Experimental investigation on evaporative cooling coupled phase change energy storage technology for data centers under natural air cooling
To address the challenges of prolonged cooling air supply for data centers (DCs) in high-temperature climates, a cooling ventilation system combining evaporative cooling with phase change energy storage (PCES) under natural air cooling is proposed. Based on the summer high-temperature meteorological conditions in Gui'an New District, Guizhou Province, China, experiments were conducted using single-factor impact analysis and orthogonal experiments. These experiments investigated the effects of several control parameters such as inlet air temperature, inlet speed, inlet humidity, and spray flow on the cooling performance of the integrated cooling device, confirming the feasibility and high efficiency of this technology for green DCs. The results indicate that: (1) After being treated for temperature and humidity through the spray and the phase change plate (PCP) at both ends, the air temperature can be lowered by about 7 °C on average, and the relative humidity can be reduced by about 35 % over an 8-h period. (2) The temperature difference between inlet and outlet increases with the increase of inlet air temperature and spray flow but decreases with the increase of inlet air speed and inlet air humidity. (3) Through orthogonal experiments, the major and minor factors affecting the cooling performance, in order of significance, are inlet air temperature > inlet speed > spray flow > inlet humidity.
Item Type | Article |
---|---|
Uncontrolled Keywords | Data centers; Evaporative cooling; Natural cooling; Orthogonal experiments; Phase change energy storage |
Subjects |
Physics and Astronomy(all) > Atomic and Molecular Physics, and Optics Chemical Engineering(all) > General Chemical Engineering Physics and Astronomy(all) > Condensed Matter Physics |
Date Deposited | 14 Nov 2024 10:49 |
Last Modified | 14 Nov 2024 10:49 |
-
picture_as_pdf - Accepted_Manuscript.pdf
-
lock - Restricted to Repository staff only
- Available under Creative Commons: 4.0