regulation of 150 

genes in the strain Ep-1PN infected with mycovirus (Li et al., 2008). These down-

regulated genes represented a broad spectrum of biological functions. Suppression of 

S. sclerotiorum integrin-like gene (SSITL) resulted in a reduction in virulence and 

growth rate of the host fungus (Zhu et al., 2013).  

In addition to this, 1,775 F. graminearum genes that were affected by a hypovirulence-

associated virus (FgV1) were detected. F. graminearum-FgV1 interaction induced up-
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regulation of genes that are associated with virus replication, transcription and signal 

transduction reactions (Xie & Jiang, 2014). 

A large number of dsRNA viruses have been characterised in R. necatrix. To elucidate 

the R. necatrix–mycovirus interaction system, four viruses (RnPV1, RnPV2, MyRV3, 

and RnMBV1) were independently introduced into a virus-free R. necatrix strain that 

constitutively induced RNA silencing of the exogenous green fluorescent protein 

(GFP) gene. MyRV3 infection supressed RNA silencing of GFP, while other 

mycoviruses did not. MyRV3 interferes with the dicing of dsRNA into siRNA and 

exhibits a counter-defence strategy against host RNA silencing (Yaegashi et al., 

2013). 

 

1.9 Mycoviruses as biocontrol agents  

Hypoviruses of the chestnut blight fungus are the best example of viruses that were 

successfully used as biological control agents. C. parasitica, also known as Endothia 

parasitica, is the causal agent of chestnut blight in chestnut trees (Castanea spp.). 

This fungus mainly affects the trunk and branches of the tree and causes swollen or 

sunken cankers (Smith, 2012). Chestnut blight was first observed in North America in 

1904 and in Europe in 1938 (Robin & Ursula, 2001). This disease might have been 

introduced earlier into the eastern United States from chestnut seedlings imported 

from Japan (Milgroom & Lipari, 1995). After the introduction of the pathogen, most of 

the American (Castanea dentate) and European (Castanea sativa) chestnut trees 

were destroyed (Dutech et al., 2010).  

Initially, Antonio Biraghi, an Italian plant pathologist, noticed a spontaneous recovery 

of European chestnut trees from cankers. Later, a French mycologist, Jeane Grente 

and his co-workers found that the unusual isolates of C. parasitica that were 

responsible for healing of cankers had reduced pigmentation in comparison to the 

bright orange pigmentation of the wild-type strains. It was also reported that these 

isolates rarely cause fatal infection in European chestnut (Macdonald & Fulbright, 

1991). Subsequently, these isolates were recognised as hypovirulent and in vivo and 

in vitro studies revealed that transmissible cytoplasmic genetic factors were 

responsible for the hypovirulent phenotype. These factors were identified as dsRNA 

molecules and were successfully used as biocontrol agents (Macdonald & Fulbright, 
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1991). Notably, the size of dsRNA molecules from hypovirulent strains was found to 

range from 8 to 12 kbp (Dodds, 1980). 

1.10 Advantages and disadvantages of using mycoviruses to control crop 

diseases 

There have been few reports of mycoviruses that could be used to control crop 

diseases. There are some advantages of using hypovirulence-associated 

mycoviruses to control fungal diseases. Firstly, viruses can quickly inhibit lesion 

extension once they are transmitted to fungal strains as they proceed to reach the 

growth area of colonies for replication (Boine et al., 2012).  This quick reaction to 

suppress the occurrence of crop diseases is crucial for successful biological control 

because fungal diseases often damage plants very early during the growing season. 

Secondly, whether the hypovirulent strains produce spores or other propagation 

bodies on crop plants is not likely to be a problem as crops are harvested at the end 

of the growing season. Thirdly, if hypovirulent pathogen strains share a similar niche 

with virulent pathogen strains, it is possible that hypovirulent strains can grow well on 

hosts. For example, chestnut trees infected with a hypovirulent strain of the chestnut 

blight pathogen might have only superficial lesions on their stems (Anagnostakis, 

1982). Fourthly, hypovirulent strains produce pathogen-associated molecular 

effectors during their growth on the host and a defence response produced by the 

hosts specifically targets the infection by the virulent strain. Furthermore, the 

prevalence of mycoviruses in crops is easily established if a mycovirus-infected strain 

of a fungal pathogen is applied to crops at the correct time. 

Farmers always prefer as short time as possible to control crop diseases and a short 

time requirement for establishing the prevalence of mycoviruses in crops is vital for 

successful control. Moreover, in crops the proficiency of viral transmission between 

vegetatively-incompatible hosts is not expected to meet these criteria. When hyphal 

fragments of the hypovirulent Sclerotinia sclerotiorum strain Ep-1PN infected with 

Sclerotinia sclerotiorum debilitation-associated RNA virus (SsDRV) were sprayed onto 

leaves of rapeseed plants and a vegetatively incompatible virulent strain was 

inoculated on these plants, all plants were damaged by the virulent strain. On the other 

hand, when a vegetatively compatible virulent strain was used for the challenge 
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inoculation, the plants survived. Thus, there are also some strategies to resolve the 

mycovirus transmission problem in crops (Xie & Jiang, 2014). 

1.11 Leptosphaeria maculans, Leptosphaeria biglobosa and phoma stem 

canker       

Leptosphaeria maculans (anamorph Plenodomus lingam) and L. biglobosa 

(anamorph P. biglobosus) cause phoma stem canker (blackleg) on crucifers, including 

oilseed rape (Brassica napus, B. rapa, B. juncea, canola, rapeseed). Phoma stem 

canker is a very serious disease of oilseed rape which causes worldwide losses of 

more than £1000 million per cropping season (Liu et al., 2014). Severe epidemics 

have been observed in Australia, Canada and Europe; milder epidemics occur in 

China. The severity and epidemiology of phoma stem canker disease is affected by 

different cultivars, weather, pathogen populations and regions. L. maculans (group A) 

and L. biglobosa (group B) are two coexisting and related Leptosphaeria species 

(West et al., 2001). These groups have a similar life cycle, produce similar spores and 

affect the same host but demonstrate differences in genetics (Taylor et al., 1991), 

culture (Cunningham, 1927), metabolite production (Balesdent et al., 1992), disease 

symptoms on leaves (Ansan-Melayah et al., 1997; Brun et al., 1997; Thürwächter et 

al., 1999) and disease symptoms on stems (Johnson & Lewis, 1994). Sexual 

reproduction has not been reported between A and B groups and their pseudothecia 

are also different in morphology (Farahani & Zinkernagel, 1997; Gabrielson, 1983; 

Petrie & Lewis, 1985; Somda et al., 1997).  

L. biglobosa includes several sub-species;  European B-group isolates are described 

as L. biglobosa ‘brassicae’, whereas in the Canadian B-group is a different sub-

species, L. biglobosa ‘canadensis’ (Mendes-Pereira et al., 2003). L. maculans is 

generally more virulent than L. biglobosa. Moreover, L. maculans is generally 

responsible for damaging stem base canker while L. biglobosa is generally 

responsible for less damaging upper stem lesions (Fig. 1.2). 

Epidemics of phoma stem canker usually start with the adherence of ascospores to 

leaves (Bokor, 1975; Hall, 1992; Mahuku et al., 1997; McGee, 1974; West et al., 2001), 

although in some cases they may be initiated by seed infection  



- 18 - 
 

 

Figure 1.2 Symptoms caused by L.  maculans and L.  biglobosa. External canker 

symptoms on upper stems (a) and stem bases (b) of winter oilseed rape with cross-

sections showing internal necrosis (c). Leaf showing the large pale lesions produced 

by L. maculans while smaller and darker lesions on leaves were produced by L. 

biglobosa (d). Cultural identification on PDA plates, showing yellow pigmentation 

produced by L. biglobosa but L. maculans does not exhibit any pigmentation (e) (Fitt  

et al., 2006; Zhang et al., 2014). 
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(Jacobsen & Williams, 1971; Kharbanda & Stevens, 1993; Wood  & Barbetti, 1977a), 

stubble infection or conidial infection (Hall, 1992; Thürwächter et al., 1999). Fungal 

penetration normally occurs via leaf stomata; nevertheless, wounds are also a 

possible route of infection (Chen & Howlett, 1996; Hammond  et al., 1985). Biddulph 

et al. (1999) found that L. maculans ascospores require a minimum of 4 h of leaf 

wetness to initiate penetration. Leaf spot development appears different according to 

the type of Leptosphaeria species, host resistance and the development phase of the 

lesion (West et al., 2001). L. maculans causes pale green spots, which expand up to 

2 cm in diameter and develop into pale brown lesions. These lesions contain pycnidia. 

Gradually, the middle part of the lesion drops out entirely. L. biglobosa causes 

comparatively smaller and darker lesions with less or no pycnidia (Ansan-Melayah et 

al., 1997; Brun et al., 1997). Under optimal temperature and humidity conditions, one 

or two ascospores are sufficient to produce a lesion (Wood  & Barbetti, 1977b). 

However, during experiments in a controlled environment, L. maculans conidia were 

not capable of initiating infection on unwounded parts, but only likely to produce 

symptoms on wounded stems, petioles or leaves (Hammond  et al., 1985). Hall (1992) 

reported that the secondary infection by conidia was rarely associated with yield loss. 

Hypocotyl lesions constrict the stem and cause seedling blight. Stem disease exhibits 

black or brown lesions at the hypocotyl base of seedling. This disease is also known 

as canker, crown canker, blackleg or basal canker (West et al., 2001). When the stem 

is girdled by the lesion, water transportation is interrupted and premature ripening of 

pods occurs (Davies, 1986). In extreme conditions, weakened stems cause plant 

death (Petrie & Vanterpool, 1974). Pod infection triggers premature ripening and seed 

infection, resulting in yield loss (Kharbanda & Stevens, 1993; Wood  & Barbetti, 

1977a).  

In the first stage of the life cycle, L. maculans survives as a saprophyte on stem debris 

for many years (Rouxel & Balesdent, 2005). Sexual mating occurs during this period 

with the formation of pseudothecia, which release a large number of air-borne 

ascospores. These spores adhere to leaves and initiate the phoma leaf spot 

symptoms. Infection of leaves produces leaf spots. After colonising the leaf, L. 

maculans initiates asexual reproduction and produces pycnidia. Pycnidia release an 

ooze containing conidia and disperse them up to very short distances. The phoma leaf 

spot phase is followed by an endophytic phase which lasts for a longer period of time. 
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In this phase, the fungus starts colonising leaf stalk and stem tissues. Symptoms 

cannot be observed in this stage as the fungus spreads intercellularly towards the 

base of stem and root. The fungus later changes to a necrotrophic phase and destroys 

the stem base (Fig. 1.3). 

1.12 World-wide spread of L. maculans and L. biglobosa 

L. maculans and L. biglobosa are widely distributed around the world as a result of 

their transmission in seed of B. oleracea, B. rapa, B. napus and other brassica crops 

(West et al., 2001).  One or other of them appears in Europe (25 countries), Asia (16 

countries), Africa (eight countries), North America (Canada, USA), central America 

(five countries), South America (Argentina and Brazil) and Oceania (five countries) 

(Anon, 2004) (Fig. 1.4). Reports mostly do not provide information on the brassica 

crop on which the pathogen was recognised or differentiate between L. maculans and 

L. biglobosa. Since L. biglobosa ‘canadensis’ was first isolated in 1957, it has been 

widespread in Canada on oilseed rape. L. maculans was first isolated in Canada in 

1975 in Saskatchewan from oilseed rape and subsequently spread to Alberta and 

Manitoba (Gugel & Petrie, 1992). At present, only resistant cultivars are involved in 

production of all Canadian oilseed rape. L. maculans and L. biglobosa exist in the UK, 

France and Germany; however, the relative prevalence of the two species varies 

between locations (West et al., 2001). Both species have recently been reported from 

the USA (Anon, 2004). In Poland, phoma stem canker was exclusively associated with 

L. biglobosa until the mid-1990s (Jedryczka et al., 1994). Afterwards, L. maculans was 

widely distributed in western Poland by 2002 while only L. biglobosa was found in 

eastern Poland (Karolewski et al., 2002). Severe phoma stem canker on oilseed rape 

in Kenya was reported from 1972 to 1974 and it was stated that it had been present 

since 1951 on vegetable brassicas (Piening et al., 1975). Plummer et al. (1994) 

described the distribution of L. maculans in Australia. Only L. biglobosa has been 

investigated in China from oilseed rape crops (West et al., 2000; Zhang et al., 2014).   
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Figure 1.3 Life cycle of Leptosphaeria maculans (Rouxel & Balesdent, 2005). [1] 

saprophtytic phase; [2] sexual reproduction and development of primary ascospore 

inoculum; [3] primary infection is followed by a necrotrophic phase; [4] asexual 

reproduction; [5] symptomless endophytic phase; [6] switch to necrotrophic phase 

which destroys the stem base. 

 

 



- 22 - 
 

                

Figure 1.4 World-wide occurrence of L. maculans and L. biglobosa (Fitt et al., 

2006). Arrows show the directions of spread of L. maculans in Canada and eastern 

Europe where L. biglobosa ‘canadensis’ and L. biglobosa ‘brassicae’ were 

predominant, respectively. Patches indicate areas where populations were 

characterised as predominantly L. maculans (red), L. biglobosa (blue) or a mixture of 

the two species (green). Yellow dots describe areas where the pathogens were 

reported (sometimes only a single report) but the species has not been identified. 
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1.13 Economic importance of phoma stem canker 

Phoma stem canker is a severe and globally important disease of oilseed rape. It 

causes losses of more than £1000M per cropping season through severe epidemics 

in Europe, Australia and North America and is dispersing globally, threatening the 

production in Africa, China and India (Barnes et al., 2010). National (England and 

Wales) survey data estimated that yield loss from this disease have increased from c. 

£13M in the 1980s (Fitt et al., 1997) to £50M per cropping season in 2000-2002 (Fitt  

et al., 2006). 

Oilseed rape is grown throughout the world and it is an essential source of fuel, a most 

important source of protein meal and an important source of vegetable oil. Oilseed 

rape production has been increasing internationally, with total yield of 46 Mt after the 

2005/2006 growing season. However, it is predicted that stem canker may cause 

losses of oilseed rape up to £140M p.a. in the UK by the 2020s (Evans et al., 2010). 

Phoma leaf spotting is infrequently associated with extensive death of young plants in 

the UK, although such epidemics are widespread in autumn and winter. By contrast, 

it was reported to produce death of seedlings and damage to crops in Australia at any 

stage from seedling to maturity (Khangura & Barbetti, 2001). 

It is important to control the phoma stem canker. The current methods of control of 

phoma stem canker involve the use of fungicides, exploitation of resistance genes in 

commercial cultivars and the use of cultural techniques.  

Phoma stem canker is controlled chemically by using different combinations of 

fungicide treatments, soil fungicides or foliar fungicide sprays in different regions 

depending on the epidemiology of the disease (West et al., 2001; Fitt et al., 2006). 

Use of resistant cultivars is the best approach to grow crops with limited use of 

pesticide and low production costs. Genetic resistance against L. maculans have been 

described in Brassica species. However, genetic resistance against L. biglobosa is not 

known yet. Two main types of resistance have been described. Quantitative resistance 

(QR) is usually controlled by multiple genetic factors (Lindhout, 2002; Stuthman et al., 

2007). QR protects plants against L. maculans by reducing symptom severity but does 

not prevent pathogens from colonisation of plants. While, qualitative resistance is 
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usually controlled by single, dominant resistance (R) genes and depends on gene-for-

gene recognition mechanisms (Flor, 1956; Huang et al., 2014). It is often effective in 

preventing pathogens from colonisation of plants.  

Cultural practices involve stubble management and good crop rotation. It decreases 

the risks of infection by ascospores released from colonized residue (West et al., 

2001).  

1.14 Rationale  

Several plant diseases of fungal etiology, such as ash dieback, phoma stem canker, 

needle blight and light leaf spot are important economically as well as ecologically in 

the UK, since they present major threats to arable crops or trees. The control of plant 

pathogenic fungi is a difficult task due to the absence of suitable strategies to control 

diseases. Furthermore, the use of fungicides has increased risks to the environment 

and human health. As a result, novel biocontrol measures are being investigated to 

combat fungal diseases (Ghabrial & Suzuki, 2009). Since, from an agricultural 

perspective, mycoviruses appear to be useful tools for biologically controlling plant 

diseases, the phytopathogenic fungi causing ash dieback, phoma stem canker, needle 

blight and light leaf spot were assessed for the presence of mycoviruses. 

1.15 Aims and objectives 

The main aims of the project are to assess the incidence of mycoviruses in five 

different plant pathogenic fungi and to investigate their effects on the growth and 

pathogenicity of the fungi. The investigation has focused on L. biglobosa since 

mycoviruses were identified in it for the first time and appeared to cause alterations in 

growth and pathogenicity of the host fungus. These observations might have 

implications for control of diseases caused by these fungi. 

Objectives: 

1. To identify and characterise mycovirus dsRNA elements in plant pathogenic 

fungi. 
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2. To eradicate LbMV-1 from L. biglobosa and compare the phenotypes of virus-

infected and virus-free L. biglobosa isolates. 

3. To detect effects of LbMV-1 infection on pathogenicity of L. biglobosa to oilseed 

rape (Brassica napus).  

4. To investigate virus-infected or virus-free L. biglobosa induced systemic 

resistance to L. maculans in oilseed rape. 
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2.1 Source of fungal isolates 

Isolates of Hymenoscyphus fraxineus, the causal agent of ash dieback, were obtained 

from Dr Tadeusz Kowalski (Poland) and isolates of Dothistroma septosporum, the 

causative agent of red band needle blight, were obtained from Dr Anna Brown (Forest 

Research, UK). Leptosphaeria (Table 3.2) and Pyrenopeziza brassicae isolates 

responsible for phoma stem canker and light leaf spot on oilseed rape cultivars, 

respectively, were obtained from the pathogen collection at the School of Life and 

Medical Sciences (University of Hertfordshire) to investigate the incidence of dsRNA 

mycoviruses. Leptosphaeria isolates provided were from different parts of UK (Fig. 

2.1) and China. Moreover, some new isolates of Leptosphaeria were also collected 

from crops.  In addition to this, glycerol stocks of purified Aspergillus foetidus viruses 

were obtained from the pathogen collection at the Department of Life Sciences 

(Imperial College London) for developing cloning and sequencing technologies. H. 

fraxineus isolates were provided in the form of small agar plugs containing mycelia in 

Eppendorf tubes, Leptosphaeria isolates were provided on potato dextrose agar 

(PDA) plates and D. septosporum isolates were provided on malt extract agar (MEA) 

plates. 

2.2 Isolation and cultural identification of Leptosphaeria species 

Fifty-three Leptosphaeria isolates were obtained from UH pathogen isolate collection. 

In addition to this, 20 isolates were collected personally from oilseed rape leaves with 

phoma spot symptoms collected from a field site near Cambridge (in autumn 2015). 

The isolates of Leptosphaeria spp. from the phoma leaf spots were obtained by the 

method of West et al. (2002). The leaves with phoma leaf spots were washed with 

water and dried (Fig. 2.2a). The phoma spots were cut from the leaves and leaf pieces 

were placed in Petri dishes on Whatman No.1 filter paper sprayed with distilled water 

(Fig. 2.2b). The leaves were then incubated at 20°C for 3-5 days under 12h light/12h 

darkness photoperiod to induce spore production. Pycnidia were observed using a 

dissection microscope and under sterile conditions the cirrhi from mature pycnidia 

(Fig. 2.2c) were collected using a fine needle to obtain single pycnidial isolates. Each 

cirrhus was mixed with a drop of sterilized water to make a spore suspension and then 

transferred onto a PDA plate. To produce confluent cultures, the plates were 
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Figure 2.1 Map showing the different locations (indicated with different colours) 

in the UK from which Leptosphaeria isolates were obtained from School of Life 

and Medical Sciences (University of Hertfordshire) isolate collection and 

isolates collected by Unnati Shah (autumn 2015).  
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Figure 2.2 Isolation of Leptosphaeria species from oilseed rape cultivars. (a) 

Leaves collected from crop samples for pathogen isolation. (b) Leaves with phoma 

spots were cut into small pieces and placed in Petri dishes on Whatman No. 1 filter 

paper that had been sprayed with distilled water. (c) Spores from mature pycnidia 

observed under a microscope were inoculated onto PDA plates. (d) Cultures of 

Leptosphaeria were grown on PDA at 20°C in darkness for 20 days. 
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incubated for 5 days at 20°C in darkness (Fig. 2.2d) and for the identification of 

pathogen species (whether L. maculans or L. biglobosa), the pathogens were cultured 

on PDA plates. The two species were distinguished on the basis of morphological 

characteristics on PDA plates and by PCR. All L. biglobosa isolates were confirmed 

as L. biglobosa ‘brassicae’ isolates by PCR using L. biglobosa ‘brassicae’ specific 

primers (Liu et al., 2006). Cultures of L. maculans have no pigment and are white while 

L. biglobosa produces a yellow pigment with numerous pycnidia on PDA (Fitt et al., 

2006). All 20 isolates obtained from crops near Cambridge were found to be L. 

maculans, whereas 37 and 16 isolates obtained from the UH pathogen collection were 

classified as L. maculans and L. biglobosa, respectively.  

2.3 Inoculation and growth of isolates  

H. fraxineus, D. septosporum and P. brassicae isolates were grown on MEA 

containing streptomycin while Leptosphaeria isolates provided on PDA plates were 

subcultured onto V8 agar plates containing penicillin and streptomycin (Appendix 1, 

1). Prior to inoculation, the medium in the plate was covered with an autoclaved 

cellulose disc. Subsequently, a fungal mycelial plug was inoculated onto the plate and 

incubated at a specific temperature until mycelia proliferated. H. fraxineus isolates 

were grown at 25°C, whereas Leptosphaeria, D. septosporum and P. brassicae 

cultures were grown at 20°C. 

2.4 Nucleic acid isolation and analysis  

2.4.1 Phenol and Sevag treatment 

Phenol solution was prepared by melting phenol at 68°C, adding 0.1% (w/v) 

parahydroxy-quinoline  (Sigma) and finally equilibrating with 0.1 M Tris-HCl (pH 8.0). 

The solution was stored in a dark bottle at 4°C. Sevag solution was prepared by mixing 

chloroform and isoamyl alcohol (24:1 v/v). For nucleic acid extraction and protein 

denaturation, equal volumes of phenol and Sevag were added to an equivalent volume 

of solution containing nucleic acid. The suspension mixtures were vortexed and 

centrifuged at 13,000 rpm for 5 min, in order to separate the aqueous and organic 

phases. The upper aqueous phase was transferred into separate sterile Eppendorf 
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tubes and equal amounts of Sevag were added, vortexed and centrifuged to eliminate 

phenol. The aqueous supernatant containing nucleic acids was processed as 

described in Section 2.4.2. 

2.4.2 Precipitation of nucleic acids 

Nucleic acids were precipitated by the addition of 1/10 the volume of 3 M sodium 

acetate (pH 5.5) and 2.5 volumes of absolute ethanol (100%). The solution was mixed 

and kept for 16 h at -20°C for nucleic acid precipitation. The precipitated nucleic acids 

were collected following centrifugation (13,000 rpm, 10 min). The supernatant was 

discarded after centrifugation and the pellet was air dried for 15-20 min. The pellet 

was resuspended in water and left at 0°C for 30 min. The resuspended solutions were 

used for further enzymatic digestions, electrophoresis or storage at -80°C. 

2.4.3 DNase I treatment 

Nucleic acids were subjected to DNase 1 treatment to remove traces of fungal DNA. 

Pellets were resuspended in water (80 μl) followed by the addition of 10 μl DNase I 

buffer (10x) and 10 μl DNase I enzyme (1 U/μl; Promega). The mixture was incubated 

at 37°C for >1 h. After incubation, water (400 μl) was added and nucleic acids were 

extracted with an equal volume of phenol and Sevag to inactivate DNase I (Section 

2.4.1).                                                                                     

2.4.4 SI nuclease treatment 

Double stranded RNA (dsRNA) solutions were treated with SI nuclease to eradicate 

contaminating fungal single stranded (ss) RNA. Following DNase I treatment and 

ethanol precipitation for 16 h, dsRNA mixtures were centrifuged and the supernatant 

decanted prior to air drying the pellets. Pellets were resuspended in 88 μl of water 

followed by the addition of 10 μl SI nuclease buffer (10x) and 2 μl SI nuclease enzyme 

(1:10 enzyme dilution) (95 U/ μl; Promega). The mixture was incubated at 37°C for >1 

h. Then the phenol and Sevag extraction method was used to inactivate SI (Section 

2.4.1). 
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2.4.5 Agarose gel electrophoresis 

Nucleic acids were separated and visualised by agarose gel electrophoresis. Agarose 

gels (1% w/v) were prepared by dissolving agarose powder by boiling in 1x TAE buffer 

(Appendix 2.12). When the temperature was ca. 50-60°C, GelRed nucleic acid stain 

(10,000x, Biotium) was added into the gel solution. The gel was then poured into a 

casting tray and left to solidify for at least 20 min before loading the samples that 

contained 5x loading buffer. The gel was electrophoresed in 1x TAE buffer for 2 h at 

30-50 V. Gels were then observed under UV light. 

2.4.6 Gel extraction for recovery of dsRNA  

After gel electrophoresis, dsRNA bands of interest were isolated using the QIA 

MinElute gel extraction kit (Qiagen). A UV transilluminator was used to view the gels 

to identify dsRNA bands, which were excised using a scalpel blade. Gel pieces were 

transferred into 1.5 ml microcentrifuge tubes and weighed. Three volumes of buffer 

QG were added to each gel volume. The solution was incubated at 55°C for 10 min 

until the gel slices melted completely. This process can be facilitated by the inversion 

of the tube every 2 min during incubation. Following gel solubilisation and when the 

mixture turned to an orange or violet colour, 10 μl of sodium acetate (3 M) was added 

to adjust the pH, as indicated by a yellow colour. One gel volume of isopropanol was 

then added to the sample and the whole sample was mixed. The melted agarose 

solution was transferred to a silica membrane based MinElute spin column and 

centrifuged for 1 min to assist RNA binding to the membrane. The resulting flow-

through was discarded and 500 μl of QG buffer was added to the column, which was 

centrifuged for 1 min, and the flow-through discarded once more. The same procedure 

was repeated following the addition of PE buffer (750 μl). The column was centrifuged 

again for 1 min to remove residual buffer and the column was placed in a 1.5 ml tube 

and 10 μl of elution buffer (EB) or water was added in the middle of the column to 

recover dsRNA. The tube was centrifuged for 1 min and pure dsRNA was collected 

for storage at -20°C until use. 
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2.4.7 Purification of amplicons generated by PCR amplification  

To purify amplicons generated by PCR amplification the QIAquick PCR Purification kit 

(Qiagen) was used, following the manufacturer’s protocol. Amplicons in buffer were 

mixed with five volumes of binding buffer (PB) and mixed by inversion. Sodium acetate 

was added to optimise the pH to 5.5 and the mixture was placed onto the QIA quick 

column and centrifuged at 13,000 rpm for 1 min followed by washing with 700 µl of 

buffer PE. Flow-through was discarded on each occasion after centrifugation. 

Amplicon DNA adsorbed onto the membrane was eluted in 15 µl of nuclease-free 

water by centrifugation (13,000 rpm; 1 min). 

2.5 Extraction of mycovirus dsRNA and purified mycovirus  

2.5.1 Small-scale dsRNA extraction  

This procedure is rapid and easy to perform and follows a protocol developed by 

Coenen et al. (1997) to identify dsRNA presence in small amounts of mycelia. Fungal 

mycelium (~0.2-0.5 g) was harvested and crushed using a mortar and pestle in liquid 

nitrogen prior to immediate transfer into a 2 ml Eppendorf tube containing 350 μl of 

extraction buffer (Appendix 1, 2.10). The mixture was then vortexed and incubated for 

1 h at 70°C. After incubation, the mixture was mixed with 350 μl of phenol and equal 

volume of Sevag, vortexed and centrifuged (13,000 rpm for 5 min). After 

centrifugation, the supernatant was mixed with 350 μl of Sevag, vortexed and 

centrifuged (13,000 rpm for 5 min). The resulting supernatant was mixed with 800 μl 

of ethanol and 30 μl of sodium acetate and kept at -20°C for 16 h to precipitate dsRNA 

(Section 2.4.2).  

2.5.2 Large-scale dsRNA purification using lithium chloride (LiCl) 

This method was adapted from Diaz-Ruiz and Kaper (1978). Fungal mycelia (~25-30 

g) were crushed and homogenised to a fine powder in liquid nitrogen. The crushed 

powder was mixed with extraction buffer (60 g/L 4-aminosalicylic acid [sodium salt] 

and 50 ml/L Tris-HCl buffered phenol) and the mixture shaken on an ice plate for 60 

min. This incubated mixture was centrifuged at 10,000 rpm for 40 min at 4°C and the 

supernatant containing total nucleic acid extract was transferred into a new sterile 
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centrifuge tube. The supernatant was treated with phenol (15 ml) followed by 

chloroform (15 ml) to deproteinise the nucleic acids and centrifuged on each occasion 

(10,000 rpm; 30 min). After centrifugation, the upper phase was transferred to a new 

tube and an equal amount of 4 M LiCl was added, mixed and incubated at 4°C for 16 

h to precipitate nucleic acids. Then the solution was centrifuged (15,000 rpm; 30 min) 

to pellet the precipitated ssRNA and dsDNA. The supernatant was then transferred to 

a sterile tube and an equal volume of 8 M LiCl added and mixed to precipitate dsRNA 

at 4°C for 16 h. The precipitated nucleic acids (dsRNA) were collected by 

centrifugation at 10,000 rpm for 50 min and 1 ml of supernatant was collected as a 

negative control. The pellet, containing dsRNA, was resuspended in 2 ml of distilled 

water and stored at -20°C for further experiments. In order to remove contaminating 

DNA and single-stranded RNA, DNase I and SI nuclease treatments were performed, 

respectively. 

2.5.3 Virus purification using polyethylene glycol (PEG) 

Virus purification was performed for the eventual purification of large quantities of 

dsRNA. To achieve this, fungi were grown in liquid media with aeration until sufficient 

amounts of mycelium (~40 g) had been produced, which was then collected in 50 ml 

Falcon tubes and kept at -80°C until required. Frozen mycelium was thawed, weighed 

and transferred into a blender with the addition of two volumes (w/v) of TE buffer 

(Appendix 1, 2.11). After homogenising the mycelium for 3 min, the homogenate was 

filtered through Miracloth, cell debris was discarded and flow-through was collected in 

sterilised Nalgene bottles. Centrifugation was carried out at 10,000 g for 20 min to 

pellet residual fungal debris. After centrifugation, the supernatant was transferred to a 

fresh sterilised bottle and PEG and NaCl were added to 10% (w/v) and 0.6 M, 

respectively, prior to stirring the mixture for 16 h at 4°C to precipitate the virus.  The 

solution was then transferred to Nalgene tubes and centrifuged at 10,000 g for 20 min 

to collect the precipitated virus. The precipitated virus was then resuspended in 20 ml 

of TE buffer and recentrifuged at 10,000 g for 20 min. The clarified supernatant was 

subjected to ultracentrifugation at 105,000 g (30,000 rpm) for 90 min. The virus pellet 

was resuspended in 500 μl of TE buffer and transferred into a 1.5 ml microcentrifuge 

tube prior to centrifugation at 10,000 rpm for 20 min. Viral dsRNA was isolated from 
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purified virus following phenol and Sevag treatment and subsequently precipitated 

with ethanol and sodium acetate (Sections 2.4.1 and 2.4.2). 

2.5.4 RNeasy extraction of total RNA 

The RNeasy plant minikit (Qiagen) was used for total RNA extraction from fungal 

mycelium. A maximum amount of 100 mg of mycelium was homogenised in liquid 

nitrogen using a mortar and pestle without thawing the tissue. The tissue powder was 

mixed with 450 µl RLT lysis buffer and incubated for 1-3 min to disrupt the tissue. The 

lysate was transferred to a QIAshredder spin column and centrifuged for 2 min at 

13,000 rpm to remove cell-debris. The supernatant of the flow-through fraction was 

carefully transferred to a microcentrifuge tube without disturbing the cell-debris pellet. 

The volume of cleared lysate was estimated and half that volume of absolute ethanol 

was added to it. This mixture was applied to an RNeasy spin column and centrifuged 

for 15 s at ≥ 10,000 rpm. The flow-through was discarded and 700 µl buffer RW1 was 

added to the RNeasy spin column followed by centrifugation for 15 s at ≥ 10,000 rpm. 

The flow-through was discarded and 500 µl RPE buffer was added and centrifuged for 

15 s at ≥ 10,000 rpm to wash the spin column membrane. The flow-through was 

discarded again and the washing step with RPE repeated using centrifugation for 2 

min at ≥ 10,000 rpm. Residual RPE buffer was removed by an additional centrifugation 

step at 13,000 rpm for 1 min. Total RNA was eluted in 30-50 µl water following 

centrifugation at 13,000 rpm for 1 min. 

2.6 Sequencing mycovirus dsRNAs using genome walking 

A genome walking procedure was used to generate clones from the dsRNA elements 

constituting the genomes of mycoviruses discovered in both D. septosporum and L. 

biglobosa. Here, following the generation of recombinants produced using random 

cDNA cloning, new oligonucleotide primers were designed on the basis of known 

sequence and RT-PCR amplification was performed to generate further clones. 

2.6.1 Oligonucleotide primer design for RT-PCR amplification 

For successful PCR amplification, it is essential to design oligonucleotide primers 

carefully with correct melting temperature characteristics and to avoid primer-dimer 
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formation. Many factors were considered when designing primers in these 

experiments. Primers used were 18-22 nucleotides in length with the 3’-terminal 

nucleotide ending in C or G to promote binding with a melting temperature between 

58°C-65°C. The preferred GC content of the primer was between 40 and 60%. The 

properties of all oligonucleotide used in this study were also checked using the 

OligoCalc tool  (Kibbe, 2007), which calculates the physical properties of a given 

oligonucleotide sequence, including melting temperature, molecular weight, %GC 

content and absorbance coefficient. In addition to this, it can also check the self-

complementarity for potential hairpin formation. 

2.6.2 Reverse transcription and polymerase chain reaction amplification 

DsRNA (8 μl) extracted from different sources was denatured by adding 2 μl 100 mM 

methyl mercury and 1 μl of sequence-specific oligonucleotide primer (100 μM) was 

added. This mixture was incubated for 20 min at 20°C and subsequently kept at 0°C 

for 2 min to allow the primer to anneal to the RNA. Instead of methyl mercury, heat 

denaturation (90°C for 10 min) could also be used to denature the secondary structure 

of RNA after incubation at 20°C for 20 min.  Denatured dsRNA was mixed with pre-

heated (50-55°C for 1 min) reaction mixture to synthesise the first strand of cDNA, 

then incubated at 55°C for 1 min. Superscript™ III RNase H-Reverse Transcriptase 

(Invitrogen) was then added to the mixture, followed by incubation for 1 h at 55°C to 

synthesise cDNA. 

Reaction mixture for first strand cDNA synthesis: 

Reverse transcription buffer (5x, Invitrogen)  10 μl 

DTT (100 mM, Invitrogen)   4 μl 

dNTP mix (20 mM, Promega)  1 μl 

RNasin™ RNase inhibitor (40 U/μl, Promega)  1.25 μl 

Sterilised distilled water 23.75 μl 

After incubation, 450 μl of sterilised distilled water was added to the mixture, which 

was transferred to a Nanosep 30K column (Pall Corporation) to assist the separation 

of cDNA from buffers and small molecules. Tubes were centrifuged at 5000 rpm for 
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10 min and the flow-through was discarded. The retained sample was recovered in 

150 μl of sterilised distilled water. The solution containing cDNA was moved into 

another sterile tube for further use in PCR amplification. 

Reaction mixture for PCR amplification: 

First strand cDNA 50 μl 

PCR reaction buffer (5x, Bioline)  20 μl 

dNTP mix (20 mM, Promega)  1.2 μl 

Sequence-specific primer (100 μM)  1 μl 

MgCl2 (25 mM)  8 μl 

Random hexamer (100 μM)  1 μl 

Sterilised distilled water 18.3 μl 

GoTaq DNA polymerase (5 U/μl, Promega)  0.5 μl 

The amplification reaction was run in a PCR thermocycler with specific conditions 

according to the oligonucleotide primers and the DNA polymerase used.  

Thermocycling conditions for PCR reaction (GoTaq DNA polymerase)  

94°C for 2 min 1 cycle  

94°C for 1 min/60°C for 1 min/72°C for 3 min   30 cycles  

72°C for 5 min 1 cycle  

Store at 4°C 

One tenth of each reaction mixture was used to analyse the amplicons following 1% 

(w/v) agarose gel electrophoresis (Section 2.4.5). 

2.6.2.1 Froussard procedure 

While the polymerase chain reaction can be used to amplify known DNA sequences 

present in genomic DNA samples, the Froussard procedure makes the amplification 

of unknown RNA sequences possible by the use of cDNA (Froussard, 1992). This 
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strategy may be the simplest way of producing representative cDNA libraries using 

Froussard primers. In this procedure, dsRNA was denatured in the presence of the 

forward Froussard primer for the synthesis of cDNA and the amplification of randomly 

synthesised cDNA population was then performed in the presence of reverse 

Froussard primer. Thus, this procedure was carried out using standard RT-PCR 

amplification but using the Froussard primers. 

Froussard forward: 5’-GCCGGAGCTCTGCAGAATTCNNNNNN-3’                  

Froussard reverse: 5’-GAATTCTGCAGAGCTCCGGC-3’ 

2.6.2.2 Single primer amplification 

Normally, the specificity of the DNA amplification reaction is determined by two 

oligonucleotide primers and it is required to have the known nucleotide sequence at 

both ends of target DNA to select two suitable primers. The use of a single primer 

makes it possible to amplify unknown sequence that is adjacent to a known DNA 

sequence (Parks et al., 1991). PCR amplification was performed using either forward 

or reverse sequence-specific primers to investigate flanking sequences. PCR 

amplicons generated by this method, once sequenced, were easily recognisable by 

the fact that the same primer was present at both ends of the clones.  

2.6.3 RNA linker mediated rapid amplification of cDNA ends (RLM-RACE) 

RLM-RACE PCR procedure was used to determine the 5’- and 3’- terminal sequences 

of the dsRNAs. This procedure involves the modification of the 3’-end of dsRNA, by 

ligating LIG Rev primer (5’-kinated-PO4; 3’-OH-blocked; 5’-

GATCCAACTAGTTCTAGAGCGG-3’) at the 3’ termini of dsRNA (Coutts & Livieratos, 

2003). RLM-RACE is divided into three phases. 

First phase: 

Firstly, 7 μl of dsRNA was mixed with LIG Rev primer (1 μl) and heated to 90°C for 2 

min followed by snap cooling on ice. Secondly, the mixture of T4 RNA ligase buffer 

(10 μl), ATP (1 μl) and sterile water (62.5 μl) was incubated at 37°C for 10 min and at 

20°C for 2 min, followed by the addition of the dsRNA and LIG Rev pre-heated mixture. 
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Subsequently DMSO (10 μl), RNase inhibitor (2.5 μl), T4 DNA ligase (1 μl) and T4 

RNA ligase (5 μl) were added and the whole mixture was incubated at 17°C for 16 h. 

Second phase: 

The 16 h incubated ligation mixture (100 μl) was increased in volume to 500 μl using 

water and concentrated using a Nanosep 30K column (VWR) by centrifugation (5,000 

g; 5-10 min), resulting in the recovery of ca. 100 μl of solution. The ligated dsRNA (100 

μl) was then added into the mixture of Go Taq buffer (5x, 40 μl), dNTPs (10 mM, 4.8 

μl), sterile water (54.2 μl) and GoTaq DNA polymerase (5 U/μl, 1 μl). The final volume 

of 200 μl was incubated at 68°C for 3 h, precipitated and incubated for 16 h at -20°C. 

Third phase: 

Then, ligated nucleic acid was pelleted and resuspended in 8 μl of sterile water and 

kept at 0°C for 30 min. Then, ligated nucleic acid was denatured by adding 2 μl of 

methyl mercury (CH3HgOH) together with 2 μl of LIG For primer (5’- 

CCGCTCTAGAACTAGTTGGATC-3’). The mixture was incubated at 20°C for 20 min 

and kept at 0°C for 2 min. To synthesise first strand cDNA, denatured dsRNA (12 μl) 

was added to the first strand cDNA synthesis reaction mixture, which was pre-heated 

at 50°C for 1 min, followed by addition of 1 μl of SuperscriptTM III RNase H-Reverse 

Transcriptase (200 U/μl; Invitrogen). The entire mixture was then incubated at 50°C 

for 1 h and 70°C for 15 min. This mixture could be stored at -20°C or used immediately 

for PCR amplification. 

First strand cDNA synthesis reaction mix:  

Reverse transcription buffer (5x, Invitrogen)  10 μl 

DTT (100 mM, Invitrogen)                       4 μl  

RNasinTM RNase inhibitor (40 U/ μl, Promega)                  1.25 μl 

dNTP mix (10 mM, Promega)               2.4 μl 

Sterilised distilled water                                   19.35 μl 

Prior to PCR amplification, the solution was size-fractioned and concentrated using a 

Nanosep 30K column. The volume of the first strand cDNA solution was increased to 
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500 μl with H2O and it was centrifuged (5000 g for 5-10 min), resulting in the recovery 

of ca. 100 μl of solution. PCR amplification was then performed as described below: 

 

PCR mixture:  

First strand cDNA  5 μl 

PCR reaction buffer (5x, Promega)        20 μl 

LIG For primer (100 mM)  1 μl 

Sequence-specific primer (100 mM) 1 μl 

dNTP mix (10 mM, Promega)  2.5 μl 

Sterile distilled water  70 μl 

GoTaq polymerase (5 U/μl, Promega)  0.5 μl 

Total volume 100 μl 

The reaction was run in a PCR thermocycler (Hybaid) using the thermocycling 

programme (Section 2.6.2). One tenth of each reaction mixture was electrophoresed 

in a 1% agarose gel to check the size of any amplicons produced. 

2.7 Ligation of PCR products with plasmid vector 

PCR products (3 μl) were ligated with vector pGEM-T Easy (Promega) (1 μl) in the 

presence of 2x ligation buffer (5 μl) using T4 DNA ligase enzyme (1 μl). Ligation 

mixtures were kept at 4°C for minimum of 16 h. 

2.8 Preparation of competent cells (Escherichia coli XL10-Gold 

Ultracompetent cells) 

Competent cells were prepared using either of the procedures described below: 

2.8.1 Transformation storage solution (TSS) method 

The preparation of E. coli competent cells was carried out using a transformation 

storage solution (TSS, Appendix 1, 2.7 ) method (Chung et al., 1989). Frozen E. coli 

XL10-Gold Ultracompetent cells were thawed and 1 μl was inoculated into sterile 2x 
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LB broth (5 ml, Appendix 1, 2.6). These cells were allowed to grow for 16 h at 37°C 

on a shaker (250 rpm). Then 500 μl of the culture was diluted into 1x LB broth (50 ml, 

Appendix 1, 2.5). This suspension was incubated at 37°C until the optical density (OD) 

of the cells reached 0.40-0.60 at 600 nm. The cells were then chilled on ice for 10 min 

in pre-cooled 50 ml centrifuge tubes and centrifuged (3000 g; 10 min) at 4°C. The 

pelleted cells were resuspended in 5 ml chilled TSS, aliquoted (100 μl) into Eppendorf 

tubes and stored at -80°C. 

2.8.2 Calcium chloride (CaCl2) method 

A small aliquot of frozen E. coli XL10-Gold Ultracompetent cells was inoculated into 

sterile LB media (5 ml) and cells were grown at 37°C on a shaker (250 rpm) for 16 h. 

The culture (1 ml) was then added into a 250 ml flask containing sterile LB broth (100 

ml) and again grown at 37°C until the OD (600 nm) reached 0.40-0.60. Then cells 

were kept at 0°C for 5 min and centrifuged at 3000 g for 10 min at 4°C. The 

supernatant was decanted and pellet was resuspended in cold 25 ml CaCl2 (100 mM). 

This suspension was kept at 0°C for at least 20 min. Centrifugation was repeated and 

the supernatant was removed. The pellet was finally resuspended carefully in 1 ml 

storage buffer (300 μl of 100% glycerol (VWR) plus 700 μl of 100 mM CaCl2) and 

aliquots were stored at -80°C. 

2.9 Transformation 

Transformation procedure was used to transfer recombinant plasmids into E. coli cells. 

To perform transformation, stored (-80°C) competent E. coli cells were thawed at 0°C. 

Ligation mixture (5 μl) was mixed with 40 μl of competent cells in a microcentrifuge 

tube for transformation. The solution was gently mixed by flicking the bottom of the 

tube a few times and the tube was kept at 0°C for 20 min. The transformation tube 

was heat-shocked by placing it into a 42°C water bath for 45 sec. Tubes were then 

immediately placed at 0°C for 2 min. Then, SOC solution (900 μl) (Appendix 1, 2.9) 

was added to the mixture and incubated at 37°C on a shaker for 1 h. After incubation, 

the solution was centrifuged at 13,000 rpm for 10 sec and 800 μl of supernatant was 

discarded and the pellet was resuspended gently by pipetting in the remaining 

solution. The transformation mixture was then spread on LB agar plates containing 
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ampicillin plus X-Gal (5-bromo-4-chloro-indolyl-β-D-galactopyranoside) and IPTG 

(Isopropyl β-D-1-thiogalactopyranoside) for selection of recombinant colonies 

(Appendix 1, 2.8). Plates were incubated for 16-20 h at 37°C. After incubation, plates 

could be stored at 4°C. Blue-white screening was carried out for the detection of 

successful transformants containing recombinant plasmids. Successful recombinants 

were identified as being white colonies which were distinguished from blue, wild type 

colonies. White colonies were selected and transferred into 5 ml LB medium 

containing ampicillin using tooth picks and incubated for 16 h at 37°C on a shaker (200 

rpm).  

2.10 Plasmid extraction from E. coli cells using the alkaline lysis method 

and restriction digestion of recombinant clones 

The QIA Miniprep kit (Qiagen) was used for the isolation of plasmid DNA from E. coli 

cells. 5 ml bacterial cultures grown in LB from single colonies were centrifuged at 8,000 

rpm for 5 min. The supernatants were removed by decanting the tubes and cell pellets 

were resuspended in P1 buffer (250 μl), and were dissolved completely by vortexing 

and transferred into a 1.5 ml microcentrifuge tube. P2 buffer (250 μl) (0.2 N NaOH and 

1% SDS) was added and the tube was inverted six times to assist lysis of bacterial 

cells. When the solution became transparent, N3 buffer (350 μl) was added for 

neutralisation and the tube was inverted gently to mix. Subsequently, the tubes were 

centrifuged at 13,000 rpm for 10 min and the supernatant carefully transferred into 

QIA Miniprep columns. Columns were centrifuged for 1 min at 13,000 rpm to allow 

binding of plasmid DNA to the columns and the flow-through was discarded. The 

columns were then washed using 500 μl of PB buffer, centrifuged for 1 min (13,000 

rpm) and the flow-through was discarded. Columns were again washed using 750 μl 

of PE buffer followed by the centrifugation for 1 min (13,000 rpm), removal of flow-

through and centrifugation for 1 min (13,000 rpm) for the removal of residual washing 

buffer. Finally, columns were placed into 1.5 ml microcentrifuge tubes and 50 μl of EB 

buffer or nuclease-free water was added for the elution of plasmid DNA. The columns 

with the elution buffer were allowed to stand for 1 min and then they were centrifuged 

to collect the DNA. 
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Eluted plasmid DNA was digested with restriction endonuclease EcoRI, which 

released the insert, in order to assess size of any inserts. 

EcoRI buffer (10x)  2 μl 

Bovine serum albumin (BSA; 100x) 0.2 μl 

Plasmid DNA 10 μl 

EcoRI enzyme  1 μl 

Sterilised distilled water 6.8 μl 

Total volume  20 μl 

Tubes were incubated at 37°C for >1 h. The results of restriction digestion were 

visualised by agarose gel electrophoresis.  

2.11 Sequencing of RT-PCR amplicons 

The DNA concentrations of recombinant plasmids were quantified using a Nanodrop 

and then samples were sent for sequencing to the Genewiz Laboratory (Essex, UK). 

Recombinant plasmids comprising inserts were sequenced using either of the 

universal oligonucleotide primers described below which prime within the pGEM-T 

Easy vector. 

M13 Forward: 5’-GTAAAACGACGGCCAGT-3’ 

M13 Reverse: 5’-AACAGCTATGACCATG-3’ 

Sequence data were analysed and identified for similarity with a library of sequences 

in databases using the NCBI, BLAST program (Altschul et al., 1990). Sequence 

alignment and translation were performed using the MAFFT and ExPASy programs, 

respectively. 

2.12 Northern blot hybridization  

Northern blot is a method used to detect specific RNA molecules among total RNA 

preparations. The term 'Northern blot’ actually refers to the transfer of RNA from 

electrophoresis gel to membrane (Trayhurn, 1996). 

This procedure involves three steps: 
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(1) RNA blotting and fixation 

DsRNAs separated by 18 h of agarose gel electrophoresis were photographed, 

followed by treatment with 0.25 M HCl for 20 min. Nucleic acids were denatured by 

soaking the gel in 0.1 M NaOH for 30 min. Afterwards, the gel was neutralised by 

immersing twice in 0.1 M Tris-HCl for 20 min. Then, the gel was blotted by capillary 

transfer with 20x SSC for a minimum of 6 h. Once the RNA was transferred to the 

nylon membrane, it was briefly rinsed in 2x SSC and RNA was fixed to the membrane 

by UV-cross linking for 30 min or by baking (120°C for 30 min or 80°C for 2 h). This 

membrane could be either stored at 2-8°C or used immediately for pre-hybridization. 

Nylon membranes were pre-hybridized with DIG-Easy Hybridization solution for 30 

min with gentle agitation at 68°C. Then, DIG-labelled probes, with predetermined 

labelling efficiency, were denatured by boiling for 5 min and rapidly cooled at 0°C. 

These denatured probes were mixed with pre-warmed DIG-Easy Hybridization 

solution and the membrane was incubated for 6 h or 16 h at 68°C with gentle agitation. 

The pre-hybridized membrane was washed with 2x SSC (2 x 5 min, at 15-25°C) and 

0.1x SSC (2 x 15 min, at 68°C) in combination with 0.1% SDS. Stringency washes 

were followed by immunological detection. 

(2) DNA template preparation 

Plasmid DNA was used for template preparation and DNA template was linearized 

using a chosen restriction enzyme and linearized plasmid DNA was transcribed to 

create labelled probes. Recommended size of the labelled RNA is in the range of 200-

1000 bases. 

In vitro transcription and DIG-RNA labelling 

Linearized plasmid DNA            5 µl 

Transcription buffer (5x)                                      2 µl 

Labelling mix (5x)          2 µl 

RNA polymerase (SP6, T7 or T3)                              1 µl 

Total                                                                                      10 µl 

The mixture was incubated at 42°C for 1 h and then incubated at 37°C for 1 h with 1 

µl of DNase I to remove the template DNA. 
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(3) Determination of labelling efficiency 

Determination of labelling efficiency of probes is the direct detection method in 

comparison to control RNA probes (provided in the kit). A dilution series of labelled 

probes and control probes was prepared (Tubes 1-4, Table 2.1) and applied to nylon 

membrane (1 µl). Nucleic acid was fixed to nylon membranes by UV-cross linking for 

30 min or by baking (120°C for 30 min or 80°C for 2 h).  

Immunological detection of hybridised RNA nylon membrane 

Cross-linked nylon membrane was incubated with in turn, washing buffer (20 ml, 2 

min; Appendix 1, 2.15), blocking solution (10 ml, 30 min; Appendix 1, 2.14), antibody 

solution (10 ml, 30 min), washing buffer (20 ml, 15 min x 2). Membrane was 

equilibrated with 10 ml detection buffer (Appendix 1, 2.16) for 2-5 min and membrane 

was transferred to a development folder. CDP-Star was applied on membrane and 

then exposed to an imaging device for 5-25 min for detection. 
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Table 2.1 Preparation of a sequential dilution series of DIG-labelled probe and 

control probe, where tube 1 is either a DIG-labelled probe or the control RNA at 

a concentration of 10 ng/µl. 
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Chapter 3 

Identification and characterisation of mycovirus dsRNA 

elements in plant pathogenic fungi 
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3.1 Introduction 

The study of viruses that infect plant-pathogenic fungi is important from an agricultural 

perspective as mycoviruses may contribute to sustainable agriculture as biocontrol 

agents and reduce the use of fungicides. In addition to this, hypovirulent plant-

pathogenic fungal strains that contain transmissible viruses have attracted much 

interest to investigate different fungal species for the presence of mycoviruses. 

Mycoviruses have been investigated in all major groups of plant pathogenic fungi. 

Comprehensive screening of plant-pathogenic fungi for the presence of dsRNA 

showed prevalence of fungal viruses in them, with incidence as high as >80% 

(Ghabrial & Suzuki, 2009). 

In this study, five plant pathogenic fungi Hymenoscyphus fraxineus, Dothistroma 

septosporum, Leptosphaeria maculans, Leptosphaeria biglobosa and Pyrenopeziza 

brassicae species, previously unexamined for the presence of mycoviruses, were 

screened for viruses. Subsequently further research focused on Leptosphaeria 

species where a mycovirus was discovered for the first time in several isolates of L. 

biglobosa. Since Leptosphaeria species are responsible for causing economically 

important disease of oilseed rape these investigations are pertinent and timely as the 

effects of mycovirus infection on pathogenicity are unknown. 

In addition to this, small projects were undertaken to characterise viruses from 

Aspergillus foetidus and D. septosporum to develop technology and standardise 

techniques that could be used to successfully complete the main objective of the PhD 

thesis. 

3.1.1 Hymenoscyphus fraxineus  

Hymenoscyphus fraxineus (anamorph Chalara fraxinea) is the causal agent of ash 

dieback disease of ash trees (Kowalski & Holdenrieder, 2009). The European ash 

Fraxinus excelsior and narrow-leaved ash F. angustifolia are the most affected 

species in Europe (Gross et al., 2014). European ash is common in Europe and is a 

valuable tree due to its ecological characteristics, high economic value and wood 

properties (Source: Woodland Trust, Ash (Fraxinus excelsior)). 
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In Europe, ash dieback was reported initially in Poland, afterwards in Germany, 

Sweden, Lithuania and Austria (Halmschlager & Kirisits, 2008). The first observations 

of the disease were made in the north-western regions of Poland and ash dieback 

subsequently spread through the whole country (Kowalski, 2006).  

Infected plant parts exhibit discoloration (Halmschlager & Kirisits, 2008), wilting of 

leaves, stem canker and dieback of crowns (Fig. 3.1). Necrotic lesions reach towards 

the xylem in the active stage of the canker (Kowalski & Holdenrieder, 2009).  

3.1.2 Dothistroma septosporum 

D. septosporum is an ascomycete belonging to the class Dothideomycetes 

(Bradshaw, 2004). D. septosporum is an economically important hemibiotrophic 

pathogen that causes dothistroma needle blight of pine trees. It affects more than 70 

species of pine, including Picea species (Bednářová et al., 2006). Needle blight has 

been reported for many decades in pine plantations in the southern hemisphere and 

since the early 1990s has increased in the northern hemisphere. This fungus produces 

a toxin called dothistromin that accumulates and produces brick-red bands around the 

infected needles (Shain & Franich, 1981). Dothistromin has a structural similarity to a 

precursor of highly toxic and carcinogenic fungal metabolite, aflatoxin (Shaw et al., 

1978).  

Several weeks after infection, D. septosporum produces conidia which can be spread 

to other pines by rain-splash. In later phases of the disease, black fruiting bodies 

(stromata) appear in the red band (Fig. 3.1). Eventually, the whole band becomes 

necrotic and drops prematurely (Edwards & Walker, 1978; Kershaw et al., 1988). In 

severe epidemics of disease, complete defoliation causes retardation of growth and 

tree death (Gibson, 1974; Woods, 2003). Whilst D. septosporum has a predominantly 

asexual lifecycle, it is also sexually active in some parts of the world (Groenewald et 

al., 2007). Dothistroma needle blight requires more than a year to complete its life 

cycle and a few years to become a serious problem within the tree canopy (Karadžič, 

1989). 
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3.1.3 L. maculans and L. biglobosa 

Phoma stem canker of oilseed rape is associated with two closely related fungal 

species, L. maculans and L. biglobosa. Of these, L. maculans is the most damaging 

pathogen (Section 1.11). In plant-pathogen systems, gene-for-gene interactions 

normally exist and the disease could be controlled with the use of resistance genes 

(Rlm genes). However, there is little information about resistance to L. biglobosa and 

resistance genes towards L. maculans do not affect L. biglobosa (Fitt et al., 2006). 

Between 2005 and 2014, phoma stem canker caused annual yield losses in oilseed 

rape in England up to £87M (Fig. 3.2).  

3.1.4 Pyrenopeziza brassicae  

Pyrenopeziza brassicae (anamorph Cylindrosporium concentricum) produces light 

leaf spot on winter oilseed rape cultivars in the UK, specifically in the high-rainfall parts 

of northern England and Scotland (Figueroa et al., 1995; Sutherland et al., 1998). The 

disease was first described in France in 1977 and it has caused severe yield losses 

recently. In 2012, light leaf spot caused yield losses in oilseed rape in England of more 

than £159M and in 2014 the second highest loss was recorded, in excess of £140M 

(Fig. 3.2).  

The affected leaf areas exhibit small white pustules which contain conidial spores. 

Green leaves of different ages and youngest unexpanded leaves exhibit sporulation 

which might occur on both upper and lower leaf surfaces. Light leaf spot lesions first 

appear as mottled light green areas that later convert to brittle and bleached lesions 

(Fig. 3.1; Fitt et al., 1998). 

3.1.5 Aspergillus foetidus virus 

Aspergillus foetidus was reported as a biological agent which was used for 

decolourising liquid waste through bioadsorption (Sumathi & Phatak, 1999). The 

filamentous fungus Aspergillus foetidus was shown to contain viruses over 50 years 

ago and Aspergillus foetidus virus (AfV) was the first report of mycovirus infection in 

the genus Aspergillus (Banks et al., 1970). A. foetidus strain IMI-41871 contains six  
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Figure 3.1 Disease symptoms of ash dieback, dothistroma needle blight and 

light leaf spot. (a, b) Symptoms of ash dieback: wilting of leaves 2 months after 

infection, extended stem lesion 12 months after infection, respectively (Kowalski & 

Holdenrieder, 2009). (c, d) Symptoms of dothistroma needle blight. (c) Needle tips 

turning brown on pine (Source: Forestry Commission, Dothistroma needle blight 

(Dothistroma septosporum)). (d) Dead spots or bands on the needle show black 

fruiting bodies. (e, f, g) Symptoms of light leaf spot on oilseed rape. (e) Pale, brittle, 

(b) bleached light leaf spot lesions on leaves showing white pustules (s) of spore 

masses of P. brassicae. (f) Sporulation (s) of P. brassicae on infected flower buds. (g) 

Fawn-coloured light leaf spot lesions on stems with black speckling (bs) at the 

indistinct edges and transverse cracking (c) (Fitt et al., 1998). 
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Figure 3.2 Annual yield losses in oilseed rape in England due to phoma stem 

canker, light leaf spot, sclerotinia stem rot and alternaria pod spot diseases for 

the harvest years 2005-2014 (Source: CropMonitor, FERA, based on DEFRA Winter 

Oilseed Rape Disease Survey). 
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dsRNAs which are apparently encapsidated in two different types of virions, 

designated A. foetidus virus-fast (AfV-F) and A. foetidus virus-slow (AfV-S), based on 

the relative electrophoretic mobilities of the dsRNAs (Fig. 3.3) (Ratti & Buck, 1972). 

Moreover, centrifugation in caesium chloride density gradients showed four 

components of both AfV-F (F1, F2, F3 and F4) and AfV-S (two major fractions S1, S2 

and two minor fractions S3, S4; (Buck & Ratti, 1975).  

AfV-F virions contain tetra-segmented, polyadenylated dsRNAs, which are similar in 

genetic organisation and sequence to Alternaria alternata virus 1 (Kozlakidis et al., 

2013a). All four dsRNAs of AfV-F were sequenced and characterised (Kozlakidis et 

al., 2013b). The sizes of these dsRNA elements are ca. 3.6 kbp, 2.8 kbp, 2.5 kbp and 

2.0 kbp. AfV-S comprises AfV-S1, a victorivirus; AfV-S2, an unclassified RNA; and 

AfV-S3 (Fig. 3.6a), a previously uncharacterized dsRNA element. 

AfV-S1, a virus of 5.2 kbp encapsidated dsRNA, encodes an RdRP and a coat protein. 

AfV-S2, a non-segmented dsRNA of 3.6 kbp is considered to be a satellite virus 

(Kozlakidis et al., 2013b). In this study, the complete nucleotide sequence of AfV-S3, 

the smallest dsRNA element, was determined (Shah et al., 2015).  

3.1.6 Aim and objectives 

The main aim of the research reported in this chapter was to identify and characterise 

dsRNA mycovirus elements from plant pathogenic fungi including L. biglobosa. For 

this purpose, a small project was performed to identify and characterise dsRNA 

mycoviruses from A. foetidus and D. septosporum.  

Objectives: 

1. To screen different isolates of H. fraxineus, D. septosporum, L. maculans, L. 

biglobosa and P. brassicae species for mycoviruses. 

2. To characterise Aspergillus foetidus-S3 virus. 

3. To characterise Dothistroma septosporum chrysovirus-1 (DsCV-1). 

4. To characterise Leptosphaeria biglobosa mycovirus-1 (LbMV-1). 

5. To perform northern blot hybridization to analyse the presence of specific 

sequences of LbMV-1 dsRNAs 1 and 2. 

6. To identify dsRNA elements present in all virus-infected L. biglobosa isolates. 
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Figure 3.3 Agarose gel electrophoresis of dsRNAs present in A. foetidus. Lane 

1, A. foetidus slow virus (AfV-S). Lane 2, A. foetidus fast virus (AfV-F). Lane M 

contains Hyperladder, DNA marker (Kozlakidis et al., 2013b). 
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3.2 Materials and methods 

3.2.1 Small-scale screening of fungal isolates for the presence of dsRNA 

mycoviruses  

H. fraxineus isolates exhibited slow growth, so they were allowed to grow for two 

months while isolates of D. septosporum, Leptosphaeria species and P. brassicae 

were grown on growth media (Section 2.3) for approximately 20 days. Isolates of H. 

fraxineus, Leptosphaeria and P. brassicae generally grow on the upper surface of the 

agar, while mycelia of D. septosporum isolates not only grow on the upper surface but 

also penetrate below the surface of the agar.  

Fungal mycelium was harvested, placed in liquid nitrogen and crushed using a mortar 

and pestle. The homogenate was immediately transferred into a 2 ml Eppendorf tube, 

mixed with 350 μl of extraction buffer, vortexed and incubated for 1 h at 70°C. After 

incubation, the mixture was treated with 350 μl of phenol and an equal volume of 

Sevag, vortexed and centrifuged (13,000 rpm for 5 min). After centrifugation, the 

supernatant was mixed with 350 μl of Sevag, vortexed and centrifuged (13,000 rpm 

for 5 min). The resulting supernatant containing nucleic acid was incubated for 16 h 

with 800 μl of ethanol and 30 μl of sodium acetate at -20°C (Section 2.4.2). The 

precipitated samples were centrifuged to collect the nucleic acid. The pellet was dried 

and resuspended in 20 μl of water followed by DNase I and SI nuclease treatment 

(Sections 2.4.3 and 2.4.4). Then, the samples were checked for the presence or 

absence of dsRNAs by agarose gel electrophoresis.  

3.2.2 Characterisation of Aspergillus foetidus-S3 virus 

Glycerol stocks of AfV-S were used to complete cDNA cloning and sequencing of the 

smallest dsRNA element associated with AfV-S mycoviruses. Initially dsRNA was 

purified from virus particles using the phenol and Sevag extraction procedure, which 

was followed by ethanol precipitation and gel electrophoresis. The desired dsRNA 

molecule was purified using gel extraction. The extracted dsRNA was used as a 

template in an improved RLM-RACE procedure (Coutts & Livieratos, 2003). The whole 

dsRNA element was amplified without requirement for sequence-specific primers, 

PCR amplicons were cloned into the pGEM-T Easy vector and transformed into 
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competent E. coli cells (XL10-Gold cells; Agilent). Gel electrophoresis was carried out 

to assess the presence of inserts in plasmids following EcoRI digestion. Two inserts 

of interest were found in recombinant plasmids, which were sent for sequencing. 

Afterwards, the origin of the clones was confirmed by northern blot hybridization 

performed according to the manufacturer’s instructions (Section 2.12). 

3.2.3 Characterisation of Dothistroma septosporum chrysovirus-1 (DsCV-1) 

Forty-five D. septosporum isolates were assessed for the presence of mycoviruses 

using a small-scale dsRNA extraction procedure. During this investigation, four 

dsRNAs were observed from isolate D752.1. Resistance to DNase I and SI nuclease 

treatment confirmed the dsRNA nature of the nucleic acid (Section 2.4.3 and 2.4.4). 

Purified dsRNAs were separated by agarose gel electrophoresis (Fig. 3.5a). Based on 

their molecular weight, it was suspected that these dsRNA elements may be closely 

related to the Chrysoviridae family, so on the basis of multiple alignment of RdRPs of 

different members of this family primers were designed (Appendix 2, Table 2.1) to 

perform RT-PCR and random cDNA clones of dsRNAs 1-4 were obtained. Afterwards 

for the synthesis of additional cDNAs, sequence-specific primers were designed 

(Appendix 2, Table 2.2) from the sequences of the initial clones. 

3.2.4 Characterisation of Leptosphaeria biglobosa mycovirus-1 (LbMV-1) 

Initially, Leptosphaeria isolates were screened for the presence of dsRNA elements 

using a small-scale dsRNA extraction protocol. Later, dsRNAs were isolated from 

purified virus from L. biglobosa (isolate C-Rox 12.8.1) (Section 2.5.3) for use in cloning 

and sequencing. Extracts were treated with DNase I and SI nuclease to remove host 

contaminating nucleic acids. Agarose gel electrophoresis was performed to assess 

the presence, size and purity of dsRNAs.  

Purified dsRNAs were separated by agarose gel electrophoresis and cDNA clones 

were produced using a random priming procedure with methyl mercuric hydroxide-

denatured dsRNAs (Froussard, 1992).  Alternatively, another procedure was also 

performed initially to obtain the cDNA clones using a random priming method 

(Kozlakidis et al., 2006).  
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RT-PCR generated amplicons were extracted (Section 2.4.7), ligated into the pGEM-

T Easy vector and transformed into E. coli competent cells. The resulting clones were 

sequenced using universal primers and analysed to identify homology with previously 

characterised sequences in the database using the BLAST programs (Altschul et al., 

1990). After obtaining the sequence data for dsRNA elements, sequence-specific 

primers (Appendix 2, Table 2.3) were designed upstream (5’-) and downstream (3’-) 

of the extant sequences for a RLM-RACE PCR and genome walking (Coutts et al., 

2004). The RLM-RACE PCR procedure was carried out to determine the 5’- and 3’- 

terminal sequences of dsRNAs and an example is shown in Fig. 3.4 (showing 5’- and 

3’- amplicons; Coutts & Livieratos, 2003).  

3.2.5 Northern hybridization analyses 

Northern blotting was performed using probes produced from cDNA clones of 

dsRNAs, generated by targeted PCR amplification and  PCR products were cloned 

into pGEM-T Easy vector (Section 2.12). The resulting recombinant plasmids were 

linearized using the restriction enzyme and single-stranded RNA probes of defined 

length were generated by in vitro transcription of linearized template DNA in the 

presence of digoxigenin-UTP, using T7 RNA polymerase (DIG Northern Starter Kit; 

Roche), followed by immunological detection using alkaline phosphatase-conjugated, 

anti-digoxigenin antibody (Roche). 

3.2.6 Identification of dsRNA elements present in virus-infected Leptosphaeria 

biglobosa isolates 

Total RNA extraction using the RNeasy kit (Section 2.5.4) followed by diagnostic RT-

PCR was carried out to compare the sequence similarity between the different isolates 

of L. biglobosa. Sequence-specific forward and reverse primers were designed (Table 

3.1) from the known sequence of the LbMV-1 dsRNA 2. Total RNA was used as 

template for cDNA synthesis and then PCR amplification was performed using 

sequence-specific primers. PCR products were subsequently cloned and sequenced 

(Sections 2.7, 2.9, 2.10 and 2.11). 
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Figure 3.4 Agarose gel electrophoresis showing the amplicons produced by the 

RLM-RACE procedure to generate products corresponding to the 5’- and 3’-

ends of LbMV-1 dsRNA 2.  Lanes 1 and 2 contain amplicons corresponding to: 5’ 

end of dsRNA; 3’ end of dsRNA, respectively. Hyperladder 1 (M; 10 kbp) was used as 

a marker. 
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Table 3.1 Primers used to identify specific sequence of the LbMV-1 dsRNA 2 

ORF found in various L. biglobosa isolates. 

 

Name of primer Sequence 

LBFS1 5’- CAAGTCCGAATCTCTGCATTCAG-3’ 

LBRS2 5’- GATCACCCTCTTGCTCGCATG-3’ 
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3.3 Results  

3.3.1 Small-scale screening of fungal isolates for the presence dsRNA 

mycoviruses 

Fifty-three isolates of L. maculans (37 isolates) and L. biglobosa (16 isolates) obtained 

from the University of Hertfordshire pathogen collection (Table 3.2) and twenty isolates 

of L. maculans obtained from oilseed rape crops (73 in total) were screened for dsRNA 

mycoviruses. Eleven out of sixteen L. biglobosa isolates were found to contain dsRNA 

elements. In contrast, none of the fifty-seven L. maculans and ten P. brassicae isolates 

contained dsRNA elements. In addition to this, none of the 162 H. fraxineus and only 

one of the 45 D. septosporum isolates appeared to contain dsRNA elements. 

This study represents the first report of LbMV-1 (the genome made up of dsRNA 

components). However, this is a preliminary naming of the virus found from L. 

biglobosa. Small-scale dsRNA screening from eight representative L. biglobosa 

isolates is shown in Fig 3.5 (a), where C-Rox 12.8.1 and A-Exc 12.12.10 were used 

as positive and negative controls. These screens revealed that the six isolates of L. 

biglobosa, viz. K-Exc 12.10.21, D-Rox 12.10, H-Exc 12.10.3, H-Exc 12.12.3, F2-Exc 

12.3.1, F2-Exc 12.6.1 contained at least three dsRNA elements ranging in size from 

4.0-4.9 kbp (Fig. 3.5a).  

The dsRNA nature of the LbMV-1 genome was confirmed following DNase I and SI 

nuclease digestion. RNase III treatment confirmed these observations as it specifically 

digests dsRNA. To determine whether LbMV-1 is encapsidated in virions the 

sensitivity of LbMV-1 dsRNA and purified LbMV-1 to RNase III was examined. In Fig. 

3.5 (b) both dsRNA (lane 1) and purified virions (lane 3) were sensitive to RNase III 

digestion as compared to their respective controls (lanes 2 and 4) incubated in the 

same manner without enzyme, suggesting that LbMV-1 was not conventionally 

encapsidated. D. septosporum isolate D 752.1 was found to be infected with a 

mycovirus with a dsRNA profile comprising four segments ranging in size from 2.8 to 

3.5 kbp (Fig. 3.7a). 
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Table 3.2 List of Leptosphaeria maculans (Lm) and Leptosphaeria biglobosa 

(Lb) isolates, location of crop, county and infection with dsRNA. [-] indicates 

absence of dsRNA, [+] indicates presence of dsRNA. 

 

# Isolate 
Location of crop 

 (field isolates) 
County 

dsRNA 

presence 

1 E-Exc 12.10.21 (Lm) Bainton Yorkshire (UK) - 

2 E-Exc 12.2.21 (Lm) Bainton Yorkshire - 

3 E-Exc 12.3.1 (Lm) Bainton Yorkshire - 

4 E-Exc 12.7 (Lm) Bainton Yorkshire - 

5 E-Rox 12.1.2 (Lm) Bainton Yorkshire - 

6 E-Rox 12.4.1 (Lm) Bainton Yorkshire - 

7 E-Rox 12.9.3 (Lm) Bainton Yorkshire - 

8 A-Exc 12.9.1 (Lm) Banbury Oxfordshire (UK) - 

9 A-Exc 12.12.10 (Lb) Banbury Oxfordshire - 

10 A-Rox 12.1.5 (Lm ) Banbury Oxfordshire - 

11 A-Rox 12.6.1 (Lm ) Banbury Oxfordshire - 

12 I1-Exc 12.4.1 (Lm) Horncastle Lincolnshire (UK) - 

13 I1-Exc 12.8.1 (Lm) Horncastle Lincolnshire - 

14 I1-Exc 12.7.1 (Lm) Horncastle Lincolnshire - 

15 I1-Exc 12.7.2 (Lm) Horncastle Lincolnshire - 

16 K-Exc 12.11.21 (Lm) Harpenden Hertfordshire (UK) - 

17 K-Exc 12.7.23 (Lm) Harpenden Hertfordshire - 

18 K-Exc 12.10.21 (Lb) Harpenden Hertfordshire + 

19 K-Rox 12.5.31 (Lm) Harpenden Hertfordshire - 

20 K-Rox 12.7.31 (Lm) Harpenden Hertfordshire - 

21 K-Rox 12.11.1 (Lb) Harpenden Hertfordshire - 

22 Mynickij 13-1 (Lm) Harpenden Hertfordshire - 

23 Shang U 13-2 (Lm) Harpenden Hertfordshire - 

24 State red russian 13-2 (Lm) Harpenden Hertfordshire - 

25 State red russian 13-3 (Lm) Harpenden Hertfordshire - 

26 Swede augus 1 (Lm) Harpenden Hertfordshire - 

27 Swede tina 13-2 (Lm) Harpenden Hertfordshire - 

28 Swede tina 13-3 (Lm) Harpenden Hertfordshire - 

29 Ning U 13-1 (Lm) Harpenden Hertfordshire - 
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30 Ning U 13-2 (Lm) Harpenden Hertfordshire - 

31 Samourai 1 (Lm) Harpenden Hertfordshire - 

32 Shang U 13-3 (Lm) Harpenden Hertfordshire - 

33 C-Rox 12.10.1 (Lm) Morley Norfolk (UK) - 

34 C-Rox 12.8.2 (Lm) Morley Norfolk - 

35 C-Rox 12.9.1 (Lm) Morley Norfolk - 

36 C-Rox 12.8.1 (Lb) Morley Norfolk + 

37 D-Rox 12.2 (Lm) Rothwell Lincolnshire (UK) - 

38 D-Rox 12.4 (Lm) Rothwell Lincolnshire - 

39 D-Rox 12.5 (Lm) Rothwell Lincolnshire - 

40 D-Rox 12.10 (Lb) Rothwell Lincolnshire + 

41 H-Exc 12.10.3 (Lb) Cowlinge Suffolk (UK) + 

42 H-Exc 12.12.1 (Lb ) Cowlinge Suffolk - 

43 H-Exc 12.12.3 (Lb) Cowlinge Suffolk + 

44 H-Exc 12.3.2 (Lm) Cowlinge Suffolk - 

45 F2-Exc 12.2.2 (Lm) Stockbridge Hampshire (UK) - 

46 F2-Exc 12.2.3 (Lb) Stockbridge Hampshire - 

47 F2-Exc 12.3.1 (Lb) Stockbridge Hampshire + 

48 F2-Exc 12.6.1 (Lb) Stockbridge Hampshire + 

49 F2-Excdm 11.5 (Lb) Stockbridge Hampshire - 

50 Noth2 (Lb) Hubei Hubei (China) + 

51 N20.3 (Lb) Hubei Hubei  + 

52 W10 (Lb) Hubei Hubei  + 

53 N3.4 (Lb) Hubei Hubei  + 

 

 

 

 

 

 



- 63 - 
 

 

Figure 3.5 (a) Agarose gel electrophoresis of DNase I and SI nuclease treated 

nucleic acid extracts of UK Leptosphaeria biglobosa isolates. Lane M contains 

Hyperladder I molecular weight marker. Lane 1 (isolate C-Rox 12.8.1) and 8 (isolate 

A-Exc 12.12.10) contain positive and negative controls, respectively. Lanes 2-7 

contain dsRNAs isolated from L. biglobosa isolates K-Exc 12.10.21, D-Rox 12.10, H-

Exc 12.10.3, H-Exc 12.12.3, F2-Exc 12.3.1, F2-Exc 12.6.1, respectively. Fungal 

genomic DNA contamination (>10 kbp) could not be removed after DNase I treatment, 

which can be seen in lanes 1-5. (b) RNase III sensitivity of dsRNA isolated from 

purified virus from isolate C-Rox 12.8.1 was investigated. Lane 1 contains dsRNA 

extract treated with RNase III (lane 1). Lane 2 contains control which was not treated 

with RNase III.  Lane 3 contains purified virions treated with RNase III and lane 4 

contains untreated virions as a control. 
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3.3.2 Characterisation of Aspergillus foetidus-S3 virus 

Northern blot analysis showed strong signals for RNA with an AfV-S3 specific probe 

(Fig. 3.6b), confirming that the sequence obtained corresponded to the AfV-S3 RNA 

element and its size and sequence were also confirmed.  

AfV-S3 is 439 bp in length with a GC content of 53% and contains no ORFs of any 

significant length. BLAST analysis (Altschul et al., 1997) did not reveal any significant 

sequence similarity to any other protein in global databases. Moreover, it also did not 

exhibit homology with other AfV-S and AfV-F components. Short fragments of ORFs 

potentially encode polypeptides of <9 kDa in mass. The secondary structure of AfV-

S3 dsRNA was modelled using the Mfold program (Zuker, 2003) and showed that ca. 

54% of the ribonucleotides are involved in the formation of secondary structure and 

found to contain a stem-loop structure (Fig. 3.6c). Stem-loop structures are a common 

feature of mycoviruses and are considered to be associated with RdRP recognition 

and RNA replication (Ghabrial & Suzuki, 2009). 

3.3.3 Characterisation of Dothistroma septosporum chrysovirus-1 (DsCV-1) 

DsRNAs isolated from D. septosporum isolate D 752.1 were resolved into four bands 

by agarose gel electrophoresis with sizes that ranged from ~2.8-3.5 kbp. The genome 

organization of DsCV-1 is shown in Fig. 3.7 (a). Numbers 1 to 4 were assigned to the 

dsRNAs according to their decreasing size.  

The nucleotide sequence of dsRNA 1 was partially completed and is >3550 bp in 

length (Daudu, unpublished data). It contains a single ORF of 1095 amino acids (aa) 

that encodes an RdRP. The analysis of the deduced amino acid sequence of dsRNA 

1 revealed the presence of eight conserved motifs characteristic for dsRNA 

mycoviruses. Subsequent BLAST searches of the deduced amino acid sequence of 

this ORF showed similarity to RdRP encoded by Isaria javanica chrysovirus-1 (IjCV-

1) RdRP (64% identity; Daudu, unpublished data). Sequence analysis of dsRNA 2 

revealed that it is 3068 bp in size and contains an ORF that encodes the 938 aa capsid 

protein (CP), which showed high identity to IjCV-1 CP (56% identity and 70% similarity; 

Appendix 4, Fig. 4.1). The complete genome organisation of dsRNA 2 is shown in Fig. 

3.7 (b). The sequence of dsRNA 3 is partially completed and is currently 2701 bp in 

length and includes a single ORF that encodes a hypothetical protein of unknown 
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Figure 3.6 (a) Agarose gel electrophoresis of A. foetidus-slow viruses showing 

their RNA profile with their approximate sizes (lane 2). 1 kb Plus DNA ladder was 

used as a marker (lane 1) (b) Result of northern blot hybridization for AfV-S 

RNA3. (c) Schematic representation of the minimum free energy structure of the 

AfV-S3 dsRNA sequence. The ΔG value was obtained using Mfold (Shah et al., 

2015). 
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         (a) 

 

          

         (b) 

 

 

Figure 3.7 (a) Electrophoretic banding patterns of DsCV-1 dsRNA elements 

present in D. septosporum isolate D 752.1 (lane 2). Lane 1: Hyperladder 1. (b) 

Schematic representation of the genome organization of DsCV-1 dsRNA 2 and 3. The 

genome consists of four dsRNA segments but the work was focused on molecular 

characterisation of DsCV-1 dsRNAs 2 and 3. Sequencing of dsRNA 3 has not been 

completed. The rectangular box represents the open reading frames (ORF); ORF2 

encodes the capsid protein (CP), and ORF3 encodes a hypothetical protein. 
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function (Fig. 3.7b). BLAST searches of the amino acid sequence deduced from 

dsRNA 3 showed identity with a hypothetical protein encoded by the IjCV-1 dsRNA 3 

(36% identity, 53% similarity; Appendix 4, Fig. 4.2). DsRNA 4 is 2816 bp in size and 

contains an ORF that encodes an 846 aa protease. BLAST searches of the amino 

acid sequence deduced from dsRNA 4 showed a high degree of identity to putative 

proteases from other members of the Chrysoviridae family (the highest identity was to 

Grapevine chrysovirus putative protease; 62% identity; Daudu, unpublished data). 

The sequences of the 5’-UTRs of the four DsCV-1 dsRNAs are relatively long. They 

were 144 and 160 nt long for dsRNA 2 and dsRNA 4, respectively. The sequences of 

the 5’-UTRs of dsRNA 1 and dsRNA 3 are as yet unknown. The 3’ UTRs were 109, 

107, 102 and 117 nt long for dsRNAs 1, 2, 3 and 4 respectively.  

The molecular characterisation of these four segments so far has shown the reiteration 

of the CAA triplet sequences upstream of the AUG initiator codon in the 5’ UTRs of 

dsRNAs. The 5’ sequences of dsRNAs 1 and 3 are incomplete. The (CAA) (n) repeats 

are translational enhancers which were also observed at the 5’ UTRs of PcV, 

Hv145SV and tobamoviruses and identified as a characteristic feature of the 5’ UTRs 

of chrysovirus dsRNAs (Jiang & Ghabrial, 2004; Gallie & Walbot, 1992; Ghabrial & 

Castón, 2004). In addition to this, the 3’-terminal UTR contained a conserved stretch 

of nucleotide sequence AATGAGTTATTTT which is conserved among the four 

segments of DsCV-1.                     

3.3.4 Characterisation of L. biglobosa mycovirus-1 (LbMV-1) 

Initially, the analysis of the original dsRNA preparations on ethidium bromide stained 

agarose gels showed only one broad band. To check whether this apparently single 

dsRNA band from isolate C-Rox 12.8.1 was composed of several different segments 

of similar sizes, electrophoresis was performed on larger gels at 20 volts for 18 h. 

Examination of the stained gels revealed clear separation of at least three dsRNA 

elements, the size and profile of which is very similar to the members of the Totiviridae 

family (Fig. 3.8a). However, it is possible that the LbMV-1 virus genome might 

comprise four dsRNA elements rather than three elements as two dsRNA elements 

might co-migrate since dsRNA 2 appeared as a broad, dense band on stained gels. 

Similar results were described when Penicillium chrysogenum virus (PcV) was 
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sequenced. Initially PcV was also suspected to contain three components (Buck & 

Girvan, 1977; Wood & Bozarth, 1972) but cDNA cloning and sequence analysis 

demonstrated the presence of four distinct dsRNA components (Jiang & Ghabrial, 

2004).  

The three dsRNA elements were nominated L. biglobosa virus (LbMV-1) dsRNA 1, 

dsRNA 2 and dsRNA 3, respectively according to decreasing size (Fig. 3.8a). RT-PCR 

amplification using Froussard’s and other random priming procedures were attempted 

for dsRNA 3 but no amplicons were generated in any of these experiments as the 

sequencing data confirmed that the clones obtained were the result of random priming 

on fungal DNA/RNA. However, successful amplicons were generated for dsRNA 1 

and 2 using Froussard’s procedure. A range of primers (Table 3.1) were designed 

from the known sequences of dsRNAs 1 and 2 to extend the sequences further using 

genome walking, single-primer amplification and RLM-RACE RT-PCR. Issues of 

obtaining the right clones of viral nucleic acid are discussed in Appendix 3. The 

complete sequences of dsRNAs 1 and 2 were respectively 4917, 4490 bp in length 

(Appendix 5). The sequence of dsRNA 3 is ca. 4000 bp. LbMV-1 dsRNAs 1 and 2 

each contains a single ORF potentially encoding proteins of 1559 and 1367 amino 

acids with molecular masses of approximately 171  and 152 kDa, respectively (Fig. 

3.8b).  

BLAST searches of the deduced amino acid sequence of LbMV-1  dsRNA 1 ORF 

revealed that it has similarity to the hypothetical protein of unknown function encoded 

by Amasya cherry disease-large (ACD-L) dsRNA 1 (E-value 8e-86; 27% identity and 

45% sequence similarity). BLAST searches of the deduced amino acid sequence of 

LbMV-1 dsRNA 2 ORF showed similarity to the RdRP encoded by ACD-L dsRNA 3 

(E-value 0.0; 45% identity and 62% sequence similarity). High similarities of LbMV-1 

dsRNA 2 were also found to the RdRP of ACD-L dsRNA 4 and members of the family 

Totiviridae, including the partially completed nucleotide sequence of Cherry chlorotic 

rusty spot-large (CCRS-L) associated totiviral-like dsRNA 4 and Rosellinia necatrix 

quadrivirus 1, a member of the family Quadriviridae.  

It has been reported that the CCRS-associated L dsRNAs 3 and 4 are variants of 

ACD-L dsRNAs 3 and 4 as their partial sequences were 98% and 97% identical to the 

ACD-associated L dsRNAs, respectively. 
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Figure 3.8 (a) Electrophoretic banding patterns of LbMV-1 dsRNA elements 

present in the L. biglobosa C-Rox 12.8.1 isolate. Lane 1: Hyperladder 1 and lane 

2: LbMV-1 dsRNAs were extracted from purified virus. (b) Schematic representation 

of the genome organization of LbMV-1 dsRNAs 1 and 2. The genome consists of three 

dsRNA segments but attempts to clone and sequence dsRNA 3 failed. Rectangular 

boxes represent the ORFs; ORF1 encodes a hypothetical protein and ORF2 encodes 

an RNA-dependent RNA polymerase (RdRP). 
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Examination of the deduced amino acid sequence of the LbMV-1 dsRNA 2 ORF 

demonstrated the presence of conserved motifs (Fig. 3.9) representative of RdRPs of 

dsRNA viruses of lower eukaryotes (Bruenn, 1993). Multiple alignments showed that 

motifs were also present in the three genera of the Totiviridae family: Totivirus: ACD-

L 3, ACD-L 4, RnQV-1 (Rosellinia necatrix quadrivirus 1), HvV190S 

(Helminthosporium victoriae virus 190S), ScV-L1 (S. cerevisiae virus L-A), UmV-H1 

(U. maydis virus H1); genus Leishmaniavirus: LRV1-1 (Leishmania RNA virus 1-1); 

genus Giardiavirus: TVV (Trichomonas vaginalis virus) and GLV (Giardia lamblia 

virus).  

A phylogenetic tree indicates relationships among representative mycoviruses, based 

on the sequences of their RdRPs (Fig. 3.10). The high bootstrap values associated 

with these relationships support classification of LbMV-1 as a new putative member 

of the family Totiviridae. 

The lengths of the 5’- UTRs flanking the single ORFs of LbMV-1 dsRNAs 1 and 2 were 

48 and 42 nt, respectively. The lengths of the 3’ UTRs of the same molecules were 

189 and 344 nt, respectively. The 3’-UTRs are relatively long. The 5’- and 3’-UTRs of 

the two dsRNAs contained some sequence similarities in their internal regions. 

Specifically, this was the case with the 3’-UTRs, which contained a highly conserved 

stretch of nucleotides. (Fig. 3.11).  

Viral UTRs contain the signals for RNA replication, transcription and packaging of 

virions. The 5’ and 3’ UTR sequences of both LbMV-1 dsRNAs 1 and 2 were examined 

for their potential secondary structures. Secondary structures were predicted using 

the Mfold program (Zuker, 2003). The 5’ UTR regions are strongly conserved as 

compared to the 3’ UTR regions at the nucleotide sequence level; however, both sets 

of termini contain distinct regions of nucleotide sequence identity. After the sequence 

alignment the similarity of both the sequences is reflected as the predicted secondary 

structures. 5’ and 3’ UTRs of both the dsRNAs contain numerous stem loop structures 

characteristic of mycovirus genomes (Fig. 3.12). 

 



- 71 - 
 

 

Figure 3.9 Alignment of the region containing conserved motifs in RdRP of 

LbMV-1 dsRNA 2 with the RdRPs of some dsRNA viruses. The numbers of amino 

acid residues separating individual motifs are indicated for each sequence. The 

numbers at the top refer to the numbers of eight conserved motifs (Bruenn, 1993). In 

the RdRP consensus line, symbol ‘#’ signifies S or T, the symbol ‘&’ signifies 

hydrophobic residues (I, L, V, M, F, Y, W, C, A), the symbol ‘+’ signifies positively 

charged residues and ‘B’ signifies asparagine or aspartic acid. In the sequence 

alignment, asterisks signify identical amino acid residues, colons signify highly 

conserved residues and single dots signify less conserved but related residues. 

Abbreviations and accession numbers of the viruses are shown in brackets: 

Leptosphaeria biglobosa virus, LbMV-1; Amasya cherry disease large dsRNA 3,  

ACD-L 3 (AM085134); Amasya cherry disease large dsRNA 4, ACD-L 4 (AM085135); 

Rosellinia necatrix quadrivirus 1, RnQV-1 (YP_005097975); Helminthosporium 

victoriae virus 190S, HvV190S (U41345); Leishmania RNA virus 1-1, LRV1-1 

(M92355); Trichomonas vaginalis virus, TVV (U57898); Saccharomyces cerevisiae 

virus L-A, ScV-L1 (J04692); Ustilago maydis virus H1, UmV-H1 (U01059) and Giardia 

lamblia virus, GLV (L13218). 
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Figure 3.10 Phylogenetic analysis of LbMV-1 dsRNA 2. Putative members of the 

same virus family (RdRP_4, PF02123; Finn et al., 2014) include the Amasya cherry 

disease-associated L dsRNAs 3 (CAJ29958) and L 4 (CAJ29959), together with the 

cherry chlorotic rusty spot associated totiviral-like dsRNAs L 3 (CAJ57273) and L 4 

(CAJ57274). Rosellinia necatrix quadrivirus 1 (YP_005097975), the most closely 

related virus (PSI-BLAST; Altschul et al., 1997), was used as an outgroup. The RdRP 

sequences of the viruses were aligned with MUSCLE as implemented by MEGA 6 

(Tamura et al., 2013); the alignment was improved manually and all positions with 

<30% site coverage were eliminated. Maximum likelihood phylogenetic trees were 

constructed with MEGA 6 using the LG+G+I substitution model.  
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5’ UTR 

 

 

3’ UTR 

 

Figure 3.11 Comparison of the 5’- and 3’- untranslated terminal regions of the 

coding strands of LbMV-1 dsRNAs 1 and 2. Asterisks designate identical 

nucleotides while single dots specify less conserved, but related nucleotides. 
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Figure 3.12 Predicted folding of 5’ and 3’ -UTR regions of LbMV-1 dsRNA 1 and 

dsRNA 2. The Δg values were calculated using the Mfold program. 
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3.3.5 Northern hybridization analyses 

Purified viral LbMV-1 dsRNAs were fractionated by electrophoresis in a 0.8% agarose 

gel prepared in 1x TAE (Fig. 3.13a) for 18 h, denatured, neutralized, blotted onto a 

nylon membrane, and probed with clones specific for LbMV-1 dsRNAs 1 and 2. 

Hybridization of blotted dsRNAs with sequence-specific probes produced strong 

signals for both LbMV-1 dsRNAs 1 and 2, which confirmed that the sequences 

obtained corresponded to the two LbMV-1 dsRNA elements and that their 

classification according to their size and sequence was correct (Fig. 3.13b).   

3.3.6 Identification of dsRNA elements present in virus-infected Leptosphaeria 

biglobosa isolates 

L. biglobosa sequence-specific amplification of internal fragment using total RNA 

template showed that all infected isolates harbour a single identical LbMV-1 dsRNA 2 

element (Figs. 3.14, 4.2g). In addition to this, the clone fragments of seven UK L. 

biglobosa isolates were sequenced and found to be identical. 

3.4 Discussion 

This study is the first to report the presence of dsRNA elements in isolates of L. 

biglobosa (Table 3.2). Fifty-seven L. maculans and sixteen L. biglobosa isolates were 

screened for the presence of dsRNA and 11/16 (incidence of 68.7%) L. biglobosa 

isolates contained dsRNAs.  None of the 57 L. maculans, 162 H. fraxineus and 10 

Pyrenopeziza brassicae isolates investigated harboured dsRNA elements.   

Alignment of the nucleotide sequence of AfV-S3 with the AfV-S2 revealed that the first 

seven nucleotides at the AfV-S3 5’-terminus (5’-GGGATT-3’) are identical to those of 

AfV-S2, suggesting that AfV-S3 might use the RdRP encoded by AfV-S2 for 

replication. It is also proposed that AfV-S3 might be a satellite component of AfV-S 

virus particle, as it depends on AfV-S2 for its replication and on AfV-S1 for its 

encapsidation (Shah et al., 2015).  

In the other study detailed in this chapter only one of 45 D. septosporum isolates 

examined was found to contain dsRNA elements. D. septosporum isolate D 752.1 
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Figure 3.13 (a) Agarose gel electrophoresis of LbMV-1 viruses from L. biglobosa 

isolate C-Rox 12.8.1 (lane 2). (b) Northern blot hybridization of dsRNAs 1 and 2 

using DIG-labelled probes derived from their cloned sequences. Lanes 1 and 2 

show individual transfers hybridized with probes specific for dsRNAs 1 and 2, 

respectively. 
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Figure 3.14 Agarose gel electrophoresis of amplicons (~317 bp) generated by 

RT-PCR amplification using RdRP-specific primers to identify virus-infected L. 

biglobosa isolates. M- 100 bp ladder, 1- positive control (C-Rox 12.8.1), 2- K-Exc 

12.10.21, 3- D-Rox 12.10, 4- H-Exc 12.12.3, 5- F2-Exc 12.6.1, 6- F2-Exc 12.3.1, 7- 

W10, 8- H-Exc 12.10.3. 
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harboured four dsRNA segments ranging in size from ca. 2.8-3.5 kbp (Fig. 3.7a). This 

work was focused on cloning and sequencing two of the four components of the 

genome, dsRNA 2 and dsRNA 3.  

The larger segment, DsCV-1 dsRNA 1, encodes an RdRP which possesses 

conserved motifs, like other members of Chrysoviridae family and shows high identity 

to IjCV-1 RdRP (Daudu, unpublished data). DsCV-1 dsRNA 2 encodes a CP, which 

showed high identity to IjCV-1 CP. DsCV-1 dsRNA 3 encodes a hypothetical protein 

of unknown function with highest identity with IjCV-1 HP. DsCV-1 dsRNA 4 encodes 

a putative protease which is similar to Grapevine chrysovirus putative protease 

(Daudu, unpublished data). 

The genome of DsCV-1 is comprised of four genome segments, similar to most other 

chrysoviruses described previously (Jiang & Ghabrial, 2004; Campo et al., 2016; 

Covelli et al., 2004). However, some none-quadripartite chrysoviruses have also been 

described in fungi and plants. For example, Fusarium graminearum mycovirus-China 

9 and Magnaporthe oryzae chrysoviruses 1-A and -B  have genomes of five dsRNA 

segments, infecting Fusarium graminearum and rice blast fungus Magnaporthe 

oryzae, respectively. Moreover, Raphanus sativus mycovirus, a trisegmented 

chrysovirus was isolated from the radish, Raphanus sativus (Li et al., 2013). These 

reports indicate that the numbers of genomic segments of the chrysoviruses were not 

always consistent. Only dsRNA1 encoded an RdRP, indicating that the other three 

dsRNAs might depend on this RdRP for replication. These findings established that 

these four dsRNA segments represent the genome of a novel virus. 

The sequence analysis of the four dsRNAs thus far showed that 5’- and 3’- UTRs 

contained conserved termini. The molecular characteristics of DsCV-1 four dsRNAs 

are closely related to those of the genus Chrysovirus and on the basis of their size, 

sequence and structural features of their 5’ UTRs, which are demarcation criteria in 

the genus (Ghabrial & Castón, 2004), it was suggested that they are the genomic 

components of a new species of this genus. 

The three dsRNA elements found in L. biglobosa are approximately 4-4.9 kbp in size 

(Fig. 3.8a). The ds nature of the LbMV-1 dsRNAs was confirmed following the 

observation that purified virus itself was sensitive to RNase III and insensitive to S1 

nuclease (Fig. 3.5), which signifies the absence of a conventional capsid protein. 
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Similar results were recently reported for Aspergillus fumigatus tetramycovirus-1 

(AfuTmV-1) which contains four dsRNA elements and is regarded as an 

unconventional virus in that is not capsidated but rather coated with a virus encoded 

protein and might also be enveloped in colloidal cellular components (Kozlakidis et al., 

2009; Spear et al., 2010; Kanhayuwa et al., 2015). 

The molecular features of LbMV-1 dsRNAs 1 and 2 parallel those of the genus 

Totivirus. The larger segment, dsRNA 1, encodes for a hypothetical protein, whereas 

dsRNA 2 encodes for an RdRP which possesses conserved motifs, like other 

members of Totiviridae family. On the basis of size, sequence and structural features 

of their UTRs, both can therefore be regarded tentatively as novel species of 

Totiviridae family. In contrast, genomic dsRNAs of most of the members of this family 

comprise two ORFs- the first, ORF A, encoding the CP and the second, ORF B, 

encoding the RdRP, those from LbMV-1 dsRNA 2 are predicted to produce only a 

single protein, RdRP. Similarly, ACD-associated L dsRNAs 3 and 4 were also reported 

to contain only one ORF. In the genus Totivirus, UmV-H1, phylogenetically related to 

ACD-L dsRNAs 3 and 4, encode a polyprotein that is processed by a viral papain-like 

protease to generate RdRP and CP. Whilst a similar expression strategy was not 

identified in LbMV-1 dsRNA 2, BLASTP analysis of the amino acid sequences of 

LbMV-1 dsRNA 2 did not reveal any significant similarity with CPs of other totiviruses. 

Therefore, N-terminal region of the protein predicted from the sequence of LbMV-1 

dsRNA 2 encodes CP is thus far unknown. Likewise, Kozlakidis et al. (2006) also 

reported the absence of CPs in ACD- associated totivirus. 

It must be noted that the nature of the LbMV-1 dsRNA 3 is not known yet and it might 

represent a replicative intermediate of a ssRNA virus(es). In support of the second 

view, the size pattern of three dsRNAs is consistent with the previously reported ACD- 

associated dsRNAs (Kozlakidis et al., 2006). Thus, it is more likely to encode another 

hypothetical protein or RdRP, as found in ACD-associated L dsRNAs. There is a 

significant identity in the 5’- and the 3’-UTRs of dsRNAs 1 and 2, and LbMV-1 dsRNA 

1 does not apparently encode RdRP. Therefore, it may be replicated by the RdRP of 

LbMV-1 dsRNA 2, as previously advanced for other totiviruses (Kozlakidis et al., 

2006). Fungal infections with Totiviruses not only comprise genomic dsRNAs but may 

be accompanied by additional dsRNA elements known as satellite dsRNAs (Buck, 

1988; Hillman  et al., 2000), which might be an explanation for the existence of  dsRNA 
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3 in LbMV-1. However, without further molecular characterisation of LbMV-1 dsRNA 

3, further speculation is difficult and this aspect will be the subject of further 

investigation.  

Phylogenetic analysis illustrates that within the clusters, the RdRP gene of LbMV-1 is 

closely related to ACD-L 3 and distantly related to RnQV-1 (Fig. 3.10). The UTRs (5’- 

and 3’-) of both dsRNAs significantly vary in length. In spite of these variations, the 

UTRs comprise some conserved regions which indicate that the terminal sequences 

are correct. 

The identities of the LbMV-1 dsRNAs 1 and 2 were established by northern blot 

hybridization, using purified preparations of the three dsRNAs as targets and cDNA 

clones of internal regions as probes (Fig. 3.13). 

Since several isolates containing similar dsRNA elements were found in clusters 

regardless of different geographical locations, it is likely that some fungal isolates are 

clonal which was investigated by RT-PCR (Fig. 3.14) using sequence-specific primers 

and cloning of the amplicons. 

3.5 Conclusions and future work 

The current study has revealed the presence of mycoviruses in the plant pathogenic 

fungi L. biglobosa and D. septosporum. Moreover, the complete nucleotide sequences 

of LbMV-1 dsRNAs 1 and 2, DsCV-1 dsRNAs 2 and 3 (dsRNA 3 partially complete), 

AfV-S3 found in A. foetidus were also reported. Characterisation of LbMV-1 revealed 

the presence of three dsRNA elements, which are closely related to ACD-associated 

L dsRNAs, while characterisation of DsCV-1 revealed the presence of four dsRNA 

elements which are closely related to IjCV-1.  

It would be worthwhile to characterise the remaining dsRNA element/s of LbMV-1 and 

DsCV-1, so that their relationship can be studied in relation to other known viruses. It 

is also important to perform biological experiments to examine the effects of DsCV-1 

infection on pathogenicity (if any) on pine by generating isogenic virus-free lines of D. 

septosporum isolate D752.1. 
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Chapter 4 

Eradication of LbMV-1 from Leptosphaeria biglobosa and 

phenotypic comparison of virus-infected and virus-free L. 

biglobosa isolates 
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4.1 Introduction 

The biological consequences of mycoviral infection are poorly understood since most 

infections are cryptic or latent and do not cause any obvious phenotypic changes in 

the fungal host. It is difficult to determine the effects of these elements on fungal 

physiology and pathogenicity (Punja, 1995). However, there is evidence that 

mycoviruses can induce considerable morphological and physiological changes, 

including virulence and debilitation associated phenotypes (Castro et al., 2003; Dawe 

& Nuss, 2001). This varies between isolates of the same fungus with different genetic 

backgrounds. Consequently, it is necessary to have identical genetic backgrounds for 

studies of fungus-mycovirus interactions and it is desirable to establish virus-infected 

and virus-free isogenic lines to explore these interactions. However, producing 

isogenic lines can be problematic. Since virus infection may be an unstable trait and 

the fungus may be recalcitrant to eradication of virus, these investigations are 

challenging (Aoki et al., 2009; Carroll & Wickner, 1995; Herrero & Zabalgogeazcoa, 

2011; Romo et al., 2007; Souza et al., 2000). Another problem concerns transfection 

of fungi with purified mycoviruses or their RNA, which is yet to be optimised for most 

mycovirus/fungus combinations, particularly as this is the most direct and simple way 

of studying horizontal virus transmission. Furthermore, virus transmission through 

hyphal anastomosis can be accompanied by the inheritance of a number of 

cytoplasmic factors, making it difficult to define whether any phenotypic alternations 

are caused by the mycovirus, other inherited cytological factors or both (Nuss, 2005). 

For these reasons, generating isogenic fungal lines that are virus-infected and virus-

free is not an easy task. However, it can be aided by treatment with chemicals which 

interfere with transcription and translation.  

Fink and Styles (1972) first reported the use of cycloheximide to eliminate mycovirus 

infection from yeast and also postulated that cycloheximide hindered cytoplasmic 

protein synthesis in eukaryotes, which is essential for replication of genetic elements. 

Cycloheximide has been successfully used to eradicate mycovirus infection 

(completely or partially) from different fungi and is the most consistent and commonly 

used method (Dalzoto et al., 2006; Elias & Cotty, 1996; Robinson & Deacon, 2002; 

Yamada et al., 1991) . Sometimes cycloheximide treatment is accompanied by hyphal 

tip isolation to assist virus eradication (Aoki et al., 2009; Marzano et al., 2015).  
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4.1.1 Aim and objectives 

The main of this chapter was the eradication of LbMV-1 infection from Leptosphaeria 

biglobosa to construct the isogenic lines of virus-infected and virus-free isolates and 

to assess the effects of virus infection on the fitness of the fungal host. 

1. To eradicate LbMV-1 infection from L. biglobosa isolates using cycloheximide. 

2. To investigate effects of virus infection on colony morphology, mycelial growth 

and biomass production of L. biglobosa. 

4.2 Materials and methods 

4.2.1 Cycloheximide treatment for eradication of LbMV-1 infection from L.  

biglobosa isolates 

Attempts were made to eradicate LbMV-1 infection from L. biglobosa isolates C-Rox 

12.8.1, K-Exc 12.10.21, Noth2, N20.3, W10 and N3.4 using cycloheximide treatment. 

Eradication with cycloheximide used a range of concentrations (0.01 mM to 150 mM; 

Table 4.1) of the drug in solid V8 media inoculated initially with L. biglobosa isolates 

C-Rox 12.8.1 and K-Exc 12.10.21. Cycloheximide solutions were filter-sterilised and 

incorporated into media at ~50°C. Inoculated plates were incubated at 20°C until 

confluent mycelial growth was obtained. In order to determine any effects of 

cycloheximide treatment on the eradication of mycoviral dsRNAs, total RNA extracts 

were isolated from the fungal mycelia using the RNeasy Plant Mini Kit (Qiagen). RT-

PCR assays were then performed (Section 2.6.2), using sequence-specific 

oligonucleotide primers (Table 3.1) designed to generate amplicons representing a 

fragment of the coding region of the RdRP gene discovered on one of the dsRNA 

elements found in L. biglobosa.  

4.2.2 Colony morphology of isogenic lines of L. biglobosa 

To compare the growth morphologies of virus-infected and virus-free L. biglobosa 

isolate W10, equal numbers of spores (n=105, 10 μl conidial suspension containing 

107 spores/ml) were inoculated on the centre of the PDA plates and incubated at 20°C.  
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Table 4.1 Dilution series and preparation of different cycloheximide 

concentrations for eradicating mycovirus infection from L. biglobosa. 

 

Desired 

concentration (mM) 

Amount of cycloheximide  

in 50 ml of V8A 

(mg) 

0.01 0.14 

0.1 1.40 

1 14.06 

5 70.33 

10 140.67 

15 211.01 

50 703.37 

75 1054.46 

100 1407.08 

150 2110.12 
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4.2.3 Colony diameter of isogenic lines of L. biglobosa 

To assess radial growth, equal numbers of spores (n=105, 10 μl conidial suspension 

containing 107 spores/ml) of isogenic lines of virus-infected L. biglobosa W10 and 

virus-free W10 were centrally inoculated onto PDA Petri plates and incubated at 20°C. 

Time periods were determined in such a way that fungal growth had been initiated 

before the first measurement and the last measurement was taken before the 

mycelium reached the Petri dish edge. Growth rate, as defined by the rate of colony 

diameter extension, was measured over a period of 34 days for 3 replicate plates.  

4.2.4 Biomass production of isogenic lines of L. biglobosa 

To determine biomass production, equal numbers of spores (n = 2 × 106, 200 μl 

conidial suspension containing 107 spores/ml) of the virus-infected L. biglobosa W10 

and virus-free W10 were inoculated into 250-mL flasks containing 150 mL of PDB 

(Potato Dextrose Broth) and incubated at 20°C on a rotary shaker (130 rpm) for 13 

days. The mycelium from individual cultures was harvested by centrifugation at 15,000 

g for 20 min. The pellets were lyophilized for dry weight determinations. This 

experiment was performed in triplicate. 

4.3 Results 

4.3.1 Cycloheximide treatment for eradication of LbMV-1 infection from L. 

biglobosa isolates 

Several attempts were made to eradicate LbMV-1 dsRNA elements by cycloheximide 

treatment from L. biglobosa isolates C-Rox 12.8.1 and K-Exc 12.10.21. Attempts were 

also made to transfect virus-free isolates of L. biglobosa with purified virus but 

unfortunately optimal numbers of protoplasts of the virus-free isolate could not be 

produced for use in this procedure. In an effort to eliminate dsRNAs, V8A plates were 

amended with a limited range of cycloheximide concentrations (50 mM, 75 mM, 100 

mM and 150 mM) and inoculated with the L. biglobosa isolates. All of these 

concentrations of cycloheximide completely inhibited fungal growth. Subsequently, 

experiments were done using lower concentrations of cycloheximide (5 mM-15 mM). 

However, similar results with no observable fungal growth were obtained, so the 
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concentration of cycloheximide was decreased further. The media was thus amended 

with 0.01 mM and 0.1 mM cycloheximide and following inoculation with L. biglobosa 

and incubation at 20°C for 19 days and all isolates grew, albeit slowly.  

Cultures treated with 0.01 mM cycloheximide did not show significant alterations in 

morphology or pigmentation (Fig. 4.1b, e). However, cultures treated with 0.1 mM 

cycloheximide demonstrated a reduced growth rate and reduced pigmentation (Fig. 

4.1c, f). Mycelia from the margins of the cultures (C-Rox 12.8.1 and K-Exc 12.10.21) 

amended with 0.01 mM cycloheximide were inoculated onto V8 agar plates and 

incubated for 19 days prior to harvesting the mycelia for small-scale RNA extraction 

and agarose gel electrophoresis analysis. Comparisons of the electrophoretic profiles 

of dsRNA isolated between virus-infected L. biglobosa isolate C-Rox 12.8.1 (positive 

control) and the treated samples indicated that they were apparently virus-free (Fig. 

4.2a). Therefore, virus-infected and putative virus-free isolates were subjected to RT-

PCR amplification to check for infection with dsRNA. RT-PCR amplification of a 

fragment of the LbMV-1 RdRP gene revealed that curing was not successful (Fig. 

4.2b) as the treatment only reduced dsRNA titre below the limits of resolution that 

could be detected by ethidium bromide staining of agarose gels. 

Subsequently, a combined approach was devised by growing isolates on media 

amended with small concentrations of cycloheximide in order to reduce viral RNA 

concentrations and then conducting single conidium isolation.  Thus spores of isolates 

K-Exc 12.10.21 and C-Rox 12.8.1 grown on agar amended with 0.01 mM 

cycloheximide were harvested and streaked on V8 agar (not amended with 

cycloheximide) to obtain single spore isolates. Six single spore colonies were selected 

randomly from each culture and a small-scale RNA extraction was performed to check 

the presence of dsRNA. Agarose gel electrophoresis analysis suggested that curing 

had been successful from K-Exc 12.10.21 (Fig. 4.2c). To confirm if these cultures (K- 

Exc 12.10.21 and C-Rox 12.8.1) were indeed virus-free, RT-PCR amplification was 

performed. An RdRP specific amplicon of 317 bp was generated from all single 

conidial isolates revealing that the sub-isolates were not cured of virus infection (Fig. 

4.2d, e). From these data, it was anticipated that further treatment of the isolates by 

sub-culturing them again onto the medium containing cycloheximide might free them 

of dsRNA. In an attempt to achieve this, both the isolates were passaged a second 

time using 0.01 mM cycloheximide to 0.1 mM cycloheximide amended V8 agar media.   
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Figure 4.1 Colony morphology of L. biglobosa isolates K-Exc 12.10.21 and C-

Rox 12.8.1 grown on V8A amended with 0.01 mM and 0.1 mM concentrations of 

cycloheximide. L. biglobosa K-Exc 12.10.21 (a, b, c) and C-Rox 12.8.1 (d, e, f) grown 

at 20°C for 19 days on V8 agar amended with cycloheximide at 0.01 mM (b, e) and 

0.1 mM (c, f) concentrations, along with untreated isolates (a, d) as positive controls. 
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Figure 4.2 Effect of 0.01 mM and 0.1 mM cycloheximide concentrations on 

LbMV-1 dsRNAs in different L. biglobosa isolates.  

(a) Small-scale extraction of RNA from L. biglobosa C-Rox 12.8.1 (lane 1) and L. 

biglobosa K-Exc 12.10.21 (lane 2) following treatment with 0.01 mM cycloheximide. 

Lane M contains Hyperladder 1. Lane 3; Nucleic acid extract of untreated isolate C-

Rox 12.8.1- positive control.  

(b) Agarose gel electrophoresis of RT-PCR amplicons generated from total nucleic 

acids extracted from isolates C-Rox 12.8.1 and K-Exc 12.10.21 (lanes 2 and 3 

respectively). Lane M; 100 bp molecular weight marker. Lane 1; untreated positive 

control isolate C-Rox 12.8.1. 
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Figure 4.2 (c) Agarose gel electrophoresis of dsRNAs isolated after small-scale RNA 

extraction from control and sub-isolates of L. biglobosa K-Exc 12.10.21. Lane 1; 

untreated positive control isolate K-Exc 12.10.21. Lanes 2-7; six representative single 

colonies (sub-isolates K1-K6) of isolate L. biglobosa K-Exc 12.10.21 following 

treatment with 0.01 mM cycloheximide.  

(d) Agarose gel electrophoresis of amplicons (~317 bp) generated by RT-PCR using 

RdRP-specific primers and total RNA template. Lane M; Hyperladder 1. Lane 1; 

untreated positive control isolate K-Exc 12.10.21. Lanes 2-7; six representative single 

colonies (sub-isolates K1-K6) of isolate L. biglobosa K-Exc 12.10.21 following 

treatment with 0.01 mM cycloheximide. 
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Figure 4.2 Agarose gel electrophoresis of amplicons (~317 bp) generated by RT-PCR 

using RdRP-specific primers and total RNA template.  

(e) Lane M; 100 bp molecular weight marker. Lane 1; untreated positive control isolate 

L. biglobosa C-Rox 12.8.1. Lanes 2-7; six representative single colonies (sub-isolates 

C1-C6) of isolate L. biglobosa C-Rox 12.8.1 following treatment with 0.01 mM 

cycloheximide. 

(f) Lane M; 100 bp molecular weight marker. Lane 1; untreated positive control isolate 

L. biglobosa C-Rox 12.8.1. Lanes 2 and 3; RNA extracts of C-Rox 12.8.1 and K-Exc 

12.10.21, respectively which were sub-cultured from 0.01 mM to 0.1 mM 

cycloheximide amended V8 medium. 
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Figure 4.2 Agarose gel electrophoresis of amplicons (~317 bp) generated by RT-PCR 

using RdRP-specific primers and total RNA template.  

(g) Lane M; Hyperladder 1. Lane 1; RNA extracts of virus-infected isolate C-Rox 

12.8.1- positive control. Lanes 2-5, RNA extracts of untreated virus-infected Chinese 

isolates Noth2, N20.3, W10 and N3.4, respectively.  

(h) Lane M; 100 bp molecular weight marker. Lane 1; untreated positive control isolate 

L. biglobosa C-Rox 12.8.1. Lanes 2-5, RNA extracts of 0.1 mM cycloheximide treated 

Chinese isolates Noth2, N20.3, W10 and N3.4, respectively. 
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Total RNA extracted from the second passage of K-Exc 12.10.21 and C-Rox 12.8.1 

was used as a template for RT-PCR and generated sequence-specific amplicons 

confirming infection with LbMV-1 (Fig. 4.2f). 

Finally, attempts were made to eradicate virus from four different virus-infected 

Chinese L. biglobosa isolates (Fig. 4.2g; Noth2, N20.3, W10 and N3.4) by growing 

them on V8A plates amended with 0.1 mM cycloheximide. Following RT-PCR 

amplification, LbMV-1 dsRNA 2 was absent from only one isolate, W10 (Fig. 4.2h) and 

this isolate was selected for additional testing with the aim of investigating the impact 

of virus infection on growth and virulence of the fungus. 

4.3.2 Effect of virus infection on colony morphology, mycelial growth rate and 

biomass production of L. biglobosa 

4.3.2.1 Colony morphology of isogenic lines of L. biglobosa 

Visible differences were observed in colony morphology between virus-infected and 

virus-free strains after 26 days of incubation at 20°C. As compared to virus-infected 

cultures of the L. biglobosa W10 isolate, there were marked alterations in the 

phenotype associated with virus-free cultures (Fig. 4.3a, b). In the virus-infected strain, 

conidia formed a circular, distinct pattern of black pigmentation, which was even more 

evident when the plates were observed from the back. In contrast, the virus-free strain 

was pigmented with no distinct pattern of sporulation with an undulate colony margin. 

These observations suggest that LbMV-1 infection significantly alters fungal 

pigmentation and growth. 

4.3.2.2 Colony diameter of isogenic lines of L. biglobosa 

The radial growth assay showed that the virus-infected L. biglobosa isolate grew 

significantly faster than the virus-free isolate on PDA over 16 days after inoculation in 

three separate experiments (P < 0.0001, Fig. 4.4). This trend was more noticeable 

and maintained on PDA and occurred at an earlier time in a time course investigation 

(Fig. 4.5). Thus, this assay showed that virus infection resulted in increased growth of 

L. biglobosa isolate W10 on solid growth medium and this observation supports results 

obtained in vivo with Brassica napus following inoculation with virus-infected and 



- 93 - 
 

                      

Figure 4.3 Colony morphology of virus-infected and virus-free L. biglobosa 

isolate W10 on PDA plates following incubation at 20°C for 26 days. The 

photograph shows the appearance of the fungal colonies from the front (a) and the 

back (b) of the plates.  
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Figure 4.4 Mycelial growth rates of the virus-infected and virus-free isogenic 

lines of L. biglobosa W10 on PDA plates following incubation at 20°C for 16 

days. Plates were viewed from the front (a) and the back (b). 
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Figure 4.5 Colony diameter of isogenic lines of virus-infected and virus-free L. 

biglobosa W10 on PDA plates over a 34 day incubation period. The means of the 

colony diameters measured were plotted to observe any differences between the 

isolates. Radial expansion was measured and compared in three replicate 

experiments.   
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virus-free isogenic lines of the L. biglobosa W10 isolate (Chapter 5).  

4.3.2.3 Biomass production of isogenic lines of L. biglobosa 

A significant increase in biomass production was observed for the virus-infected strain 

as compared to the virus-free strain (P < 0.05, Fig. 4.6). Student’s t test was used to 

analyse the data for significant differences in biomass production (Table 4.2). 

4.4 Discussion 

Previously, the efficiency of eradicating mycovirus infection from fungi was assessed 

following dsRNA extraction and examination of the extracts by agarose gel 

electrophoresis. In some cases, samples containing low concentrations of dsRNA 

could not be visually detected in stained gels, so a more sensitive and effective method 

such as RT-PCR amplification using sequence-specific primers was used to confirm 

the presence or absence of dsRNA (Section 2.6.2). Park et al. (2006) demonstrated 

the efficiency of such assays whilst eradicating Chalara elegans mitovirus infection 

from Chalara elegans. Efforts to eradicate dsRNA from C. elegans strains were made 

using various concentrations of cycloheximide and ribavirin but following extended 

periods of growth and repeated transfers, fungus was detected with the virus infection. 

During sequential transfers of mycelium at 35-37°C, loss of a 2.8 kbp dsRNA element 

was observed as assessed on agarose gels and also following northern blot 

hybridization.  However, RT-PCR amplification with specific primers revealed the 

presence of the mitovirus and failure to generate a virus-free isolate.  

Several techniques for eliminating mycovirus infection from fungi have been 

investigated including PEG-induced stress on the matric potential of the medium for 

the growth of fungi (Thapa et al., 2016), mycelial fragmentation (Kim et al., 2013), 

elevated temperature (Golubev et al., 2003), exposure to UV light (Treton et al., 1987), 

desiccation and freeze-thawing (Márquez et al., 2007), treatment with a variety of 

chemicals including emetine (Ahn & Lee, 2001), acridine orange (Cansado et al., 

1989) and cycloheximide (Dalzoto et al., 2006; Elias & Cotty, 1996; Robinson & 

Deacon, 2002; Yamada et al., 1991).  These methods achieved various degrees of 

success. Fulbright (1984) first observed the changes in the sporulation, pigmentation  
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Table 4.2 Biomass production after a 13 day incubation period in PDB broth as 

assessed by dry weight of mycelia produced by virus-infected and virus-free L. 

biglobosa isolate W10. The weights were analysed using the Student’s t test. 

Biomass was assessed in three replicate experiments (mean ± SD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Isolate name 

 
W10 

 
Mycelial weight (g) 

 
13 dpi 

Virus-infected 0.222 ± 0.004 

Virus-free 0.122 ± 0.017 
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Figure 4.6 Biomass production of the virus-infected and virus-free L. biglobosa 

isolate W10 following incubation at 20°C for 13 days in PDB broth. Vertical bars 

represent standard deviation errors (data presented in Table 4.2). 
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and phenotype with cycloheximide treatment where removal of virus infection from E. 

parasitica strain restored its normal morphology. 

Cycloheximide, an antifungal antibiotic, restricts a translocation step and blocks 

translational elongation for protein synthesis (Siegel & Sisler, 1963). Cycloheximide 

treatment has been successfully used to eradicate mycovirus infection from different 

fungal species. For example, in Beauveria bassiana strain CG25 (Dalzoto et al., 2006), 

Endothia parasitica (Fulbright, 1984) and Aspergillus fumigatus (Bhatti et al., 2011). 

On the other hand, there are also reports of unsuccessful curing in several fungal 

species such as Aspergillus section flavi (Elias & Cotty, 1996), M. anisopliae (Martins 

et al., 1999), Fusarium oxysporum (Sharzehei et al., 2007) and Cytospora sacchari 

(Peyambari et al., 2014). These failures could be due to the use of low concentrations 

of cycloheximide and the presence of high titres of dsRNA elements. In addition to 

unsuccessful curing, partial curing of virus-infected fungi was also recognized in many 

cases such as M. pinodes, which changed pigmentation from dark brown to light pink 

and coincidentally restored the normal phenotype (Yamada et al., 1991). Also a 

putatively-cured strain of C. elegans exhibited similar colony morphology to the wild-

type strain with a slightly greater growth rate (Park et al., 2006). Rhizoctonia solani 

containing several dsRNA elements (1.0 to 12.5 kbp in size) could not be completely 

cured as only the smaller segments were eliminated and larger segments 9.0 to 12.5 

kbp were always retained after treatment (Robinson & Deacon, 2002). This indicates 

that partial eradication of dsRNA components might not affect the replication of other 

dsRNAs and they continue to replicate.  

Here initial attempts were made to eliminate virus infection from the L. biglobosa 

isolates K-Exc 12.10.21 and C-Rox 12.8.1 using various concentrations of 

cycloheximide. Elevated cycloheximide concentrations (≥ 5mM) inhibited the growth 

of the fungus completely. Moreover, treatment with 0.01 mM cycloheximide or 0.1 mM 

cycloheximide and single spore culture did not affect mycovirus infection and dsRNAs 

were retained in both the isolates. As the antibiotic stress was removed, the dsRNA 

titre amplified and the fungus remained infected with virus genome components, 

indicating failure to eradicate the dsRNA elements. However, only the W10 isolate, 

treated with 0.1 mM cycloheximide, was successfully freed from infection with LbMV-

1 as confirmed by dsRNA extraction and RT-PCR amplification analyses. The use of 

monoconidial culture and hyphal tip sub-culturing techniques give variable results for 
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virus exclusion, depending on the fungal species and strain. Santos et al. (2017) were 

unable to cure M. anisopliae ESALQ 26 through hyphal tip sub-culturing as colonies 

regenerated from hyphal tip subcultures remained infected with dsRNA. While the 

cured colony of M. anisopliae ESALQ 1256 was achieved by single conidium isolation. 

Moreover, a combination of a chemical treatment and single conidium isolation or 

hyphal tip sub-culturing technique led to the successful elimination of viral elements in 

certain fungal species (e.g. Aminian et al., 2011; Aoki et al., 2009; Kotta-Loizou & 

Coutts, 2017; Van Diepeningen et al., 2006).  

The generation of isogenic lines of L. biglobosa, with or without mycovirus infection, 

obtained by curing with cycloheximide, facilitated comparisons of phenotype and 

quantification of fitness effects. In this study, differences in colony morphology were 

observed between the virus-infected and virus-free isolates of L. biglobosa W10 when 

they were grown on PDA media. Uniform patterns of sporulation were found for the 

virus-infected strain as compared to the cured, virus-free strain. Abnormal phenotypes 

associated with virus-infection were also reported in some fungi, e.g. Nectria radicola 

(Ahn & Lee, 2001), M. anisopliae (Giménez-Pecci et al., 2002; Melzer & Bidochka, 

1998) and D. ambigua (Preisig et al., 2000). Bhatti et al. (2011) observed that 

Aspergillus fumigatus chrysovirus (AfuCV) infection of A. fumigatus isolate 56 resulted 

in an abnormal formation of aconidial sectors and darker green pigmentation as 

compared to the cured isolate which was pigmented light green, uniform and non-

sectored while Aspergillus fumigatus partitivirus-1 (AfuPV-1) infection of the yellow A. 

fumigatus isolate 88 produced aconidial sectors with light pigmentation as compared 

to the virus-free isolate which was more pigmented and uniform. In contrast to the 

Penicillium and Cryphonectria chrysoviruses (Jiang & Ghabrial, 2004; Liu et al., 

2007), which are associated with latent infections of their hosts (Ghabrial, 

2008), Magnaporthe oryzae chrysovirus 1 and Aspergillus virus 1816, 

AfuCV (Urayama et al., 2010; Van Diepeningen et al., 1998, respectively) are both 

responsible for disease phenotypes of their hosts, reduced growth and altered 

pigmentation.  

A significant increase in radial growth of the virus-infected strain W10 as compared to 

the cured strain W10 was observed on PDA media. These results are similar to the 

hypervirulent effects noted in A. fumigatus strain A78 following infection with 
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Aspergillus fumigatus tetramycovirus (AfuTmV-1; Kanhayuwa et al., 2015; Özkan & 

Coutts, 2015) and B. bassiana isolate EABb 92/11-Dm infected with a polymycovirus 

(Kotta-Loizou & Coutts, 2017). 

Additionally, similar observations were made on growth performance when the 

biomass produced by the virus-infected W10 was compared with that produced by the 

virus-free W10 where significantly larger amounts of mycelium was produced by virus-

infected isolate. In agreement with these results, previous studies showed that B. 

bassiana isolate EABb 92/11 infected with a polymycovirus produced more mycelia 

than the virus-free isogenic line (Kotta-Loizou & Coutts, 2017). By contrast, Wu et al. 

(2007) found debilitated mycelial growth of Botrytis cinerea isolate CanBC-1 was 

associated with mycovirus infection. Mycovirus infection of A. fumigatus with either the 

chrysovirus AfuCV or AfuPV-1 also resulted in significant attenuation of growth of the 

fungus (Bhatti et al., 2011). These effects indicate that the virus infection and dsRNA 

replication hinders the normal growth pattern of uninfected fungi. 

4.5 Conclusions and future work 

To investigate the effects of  mycoviruses on L. biglobosa, attempts were made to 

eradicate the virus from a number of different isolates of L. biglobosa using 

cycloheximide and once a suitable concentration of the drug was established that did 

not impair growth of the fungus, one isolate W10 was found to be virus-free.  

Establishment of isogenic lines of virus-infected and virus-free L. biglobosa W10 

facilitated a direct comparison of the effects of virus infection with LbMV-1 on growth, 

phenotype and pathogenicity of the fungus. A comparison of virus-infected and virus-

free isogenic lines of L. biglobosa isolate W10 revealed a hypervirulent effect of LbMV-

1 on L. biglobosa growth as determined by growth rate on solid media and hyphal 

biomass in broth. 

Other alternative methods were also considered to generate isogenic lines, such as 

transfection of virus-free isolate with purified virus particles. This procedure involves 

the inoculation of purified virus into protoplasts of the virus-free isolate. Apart from 

protoplast transfection, protoplast fusion has also been used effectively to transfer 

mycoviruses intra- and inter-specifically to overcome the apparent obstacles of 

vegetative incompatibility in mycovirus transmission and facilitate broadening the host 
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range of mycoviruses. Protoplast transfection was successfully used to infect virus-

free isolates of A. fumigatus prior to quantifying the effects of virus infection on the 

host following a comparison of the growth of virus-infected and virus-free isogenic 

lines (Bhatti et al., 2011; Kanhayuwa et al., 2015). Successful protoplast fusion has 

also been reported between A. niger and A. nidulans (Van Diepeningen  et al., 1998). 

Furthermore, the transmission of Fusarium boothi dsRNA virus to other Fusarium 

species and into C. parasitica was not only successful but also reduced the virulence 

of these fungi (Lee et al., 2011). 
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Effects of LbMV-1 infection on pathogenicity of 
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5.1 Introduction 

Double-stranded RNAs (dsRNAs) are common in all classes of plant-pathogenic fungi 

(Buck, 1986). The majority of mycovirus infections are asymptomatic and persistent. 

The mycoviruses of families Totiviridae and Partitiviridae normally cause latent 

infections in their host fungi (Ghabrial, 1998). However, in some fungal hosts 

mycovirus infection exhibits virulence-associated traits, such as alterations in growth 

rate (Boland, 1992), sporulation (Bottacin et al., 1994), pigmentation (Anagnostakis & 

Day, 1979), enzymatic activities (Rigling & Van Alfen, 1993), distinctive morphological 

and physiological alterations, including toxin production (Magliani et al., 1997, Varga 

et al., 1994) and cytological changes in cellular organelles (Newhouse et al., 1983). 

For example, infection with hypoviruses (family Hypoviridae) can cause significant 

virulence-attenuated phenotypes (Anagnostakis, 1984; Buck, 1986; Cole et al., 1998; 

Hillman et al., 1990; Jian et al., 1997; Lemke, 1979; Nuss & Koltin, 1990). Hypovirus-

mediated hypovirulence of Cryphonectria parasitica, chestnut blight fungal pathogen, 

was first discovered in 1964 in Italy (Grente, 1965) and then it was successfully used 

to control chestnut blight in Europe (Anagnostakis, 1982; Nuss, 1992).  

To determine if mycoviruses affect the virulence of L. biglobosa, conidial suspensions 

of virus-infected and virus-free isolates of L. biglobosa were inoculated onto oilseed 

rape plants and symptoms were compared. 

5.1.1 Aim and objectives 

To assess effects of LbMV-1 infection of L. biglobosa on its pathogenicity to oilseed 

rape (Brassica napus).  

Objectives: 

1. To perform a pathogenicity assay using non-isogenic lines of L. biglobosa. 

2. To perform a pathogenicity assay using isogenic lines of L. biglobosa. 
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5.2 Materials and methods 

5.2.1 Pathogenicity assays using non-isogenic and isogenic isolates of L. 

biglobosa  

The pathogenicity of six different L. biglobosa isolates (two virus-containing and four 

virus-free, details of isolates are given in Table 5.1) was examined on cotyledons of 

the cultivars Drakkar and Excel. Afterwards, the effects of LbMV-1 on the 

pathogenicity of isogenic lines of W10 isolate were examined on cotyledons of oilseed 

rape. 

5.2.1.1 Preparation of spore suspensions of L. biglobosa isolates 

L. biglobosa cultures were grown on V8 agar plates under alternating 12h light and 

12h darkness to assist sporulation. The spore plates were covered with sterile distilled 

water and the agar surface was scraped with a Lazy-L spreader to release the conidia 

into the water. The spores were collected after filtering the spore suspension through 

Miracloth. The spore numbers were counted using a haemocytometer and spores 

were re-suspended in water to adjust the spore concentration to 106 or 107spores/ml. 

5.2.1.2 Growth of plants 

Seeds of cultivars Drakkar and Excel were placed in Petri dishes on Whatman filter 

paper, which was sprayed with distilled water and incubated at 20°C to induce 

germination. The seeds were sown in seed trays containing 50:50 Miracle Gro: John 

Innes No.3 compost. Seed trays were kept in large plastic trays filled with water (1 cm 

depth) during the experiments and placed inside a controlled environment chamber 

(20°C day/20°C night, 12 h light/12 h darkness, light intensity 210 µE/m2s m−2s−1, 80-

85% relative humidity). To maintain the moisture and humidity, water was sprayed 

daily.  

5.2.1.3 Inoculation of spore suspensions on cotyledons  

1. 14 days after sowing, any true leaves were removed and the plants were 

supported using sticks (Fig. 5.1a). At the edge of one of the cotyledon lobes, a 

small hole was made for identification purposes. Each cotyledon lobe was 

wounded gently at the centre with a sharp pin. 
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Figure 5.1 (a) Tray with the cultivars of Brassica seedlings before inoculation 

with L. biglobosa spore suspensions, (b) schematic representation showing 

inoculation plan on cotyledons with the four inoculation sites (1-4) two on each 

lobe.  
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2. L. biglobosa conidial suspensions (10 μl) were inoculated onto the wounded 

areas (Fig. 5.1b). After inoculation, the cotyledons and the lids used to cover 

the trays were gently sprayed with water. Inoculated seedlings were then 

covered with a lid and black polythene sheets and moved into plant growth 

chambers. Plants were then incubated in the dark under conditions of high 

humidity (80-85% relative humidity) for 48 h. After 24 h of incubation, the black 

polythene sheets were removed and 48 h later the lids were removed. Then the 

plants were incubated uncovered in the controlled-environment cabinet at 20°C 

until the end of the experiments. 

5.2.1.4 Disease assessment and statistical analysis  

Disease incidence was assessed by measuring the size of lesions on the two 

inoculation sites on each cotyledon. The incubation period was estimated as the time 

from inoculation until the first lesions were observed. Lesion sizes were measured and 

recorded at different days post inoculation (dpi) until the plants died. Approximate 

lesion areas (length x width) were calculated and these values were plotted against 

time. Significant differences in lesion area were calculated using two-way ANOVA 

tests. 

5.3 Results 

5.3.1 Pathogenicity assay using non-isogenic lines of L. biglobosa 

Four virus-free and two virus-containing isolates were tested on two different cultivars 

of oilseed rape, Drakkar and Excel. Virus-free isolates were nominated as isolates 1, 

2, 3, 4 and virus-infected isolates were nominated as isolates 5 and 6. 

Phoma leaf spot symptoms were observed on all plants inoculated with either virus-

infected or virus-free isolates. There were no differences in the sizes of lesions 

produced by the isolates between cultivars Drakkar and Excel (Table 5.1a, b). 

However, there were noticeable differences in the lesion size produced between virus-

containing isolates and virus-free isolates (Fig. 5.2 & 5.3). Following inoculation onto 

oilseed rape plants, differences in lesion size were noted for the different isolates 7  
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Figure 5.2 Phenotypic variation of phoma leaf spots caused by virus-free (1 to 

4) and virus-infected (5, 6) L. biglobosa isolates on representative cotyledons of 

the cultivars Drakkar (a) and Excel (b), at 7 dpi. 1-6 represent the isolates used for 

inoculation. Details of isolates are given in Table 5.1  

 

 

Figure 5.3 Phenotypic variation of phoma leaf spots caused by virus-free (1 to 

4) and virus-infected (5, 6) L. biglobosa isolates on representative cotyledons of 

the cultivars Drakkar (a) and Excel (b), at 12 dpi. 1-6 represent the isolates used 

for inoculation. Details of isolates are given in Table 5.1 
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Table 5.1 Mean lesion area on cotyledons of B. napus cvs. Drakkar (a) and Excel 

(b) post inoculation with virus-free (1 to 4) and virus-infected (5 and 6) isolates, 

4-12 dpi. The lesion areas were assessed for up to 10 lesions of each cultivar for each 

isolate (mean ± SD).  

Parameters were estimated from the linear regression equations y=a+bt, where y is average lesion 

area, t is days (dpi), and a and b are the intercept and slope parameters of the lines, respectively. 

Values of the intercept and slope of regression lines (Fig. 5.4a, b) and groups of isolates were 

determined by analysis of position and parallelism. On Drakkar (a) isolates 2 and 3 were combined in 

group G2 and on Excel (b) isolates 2 and 4 were combined in group G2 as there were no significant 

differences between intercept and slope values. 
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Figure 5.4 Linear regressions of the data presented in Table 5.1 (a, b) showing 

phoma lesion area caused by virus-free (1 to 4) and virus-infected (5 and 6) 

isolates of L. biglobosa on cotyledons of B. napus cvs. On Drakkar (a) isolates 

2 and 3 and on Excel (b) isolates 2 and 4 contained similar intercept and slope 

values and showed with a common line.   
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days post inoculation on cotyledons of both cultivars. The largest lesions were 

observed on cotyledons inoculated with isolates 5 and 6 and the smallest with isolates 

2 and 4 (Fig. 5.2a, b). 

In virus-free isolates, a small difference in the lesion area was observed on cotyledons 

inoculated with isolates 2 and 4 at 4 to 8 dpi on both the cultivars (Fig. 5.4a, b). They 

produced smaller lesions than virus-free isolates 1 and 3. Isolate 1 produced the 

greatest lesions among the other virus-free isolates 2, 3 and 4 on both the cultivars 

(Fig. 5.4a, b). In virus-infected isolates, isolate 5 produced bigger lesions than isolate 

6 on cultivar Drakkar and isolate 6 produced bigger lesions than isolate 5 on cultivar 

Excel (Fig. 5.4a, b). 

No symptoms were visible on any plants at 1 dpi with L. biglobosa spores. However, 

at 4 dpi, average lesion area increased slowly in cotyledons inoculated with the virus-

free isolates, whereas it increased rapidly in cotyledons inoculated with the virus-

infected isolates. There was a significant increase in lesion area produced by virus- 

infected isolates compared to virus-free isolates inoculated leaves at 6-8 dpi (P < 

0.05). However, by 12 dpi the average lesion area on inoculated cotyledons had 

increased rapidly for virus-free isolates 1, 2, 3 and 4 due to hyphal growth of the 

pathogen and there were less significant differences in lesion area between virus-

infected and virus-free isolates (Fig. 5.3a, b). 

5.3.2 Pathogenicity assay using isogenic isolates of L. biglobosa 

Initially, different virus-infected and virus-free L. biglobosa isolates were tested on 

cotyledons. However, for actual comparisons of virulence, isogenic lines of virus-

infected and virus-free W10 isolate were created. These virus-infected and virus-free 

W10 isolates were examined on cotyledons of cultivar Excel.  

Pathogenicity was assessed up to 15 days dpi by checking phoma leaf spot 

appearance. There were significant differences between virus-infected and virus-free 

inoculum in incubation period for phoma leaf lesion development, with the incubation 

period shorter for virus-infected isolates as compared to virus-free isolates. Phoma 

leaf spot lesions were first observed at 4 dpi on plants inoculated with virus-infected 

conidia but phoma lesions were not observed on plants inoculated with virus-free 

conidia until 5 dpi.  
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There were no statistically significant differences in the lesion sizes produced between 

virus-infected and virus-free isolates at 5 dpi. However, after 5 dpi average lesion area 

increased slowly in cotyledons inoculated with the virus-free isolates, whereas lesion 

area increased rapidly in cotyledons inoculated with the virus-infected isolates (Fig. 

5.5). The lesion area was greater on cotyledons inoculated with virus-infected isolates 

rather than virus-free isolates at 8 dpi (Fig. 5.6). 

There were statistically significant differences in the lesion sizes produced by virus-

infected and virus-free isogenic lines at 12 and 15 dpi (P < 0.0001, Table 5.2). This 

suggested that virus-infected L. biglobosa isolate W10 was more pathogenic than the 

corresponding virus-free isogenic line on oilseed rape cotyledons. 

5.4 Discussion 

L. biglobosa causes stem canker in oilseed rape following premature lodging of adult 

plants and restricts crop production worldwide. Furthermore, many studies 

demonstrated that conidia can infect cotyledons (Hall, 1992) and the fungus 

penetrates the stem via the petiole (Hammond  et al., 1985). Comparison of different 

methods to assess the growth of pathogen from phoma leaf lesions along the main 

leaf vein and petiole to the stem in controlled environments suggested that leaf lesion 

area could be a good indicator of pathogenicity which might be used in field 

experiments. In addition to this, assessment of leaf lesions (size and appearance) is 

quicker and reliable method which can assess differences in virulence between 

pathogens. This method has been used to assess quantitative resistance against 

different fungal pathogens (Chartrain et al., 2004; Silva et al., 2012; Talukder et al., 

2004). More recently, quantitative (q) PCR amplification was also used for detecting 

symptomless growth of the pathogen in leaf or stem tissues (Huang et al., 2014). For 

development of phoma leaf lesions, conidial suspensions of the pathogen were 

deposited on cotyledons wounded with a needle. This procedure was adopted to 

develop stem canker in oilseed rape (Travadon et al., 2009). Another study showed 

that stem canker symptoms can be developed on hypocotyls following cotyledon 

inoculation if the inoculated plants are maintained under controlled environment 
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Figure 5.5 Phenotypic variation of phoma leaf spots caused by virus-infected 

and virus-free isogenic lines of L. biglobosa isolate W10 on representative 

cotyledons of the cultivar Excel at 5, 8, 12 and 15 dpi.  
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Table 5.2 Mean lesion area on cotyledons of B. napus cv. Excel, post inoculation 

with virus-infected and virus-free isogenic lines of L. biglobosa isolate W10, 5-

15 dpi. The lesion areas were assessed for up to 32 lesions for each isolate (mean ± 

SD). 

 

 

Parameters were estimated from the linear regression equations y=a+bt, where y is average lesion 

area, t is days (dpi), and a and b are the intercept and slope parameters of the lines, respectively (shown 

in Fig. 5.6).  
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Figure 5.6 Linear regressions of the data presented in Table 5.2 showing phoma 

lesion area caused by virus-infected and virus-free isogenic lines of L. 

biglobosa isolate W10 on cotyledons of B. napus cv. Excel at 5, 8, 12 and 15 dpi.  
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conditions (Travadon et al., 2009). However, production of canker symptoms requires 

approximately 10 weeks and hypocotyl infection is not representative of what happens 

in field conditions in the UK. Moreover, hypocotyls are different in structure from stems 

(Sprague et al., 2007). Disease severity response measured by the cotyledon infection 

assay as used in this study has been shown to correlate well with the adult plant 

response and consequently has been commonly used to evaluate disease 

progression (Kazan et al., 1998; Stringam et al., 1995; Wang et al., 1999). The 

experiments conducted in this study confirmed that uniformly grown seedlings can be 

infected under controlled conditions using identical inocula to produce a uniform data 

set.  

Six L. biglobosa isolates (F2-Excdm 11-5, K-Rox 12.11.1, H-Exc 12.12.1, F2-Exc 

12.2.3, C-Rox 12.8.1 and D-Rox 12.10) obtained from winter oilseed rape, whose 

identities had been confirmed by both morphology/ pigment production and PCR tests, 

were chosen for disease severity testing. To investigate the virulence of these isolates 

on cultivars, cotyledons of two different cultivars (Drakkar and Excel) were inoculated 

with the conidial suspensions of these six isolates using standard cotyledon test 

methods and lesions were measured.  

Virus-infected isolates (C-Rox 12.8.1 and D-Rox 12.10) consistently produced larger 

lesions on both cultivars as compared to virus-free isolates (F2-Excdm 11-5, K-Rox 

12.11.1, H-Exc 12.12.1, F2-Exc 12.2.3). Thus disease severity of the virus-containing 

isolates was apparently greater than that of the virus-free isolates. In summary, it was 

apparent that from four separate measurements on all four occasions at 4, 6, 8 and 

12 dpi, Drakkar and Excel did not differ in response to any of the six different isolates. 

The interaction between cultivar and isolate was not significantly different on any 

occasion. This observation suggests that any effect of any of the six isolates was the 

same on both Drakkar and Excel (Fig. 5.4 a, b). However, in all cases and in all 

experiments from 4 dpi or later the isolates differed significantly with respect to lesion 

size. Isolates 5 and 6 appeared to be most pathogenic while isolates 2 and 4 were the 

least pathogenic. 

These results were further supported when isogenic, virus-infected and virus-free lines 

of L. biglobosa isolate W10 were inoculated on the cotyledons of the Excel cultivar, 

where mycovirus infection enhanced the virulence of their fungal host (Fig. 5.6). From 
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the data obtained, it might be stated that the infection with LbMV-1 does indeed 

increase the pathogenicity of L. biglobosa on oilseed rape cotyledons. The molecular 

mechanisms of this phenomena are, however, unknown. 

Natural infection of oilseed rape crops is achieved by ascospores affecting unwounded 

leaves while in this study cotyledons were wounded and inoculated with conidia   

(West et al., 2001). Therefore experiments with ascospores need to be pursued. 

Mycovirus infection often attenuates fungal pathogenicity and there are many reports 

in the literature of this hypovirulent effect viz. Fusarium virguliforme (Marvelli et al., 

2014), S. sclerotiorum (Boland, 1992), Botrytis cinerea (Castro et al., 2003; Potgieter 

et al., 2013), C. parasitica (Choi & Nuss, 1992), Aspergillus spp. (Elias & Cotty, 1996; 

Van Diepeningen et al., 2008). Conversely, few mycoviruses confer hypervirulence 

(e.g. enhanced sporulation, aggressiveness, growth and pathogenicity). For instance, 

in Nectria radicicola, the presence of a 6.0 kbp dsRNA was associated with high level 

of virulence where increase in pathogenicity was detected on ginseng plants grown in 

N. radicicola-infested soil (Ahn & Lee, 2001). Hypervirulence was also observed in 

A78 mycovirus-infected Aspergillus fumigatus (Özkan & Coutts, 2015) and 

polymycovirus-infected B. bassiana (Kotta-Loizou & Coutts, 2017) where increases in 

pathogenicity were detected in the moth model. This hypervirulent effect is somewhat 

similar to that demonstrated here for virus-infected L. biglobosa. 

Both hypo- and hyper-virulence are of great interest to plant pathologists due to their 

potential for biocontrol of fungal diseases. 

Presently, the exact mode of action of mycoviruses on phytopathogenic fungi is 

unknown, although biochemical analysis suggest that mycoviruses might control 

fungal virulence through signal transduction pathways (Ahn & Lee, 2001). It has also 

been shown that RNA silencing of mycoviruses might be involved in the phenotypic 

alternations in virus-infected Aspergilli (Hammond et al., 2008) and in other fungi. 

There are no commercially grown oilseed rape cultivars which demonstrate complete 

resistance to Leptosphaeria species. However, the ability of mycoviruses to regulate 

L. biglobosa pathogenicity might potentially offer alternative methods of regulating 

disease progression at the early stages of infection. 
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5.5 Conclusions and future work 

Pathogenicity experiments clarified that there appeared to be no real differences in 

the behaviour of cotyledons inoculated with non-isogenic isolates of virus-infected and 

virus-free as compared to isogenic lines of virus-infected and virus-free isolate. 

Results of oilseed rape cotyledon infection experiments (using isogenic lines) are 

consistent with the measurements of growth rate and biomass production in terms of 

mycovirus mediated hypervirulence in L. biglobosa.  

However, evaluating any disease resistance response of isogenic lines under field 

conditions and on different cultivars will now be necessary to establish any biological 

effects of mycoviruses on their host. Cotyledon inoculation experiments need to be 

further confirmed by assessing canker severity on stems. In addition to this, it is also 

important to shed light on mycovirus-fungus-plant interactions by transcriptome 

analysis.  
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Chapter 6 

Investigation of virus-infected or virus-free Leptosphaeria 

biglobosa induced systemic resistance to L. maculans in 

oilseed rape (Brassica napus)  
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6.1 Introduction 

L. maculans and L. biglobosa possess similar life cycles and they often cause 

coincident infections on oilseed rape crops in Europe and North America (West et al., 

2001; 2002). However, their interactions with one another on plants are poorly 

understood. Previous work showed the local and systemic resistance of B. napus  to 

L. maculans (Canadian isolate) induced by L. biglobosa ‘canadensis’ (Canadian 

isolate) conidia under natural environmental conditions (Mahuku et al., 1996). 

Afterwards, Liu et al. (2006 & 2007) demonstrated that local and systemic resistance 

of B. napus to L. maculans ‘brassicae’ could also be induced by L. biglobosa 

‘brassicae’.  

Major gene resistance depends on a “gene-for-gene” interaction in which the host R 

protein interacts with corresponding pathogen avirulence (Avr) protein to begin plant 

disease responses and resistance (Flor, 1956). Normally, the cultivars with the 

resistance gene Rlm7 against L. maculans are widely used (Clarke et al., 2011). 

However, the use of cultivars with Rlm7 gene has increased the risk that L. maculans 

populations could change from avirulent to virulent against this cultivar. Severe phoma 

stem canker epidemics were observed in France in field experiments (Brun et al., 

2000; Daverdin et al., 2012) and in France and Australia in commercial oilseed rape 

crops (Li et al., 2003; Sprague et al., 2006) when host resistance mediated by Rlm 

genes was rendered ineffective. L. maculans isolate H-Rox 12.2.1 was investigated to 

be virulent against Rlm7 cultivar in the UK (Mitrousia et al., 2018). 

Induced resistance may occur locally near the point of infection or systemically in 

uninfected parts of the plant distant from the point of infection by the invading pathogen 

(Liu et al., 2006; 2007). Thus, induced resistance can protect plants from subsequent 

infection by a wide variety of pathogens (Lucas, 1999). In many host-pathogen 

systems, biologically or chemically induced resistance to fungal infection has been 

described (Sticher et al., 1997). Chemical inducers involve natural products such as 

salicylic acid (SA), synthetic compounds such as isonicotinic acid (Sticher et al., 1997) 

and several inorganic compounds. Resistance induced by Acibenzolar-S-Methyl 

(ASM), an analogue of SA, has been described in many crops, including oilseed rape 

(Borges et al., 2003; Cools & Ishii, 2003; Jensen et al., 1998; Latunde-Dada & Lucas, 

2001). Menadione sodium bisulphite, a water-soluble compound of vitamin K3, was 
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also shown to induce resistance in oilseed rape against L. maculans (Borges et al., 

2003). Induced resistance in plants against pathogens following inoculation with the 

same or other micro-organisms is well recognised but the mechanisms responsible for 

its occurrence are poorly understood. 

This study investigates the ability of virus-infected and virus-free isolates of L. 

biglobosa to induce resistance in oilseed rape (B. napus) against phoma leaf spot 

caused by L. maculans under controlled environment conditions. The investigation 

used isogenic virus-infected and virus-free isolates of L. biglobosa generated as 

described in Section 4.2.1. 

The hypothesis for this work is that L. biglobosa-induced host resistance response to 

infection by L. maculans might operate under natural conditions and play an important 

role in the control of phoma stem canker. 

6.1.1 Aim and objective 

The main aim of this work was to investigate the systemic induced resistance of 

oilseed rape to L. maculans infection following prior inoculation with L. biglobosa. 

Objective: 

1. To detect phenotypes of resistance induced by virus-infected or virus-free L. 

biglobosa against L. maculans under controlled environment conditions. 

6.2 Materials and methods 

6.2.1 Phenotypes of resistance induced by L. biglobosa against L. maculans 

under controlled environment conditions 

6.2.1.1 Experimental design  

A controlled environment experiment was performed using nine plants for each pre-

treatment. At 96 h after pre-treatment, the leaf immediately above the pre-treated leaf 

was challenge-inoculated with L. maculans conidia. This experiment examined effects 

of pre-treatment on development of phoma leaf lesions over time. Pre-treatments 

involved inoculation with L. biglobosa conidia or sterile water (control). 
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6.2.1.2 Plant material  

Winter oilseed rape (Brassica napus) cv. Excel was sown and plants were grown in a 

glasshouse at 20-24°C. This cultivar possesses the resistance gene Rlm7 for 

resistance to L. maculans. Seven days old seedlings were transplanted into one 

plant/pot (9 cm in diameter) containing a mixture of Miracle Gro: John Innes No.3 

compost (50:50 volume). Twenty-four h prior to inoculation, four-week-old plants were 

transferred into a controlled environment cabinet (20°C day/20°C night, 12 h light/12 

h darkness, light intensity 210 µE/m2s m−2s−1, 80-85% relative humidity). Following 

inoculation, all plants were maintained in the cabinet until the end of the experiments. 

6.2.1.3 Preparation of inoculum  

Sporulating cultures of virus-infected L. biglobosa  W10, virus-free L. biglobosa  W10 

and L. maculans H-Rox 12.2.1 were flooded with 10 to 15 ml of sterile distilled water 

and gently scraped with a flamed glass spreader to release conidia from pycnidia 

(Section 5.2.1.1). The spores were collected by filtering through sterilized Miracloth. 

Each spore suspension was prepared at a concentration of 107 spores/ml for 

inoculation. Spore suspensions were centrifuged at 9000 rpm for 20 min. The 

supernatant was discarded and the spore pellet was collected in approximately 1 ml 

of sterile distilled water for storage as a concentrate at -20°C. 

6.2.1.4 Pre-treatment and challenge inoculation 

Plants were arranged in a randomised, complete block design with two replicates and 

nine plants per treatment. Pots were then placed in two large plastic trays which were 

kept filled with water (depth 1 cm) throughout the experiment. For pre-treatment with 

L. biglobosa (virus-infected or virus-free), small regions (7 mm diameter) of the first 

true leaves were abraded gently with a cylindrical eraser so that they could hold 

droplets of the spore suspensions (Huang et al., 2001). Then each abraded area was 

wounded with a sterile needle and a 12 μl droplet of spores (107 spores/ml) was 

pipetted onto the wounded area. Inoculated plants were then covered with a lid and 

black polythene sheets and moved into plant growth chambers. Plants were then 

incubated in the dark under conditions of high humidity (80-85% relative humidity) for 

48 h. After 24 h of incubation, the black polythene sheets were removed and 48 h later 

the lids were removed. Control pre-treatment used sterile distilled water inoculation of 
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abraded leaves. At 96 h after inoculation, the second true leaves of these plants were 

challenge-inoculated with two 12 μl drops of L. maculans isolate (H-Rox 12.2.1) 

conidial suspension with 107 spores/ml, one on each side of the midrib. All challenge-

inoculated plants were maintained under the same conditions for 48 h and 

subsequently incubated uncovered in the controlled-environment cabinet. 

6.2.1.5 Disease assessment and statistical analysis 

Disease symptoms were observed every 12 h after challenge inoculation until small 

necrotic lesions (brown to grey in colour) were visible. The times from challenge 

inoculation to development of the first lesions were recorded for each plant. 

Afterwards, lengths and widths of lesions were measured at different time points until 

20 days after inoculation (dpi). The approximate lesion areas (length x width) were 

evaluated. Lesion area was plotted against time to show the effects of different prior 

inoculations on L. maculans lesion development on the second true leaves. For 

statistical analysis, two-way ANOVA as implemented by GraphPad PRISM 6 was 

used.  

6.3 Results 

6.3.1 Phenotypes of resistance induced by L. biglobosa against L. maculans 

under controlled environment conditions 

When the first true leaves of plants were pre-inoculated with virus-infected L. 

biglobosa spores or water, the average lesion area elicited following L. maculans 

challenge inoculation on the second true leaves of the same plants increased slowly, 

while in the plants pre-inoculated with virus-free L. biglobosa spores, average lesion 

area increased rapidly 13 days after challenge inoculation (Fig. 6.1, Table 6.1).  

As compared to control plants pre-inoculated with water, pre-inoculation with virus-

infected L. biglobosa decreased the area of phoma leaf spot lesions caused by L. 

maculans on second leaves while pre-inoculation with virus-free L. biglobosa 

increased the size of phoma lesions. Statistically significant differences in leaf lesion 

area between virus-infected and virus-free L. biglobosa pre-inoculations from 15 days 

after challenge inoculation were noted (P < 0.0001). 
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The rate of increase in leaf lesion area elicited by L. maculans challenge inoculation 

on the second true leaves differed between all pre-inoculations, being slowest with 

virus-infected L. biglobosa, fastest with virus-free L. biglobosa and intermediate in 

control, water pre-inoculated plants (Fig. 6.2).  

Seventeen days after challenge inoculation, the average lesion area on leaf two 

(systemic effect) was significantly decreased (P < 0.0001, Table 6.1) on plants pre-

inoculated with virus-infected L. biglobosa (0.31 cm2) as compared to control (0.66 

cm2) and virus-free L. biglobosa (0.75 cm2). 

 6.4 Discussion 

These results demonstrate that pre-inoculation of oilseed rape leaves with virus-

infected L. biglobosa spores can enhance systemic resistance against infection 

caused by L. maculans. These observations confirm and extend previous 

investigations which reported a similar phenomenon where the size and development 

rate of L. maculans phoma leaf spots were decreased by pre-treatment with L. 

biglobosa (Liu et al., 2006; 2007; Mahuku et al., 1996). Mahuku et al. (1996) indicated 

that this was an example of systemic acquired resistance (SAR) which is defined as 

acquired resistance, a defence response in plants to a virulent pathogen, induced by 

pre-inoculation with either virulent, avirulent or non-pathogenic microbes or treatment 

with chemicals such as SA, or SA mimics such as ASM (Ryals et al., 1996). SAR is 

characterized by the accumulation of SA in local and systemic tissues and the 

coordinate expression of genes which encode pathogenesis-related (PR) proteins 

(Durrant & Dong, 2004). SAR has been reported in many plants such as red clover, 

soybean, cucumber, muskmelon, watermelon, rice, pearl millet, potato and tomato 

(Kessmann et al., 1994). It was demonstrated first in oilseed rape by Mahuku et al. 

(1996).  

Moreover, pathogens closely related to the challenge isolate have been described as 

better inducers of resistance than those which are non-pathogens or pathogens of 

unrelated hosts (Mahuku et al., 1996). For instance L. biglobosa, which is not 

economically destructive, appeared to be effective in inducing resistance to L. 

maculans in oilseed rape (Liu et al., 2006; 2007). A single lesion of L. biglobosa on 

the leaf was able to induce resistance throughout the leaf and other parts of the plant. 
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Figure 6.1 Phenotypes of resistance induced by L. biglobosa against L. 

maculans under controlled environment conditions. Effect of pre-inoculation of 

oilseed rape (cv. Excel) with virus-infected (a, d, g) and virus-free (b, e, h) L. biglobosa 

(isolate W10) on development of phoma leaf spot lesions on second true leaves 

following challenge inoculation with conidia of L. maculans (isolate H-Rox 12.2.1), 

assessed at 13 (a, b, c), 15 (d, e, f) and 17 (g, h, i) dpi. Leaf 1 was pre-inoculated with 

conidia of virus-infected L. biglobosa, virus-free L. biglobosa or sterile water (control: 

c, f, i). 
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Table 6.1 Mean lesion area on oilseed rape second true leaves challenge 

inoculated with conidia of L. maculans following pre-inoculation of leaf one with 

spores of virus-infected L. biglobosa, virus-free L. biglobosa or water (control). 

Lesion areas were assessed over time up to 17 dpi for up to 18 lesions for each pre-

treatment (mean ± SD).  

 

 

Parameters were estimated from the linear regression equations y=a+bt, where y is average lesion 

area, t is days (dpi), and a and b are the intercept and slope parameters of the lines, respectively (shown 

in Fig. 6.2).  
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Figure 6.2 Increases in phoma leaf spot lesion area with time following 

challenge inoculation of second true leaves with L. maculans following different 

pre-inoculations of leaf one. Pre-inoculations were with spores of virus-infected L. 

biglobosa, virus-free L. biglobosa or water (control). Each pre-treatment comprised 

nine plants and eighteen replicates. Values of parameters for these linear regressions 

are given in Table 6.1. 
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Induction of SAR has also been demonstrated in other host/pathogen interactions 

following single leaf inoculations (Hammerschmidt et al., 1982; Kuc & Richmond, 

1977; Strömberg, 1995). This practice could be significant when inducing resistance 

in the field on a larger scale.  

Rasmussen et al. (1992) observed a strong induction of the PR protein chitinase 

mRNA following L. maculans infection. Moreover, 1 day after inoculation of L. 

maculans, levels of chitinase mRNA were 3-fold higher in resistant as compared to 

susceptible Brassica cultivars. Differential expression of PR proteins in B. napus and 

B. nigra was also observed following inoculation of L. biglobosa or L. maculans 

(Dixelius, 1994). Significant accumulation of PR proteins was observed in resistant 

plants 2-4 h after infection by L. biglobosa, while in susceptible plants, significant 

accumulation was observed 8 h after infection. Both L. maculans and L. biglobosa are 

able to induce gene expression associated with SAR and these genes are activated 

soon after inoculation. 

In previous work which investigated induced resistance in B. napus, ascospore 

suspensions were used as inoculum as these inoculations do not require wounding 

and avoid interference by wound-induced signalling (Liu et al., 2006; 2007). Moreover, 

primary infection of winter oilseed rape crops arises from ascospores (West et al., 

2001). In the current study, conidial inocula, which do require wounding for successful 

invasion were used for both pre- and challenge inoculations. This method has been 

used successfully before to induce resistance in plants (Fristensky et al., 1999; 

Mahuku et al., 1996; Rasmussen et al., 1992). Wounding might be a potential causal 

factor of a hypersensitive reaction. However, Felton et al. (1999) demonstrated that 

different signalling pathways are involved in systemic response to wounding and 

insect herbivory. Peltonen (1998) also reported that wounding itself did not induce 

defence related enzymes. 

L. maculans and L. biglobosa not only co-exist in oilseed rape crops (West et al., 2001; 

2002), but also co-infect the same site on plants (Mahuku et al., 1996); therefore, it is 

reasonable to propose that induction of host resistance against L. maculans also 

occurs naturally following simultaneous infection with, for instance virus-infected L. 

biglobosa. 
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When virus-free L. biglobosa was used for pre-inoculation, greater lesion sizes were 

noticed on the second true leaves following challenge inoculation with L. maculans. 

Decrease in lesion size was noticeable only in treatments when virus-infected L. 

biglobosa was used for pre-inoculation. This feature might have resulted from virulent 

L. biglobosa isolate competing with L. maculans for nutrients and space on their 

common host. Alternatively or additionally virulent L. biglobosa induced host defences 

against L. maculans through active synthesis and accumulation of structural and 

chemical defence components which enhance the plant defence capacity, resulting in 

plants being more resistant to direct penetration and colonization by an invading 

pathogen. 

Inoculation of B. napus cotyledons with virus-infected L. biglobosa itself produced 

larger lesions than those of virus-free L. biglobosa (Section 5.3.2). So, virus-infected 

L. biglobosa might greatly enhance the activity of defence related enzymes (e.g. 

chitinase, β-1, 3-glucanase, peroxidase, and phenylalanine ammonia lyase) through 

the SA signal pathway.  

This investigation indicates that inoculation with virus-infected L. biglobosa appears to 

trigger defence reactions against L. maculans. More research on the interactions of L. 

maculans and L. biglobosa with their host and their impact on biological control is 

required. How the presence and absence of mycoviruses in L. biglobosa affect the 

induction of resistance against L. maculans in oilseed rape is not understood but it 

may well involve gene silencing and this too requires further work. 

6.5 Conclusions and future work 

Results of this study suggest that pre-treatment of Brassica napus leaves with virulent 

biological activator can induce systemic resistance to L. maculans on the development 

of phoma leaf spots under controlled environment conditions. Pre-treatment of oilseed 

rape leaves (cv. Excel) with virus-infected L. biglobosa not only delayed the 

appearance of L. maculans phoma leaf spot lesions but also decreased the phoma 

leaf spot lesion area on untreated leaves (systemic effect) while the rate of increase 

in phoma leaf spot area after challenge inoculation was significantly greater on virus-

free L. biglobosa pre-treated plants. Results of this study will improve the 

understanding of resistance against L. maculans, which can be used to guide forward 
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planning for effective control of phoma stem canker. However, the following ideas 

could be implemented for the future work: 

1. Use of ascospores for pre-treatment and challenge inoculation of Brassica 

napus leaves. 

2. Use of different plant cultivars and different pre-inoculation methods to analyse 

any difference in systemic resistance to L. maculans. 

3. Perform field experiments to determine whether pre-treatment can induce local 

and systemic resistance to L. maculans on development of phoma leaf spotting 

and stem canker. 

4. Moreover, future work concerns quantification of transcript levels of genes 

involved in signalling pathways after L. maculans challenge inoculation for 

evaluation of defence-associated responses during pathogenesis.  

New approaches in this direction can be prompted using techniques described in this 

study and previous work (e.g. Liu et al., 2006; 2007). 
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Chapter 7 

General discussion 
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This study is the first to report the presence and molecular characterisation of 

mycoviruses LbMV-1 and DsCV-1 infecting L. biglobosa and D. septosporum, 

respectively. Moreover, the molecular features of Aspergillus foetidus virus AfV-S3 

were also characterised.  

In current investigation 11 out of 16 L. biglobosa isolates were found to contain LbMV-

1 while none of the 57 isolates of L. maculans were found to contain dsRNAs. In 

addition to this, one out of 45 D. septosporum isolates was found to contain DsCV-1. 

In contrast, none of the 162 H. fraxineus and 10 Pyrenopeziza brassicae isolates 

appeared to contain dsRNA elements. 

Complete cDNA clones of LbMV-1, DsCV-1 and AfV-S3 were obtained using different 

RT-PCR methods such as Froussard procedure, single-primer method (Isogai et al., 

1998; Vreede et al., 1998) and RLM-RACE (to determine 5’ and 3’ terminal 

sequences) for cloning dsRNAs of unknown sequence. 

The three dsRNAs of the LbMV-1 genome, isolated from L. biglobosa strain C-Rox 

12.8.1, with lengths 4917, 4490 and ca. 4000 bp (dsRNAs 1-3) were found to contain 

a single open reading frame (ORF) encoding a hypothetical protein (HP), an RNA- 

dependent RNA polymerase (RdRP) and possibly HP or RdRP, respectively, in which 

dsRNAs 1 and 2 exhibited some degree of sequence similarity to the comparable 

putative proteins encoded by ACD-L associated dsRNAs. Several attempts failed to 

produce any clones of LbMV-1 dsRNA 3. 

The four dsRNA segments, ranging in size from ca. 2.8-3.5 kbp, of the DsCV-1 

genome were isolated from D. septosporum strain D 752.1. Although DsCV-1 contains 

four dsRNA segments, this study was only focused on molecular characterisation of 

two dsRNA elements (DsCV-1 dsRNAs 2 and 3). Sequence analysis provided 

evidence that each of the identified dsRNA segments contained one ORF, putatively 

encoding an RdRP, CP, hypothetical protein and protease, respectively, all of which 

showed sequence similarity with members of the family Chrysoviridae.  

Molecular characterisation of one of the slow migrating components of A. foetidus 

dsRNA AfV-S3 was completed using the RLM-RACE technique, which is used for 

sequencing 5’ and 3’ terminal sequences of dsRNAs. Here this technique was 

successfully employed to sequence the whole 439 bp fragment. The potential satellite 
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RNA of AfV-S investigated here might depend on the other helper viruses for its 

replication. 

Based on the nucleotide sequence, sequence properties at the 5’ and 3’ termini, 

genome organization and phylogenetic analysis, it was confirmed that a new dsRNA 

mycovirus (LbMV-1) identified in L. biglobosa constitutes a new putative member of 

the Totiviridae family while a new dsRNA mycovirus (DsCV-1) identified in D. 

septosporum constitutes a new member of the Chrysoviridae family. In addition to this, 

AfV-S3 identified in A. foetidus has been presumed as a satellite component of AfV-S 

virus particle.  

It is important to characterise the remaining dsRNAs of LbMV-1 and DsCV-1 so that 

the relationship of these viruses can be studied in relation to origin and function of 

other known viruses. The potential pathogenic effects of DsCV-1 in D. septosporum 

were not evaluated in the presented work. Further studies will help to elucidate how 

DsCV-1 affects the performance of D. septosporum as biocontrol agent. 

The incidence of mycoviruses was normally assessed using common nucleic acid 

extraction methods (Bhatti et al., 2012; Refos et al., 2013). However, this small-scale 

dsRNA extraction method can be laborious to screen large number of isolates and 

when the virus is low in titre. So, in this study for the diagnosis of virus infection, a 

sensitive RT-PCR method was used accompanying the other advantages such as 

being easy to perform, rapid and cost-efficient (Dai et al., 2012). This method uses the 

total RNA template obtained from a rapid kit RNeasy extraction which also makes the 

procedure reproducible and quicker. This method is only appropriate for characterising 

viruses with known genomic sequence.  

The effects of mycovirus infection were determined by producing isogenic lines of L. 

biglobosa isolate W10, obtained by eradicating LbMV-1 from virus containing W10 

using cycloheximide. A different range of cycloheximide concentrations (0.01 mM to 

150 mM) were used for this purpose. Attempts were made to eradicate LbMV-1 from 

C-Rox 12.8.1, K-Exc 12.10.21, Noth2, N20.3, W10 and N3.4 isolates of L. biglobosa. 

However, virus infection could successfully be eradicated only from 0.1 mM 

cycloheximide treated W10 isolate. The isogenic lines were then investigated in terms 

of biomass production and mycelial growth.  
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Results showed that LbMV-1 has the potential to confer increased virulence 

(hypervirulence) to L. biglobosa as the infected isolate had a faster growth rate on 

PDA and greater biomass production in PDB as compared to the isolate that had been 

cured. Results exhibited in this study support the hypothesis that mycoviruses can 

alter host behaviour. As virus-infected and virus-free isogenic lines exhibited 

differences in phenotypes such as pigmentation and growth rate, it was assumed that 

L. biglobosa mycoviruses can affect gene expression via RNA silencing and can also 

affect pathogenicity of host. Moreover, a faster growth rate of the pathogen might 

develop from gene regulation by mycovirus-derived small (s) RNAs. Further 

investigations such as microarray or mRNA sequencing should also be considered in 

order to identify any differentially expressed genes during virus infection regardless of 

RNA silencing. 

Assessment of virulence in the presence and absence of mycoviruses in L. biglobosa 

is pivotal to understand its pathogenicity. Here, for the first time, the effect of 

mycoviruses on the pathogenicity of L. biglobosa was investigated on cotyledons of 

oilseed rape. A statistically significant increase in phoma leaf lesion areas on 

cotyledons infected with virus-containing W10 isolate in comparison to virus-free W10 

isolate was noted.  

Thus, pathogenicity tests with isogenic lines of virus-infected and virus-free isolates of 

L. biglobosa indicated that the presence of mycoviruses confers hypervirulence to the 

fungal host. A detailed study should also be conducted to assess canker severity on 

stems using these isogenic lines of virus-infected and virus-free isolates of L. 

biglobosa. Moreover, transcriptome analysis will be essential to understand the 

mycovirus-fungus-plant interactions. Recently, genome-transcriptome analysis of 

Fusarium graminearum revealed the effect of mycoviruses on host gene expression 

and attempts were made to identify the genes linked to the phenotypic changes in the 

host. Lee et al. (2014) found that mycovirus infection resulted in down-regulation of 

host genes required for cellular transport systems, RNA processing and ribosome 

assembly. This study provides the first evidence towards characterisation and 

explaining the effects of mycoviruses on biological responses to L. biglobosa. 

This work provides a reliable methodology to study the effect of pre-treatment with L. 

biglobosa on systemic resistance of oilseed rape to L. maculans infection. 
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Development of this method will also improve the process of breeding cultivars for 

control of crop diseases and is also possible to test effectiveness of resistance under 

a range of different controlled conditions.   

L. biglobosa causes superficial stem lesions and considered as weakly virulent or 

avirulent (Shoemaker & Brun, 2001) while L. maculans causes more serious stem 

cankers and is considered as a highly virulent species (Howlett et al., 2001). The 

defence capacity of plants can be enhanced by induced resistance, activated by biotic 

or abiotic agents. Previously weakly virulent L. biglobosa has been shown to induce 

resistance in host plants against L. maculans without the knowledge of presence or 

absence of mycoviruses in L. biglobosa (Liu et al., 2006; 2007; Chen and Fernando, 

2006). However, this study indicated that reduced disease was only observed on 

plants pre-inoculated with virus-infected L. biglobosa compared with virus-free L. 

biglobosa pre-inoculated plants. 

L. biglobosa typically appears later in the growing season than L. maculans (West et 

al., 2001) and causes disease at higher temperatures (Badawy et al., 1992). This 

might be the reason why L. biglobosa-induced resistance has not been observed in 

crops. The application of virus-infected L. biglobosa prior to the natural infection by L. 

maculans might effectively induce resistance and significantly decrease infection and 

disease. 
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Appendices 

Appendix 1: List of materials 

1. Antibiotics 

Antibiotics were dissolved in sterilised distilled water and filter-sterilised. Aliquots were 

stored at -20°C. Sterilised media were cooled to below 50°C prior to antibiotic addition 

to prevent heat inactivation. 

Table 1.1 List of antibiotics and their concentrations. 

Antibiotics Stock concentration Working concentration 

Penicillin 100 mg/ml 100 μg/ml 

Streptomycin  100 mg/ml 100 μg/ml 

Ampicillin  100 mg/ml 100 μg/ml 

 

2. Media, solutions and buffers 

2.1 Malt extract agar (MEA)  

Malt extract (Oxoid) 20 g 

Technical agar no.3 (Oxoid)     15 g 

Sterilised distilled water 1000 ml 

2.2 V8 agar  

V8 (Vegetable juice) 200 ml 

Calcium carbonate (CaCO3) 2 g 

Technical agar no.3 (Oxoid) 20 g 

Sterilised distilled water 800 ml 

2.3 Potato dextrose agar (PDA) 

Potato dextrose agar 39 g 

Sterilised distilled water 1000 ml 

PDA and V8A media were prepared to culture Leptosphaeria species 
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2.4 LBA medium 

Tryptone (Oxoid) or peptone 10 g 

NaCl 10 g 

Yeast extract 5 g 

Technical agar no.3 (Oxoid) 12 g 

Sterilised distilled water 1000 ml 

2.5 1x LB medium 

Tryptone (Oxoid) or Peptone 10 g 

NaCl 10 g 

Yeast extract 5 g 

Sterilised distilled water 1000 ml 

2.6 2x LB medium 

Tryptone (Oxoid) or peptone 20 g 

NaCl 20 g 

Yeast extract 10 g 

Sterilised distilled water 1000 ml 

Different kinds of LB media were prepared to culture E. coli cells. 

2.7 Transformation storage solution (TSS) 

2x LB 5 ml 

PEG 8000 1 g 

Dimethyl sulfoxide (DMSO) 0.5 ml 

MgCl2 (1 M) 0.5 ml 

Sterilised distilled water 3 ml 

2.8 X-gal solution  

IPTG 10 μl 

X-gal 20 μl 

Sterilised distilled water 90 μl 

120 μl of X-gal solution is required for each LBA plate. 

 X-gal solution is freshly prepared every time. 
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2.9 Super optimal broth with catabolite repression (SOC - 10 ml)   

Glucose (2 M) 200 μl                         

MgCl2 (2 M) 50 μl 

1x LB 10 ml  

SOC solution is freshly prepared every time. 

2.10 Extraction buffer for small-scale dsRNA extraction  

EDTA (20 mM) (pH 8.0) 

Tris-HCl (20 mM) (pH 7.5) 

1% SDS 

1% NaCl 

2.11 TE buffer 

Tris-HCl (1 M) 50ml 

EDTA (0.5 M) 2 ml 

Sterilised distilled water 948 ml 

2.12 50x TAE buffer 

Tris base 242 g 

Glacial acetic acid 57.1 ml 

EDTA (0.5 M) 100 ml 

Sterilised distilled water 842.9 ml 

2.13 Maleic acid buffer for determination of labelling efficiency and 

Immunological detection 

0.1 M Maleic acid, 0.15 M NaCl; adjust with NaOH (solid) to pH 7.5 

2.14 Blocking solution for chemiluminescent detection procedure 

Dilute 10x blocking solution (vial 6) 1:10 with Maleic acid buffer 
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2.15 Washing buffer for determination of labelling efficiency and Immunological 

detection 

0.1 M Maleic acid, 0.15 M NaCl; pH 7.5; 0.3% (v/v) Tween 20 

2.16 Detection buffer for determination of labelling efficiency and 

Immunological detection 

 0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5 (20°C) 
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Appendix 2: List of oligonucleotide primers used to complete the dsRNA 

sequences of DsCV-1 and LbMV-1.   

Table 2.1 Sequence of primers designed on the basis of multiple alignment of 

RdRPs of different members of Chrysoviridae family to sequence DsCV-1 

dsRNAs. 

 

Name of primers Sequences (5’-3’ orientation) 

DF 1 5’-GTTCAACGTGGCTAACTAAGGG-3’ 

DF 2 5’-GGGACTGTACTCAGGATGG-3’ 

DR 1 5’-GCCATCCTGAGTACAGTCC-3’ 

DF 3 5’-TATAGACCATGGCGGTGATGA-3’ 

DR 2 5’-ACATCATCACCGCCATGGTC-3’ 

DF 4 5’-TTCGTGGCAGGCGATTGG-3’ 

DR 3  5’-CCAATCGCCTGCCACGAA-3’ 

 

Table 2.2 Sequence of primers used for extending known sequence of DsCV-1 

dsRNAs1 and 2 in both the 5’- and 3’- directions.  

 

Name of primers Sequences (5’-3’ orientation) 

RNA-2 primers  

DR 463 5’-GTG CTGATATGATCCCGTTC-3’ 

DF 3.24 5’-GTGTCGCCAATTACTTTGATAAC-3’ 

DR 3.24 5’-CACAGGGGTTTCGATTCTCC-3’ 

DR 2434.1 5’-GCATAAGGAACCCCTTGAC-3’ 

DR 2434.2 5’-CCTATCAGCACTTTGAACATGC-3’ 

DR 2434.3 5’-CTTTGACTGACCAACCATCACC-3’ 

  

RNA-3 primers  

DR 13.2    5’-CTTCCATGAGGGCTACTTCAGC-3’ 

DR 13.3 5’-GTGGCTGCGAAATAGGTATGC-3’ 
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DR 2701.1 5’-CCACGAACCCATGATATAATT G-3’ 

DR 2701.2 5’-ATCGATCCAGCCTTCCTCCC-3’ 

DR 2701.3 5’-GATATCAATGAGTCGAAATCG-3’ 

DR 2701.3 5’-CCACGAACCCATGATATAATT G 3’ 

DR 2701.4 5’-CTTACTCACATCTAGGTTCTT C-3’ 

DR 2844.1 5’-CTATCTTTCCCAGATCGACCTC-3’ 

DR 2844.2 5’-CTTACTCACATCTAGGTTCTTC-3’ 

DR 3298 5’-CATGCCCCTCACTGTAGGTTG-3’ 

DF UTR 5’-CAAAAATCCTAGCGGCCTGA-3’ 

DF IJ1 5’-GTCGCATCTGTCTTATGAAG-3’ 

DF IJ2 5’-GCGAGATAGATGTAAACGGA-3’ 

DF IJ3 5’-GAGTTGGACGGCCTGAGTA-3’ 

 

Table 2.3 Sequence of primers used for extending known sequence of LbMV-1 

dsRNA(s) in both the 5’- and 3’- directions.  

 

Name of primers Sequences (5’-3’ orientation) 

RNA-1 primers  

LBF 1 5’-TTGAGCTGAGACCGACACCGC-3’ 

LBR 1 5’-AGAGTG TTAAACAGCCCTGCGC-3’ 

LBR 2 5’-CATGACTACGCCTTTTGGGGC-3’ 

LBR 3 5’-GCTGCACGCCTCGCGATGG-3’ 

LBR 4 5’-CCTTGTCAGCTTCGTGTAACCAGG-3’ 

LBR 5 5’- GCTCTCACCTTAGACCACTCG-3’ 

LBR 6 5’-CTGGGATTCATCTCTCCTGTC-3’ 

LBR 6A 5’-CTCCTGTCTAATATCTCATCATCC-3’ 

LBR 7 5’-CTGTGGTGCTTCTGCGTGC-3’ 

LBR 8 5’-CGAAATCGGTACGCTGTGTGC-3’ 

LBR 9 5’-GCAGAAATCGTGCATGTCATC-3’ 

LBR 9A 5’-GCGCATCTATTATGTTCTTATTGGC-3’ 

LBR 9B 5’-CACGGATGCTTGTTGTTCTTTCAA-3’ 
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RNA-2 primers  

LBF 1 5’-GCTTGACGCATGCAATCTGAT C-3’ 

LBR 1 5’-GTC TCA CCG AAAGTGCCATC-3’ 

LB1F 1247.1 5’-CAATTCATCTCACAGGGCAGG-3’ 

LB1R 1247.1 5’-GAATCCTTGCGCTTCATCAAC-3’ 

LB1F 1247.2 5’-GTGATATACGGCCAGGAAGG-3’ 

LB1F 2351.2 5’-GAGCGACAAAGTTAGAGCAGC-3’ 

LB1R 1247.2 5’-GAAACCACGTTGCGTATGAATCC-3’ 

LB1R 1247.3 5’-CCAGCCCAACTCGCAATTG-3’ 

LB1R 2351.1 5’-CGATATCACCCCAACCTT G-3’ 

LB1R 2351.2 5’-GTTCCTCGCTCAGTAGATTTG-3’ 

LB1F 1593.1 5’-GACACCTAGCAGCAA CATGC-3’ 

LB1F 1593.2- 5’-GTCTCCGAAACATTGGCTAG-3’ 

LB1R 1593 5’-CGTTCGTGAACGTAAGTGG-3’ 

LB1R 2518 5’-CTGCACTGTTCCTCGCTCAG-3’ 
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Appendix 3: Problems encountered while obtaining the clones of viral nucleic 

acid. 

Few problems which occurred during different phases of cloning and sequencing are 

listed below: 

Phase 1: RT-PCR.  

The different range of size of the PCR products (~100 bp-1000 bp) were obtained after 

RT-PCR. Sometimes, RT-PCR did not work and did not obtain any amplicons. After 

performing the RT-PCR and cloning, the clones were sent for sequencing. Normally, 

BLASTX was used to recognise the sequence similarity of the clones with the other 

known sequences in the database. However, sometimes more sophisticated programs 

were also used such as PSI BLAST which simply compares the protein query to a 

protein database. Sequence analysis showed that it was not possible to get the viral 

clones all the time when the RT-PCR was performed. We obtained combination of 

clones including fungal, bacterial and sometimes the clones with no known sequence 

similarity in the database.   

Sequences of LbMV-1 dsRNAs 1 and 2 were confirmed after cloning and sequencing 

the individual clone three to four times. Approximately 10-12 different clones were 

used to assemble the final sequence. 

Phase 2: Ligation of PCR products.  

Sometimes freezing and thawing decreased the activity of enzyme and ligation did not 

work. Therefore, the reagents were aliquoted before use. 

Phase 3: Blue-white screening to identify recombinant clones. 

Sometimes there were few or no transformants (when competent cells did not work) 

or many satellite colonies (when ampicillin did not work) on the plate after 

transformation. 

Phase 4: Overnight growth of individual colonies, plasmid extraction, restriction 

digestion and agarose gel electrophoresis. 

Sometimes the selected white colonies did not show any growth next day in the LB 

media or if they grew, insert and plasmid were not observed on the gel after plasmid 

extraction thus they were confirmed as the satellite colonies.  
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Appendix 4: Alignment of amino acid sequences of Dothistroma septosorum 

chrysovirus-1(DsCV-1) dsRNAs 2 and 3 ORFs with the comparable ORFs of 

Isaria javanica chrysovirus-1 (IjCV-1) dsRNAs 2 and 3. 

 

DsCV-1 dsRNA2(160)   FSNERYDEKTAAFNALRSGATALRRSKALSVKLTSWDPATRAGASNFREKQNMLGRDIGS  (339) 

                     +  E    K AAF ALRSGA AL   +  +  L  W P T  GA +  EKQ++ GRDIG  

IjCV-1 dsRNA2(6)     YKQELNARKIAAFQALRSGAAALAAGREKNRTLKVWSPNTHRGAEDQFEKQSLYGRDIGG  (65) 

 

DsCV-1 dsRNA2(340)   VANYFDNKRSSALEVICKDEFTVNYQIYGDIRREAVFGQNTLSIFFPIKWSQCEVNVSLY  (519) 

                     VA+YFDNK SSAL++IC+DEF ++YQI+GDI REA+FG N + +F  +KW    ++V LY 

IjCV-1 dsRNA2(66)    VAHYFDNKVSSALDIICEDEFAIHYQIFGDIGREAMFGNNNVGLFVHVKWEHLGIDVGLY  (125) 

 

DsCV-1 dsRNA2(520)   PDVLDKPIPREKFTTAAREGIPNRDDIAKVTGWNRNVVRDIQDTDISMFKVLIGQVMVGQ  (699) 

                     P  LD+ + R+K T+AAREGIP+RD +AK TGWNRN VR +QD D+S FK L+ QV VGQ 

IjCV-1 dsRNA2(126)   PGPLDRLLARDKLTSAAREGIPDRDQVAKATGWNRNEVRGLQDADMSAFKGLLEQVRVGQ  (185) 

 

DsCV-1 dsRNA2(700)   SKLTRLVKGFLMLLECMERDHIDVVLDVQNTVLYNPTQVLNSFRANGRAYVYNSKPSSSV  (879) 

                     SKLTRLVKGFLMLLECMER HIDVVL VQ T++Y P  V+ SF A+GRAYVYNSKPS SV 

IjCV-1 dsRNA2(186)   SKLTRLVKGFLMLLECMERRHIDVVLQVQQTIVYGPQNVIQSFLADGRAYVYNSKPSQSV  (245) 

 

DsCV-1 dsRNA2(880)   HTAVLWRMCGAYPPPEIRGSHIQIPADGANVFMVLEGAVPAQGQRVRLTQGLIYASIMAY  (1059) 

                     ++AVLWRMC AYPPPE+ GSHI IP+DGA+V MV EG +   G  VRLT  LIYAS+M Y 

IjCV-1 dsRNA2(246)   YSAVLWRMCEAYPPPELAGSHITIPSDGAHVVMVTEGQLTGNGGVVRLTPNLIYASMMTY  (305) 

 

DsCV-1 dsRNA2(1060)  AMDVSCTQHLQQALIIACSLQQNRYFSRVQLPAVVSVMDLMIPAFMTTSSRLDKPILSIE  (1239) 

                     AMD  CT HLQQAL+IACSLQQNRYFS+V+LP VVSV DLM+PAF   +S+LDKPILS+  

IjCV-1 dsRNA2(306)   AMDTGCTGHLQQALVIACSLQQNRYFSKVKLPKVVSVYDLMVPAFSQPTSKLDKPILSLP  (365) 

 

DsCV-1 dsRNA2(1240)  MATSVGRLRQMLMFMNVKDVLTSAELSTSRGFDPAQSMRSYMSSQAALITQMSSEISALC  (1419) 

                     MA SVGRL QML F  ++D LT+AELSTS GFDP  SMR+Y+ SQ  ++++MSS IS L  

IjCV-1 dsRNA2(366)   MARSVGRLHQMLAFTAIRDNLTAAELSTSAGFDPEVSMRAYLKSQGLIVSRMSSFISELS  (425) 

 

DsCV-1 dsRNA2(1420)  LVEAAIKMKVHEAMREDDFSDILNLSAFEGLWLCQEGTKSVKNGIISALVNGVSDLSGDM  (1599) 

                     L+EA   MK+H+ +   DF D+L++S  EGLWLCQE  K+V NG+I +LV GVSD+S +  

IjCV-1 dsRNA2(426)   LLEATSSMKIHDQLDVADFRDLLSISVLEGLWLCQEAKKTVANGVIESLVRGVSDMSQET  (485) 

 

DsCV-1 dsRNA2(1600)  CSYDIVRREMDLGRIVYDPAAMPKGAFTVGWVCVSPSIKKAVPAPRKRLSRQVTLVHPCE  (1779) 

                      +YD+++RE+ L  + +    +P+G FTVGWV V+         PRKR  + + LV  C+ 

IjCV-1 dsRNA2(486)   TTYDVLKRELRLANVAFRERDLPRGEFTVGWVSVTRLDSFKTIKPRKRTVKPIELVRECD  (545) 

 

DsCV-1 dsRNA2(1780)  TKPGSTLRVSRKKRFMRNDHSGENETSRSPTPETTIPV  (1893) 

                       P       R++RF R       +   +P   T IP+ 

IjCV-1 dsRNA2(546)   FNPRLREIGRRRERFSR------GKAPVTPPRGTQIPI  (577) 

 

 

Figure 4.1 Alignment of the amino acid sequence of DsCV-1 dsRNA 2 ORF with 

the comparable ORF of IjCV-1 dsRNA 2. Consensus amino acids are highlighted 

in yellow. 
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DsCV-1 dsRNA3(154)   KPKFEGGKTRRKETKENASVRRFTMGSSEM----LPAPTTD--LRNFIGVVVPQGHGKTM  (315) 

                     K  F   + R +    +A  R   +  +EM    +P P+ D    +F+G+V+P GHGKT  

IjCV-1 dsRNA3(159)   KEDFWADQERARAKVADAISRMKRLHGAEMPKHTIPVPSEDEVRSDFVGIVMPMGHGKTT  (218) 

 

DsCV-1 dsRNA3(316)   LAREEGWidfdslissrsldslrETAYDEIKAGRSIEDASTNFAAEARETLKLLNPDYPT  (495) 

                     LAREEGW+DFDSLIS +  + L +  Y+ I  G SI  A +    EA++TL LL P     

IjCV-1 dsRNA3(219)   LAREEGWVDFDSLISPKKRNELLDEVYERIAGGASIGCALSVLLPEAKKTLALLRPKERW  (278) 

 

DsCV-1 dsRNA3(496)   ILMCQTFSLLEAIGVDCIGAVAVRPDVVLKHNKRRQLHELLMIEKNIEEVVNYDRWDSAE  (675) 

                     +L+ Q   LL  + V+C G + +   VVL+  + RQ  E ++I KN+ EV    +  +   

IjCV-1 dsRNA3(279)   VLVAQDACLLAGLNVECAGGIVMDERVVLEACQGRQEFEEILIRKNMAEVAE-QQAGAGT  (337) 

 

DsCV-1 dsRNA3(676)   VALMEGMDDVRWYIYNICQHLGIPISQPHLYSMVDENIRSCKYKTGKYPPLTEVVSDYYA  (855) 

                     +   E  ++ R   Y IC   GI +S+P  + + D  +      T     L ++V+ Y   

IjCV-1 dsRNA3(338)   LLTSESYEETRMLAYRICIAFGITVSRPSDFGLTDPLMSQGPGLTSTKMDLEDMVTYYDK  (397) 

 

DsCV-1 dsRNA3(856)   GLIPREVVDHHVQAAGLRSYQGFGFTMNDWAKVVGHANSTRGSTTFSDIDWNAWPMSLKG  (1035) 

                     G +PRE VD+ V  +GL+SY+GFGFT N WAK +     T G  +F D DWN   MSL   

IjCV-1 dsRNA3(398)   GKVPRESVDYQVHLSGLQSYKGFGFTSNKWAKFLSKVTETIGDVSFVDADWNPRVMSLDT  (457) 

 

DsCV-1 dsRNA3(1036)  LSESLDLAQHDDIRFIIEAHKGEHERFILGLILHWKMlgltsglkskllplYAVKRVHWV  (1215) 

                          DL+ HDD+++I+ A KGEHERF+LGL+LHWK +G+  GL ++LLP Y V+R HW  

IjCV-1 dsRNA3(458)   FGSHSDLSGHDDVQYILSAQKGEHERFVLGLLLHWKGIGMHCGLGNRLLPFYGVRRCHWK  (517) 

 

DsCV-1 dsRNA3(1216)  AVFSKVRDGVLASNGLFGQPLTVEERELVISMRLLAAGEFSQLQRLLTSEQGSCPRRSPT  (1395) 

                     +V + +R+ V +S    G  LT+EER+ ++S+ LL  G  ++L+  +   + S PR +P  

IjCV-1 dsRNA3(518)   SVMANLRECVASSGTFMGLNLTMEERKHIMSLGLLVGGSLNELKGQMFGMKVSYPRIAPG  (577) 

 

DsCV-1 dsRNA3(1396)  RLIQDSASRGLDSVVFCADSHQERELAFSEMLKQSRMSSLNEVDW-----DGKLTRLQSI  (1560) 

                       +++   + LD V F  +  +   L   ++L QS +S+++ + W        +   ++I 

IjCV-1 dsRNA3(578)   LAVENKVIKQLDQVGFKFEVGRAECLVLEKLLGQSSLSTISHLVWAVGDQPSAMPLNEAI  (637) 

 

DsCV-1 dsRNA3(1561)  AKSIGKDLSLRWRDEQRGLERVSRILAGLLKRWHKACLIRDEWSDMTNALLEECSEHEAL  (1740) 

                     A S+G +L  RW D    LER+  I   L+ +W+K C++RDEWSD  N ++     +  L 

IjCV-1 dsRNA3(638)   AISLGLELCRRWGDNDSALERIPGITHKLITKWYKVCVLRDEWSDFINRIMAAEVRNFGL  (697) 

 

DsCV-1 dsRNA3(1741)  GDAIAAMLSCSIQEGSEGHDWSVRVMEALKGFVVCGLVCEGKGK---VVMQQTHKLLRPC  (1911) 

                       AIA + SC  Q G+ G +W VRV EALKGF+VC +V    GK   VV  +     RPC 

IjCV-1 dsRNA3(698)   AQAIAKICSCDPQAGTSGLEWGVRVCEALKGFIVCSIVTL-PGKLIGVVEDRATGQCRPC  (756) 

 

DsCV-1 dsRNA3(1912)  VLGMNEAEIWSKAISLNIPRGALGCFSSGISHLQLLNELCGWSTNKTVMVMEMINSSSWM  (2091) 

                     V G+ E ++W   I  NIPR ALG F   +S L L NELC W  + TV ++EM+N  SW  

IjCV-1 dsRNA3(757)   VGGIEEGDLWKAIIQSNIPRHALGVFGGTVSALSLANELCEWQDSPTVAILEMVNCHSWE  (816) 

 

DsCV-1 dsRNA3(2092)  PNMSKRATLAGLCRWRNFFTDVQERYIFEKIADSYTIRSMGRSYLKVEHRLMELISVKTS  (2271) 

                     P +        + RW    +      +   + +S++    G SY ++  RL     + +  

IjCV-1 dsRNA3(817)   PRIGPGRMATCIYRWGRVCSGKVSDAVSSFMLNSHSYSRFGHSYARIASRLEFYARLSSR  (876) 

 

DsCV-1 dsRNA3(2272)  SGGLGCGPTLYDA-KVNK-GTDGFWNGHGKIGFGRKSRMSGDPGSIADMIELFERDDGRE  (2445) 

                      GGLGC  T  D+  V K G  G W G GKI    K     D  ++A+ I  F+ D G + 

IjCV-1 dsRNA3(877)   CGGLGCHQTHIDSGSVEKIGPRGEWIGTGKI-HTLKEEKRADTTTLAEKISQFQ-DQGLQ  (934) 

 

DsCV-1 dsRNA3(2446)  QKTIAPK----SIYEVGLASLQVIRADNKSHLSRHARLLVRLA  (2562) 

                       T  PK    +I   G+    +++   KS L+ +A LL  LA 

IjCV-1 dsRNA3(935)   YGT--PKDIRLAINLCGMVVCSLLQDQGKSALNINATLLTALA  (975) 

 

Figure 4.2 Alignment of the amino acid sequence of DsCV-1 dsRNA 3 ORF with 

the comparable ORF of IjCV-1 dsRNA 3. Consensus amino acids are highlighted 

in yellow. 
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Appendix 5: Nucleotide sequences of LbMV-1 dsRNAs 1 and 2. 

1. LbMV-1 dsRNA 1 sequence 

TACGAAAAACACAATATCACCTACAGTACCACGCCGACCAGAGACAGCATGATCATCGGCAATATCGACTCCACA

TACGAGGGGCTGGTTTCTGCCCCTTGCATGAAACTCGCCCACAGTGGGGCAGCGGCTACGGCCAAGTTCGTTAGT

AGCACCGTTGTGCCGGGCGATGACAGGGCGCGAAATGTCATTTCTACTATTTCCACGCTGACTAGCAAGTGGGCA

GAGATAACTCACCTGAGCTCAAGGCATGACACGCTATGGACCGCAGTACCAAATGATTCACTTATGGATCCTGTG

ACTAACGCCCAACCAGCGGTGTTATTTCATGAAACAGAGGAAGTTGGAAGGTTCACGCCGCTTAACCTCCCACCA

ATAGCATTCAGAGGTGAAGTCATTGATGGCATGGTTACGTTGGCAAGTGAGAGCGTTGAATGCCACCAAATTATT

ACGCCGAGCCCGCAAAACACCAAGTACTCAGACACTACGCCCACGATCGCGTGCTTGATACCTAGAAGCAATCCA

CTTACGTTCACGAACGGCATACCGGTTGATGAAGCGCAAGGATTCATACGCAACGTGGTTTCAATGATCACAATT

GCGAGTTGGGCTGGAAACCTATCACGGAAACGCGGGCGTGGTTCTACGTACGCGCTTAACACAGAGGCACCTGCT

ATCGCAACTAGCCATCTGGTGCAAACGAGTGTGAGCGGCAAGGTGGACAAGCGCAACTACGATTACATGAAACAA

GAGATGACAACCTCTATCAATGACTACAAGCGTCAAGGCAAGCAAACAATGACGACAGATTCAGATCTGATAGAT

GAAGCGCTCTTCGCAGCTGCCTCCATTTACCCAGATTACTGGCAGGTTCTTTTCACCAGACACGACCCACCAGTT

GCGCGGGGTTGTGGTGGTCAAGTCAATTCAATATTTCGCAGGGCACTGGCTGCAATACCGTACAATCTTAAAGAA

AAGTGTCAACTGCTAGCAGACATATCAGCGTGCGTCGCCATGGTGCAAGGTACTTCCGATGAAGCCATGATCGAA

CACCACGTTGGTGTAGTAGCAACGCATGCTCTATACGAACCAAGGACTCTTATCGAGGCTAATGACTTCACAGAA

AGCGATGTCGTGAGCGCACAAGCTGCAGGCGTCTTTGCCTTCGAAATGGCTTACAGCAGAATGCTTAACCTAGCT

GCCACACAAACTAGTCACGTGCACTGGCAGAGGAAGCAGCACCTTAGGCAGTTGTGCGATTTCGCTGGGCAGCTC

ACTACCATTGCTGACGACGGGGTTTTGCTGAGCATTCACTCATTCATTAAAACCCATGCCTATGGCGACGGCAGT

TCACAACACGGGTATGATGAGGGAACGTTCTTCTTTAGTTCAGGACACCAAGTGCTCGAGATGTATCTTGACGAC

AAGCCTGTTTTAGCGCAAGGTATACTGCAGACTAAAGATGCTATGTCATTCGATCAGCCTCAGTCAGCCAGGCTG

AGGGAGCGGTATCAAAATTTTGACAGAGGTGAGAGTGTTTACGCTCAGTCTGTCGCTTCTAGTTATGATGATTAC

GCGGAAGGGAGGCAATTTAAAGACGGAGTGCAACTGGCGCGGGTTACGTCACCACGATCGACATTGTGCGCAATG

CTTAACCAAGTTAATTGGATAGATAAAGCAGCGGCAATCAATTCATCTCACAGGGCAGGAGCGCTAGTTCGGGAT

GGCGTGATATACGGCCAGGAAGGCAATTTGACACGCTTAGCAGTGGAGCTCAAAAGGTACGGTGTGCTAGTCATC

ATTGACGATAAGTCGTGTTTGGGCATTGGGAACACGAGGCGTGAGTTCGGCTTTAGCAGTCCTCACCATAGCGAG

CTTGCTTTCGAGCTCGCTTTCACTACAAAGACTGTGTCACATCAAGTGCAATCCAGTCCAATCATGAGTGAACTC

AAAACCCTCATAGCCGCGAGAGACGGCGTGTGGCGTGTGCTCAACGTGTTCAGAGCTTCGAGAGCACTGCACGCT

GAGAGCGGTTTCAAACCGTCTCCGAAACATTGGCTAGATAGGACACCCAGCAGCAACATGCCAATTTATGGTTTT

GCCACCTTCGACATCAGGCCGTCACACACAAAACGGCAGAGGAGCGGCTTGGTCACTAGCACCAATCCTAACGCA

TCTGTCTTCAGACCTGGGGGTTTCAGCATGAACAGGCTGATCATGCAGGCACCTGCAATTAAATATGTTCACGGT

GATGAAGAGTTGGTTTTTAGCGGAGAATGCGCTAGAATGGGCGCTGATGCAATGAAAAGCATTTCTGCGGCAGGG

CGCAAGTCGCACGCTACTGAACAGACGTTGTTGCAGAAGCTTTTCTTAAATATACTTGATAGGGCAGAACCGGAG

ATGATCAGGTACTGTTGGGGTGATATCGACAACGCGCTTAAACATGGTGAGATGTACAAGCAAAAGCTCAAATCT

ACTGAGCGAGGAACAGTGCAGCGTGTCGCATGGCATGCTTGTACGGGATTCATCGTGTTCACGATCAAGGTAATG

ATAGCACGGGTATGCGAGAATGAGGTTGGCGACATGCAACCAAGCAAACGTCTAGCCTTGTGCGAGCGCGTGACA

GCACATCTCGATGCACGTCAGCAGTACGTTGCGTACGCGCTGATCGCTGCTGACGCCAGATGGGCCAACCCTTTC

ATGATGGCACACACATACGCTATGCACCTGGCGACCCGAGCTAATGATGTTGAGACAAACAACAAGCGAATCACG

AGAGCTCTCAGTACGCCTATAGCTCAGAAGAAGAACCCAGTGTGTAGGAGAACTGGCAGCAGATGTTACTCAGAC

TGTCCAGTGGACGGGTCGGCCACACACACCTGCGCTGCTTGCGGCAAGAACTACAAGTGCAGCTGGTGCAGTGAA

GCAATGCGCACACTTGGCATAGTTGACACAACACCACGGGCAGCTGTTGCGAACTCAAGCCGTTTCGAGGCTTAC

CAGATTGCGACTGAGGGCTACGATTCTAACGACAGCGATGATGCGGAAGAGCAAGATATTATGGAGGTGCTAGGT

AGAGAACAACTCGCCGGCAACGAGGTTGATGAGACAGCGAGGACTAAAGCGCACAGGCGGTGTTGTGAAGCCAAT

GCGCCTCTCTTCGATAAACACGAACTGTACTACCTTTCCGTGGGGCTATTGCCGGCAGAGTCAGACTATATGGAC

GAGGAGATAATTATCAACACAGACAGTGGTGGGCTTACAGCGACCATAGTAGCAAGTGATGAACAGGCTACTCAG

ATACTCGAAGACGTCAGGGCGATCGAGGGTGATGAGACCTCAACATCAGAGCGAACCAGTTCGTCTAATAGACCA

ACTTGGGCGGAACAAGTAGAAGAGGATATTCAATTGTTTGGCATGCGCAGGGGCTCCGAACTTAAGATCAAACCT

CTTACGCCAATCAGGAAAATAGAACGCCCTCAAACAGCGCCAGATGTCGAGACTAGCGCGTCGACACTCACGGAA

GTTGCAGCGAAAGCCCACGAGGAGGCATTCTCTTGTCACGGACTAGATAGTTGCCAGTACACTGACGCTGCTTTC

ATAAGCGCAATTGCGGGAGATGGAGTCGATACAATCGTAGGAGGTCAAAATAAAGACGGACTGGAAAGGCTGGTC

GGACCTAGCTCCCACAATGACTGCAGTTCAGTCAGGAAAGACGGTACGAACCACATGTGTATACTAGGCGATAGG

CGGTTGCAAACGCGGCCGCTGCGCACATTGTATGACAGTAGGCATGGAATCAAGCGACCTAAATTTTTCGCTGAG

ACCAATGGTGCGACGCAATGTAATACAGATCGTGATGTATTGGCCATATACTCAGATATACTAGCCATGTGCAGA

TGCGCGGGTTGCGAATCTGCTAGGCTGGTGACTAACAAACGGGCTTTGGCTCGCAACGAAGTAGATGGCCCACTA

TGGCACTACGACTTGCACGATGTGCTTGAAATGAAATTAAAACCAAAAGGTGGGCAAGCGAAAACGGCTTGGGGT

GACCTCTGCGCAGCATATGGCATGGATGGTCTATTACTGTACCATAACTCCTGGGTGGCAGCAGCACTCGGCGTC

GTCATAAAACATGGTACAGACAATTCACGCTTGGAAGACGTGATGGGAATGAGGAGCATTGGCATAACCGGTGAC
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CCTGTTAACATGAACTCCGAAGCTGTTGAACTAGGTTACAGATATGGGCCACCTAAAATCATAAGTAACGGGGTA

GCCACCAACGTGATACACCAATACGTCTGCAGGCAGGTCGGGGCCAAAGAGCACCAGCATACTGCAGGGAAGAAG

GTTACTCCCTCTCTGCCGAACAATACAGTCGTCCGCGTGCACAAAAGTGGTGCTAGGTGCCACGACATGCGCTTG

GCAGTATTACAAAACATGAGCGGCATGCTTCACGAGGCATGCTACGATGAAACTTTAGCGAAACTGGTGTACTCA

CGACAAGGCATGGACATCAGTGGAGCGCAATTTGGAGACCTTAACCACTACAACATAAGGTATGAAGAAGACAAA

AACGATGGACGTCTGACCATCGAAATCACTATCAAGAGCTCCTGCGATACAGCCGGTATGCAGAAGGCCACGGGC

GTGATACAGAGCGACAAAGTTAGAGCAGCAGTGCTAAAACACTGGGGTAAGGAAACCTTGGCACTACTAGTCGTA

TGATTACACACACCCGCAACATGCAGCACGCTCACTATAACCGTGCGCAAACTAATGCCGTAACCAAGGGAAGGT

TGCGGCAGAACGACATTCGCAGGCCGTTGGCACGCCTGTAGTCTTACAAATCACTGCCAGTCCATCTATGATGGT

CCCCCATGGCTCCCAAGTGGTGGAACCCGAAAGGGTGAGAAC 

 

2. LbMV-1 dsRNA 2 sequence 

CACGATTTACTGACATATACCAATAGTACATCACACATTTGAATGGCACACCACGAATTCATAAGCAAGGCGTTC

GACGCAGGCAACGAAGGTACGTCACTGACGCTTGAAGATGGCACTTTCGGTGAGACACCAGGCGAGGACAGGCGC

AACATCGCGAAGACGGCAAGGTCCAATCCAGGACAGTGGGAAATGTACGACCCCTCTAAGTGGGGAGAGCTACAT

GGCGTTTTCTCTAAGCTGACGAATTCGGAACTAGCCACAGGGAGGGCGGTTGTACCTGAACACGTGGTGAAGACA

CTTGCCAGCTTGGGGATATCACCATCCAACCTCATGGGTGACGTCCAGCCTAATTACGTTATCAAGGGCGATTCC

ATTTTCGAGCTCAATACAACTGCTGTCGTAGCTAATTTCAGAGAGTGGATTGTCAAGGCGGCGATCACGAGACAT

AACCACAGAAGAGGCGACAACGCCGTTTCTGAAGGTATGCCTGAAAACGCGTACGTCTACACACAGTACGCACCT

GAATCAGCAAAGGTAAGCGCTCTCTGCAATGACATCGCGAGACCGAGCATGGATGATGTGCTTGACGCATGCAAT

CTGATCGCATGCGCTAGGTATAATCATGACAACGGTCTCCGCCAGGATGCTGCAGCCATAGTCGCCACTCACATC

GCGAGGTGCAGAAAGACGATCAGCAGGTTCAAGATCTTGTCACGGCACGGATTGCAGCATACGATAATACGCAAT

GACCTAAGCGCACTAGAGAGGTTGAAAGAACAACAAGCATCCGTGAATGATGACATGCACGATTTCTGCATTGCC

AATAAGAACATAATAGATGCGCACTTCGAAGAAGCAAGGAAGGTGTTCGTAAGATACCAGGGGTTAAAAGGAGAC

AAGTCACCTGAAGTCACCGCGCTGATCAAACACATCAGCAAGTTCGGCGGGATGAGCGACAAAGCGACGGTAGCG

CAAGGGAGTGCTGGGGTTATCGATAGCAATTTTTTGCGCTCACAAGCACATTGGTGGCGTTGGGACGTTACTGGG

TGGATGTCAGCGATCAGGTGGGCTATAACTCTCGCACGGGACGCGAATGAAATGCAGCTCAACAAGGACGAACAA

GATGCCCTGACACTATTTGCCTTCTCTAGAAGCACTTATAGGCGCTTTTCAGGTGTTGATGCAGCTTTGGACTCA

ACTAGAGACATTGCAGCATCAGAAGTGACGCAAGCACACAGCGTACCGATTTCGTATAATGATAGGATGAGCCTC

ATCATCACCGTGATGGACGACCTAGAATATTCAGTGCAACGCATGCGCGAGCACGATAGTTTGCACTCGGCATAC

ATCAAAACTTTGAGATACGTCATTTCTCAGTGCGGAGGGCGTTATGCTGACAATGCGCCTGTATCTTTCAAGAGC

GTTATAGGTAAGCAGTTACTGCACCTACCGGCGATTAGGAGTGATTGCAGGACAGGCGCACTGTACGGCAAGGCA

ATGATAACCGACACGAGCGCAACGGTGGTGCCAACTAGCGCTGAAGAAGCAGACTGTGTGCTGCTGCATGCATTT

GCAGGGATGAAAGCTGACATCCTACAATCAGTCACGAGGGGCGGTGAAAAGTACTTGATGATACGCCAAAACATT

GAAGGCGTCAACATGACGTACGCTGCTGCAACAACAAATAAGGGAGTAGGTAGAGATAAGGCATGCATGTATCTT

TTTGGCGTGCACTTCCGAGAAGCGGAAATAAACTATCCGTTGCCACTTGTTGAGATGTTGTCACATTTTAGTGCG

AACTACACGGCAATGAGCGCTCAAGAGAGGGCTGAGCGAATCAAGGTAATAAGCGACCCGGTGAGCACGCAGAAG

CACCACAGACATGTCTCCATGATAGCAATGCTAGCGTTGACAGCTGGGTCATGGGCACCGTGTATGGACAACATG

CTTATGTGGAGCGACGTGACCAGCACATTCGTCACGGCCACGGCATTAGCGATGTCGTCATTGCCTCCGGAGCTA

TATTGCTTAATGACCAGCTGGACAGGGTGGGGTGAGAGCAAAAACATGGCAGAGTATGTCAAGAACGCTTCAAAC

TTGTCTACCATCCTAAAGAGTTTAGACAATCAGATTGTACTTGGTGATGAAGAGCTTGATTTGGCACCACTGTTC

GAGTGGAACGTACTTAATCACAGAGCGGTCACGCCAGGGCTAATGGATGATGAGATATTAGACAGGAGAGATGAA

TCCCAGAAAATTAACATCACAGAAGAGGAAGCCTCAGCAGAGATAGAACTATTCTTCCAAGATGTCGCAGGCATC

TTAGACTCGCATACCAAGGCAGGTCAACGATCTCCACTGTTCACGAAATGGGAAGATTTCTACTCGAACAGAGTG

AATTTGACTCCGTCAGGGTCAGCATTCACGCTGCATGAGGAGTTCATGACGATGAGGCAGACATTGAAGGACAAT

GGCGTGAAAGATATCACGAAGACACAGGTCATGGCGGGAGCGAGAAATGACATCACGCTGAAGGAAGTGCTCAAC

ACTGAGCCTGAGATCATCGCGCAGACGTCATGGAAACGCGAGTGGTCTAAGGTGAGAGCATTATTTGCCGCACCA

ACAGAACACTGGCTGCCTTCTGCTTTCGCATTGTCAACCATAGAAGAGTACCTGCCAAGTGACTGTCCTATAGGC

AAAGCTGCGGACGCACACAATGTGTGCAAGAGAGTGATGAAAATGTCTGAGAGAGGCGTTGTTGCGTGCCTGGAC

GGGAAAAATTTCAATATATTCCACAGGTATGAACTAATGGCTATGGTGCCTCAGATTGCCAGTAAGGTTTTAGGG

AATAGGTTGTCAGCGGAACAGCACGAAGCACTAGCCTGGTTACACGAAGCTGACAAGGTACAAAAAGTGATAGTG

AGTAGAGCGGAAGTGAGCGATGCGTTGTGGGTTGAAGGGACTCGTTCAGGCTGGATTAACAAGCGGTATAAAGCT

GACGGAACAGAGTATTGGCTTGCAGACTTGAAACTGGGTATGTTCTCAGGTATTAGGTACACGATGTTCTACAAC

ACTATTTTCAATAGAGTATACTATCGAGTGGCGGCAAAGAGGTGCGGAGTCAAGTCCGAATCTCTGCATTCAGGC

GATGACGTATTTGCGGTGTTCAAAAGCTACAGTGACTGTTACAAAATGAAGAAAGCAATGTTCGACATCAATTAC

GTGCTACAGCTGGCCAAGTGCTTCATACAGGGTGTGAGGGAATTTCTTAGAATTTCACACAAAAACGCGAACACG

TCACAATATCTCGCCAGGTCCGCAGCAACTTGCGTGCACGGTAGAATTGAAGCCAGCGCACCTACGGACTTCACC

GCATATGCTGGAGCCATCGCGAGGCGTGCAGCGGAGTTGATAGTACGCCATGCGAGCAAGAGGGTGATCATTGCG

CTGCAAGTATTCCAGATCAAAGCGGCGTGTGCTAGATGGGCTGTCACAAATGCGACGTGGCGAGCGTTCATAATG
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ACACCACACATTATGGGCGGTATGTCAGCACGTAGAGTCAGGGATGGCGTATGGGATGGGATATGCCTCGACAGG

AGCGCCCAAACAAGGGGTGATACCGTCCAATATTTAGCTCAGTTGCCGGGAGTGAAGGAACTGGCAGTCAAATTG

GTGGAAGCCCTTAAAATCAAGAAATATCATAACAGGGTTGCCGAGGCTGTAGCAGCTGCAATTGCCCCAAAAGGC

GTAGTCATGAATTACGGACTCGTGATGCGATGGATGACGCGCGATGACCTGAAACACCTCATCAGTGTGACTGGG

GCTTTGAAACACATCAAGCAAGGTAAAGAATTCGTACTGGCGAAAAGCGCAGGGCTGTTTAACACTCTAGCAATC

AATGATCATTACTGGGGGGATATCAGTGGCGTGCTTAAAGGCATAGCGACTACGTGGCATTCAAAAGCCCTGGCA

TTCGCATTGAATGATAGGACAGAGTACACCGAACCCGCGAAGCACTGGAATGCCTACACGCTCGACGAAATTGTG

CACGATGAAACCGCAATCACTGCCATTTACGAAGCGTTCTACATGGCAGTGTTTGAGCTGAGACCGACACCGCTA

ATCGTGTCGGTCAGAGCATAACGATACGACTGCTGATTGCGAATACGGGGTCATGTCGAAGAGGCAAGGCGCAGT

TGGCAATCAGCTTGCGTAGTGACAAACTCGGCAGGTGCACTGCGCAGACAATAACGCAGGCTCAACGGAGCGGAG

GTAGTACGATAAAACAAAAAACAAAAATTATGACAATAATTCAATTATAATAAAAACATTTAAAAATGCTGGAGA

CTAGGGCAGTCAAAGGCAGAACGACATTCGCAGGCACTTGACACGCCTGTAGTCTTACAATATACGTCAGGCTGC

TTCGCAGTCCCCCATGGCGCCCAAGTGGTGGAGCTTTAATTAGCGAGAACGAGACTGTATATGCG  
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Leptosphaeria maculans and L. biglobosa are closely related plant pathogens 

responsible for economically important diseases of oilseed rape (Brassica napus) 

worldwide. Mycoviruses are often associated with hypovirulence and can be used as 

biocontrol agents against plant diseases of fungal origin. The aim of the project is to 

assess the incidence of double-stranded (ds) RNA mycoviruses in L. maculans and L. 

biglobosa and to investigate effects of any dsRNAs on the growth and pathogenicity 

of the fungus. Forty-eight Leptosphaeria isolates were screened in total and five L. 

biglobosa isolates were found to possess dsRNA elements. Three different mycoviral 

dsRNAs investigated from L. biglobosa isolate C-Rox 12.8.1 were approximately 

5000, 4500 and 4000 bp in length, respectively. Cloning, sequencing and sequence 

analysis of dsRNA 2 revealed that it is most closely related to the RNA-dependent 

RNA polymerase region of an Amasya cherry disease-associated mycovirus and has 

greatest similarity with members of the family Totiviridae. This constitutes the first 

report of dsRNA mycoviruses in L. biglobosa. The complete molecular 

characterisation of these dsRNAs, together with pathogenicity assays in order to 

detect possible hypovirulence, is in progress.  
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