Bayesian hierarchical modelling of the M*–SFR relation from 1 ≲ z ≲ 6 in ASTRODEEP
The Hubble Frontier Fields represent the opportunity to probe the high-redshift evolution of the main sequence of star-forming galaxies to lower masses than possible in blank fields thanks to foreground lensing of massive galaxy clusters. We use the BEAGLE SED-fitting code to derive stellar masses, $\mathrm{M_{\star}}=\log(M/\mathrm{M_{\odot}})$, SFRs, $\Psi=\log(\psi/\mathrm{M_{\odot}}\,\mathrm{yr}^{-1})$ and redshifts from galaxies within the ASTRODEEP catalogue. We fit a fully Bayesian hierarchical model of the main sequence over $1.253$, measurements of the main sequence to low masses and high redshifts still strongly depend on priors employed in SED fitting (as well as other fitting assumptions). Future data-sets with JWST should improve this.
Item Type | Article |
---|---|
Additional information | © The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords | astro-ph.ga |
Date Deposited | 15 May 2025 15:08 |
Last Modified | 15 May 2025 15:08 |