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Abstract: This study aims to design and optimize chitosan-coated bilosomal formulations loaded
with psoralidin (Ps-CS/BLs) with improved physicochemical properties, oral bioavailability, and
boosted apoptotic and necrotic effects. In this regard, uncoated bilosomes loaded with Ps (Ps/BLs)
were nanoformulated using the thin-film hydration technique using different molar ratios of phos-
phatidylcholine (PC), cholesterol (Ch), Span 60 (S60), and sodium deoxycholate (SDC) (1:0.4:0.2:0.125,
1:0.4:0.2:0.25, and 1:0.4:0.2:0.5, respectively). The best-optimized formulation with respect to size,
PDI, zeta potential, and EE% was selected and then coated with chitosan at two different concentra-
tions (0.125 and 0.25 w/v%), forming Ps-CS/BLs. The optimized Ps/BLs and Ps-CS/BLs showed
a spherical shape and relatively homogenous size with negligible apparent agglomerations. Ad-
ditionally, it was demonstrated that coating Ps/BLs with chitosan has significantly increased the
particle size from 123.16 ± 6.90 in the case of Ps/BLs to 183.90 ± 15.93 nm in the case of Ps-CS/BLs.
In addition, Ps-CS/BLs exhibited higher zeta potential (+30.78 ± 1.44 mV) as compared to Ps/BLs
(−18.59 ± 2.13 mV). Furthermore, Ps-CS/BL showed enhanced entrapment efficiency (EE%) of
92.15 ± 7.20% as compared to Ps/BLs (68.90 ± 5.95%). Moreover, Ps-CS/BLs exhibited a more
sustained release behavior of Ps compared to Ps/BLs over 48 h, and both formulations were best
obeying the Higuchi diffusion model. More importantly, Ps-CS/BLs displayed the highest mucoad-
hesive efficiency% (74.89 ± 3.5%) as compared to Ps/BLs (26.78 ± 2.9%), indicating the ability of
the designed nanoformulation to improve oral bioavailability and extend the residence time inside
the gastrointestinal tract upon oral administration. Moreover, upon evaluating the apoptotic and
necrotic effects of free Ps and Ps-CS/BLs on human breast cancer cell lines (MCF-7) and human lung
adenocarcinoma cell lines (A549), there was a dramatic increase in the percentages of the apoptotic
and necrotic cell compared to the control and free Ps. Our findings suggest the possible oral use of
Ps-CS/BLs in hampering breast and lung cancers.

Keywords: psoralidin; chitosan; bilosomes; oral delivery; apoptosis; breast cancer; lung cancer

1. Introduction

Solid tumors, including breast and lung cancers, are the leading reason for mortality
all over the globe, with a tremendous annual increase in new incidence cases. Within
the coming 20 years, a three-fold increase in new cancer-diagnosed cases is expected [1].
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Presently, synthetic chemotherapeutics are widely involved in solid tumor therapy together
with radiotherapy and surgical operations. For instance, platinum-based antitumor drugs
(such as cisplatin, carboplatin, oxaliplatin, satraplatin, and nedaplatin) [1–6], lonidamine,
doxorubicin, and methotrexate [7] are commonly used chemotherapeutics in treating solid
tumors. Despite their therapeutic anticancer effects, clinicians and patients still suffer from
treatment failure of chemotherapeutic agents (even the latest generations) due to their
systemic toxicity and cancer cells’ resistance [8]. Thus, phytochemicals developed from
natural extracts are recognized as a promising source of more effective and safer anticancer
drugs than synthetic ones. Several studies have reported the potential applications of
phytochemicals in cancer therapy [9–11], such as Peganum harmala L. seeds extract [12], [13],
betaine (extracted from wheat germ and spinach) [14], fermented Egyptian rice bran
(Oryza sativum) [15], and ozonated olive oil [16]. In addition, psoralidin (Ps) is a natural
phenolic coumarin phytochemical (Figure 1) extracted from the seeds of Psoralea corylifolia L.
grown in various areas in India, Europe, and Asia [17].
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Figure 1. Chemical structure of psoralidin.

Previous studies reported the broad therapeutic properties of Ps, such as having an-
timicrobial, antioxidant, antipsoriatic, anti-inflammatory, and antidepressant activities [17].
More importantly, several studies reported the anticancer activities of Ps against numerous
cancer cell lines, including breast, esophageal, prostate, colon, and lung cancers [17,18]. Ps
exerts its antitumor effects via (i) inducing cellular apoptosis, (ii) modulating autophagy,
(iii) promoting DNA aberrations, (iv) decreasing tumor cell proliferation, and (iv) gen-
erating oxidative stress [17,18]. Despite the promising anticancer effects of PS, no Ps
products are found in the market aiming at cancer treatment. This is due to its hydropho-
bicity and poor pharmacokinetic properties, limiting its clinical translation [17]. Thus,
efforts should be exerted to nanoformulate Ps into a suitable nanosystem which would
address the drawbacks hindering its clinical applications. Several nanocarriers are in-
volved in the nanoformulation of different phytochemicals to overcome their limitations
and improve their antitumor activities, including vesicular nanocarriers [19,20], polymeric
nanoparticles [21,22], supramolecules [23,24], stimuli-responsive delivery systems [25],
and mesoporous silica nanoparticles [26]. Vesicular nanocarriers, such as liposomes, nio-
somes, ethosomes, and bilosomes, are promising lipid-based nanosystems for improving
hydrophobic drugs’ therapeutic activities [27]. Bilosomes (BLs) are modified niosomal
nanovesicles comprising lipid bilayers containing amphiphilic bile salts (sodium deoxy-
cholate), cholesterol, and surfactant [28]. The inclusion of bile salts was reported to prevent
the degradation of the nanosystem in the gastrointestinal tract environment while improv-
ing the intestinal membrane’s penetration [28]. The presence of cholesterol is essential
to increase the drug’s entrapment efficiency, enhance the rigidity of the bilosomal walls,
and promote the intestinal membrane’s permeability [28]. The unique composition of BLs
makes them perfect candidates for the oral delivery of various hydrophobic drugs, such as
apigenin [29] and quercetin [30].
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Chitosan (CS) is a natural biodegradable, biocompatible mucoadhesive cationic poly-
mer widely used to modify the surface of several nanocarriers via the coating process [31].
CS Coating of the surfaces of different nanocarriers is achieved by the electrostatic inter-
action between the positively charged CS and negatively charged nanocarriers. Coating
nanocarriers with CS offers several advantages, including improving stability, extending
drug release rates, enhancing membrane penetration, and impeding drug leakage out of
the nanovesicles [31].

To the best of our knowledge, no previous studies presented the encapsulation of Ps
into nanocarriers to overcome its drawback, except one study that reported the design
of poly(methacylic acid-co-methyl methacrylate)/chitosan nanocapsules loaded with Ps
aiming at increasing its water solubility and absorption [32].

In this study, we prepared psoralidin (Ps)-loaded bilosomes and chitosan-coated
bilosomes loaded with Ps, and the physicochemical characteristics, in vitro release manner,
and mucoadhesive efficiency were compared. The selected chitosan-coated Ps bilosomes
were assessed for cytotoxic, apoptotic, and necrotic effects in the human breast cancer cell
lines (MCF-7) and human lung adenocarcinoma cell line (A549).

2. Materials and Methods
2.1. Materials

Phosphatidylcholine (PC) and cholesterol were purchased from Corden Pharma
(Plankstdt, Germany). Span 60 (S60) and low molecular weight chitosan (CS) were pur-
chased from Biosynth Carbosynth (Berkshire, UK). Dulbecco’s modified Eagle’s medium
(DMEM) with 4.5 g/L glucose, 0.05% Trypsin, and phosphate-buffered saline (PBS, pH 7.4).
Streptomycin, penicillin, fetal bovine serum, trichloroacetic acid (TCA), Dulbecco’s modi-
fied Eagle’s medium (DMEM) SRB, and tris(hydroxymethyl)aminomethane (TRIS) were
obtained from Lonza, Basel, Switzerland. Dimethyl sulfoxide (DMSO) was obtained from
Serva (Heidelberg, Germany). Annexin V-FITC/PI Apoptosis Detection Kit was purchased
from Elabscience (Wuhan, China). MCF-7 and A549 cell lines (Cat No. HTB-22) were
purchased from ATCC (Manassas, VA, USA). Sodium deoxycholate, Psoralidin, and all
other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of Uncoated and Chitosan-Coated Psoralidin-Loaded Bilosomes

Uncoated psoralidin-loaded bilosomes (Ps/BLs) were developed using the thin-film
hydration approach [33] with slight modifications as presented in Scheme 1. Phosphatidyl-
choline (PC), cholesterol (Ch), Span 60 (S60), Sodium deoxycholate (SDC), and psoralidin
(Ps) (in ratios presented in Table 1) were dissolved in a chloroform:ethanol mixture (1:1). A
Laboratory 4000 rotary evaporator (Heidolph Instruments, Schwabach, Germany) equipped
with a vacuum pump (KNF Neuberger GmbH, Freiburg, Germany) was involved in evap-
orating the organic solvent under reduced pressure for 1 h at 50 ◦C, forming a thin film.
Then, the dry film was re-hydrated under normal pressure at the same temperature for 1 h
using phosphate buffer saline (PBS, pH 7.4). Afterward, The dispersions were ultrasoni-
cated for 10 minutes in a bath sonicator (Elma Hans Schmidbauer, Singen, Germany) for
further reductions in particle size. The prepared suspensions were left at room temperature
for 45 min before being stored at 4 ◦C for further investigation. Empty bilosomes were
prepared using the same protocol without adding the drug.

Chitosan-coated psoralidin-loaded bilosomes (Ps-CS/BLs) were generated by drop-
wise addition of two different concentrations of chitosan (0.125 and 0.25%, Table 1) prepared
in 1% v/v glacial acetic acid, using a syringe, to an equal volume of Ps/BLs with continuous
stirring (Scheme 1). Then, the mixture was magnetically stirred at 200 rpm for 2 h at room
temperature. The 2 prepared formulations were stored at 4 ◦C for further investigations.
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bilosomes loaded with psoralidin (Ps).

Table 1. The particle size, PDI, zeta-potential, and EE% of different uncoated and chitosan-coated
bilosomal formulas. All measurements were carried out in triplicate, and the data are expressed as
means ± standard deviations.

Code
Molar Ratio Concentration

(mM)
Concentration

(% w/v) Size (nm) PDI Zeta Potential
(mV)

EE%
PC Ch S60 SDC CS

B1 1 0.4 0.2 0.125 - 118.29 ±10.23 0.12 ± 0.04 −12.34 ± 1.93 50.10 ± 3.94

B2 1 0.4 0.2 0.25 - 123.16 ± 6.90 0.21 ±0.05 −18.59 ± 2.13 68.90 ± 5.95

B3 1 0.4 0.2 0.5 - 175.34 ± 9.29 0.29 ± 0.09 −19.34±3.61 59.17 ± 4.23

B2-CS1 1 0.4 0.2 0.25 0.125 150.18 ±12.42 0.23 ± 0.2 +21.89 ± 4.98 88.96 ± 8.65

B2-CS2 1 0.4 0.2 0.25 0.25 183.90 ± 15.93 0.24 ±0.3 +30.78 ± 1.44 92.15 ± 7.20

Abbreviations: PC: phosphatidylcholine, Ch: cholesterol, S60: Span 60, SDC: sodium deoxycholate, and CS:
Chitosan.

2.3. Characterization of the Designed Ps/BLs and Ps-CS/BLs

The particle size, polydispersity index (PDI), and zeta potential of Ps/BLs and Ps-
CS/BLs were determined using a Zetasizer Nano ZS equipped with a 10 mW HeNe laser
(Malvern Instruments, Worcestershire, UK) at 25 ◦C. All measurements were carried out in
triplicates, and three independent measurements’ standard deviation (SD) was estimated.
Surface analysis of Ps/BLs and Ps-CS/BLs was carried out utilizing transmission electron
microscopy (TEM) (JEOL-JEM 2100 electron microscope, Musashino, Akishima, Tokyo,
Japan) operating at an acceleration voltage of 200 kV. Bilosomes, diluted 1:5 with deionized
water, were stained with 2% aqueous phosphotungstic acid and then dried over a carbon-
coated copper 200 mesh grid for imaging.

2.4. Entrapment Efficiency (EE%)

The indirect method was adopted to study the EE% of the loaded Ps from the different
uncoated and coated bilosomal formulations (Table 1) [8]. The free Ps was separated
by centrifugation at 12,000× g rpm and 4 ◦C for 3 h (Hermle Z 326 K, Labortechnik
GmbH, Wehingen, Germany). Then, the supernatant was separated, and the unloaded
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Ps was measured employing an ultraviolet-visible UV–Vis spectrophotometer (Carry 60
spectrophotometer, Varian, Palo Alto, CA, USA) at 380 nm. Equation (1) was adopted to
estimate the EE%.

EE% =
Initial amount of Ps− the amount of free Ps

Initial amount of Ps
× 100 (1)

2.5. In Vitro Release Efficiency Percentage (%) of Ps from Ps/BLs and Ps-CS/BLs

The in vitro release percentage (%) was performed to investigate the release behavior
of loaded Ps from the different uncoated and coated bilosomal formulations. The dialysis
membrane (cutoff molecular weight, 12–14 KD) approach was used for this study. A
specific volume of the bilosomes was transferred into a dialysis bag, then dipped into a jar
containing phosphate buffer saline (15 mL, PBS, pH 7.4) and Tween 80 (1.5%) to improve
the solubility of the released Ps. The jar was placed in a shaking incubator, rotating at
200 rpm at 37 ◦C. A 1 mL aliquot of the released content was retrieved at designated time
intervals and immediately replaced with an isovolumetric fresh buffer solution to achieve
sink conditions. The released Ps was quantified using an ultraviolet-visible (UV–Vis)
spectrophotometer (Carry 60 spectrophotometer, Varian, Palo Alto, CA, USA) at 380 nm.
The release efficiency % was determined using Equation (2).

Release E f f iciency % =
Amount o f released Ps

Initial amount o f loaded Ps
× 100 (2)

The study was conducted in triplicate, and the standard deviation (SD) of three
independent measurements has been estimated. Then, it was graphically plotted as the
release efficiency (%) versus time.

2.6. Release Kinetics Study

The release efficiency (%) values obtained from the in-vitro drug release study were
further analyzed using various kinetic models to investigate the Ps release pattern from
the uncoated and coated bilosomal formulations. In this regard, five drug-release kinetic
models were investigated: zero-order, first-order, Higuchi model, Korsmeyer–Peppas, and
Hixson-Crowell kinetic models, as previously described based on the following equa-
tions [34,35]:

C = Kot (3)

Log(100− C) = −K f t/2.303 (4)

C = KH
√

t (5)

C = Kktn (6)
3
√

W0 − 3
√

Wt = K
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t (7)

where C is the cumulative % drug released at time t, K0 is the zero-order rate constant, Kf
is the first-order rate constant, KH is the Higuchi constant, KK is the Korsmeyer–Peppas
constant, n is the exponent that describes a particular diffusion mechanism, W0 is the initial
amount of drug in the system, Wt is the remaining amount of drug in the system at time t,
and Kß is the Hixson-Crowell release constant.

2.7. Mucoadhesive Efficiency (ME%)

The mucoadhesive study was conducted by adopting the adsorption techniques using
mucin, as described previously, with slight modifications [36]. The unloaded Ps, Ps/BLs,
and Ps-CS/BLs were mixed and vortexed with standard mucin solution (0.5 mg/mL) in a
molar ratio of 1:1 and then magnetic stirred at room temperature for 2 h. Then, mixtures
were centrifuged at 6000× g rpm for 2 h, and the supernatant was separated.
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Then, mucin concentration was quantified spectrophotometrically, and the concentra-
tion of mucin adsorbed was determined according to Equation (3).

ME% =
Initial concentration of mucin− the concentration of free mucin

Initial concentration of mucin
× 100 (8)

2.8. In Vitro Cell Viability Assay
2.8.1. Cell Culture

Human breast cancer cell lines (MCF-7) and human lung adenocarcinoma cell lines
(A549) obtained from American Type Culture Collection (University Boulevard, Manassas,
VA 20110) were used in this study. Cancer cell lines were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM; Lonza, Switzerland) supplemented with 4.5 g/L glucose,
4 mmol/L l-glutamine, 10% fetal bovine serum (FBS), 100 mg/mL of streptomycin, 100
units/mL of penicillin, and MycoZap (1:500; Lonza, Switzerland) at 37 ◦C in 5% CO2
atmosphere. The cells were passaged upon reaching 85-90% confluency, as previously
described [37,38].

2.8.2. Sulforhodamine B Colorimetric Assay

The Sulforhodamine B (SRB) cytotoxicity assay was used in order to assess the impact
of empty bilosomes, Ps, and Ps-CS/BLs on the cellular viability of MCF-7 and A549 cell
lines. In a 96-well plate, 7000 MCF-7 or A549 cells were seeded and incubated in full DMEM
for 24 h. Cells were then treated with 100 µL free DMEM containing various concentrations
of empty bilosomes, Ps, and Ps-CS/BLs (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, and 300 µg/mL).
Forty-eight hours post-treatment, cells were fixed using 10% TCA and incubated at 4 ◦C for
1 h. The TCA solution was then removed, and the cells were washed with distilled water
five times. Then, 70 µL SRB solution (0.4% w/v) was added and incubated in the dark at
room temperature for 10 min. Treated wells with SRB were then washed thrice with 1%
acetic acid and allowed to air-dry for 24 h. Then, 150 µL of TRIS (10 mM) was added to
solubilize the protein-bound SRB stain. Control groups were cancer cells cultured in serum-
free media treated with the vehicle for all trials. The absorbance was measured at 540 nm
using a BMG LABTECH®-FLUOstar Omega microplate reader (Ortenberg, Germany).

2.9. Flow Cytometry (Annexin V Apoptosis Assay)

Cellular apoptosis is investigated using an Annexin V-FITC apoptosis detection kit
(Abcam, UK) coupled with two fluorescent channels flow cytometry. GraphPad Prism
was used to calculate IC50 values for the Ps and its bilosomal formulation based on the
findings of the cell viability assay. As a result, the IC50 values were employed to treat
MCF-7 and A549 cells for 48 h. Post-treatment of tested formulations, 100,000 cells were
collected by trypsinization and washed twice with ice-cold PBS (pH 7.4). Then, cells
were incubated with 0.5 mL of Annexin V-FITC/PI solution for 30 min in the dark at
room temperature according to manufacturer protocol. After the staining procedure, cells
are injected via ACEA Novocyte™ flow cytometer (ACEA Biosciences Inc., San Diego,
CA, USA) and analyzed for FITC and PI fluorescent signals using an FL1 and FL2 signal
detector, respectively (λex/em 488/530 nm for FITC and λex/em 535/617 nm for PI). For
each sample, 12,000 events are acquired, and positive FITC and/or PI cells are quantified
by quadrant analysis. The experiment was repeated thrice, and the obtained data were
analyzed using ACEA NovoExpress™ software (ACEA Biosciences Inc., USA).

2.10. Statistical Analysis

All presented data are shown as mean ± standard deviation. The unpaired Student’s t
test (parametric and two-tailed) was used to compare the two groups. One-way ANOVA
was used to compare more than two groups. All experiments were performed in triplicates
and repeated at least three times. p-value < 0.05 was considered statistically significant. All
the data were statistically analyzed using GraphPad Prism 5.00 software.
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3. Results and Discussion
3.1. Average Diameters, PDI, Zeta-Potential, and Entrapment Efficiency (EE%)

Different ratios of phosphatidylcholine (PC), cholesterol (Ch), Span 60 (S60), and
sodium deoxycholate (SDC) (1:0.4:0.2:0.125, 1:0.4:0.2:0.25, and 1:0.4:0.2:0.5, respectively)
were used to design the bilosomes loaded with Ps (Ps/BLs). The best-optimized formulation
concerning size, PDI, zeta potential, and EE% was selected for further coating with chitosan.

In this context, the average particle size, PDI, and zeta potential of the different
bilosomal formulations were detected by the dynamic light scattering, as presented in
Table 1. Ps/BLs fabricated using PC/Ch/S60/SDC in a ratio of 1:0.4:0.2:0.25 (denoted
a code of B2 in Table 1) had the lowest average particle size (123.16 ± 6.90 nm), PDI
(0.21 ± 0.05), and outstanding zeta potential (−18.59 ± 2.13 mV), as compared to the rest
of formulations. The small particle size of Ps/BLs (B2) would enable the passive uptake
of the bilosomes in cancer cells with leaky vasculature and poor lymphatic drainage [39].
Furthermore, it was revealed that B2 had the highest EE% (68.90 ± 5.95%) as compared to
the other 2 formulations (B1 and B3), as presented in Table 1. This improved EE% of B2 is
due to its higher surface-to-volume ratio resulting from its smaller particle size. The high
EE% is an essential factor that enhances the anticancer activity of the formulation.

Based on the above findings, the selected optimized formulation (B2) was coated
with chitosan at 2 different concentrations (0.125 and 0.25 w/v%, B2-CS1 and B2-CS2,
respectively). A significant increase in particle size, zeta potential, and EE% (p < 0.5) was
observed (Table 1).

It was revealed that coating B2 formulation with either 0.125 or 0.25 w/v chitosan
(B2-CS1 and B2-CS2, respectively) has significantly increased the particle size (p < 0.5) from
123.16 ± 6.90 to 150.18 ±12.42 (B2-CS1) and 183.90 ± 15.93 (B2-CS2) nm, respectively. As
previously reported, as the particle size increases above 500 nm, the particles would enter
the lymphatic drainage system, while particles below 500 nm transport their payloads inside
the cancerous cells via endocytosis. In addition, the high surface area of the nanoparticles
(<500 nm) increases the absorption of the loaded drugs [40]. Furthermore, it was shown
that the PDI of B2 (0.21) did not increase significantly (p < 0.5) upon coating with either
concentration of chitosan (0.23 and 0.24, respectively), indicating the homogeneity and
narrow size distribution of the designed bilosomal formulations [39]. In addition, coating
the B2 with 2 different concentrations of CS has been shown to increase the zeta potential
from −18.59 ± 2.13 mV in the case of B2 to +21.89 ± 4.98 and +30.78 ± 1.44 mV in the case
of B2-CS1 and B2-CS2, respectively. This indicates the successful coating of the negatively
charged Ps/BLs with the cationic chitosan via electrostatic interactions [36]. This high
surface positive charge is reported to increase the stability of the bilosomal formulations
by minimizing their clumping and particle aggregation [41]. Moreover, the high positive
charge of B2-CS2 will enhance the cellular interaction and penetration of the Ps-CS/BLs
into cancer cells [42]. Furthermore, our findings showed that coating Ps/BLs with either
concentration of chitosan (0.125 or 0.25 w/v) has significantly increased the EE% from
68.90 ± 5.95% (in the case of B2) to 88.96 ± 8.65 and 92.15 ± 7.20 (in the case of B2-CS1
and B2-CS2, respectively). This increase in EE% is attributed to the use of CS as a coating
polymer, which is reportedly to hamper the leakage of entrapped drugs from bilosomes [43].

Since B2-CS2 (Ps-CS/BLs) was the best-optimized formulation regarding particle size,
zeta potential, and EE%, it was selected for further experiments compared to B2 (Ps/BLs).

3.2. Morphological Features of Ps/BLs and Ps-CS/BLs

TEM was used to study the morphology and surface properties of the optimized
uncoated and chitosan-coated bilosomes. As presented in Figure 2, both Ps/BLs and Ps-
CS/BLs showed a spherical shape and relatively homogenous size with negligible apparent
agglomerations. In addition, our findings revealed that the spherical shape of bilosomes
has not been affected upon coating with CS. Furthermore, Figure 2B shows the thin CS
layer coating Ps/BLs.
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3.3. In Vitro Release Efficiency (%) Study

Figure 3 depicts the release % of unloaded Ps from either Ps/BLs or Ps-CS/BLs into
the PBS medium at 37 ◦C. For both formulations, Ps exhibited a biphasic release manner
over 48 h. In the first 2 h, rapid diffusion of Ps from the dialysis bag took place from Ps/BLs
(37.78 ± 3.45%) and Ps-CS/BLs (24.89 ± 2.76%). This is followed by a sustained release
behavior, where 69.34± 2.96 and 56.46± 2.8% were effluxed from the dialysis bag after 12 h
and 88.29 ± 3.12 and 70.59 ± 30 were effluxed from the dialysis bag after 48 h in the case of
Ps/BLs and Ps-CS/BLs, respectively. The initial rapid release of Ps from both bilosomal
formulations is attributed to the presence of Ps on the bilosomal outer surface. In addition,
the nano-scale particle sizes of both formulations (<185 nm) increased the particles’ effective
surface area, expanding the interaction points of Ps with the dissolution medium [44]. The
later sustained release manner of Ps from both formulations is due to the entrapment of the
payload in the inner center of the bilosomes, which is then slowly released by erosion and
diffusion [45]. Moreover, the release study findings revealed significantly slower release
rates of Ps from Ps-CS/BLs as compared to the uncoated Ps/BLs (p < 0.5). This behavior is
due to the presence of CS coating polymer over the bilosomal outer surface, which retards
the diffusion of Ps, which has to pass two layers (the bilosomal bilayers and the CS layer)
in order to reach the dissolution medium. These findings show the ability of CS coating to
extend the release of drugs from the bilosomes, which is idyllic for designing sustained
oral delivery systems for cancer treatment [36].

3.4. Release Kinetics Study

The release data of Ps from Ps/BLs and Ps-CS/BLs (Figures 4 and 5) were fitted to five
different models (zero-order, First order, Higuchi, Korsmeyer–Peppas, and Hixson models)
in order to determine the drug release profile kinetics from either formulation. Table 2
presents the kinetic release parameters and regression coefficients computed from the five
kinetic models subjected to this investigation. As presented in Figures 4 and 5 and Table 2,
the correlation coefficient (R2) values calculated by fitting in each of the five kinetic models
indicate that the release of Ps from either Ps/BLs or Ps-CS-BLs is best obeying the Higuchi
diffusion model. It has been shown that the highest correlation coefficients were obtained
with the Higuchi model (R2 values of 0.97 and 0.98 in the case of Ps-BLs and Ps-CS/BLs,
respectively. The Higuchi diffusion kinetic model described drug release as a controlled
diffusion phenomenon relying on Fick’s law (square root time-dependent) from different
matrices [35]. This could be explained by the fact that the drug dissolves firstly within the
lipid bilayer followed by diffusion outside, which is the rate-limiting step. These findings
are consistent with several previous studies that demonstrated the fitting of drug release
from vesicular systems to the Higuchi model. Glavas-Dodov, Marija, et al. demonstrated
that the release of 5-fluorouracil from topical liposome gels for anticancer treatment fitted
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to the Higuchi model [46]. Another study revealed that the release of silver sulfadiazine
from cubosomal formulations followed the Higuchi diffusion model [47].
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Figure 5. Release kinetics of Ps from Ps-CS/BLs fitted to five kinetic models.

Table 2. Rate constants and correlation coefficients (R2) of Ps released from Ps/BLs and Ps-CS/BLs
computed by fitting into five different models (zero-order, First order, Higuchi, Korsmeyer–Peppas,
and Hixson models).

Models Ps/BLs Ps-CS/BLs

Zero-order
k0 4.98 4.41
R2 0.79 0.85

First order
kf 0.04 0.03
R2 0.92 0.92

Higuchi
kH 20.00 17.26
R2 0.97 0.98

Korsmeyer–Peppas
n 51.81 45.92

R2 0.88 0.94

Hixson
κ t 0.11 0.09
R2 0.88 0.89

3.5. Mucoadhesive Efficiency (ME%)

The adsorption approach evaluated the mucoadhesive efficiencies of free Ps and the
optimized bilosomal formulations (Ps/BLs and Ps-CS/BLs), and the results are presented
in Figure 6. A high mucin concentration on the sample’s surface under investigation
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demonstrates a higher binding capacity [36]. As illustrated in Figure 6, Ps-CS/BLs exhib-
ited the highest ME% (74.89 ± 3.5%) as compared to free Ps (4.48 ± 1.09%) and Ps/BLs
(26.78 ± 2.9%) (p < 0.5). The higher ME% of Ps-CS/BLs compared to the other two samples
is due to the cationic CS layer coating the bilosomal formulation, which binds the nega-
tively charged mucin via electrostatic interaction. These findings align well with the zeta
potential, TEM, EE%, and in vitro release study findings.
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Our findings clearly indicate the ability of the chitosan-coated bilosomal formulation
to bind the anionic mucin found in the intestine. This notable mucoadhesive capability
enhances oral bioavailability, extends the residence time inside the gastrointestinal tract,
and improves the therapeutic efficiency of Ps upon oral administration [48].

3.6. In Vitro Cell Viability Assay

Since Ps-CS/BLs demonstrated a small particle size, the highest positive zeta potential,
EE%, sustained release behavior, and ME%, they were chosen for the cell viability evalu-
ation. In this regard, the effect of empty bilosomes, Ps, and Ps-CS/BLs was assessed on
breast adenocarcinoma cells (MCF-7) and lung cancer cells (A-549) involving SRB assay.
It was found that the empty bilosomes (host control) showed relatively non-cytotoxic
effects in both cancer cell lines with IC50 values above 300 µg/ml, as shown in Table 3 and
Figure 7A,D. On the other hand, the Ps-CS/BLs formulation exhibited a significantly higher
(p < 0.5) in vitro cytotoxic activity against MCF-7 (Figure 7B,C) and A-549 (Figure 7E,F)
cancer cells, with IC50 values of 1.19 ± 0.24, and 3.56 ± 0.36 µg/mL, respectively; this is as
compared to free Ps (IC50 of 39.85 ± 1.1 and 48.94 ± 1.3 µg/mL, respectively), as presented
in Table 3.

Table 3. IC50 Values for empty bilosomes, Free Ps, and Ps-CS/BLs.

Cells
IC50 Values (µg/mL)

Empty BLs Ps Ps-CS/BLs

MCF-7 >300 39.85 ± 1.1 1.19 ± 0.24

A-549 >300 48.94 ± 1.3 3.56 ± 0.36
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Figure 7. Evaluating the cytotoxicity of (A) empty bilosomes, (B) Ps/BLs, and (C) Ps-CS/BLs in
MCF-7 cells, and (D) empty bilosomes, (E) Ps/BLs, and (F) Ps-CS/BLs in A549 cells using SRB assay,
at several concentrations ranging from 0.01 to 300 µg/mL. An overall statistically significant decrease
in cell viability was detected with Ps-CS/BLs as compared to free Ps in both cancer cells (p < 0.05).
Untreated cells were utilized as negative control (considered as 100%). (*** p < 0.05 compared with
the control group).

Ps was reported to exert its anticancer effect by inducing cellular apoptotic pathways,
modifying autophagy, encouraging DNA aberrations, or reducing tumor cell prolifera-
tion [17,18]. Several previous studies reported the anticancer effects of Ps against several
solid malignancies, including prostate [49], colon [50], liver [51], and cervical [52] cancers.
However, our study is considered one of the fewest studies unraveling the anticancer
activity of Ps on human breast and lung cancer cell lines. Only a recent study supported the
anticancer activity of Ps in the murine BC mice model [53]. Yet, our study might be consid-
ered the first to unravel the potency of Ps in repressing oncogenic hallmarks of MCF-7 and
A549 cells. In addition, our study reported the enhancement of the anticancer activities of
Ps against both cancer cell lines subjected to the current investigation upon its loading into
chitosan-coated bilosomes (Ps-CS-BLs). This is attributed to increasing the hydrophilicity
of Ps upon its encapsulation into bilosomes; thus, a much higher concentration of the drug
reaches the intended site of action [54]. Moreover, the nano-scale particle size and the
high ME% of Ps-CS/BLs resulting from CS coating improve the bioavailability of the drug
and its accumulation inside cancer cells by loosening the constricted junctions of the cells.
Finally, the cationic CS surrounding the bilosomal formulation could interact with the neg-
atively charged tumor cells [55,56]. Notably, previous studies have reported the differential
cytotoxic effects of Ps on cancer cells without harming non-cancerous ones. For instance,
Pal et al. reported Ps’ anti-proliferative and apoptotic effects against cadmium-transformed
prostate epithelial cells (CTPE) without conferring any cytotoxicity against the normal
prostate epithelial cells [57].

3.7. Flow Cytometry and Cell Apoptosis Assay

Though it was apparent that entrapping Ps in chitosan-coated bilosomes has enhanced
its cytotoxic effects on MCF-7 and A549 cancer cells, it was essential to explore the modality
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of cell death in response to free Ps and Ps-CS/BLs. In this regard, MCF-7 and A549 cells
were treated for 48 h with the IC50 concentrations computed by the SRB assay. Afterward,
the percentages of apoptotic and necrotic cells were determined utilizing Annexin/PI
staining, measured by flow cytometry analysis, as previously detailed.

Our findings showed that free Ps could increase the percentage of apoptotic cells
by 5% and the percentage of necrotic cells by 18.36% compared to the control in the case
of MCF-7. At the same time, it increases the percentage of apoptotic cells by 3.12% and
the percentage of necrotic cells by 21.44% compared to the control in the case of A549
(Figure 8A,B). Notably, when cancer cells were treated with the IC50 concentration of Ps-
CS/BLs, the percentage of apoptotic cells augmented to 16.13% in the case of MCF-7 and
20.75% in the case of A549 compared to the control. Similarly, the percentage of necrotic
cells increased to 32.59% in the case of MCF-7 and 28.53% in the case of A549 compared to
the control (Figure 8A,B). Our findings align well with the previous studies reporting that
Ps exerts its anticancer activity by inducing the apoptotic pathways [17,18]. Captivatingly,
and to the best of our knowledge, there have been no previous studies evaluating the
apoptotic and necrotic effects of Ps in human breast and lung cancers and comparing
it to a nanocarrier loading Ps in which Ps was entrapped in chitosan-coated bilosomal
nanoformulation (Ps-CS/BLs). In addition, our findings align with previous studies that
reported the chitosan effects in inducing apoptosis mainly by activating caspase-3 [58] or
FAS/FAS-L [59].

In the introduction, line two please replace incline with increase. (I highlighted the correct phrase in 
the below paragraph). 

1. Introduction 

Solid tumors, including breast and lung cancers, are the leading reason for mortality all over the globe, 
with a tremendous annual increase in new incidence cases. Within the coming 20 years, a three-fold 
increase in new cancer-diagnosed cases is expected 
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Figure 8. Apoptotic and necrotic effects of free and loaded Ps on (A) MCF-7 and (B) A549 cells. This
figure represents a representative figure from flow cytometric analysis experiments and the apoptotic
assay. This experiment was performed in triplicates.
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4. Conclusions

The in vitro oral bioavailability and anticancer effects of the hydrophobic psoralidin
were improved via loading into chitosan-coated bilosomal nanoformulation (Ps-CS/BLs).
In this context, the surface-modified bilosomes loaded with Ps were developed by the thin-
film hydration approach followed by coating with cationic chitosan. The designed Ps/BLs
and Ps-CS/BLs were assessed in terms of size, zeta potential, entrapment efficiency (EE%),
mucoadhesive efficiency (ME%), and release kinetics. Both nanoformulations exhibited
nano-sized and monodispersed particles, outstanding zeta potential, and high entrapment
efficiencies. Both formulations were shown to obey the Higuchi diffusion kinetic model,
but the Ps-CS/BLs exhibited a more sustained release behavior over 48 h and a higher ME%.
Additionally, the Ps-CS/BLs showed the highest cytotoxic activities against human breast
cancer cell lines (MCF-7) and human lung adenocarcinoma cell line (A549) as compared
to free Ps. Moreover, the Ps-CS/BLs exhibited the highest percentages of apoptosis and
necrosis when tested on MCF-7 and A549 cells. Collectively, these findings reveal that
chitosan-coated bilosomes encapsulating Ps could be a promising tactic for conquering
breast and lung cancers via the oral route.
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