SKA Science Data Challenge 2: analysis and results

Hartley, P., Bonaldi, A., Braun, R., Aditya, J. N. H. S., Aicardi, S., Alegre, L., Chakraborty, A., Chen, X., Choudhuri, S., Clarke, A. O., Coles, J., Collinson, J. S., Cornu, D., Darriba, L., Veneri, M. Delli, Forbrich, J., Fraga, B., Galan, A., Garrido, J., Gubanov, F., Håkansson, H., Hardcastle, M. J., Heneka, C., Herranz, D., Hess, K. M., Jagannath, M., Jaiswal, S., Jurek, R. J., Korber, D., Kitaeff, S., Kleiner, D., Lao, B., Lu, X., Mazumder, A., Moldón, J., Mondal, R., Ni, S., Önnheim, M., Parra, M., Patra, N., Peel, A., Salomé, P., Sánchez-Expósito, S., Sargent, M., Semelin, B., Serra, P., Shaw, A. K., Shen, A. X., Sjöberg, A., Smith, L., Soroka, A., Stolyarov, V., Tolley, E., Toribio, M. C., Hulst, J. M. van der, Sadr, A. Vafaei, Verdes-Montenegro, L., Westmeier, T., Yu, K., Yu, L., Zhang, L., Zhang, X., Zhang, Y., Alberdi, A., Ashdown, M., Bom, C. R., Brüggen, M., Cannon, J., Chen, R., Combes, F., Conway, J., Courbin, F., Ding, J., Fourestey, G., Freundlich, J., Gao, L., Gheller, C., Guo, Q., Gustavsson, E., Jirstrand, M., Jones, M. G., Józsa, G., Kamphuis, P., Kneib, J. -P., Lindqvist, M., Liu, B., Liu, Y., Mao, Y., Marchal, A., Márquez, I., Meshcheryakov, A., Olberg, M., Oozeer, N., Pandey-Pommier, M., Pei, W., Peng, B., Sabater, J., Sorgho, A., Starck, J. L., Tasse, C., Wang, A., Wang, Y., Xi, H., Yang, X., Zhang, H., Zhang, J., Zhao, M. and Zuo, S. (2023) SKA Science Data Challenge 2: analysis and results. Monthly Notices of the Royal Astronomical Society (MNRAS), 523 (2). 1967–1993. ISSN 0035-8711
Copy

The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.

visibility_off picture_as_pdf

picture_as_pdf
2303.07943v1.pdf
subject
Submitted Version
lock
Restricted to Repository staff only
copyright
Available under Unspecified

Request Copy
picture_as_pdf

Published Version
copyright

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads