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Abstract: The synergetic control technique (SCT) has the solution for understanding the symmetry
inherent in the non-linear properties of wind turbines (WTs); therefore, they achieve excellent
performance and enhance the operation of the WT. Small-scale WTs are efficient and cost-effective;
they are usually installed close to where the generated electricity is used. This technology is gaining
popularity worldwide for off-grid electricity generation, such as in rural homes, farms, small factories,
and commercial properties. To enhance the efficiency of the WT, it is vital to operate the WT at its
maximum power. This work proposes an efficient and fast maximum power point tracking (MPPT)
technique based on the SCT to eradicate the drawbacks of the conventional methods and enhance
the operation of the WT at the MPP regardless of wind speed and load changes. The SCT has
advantages, such as robustness, simplified design, fast response, no requirement for knowledge of
WT characteristics, no need for wind sensors or intricate power electronics, and straightforward
implementation. Furthermore, it improves speed convergence with minimal steady-state oscillations
at the MPP. The investigated configuration involves a wind-driven permanent magnet synchronous
generator (PMSG), uncontrolled rectifier, boost converter, and variable load. The two converters are
used to integrate the PMSG with the load. Three scenarios (step changes in wind speed, stochastic
changes in wind speed, and variable electrical load) are studied to assess the SCT. The results prove
a high performance of the suggested MPPT control method for a fast convergence speed, boosted WT
efficacy, low oscillation levels, and applicability under a variety of environmental situations. This
work used the MATLAB/Simulink program and was then implemented on a dSPACE 1104 control
board to assess the efficacy of the SCT. Furthermore, experimental validation on a 1 kW Darrieus-type
WT driving a PMSG was performed.

Keywords: Darrieus wind turbine; dSPACE 1104; experimental validation; MPPT; PMSG; synergetic
control; WT inertia

1. Introduction

The small wind turbine (WT) market is expected to experience promising growth
during the next decade due to the increasing demand for low-power wind generation in
isolated areas, such as rural homes, farms, and small businesses. For urban use, small
vertical axis WTs (VAWTs) are the most suitable [1–4]. They are relatively quiet compared
to horizontal axis WTs (HAWTs) and can operate independently of the wind direction
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and even capture weak winds. The development of the small-scale WT market segment
has triggered an increased interest within the research/work community to augment the
dynamic performance and maximize the efficiency of this technology [5–7]. The motivation
of this work is mainly to improve the energy efficacy and production of small WTs.

Enhancing energy efficiency is mainly concerned with the operation of WTs at an opti-
mal rotational speed to obtain the maximal allowable power [8–10]. However, this desired
machine speed varies based on different operating scenarios (wind speed changes/electrical
load). Maximal power point tracking (MPPT) techniques are employed for maintaining
the machine’s speed at the optimum operating point. MPPT methods are implemented in
different ways depending on whether the WT is fortified with an anemometer and whether
the power curves’ (PC) characteristics are known.

Among the MPPT techniques that require knowledge of the WT’s PC characteristics
and the use of an anemometer, we can mention the techniques based on optimal torque
control (OTC) [11–13], tip speed ratio (TSR) [14,15], and power signal feedback (PSF)
control [16]. These MPPT strategies are characterized by their speed of response and
robustness. However, there are some difficulties that make the implementation of these
techniques complex: (i) selecting the location of the anemometer; and (ii) the non-linearity
of the WTs PC characteristic, the difficulty in obtaining these curves, and their uncertainties
following the aging of the WT [17,18]. This has prompted many researchers to develop
other more efficient MPPT techniques, such as the perturb & observe (P&O), that do not
require data on the WT characteristics or the use of an anemometer. The P&O consists of
applying a small disturbance around the initial value of the controlled variable (rotation
speed, voltage, current, duty cycle, etc.) and then observing its effect at the level of the
power signal at the machine’s output in order to define the direction to follow to reach the
optimal operating point. The P&O control principle is simple but has some drawbacks, such
as bad convergence towards the optimal power point during a sudden change in the wind
speed and degradation in the power dynamic response because of the difficulty to select the
appropriate step size for the algorithm (large steps can cause oscillations in the power and
a long response time) [19]. To improve this technique, the authors in [20] proposed a new
P&O technique built on the knowledge of the WT’s inertia stored energy. This method has
good performance for following the MPP, thus eliminating the problems of slow response
and misdirection that exist in the conventional P&O. However, its shortcoming is that it
requires knowledge of the WT’s inertia. In [21], the authors suggested a new P&O method
that uses the output voltage and current of the rectifier (AC/DC) stage to regulate the
boost converter’s duty cycle (D) without any a priori knowledge about the incoming wind
speed or the parameters of the WT. Hence, the D’s step size is automatically adjusted to
achieve fast and accurate convergence to the optimum power point. The authors in [22]
proposed a method based on a linear connection between the optimal machine speed and
the measured wind speed. In addition, a large-step forward and small-step back initial
following strategy has also been proposed to progress the accuracy of the classic large-step
P&O technique and to ensure a better MPPT under rapidly varying received wind speeds.

The MPPT technique based on fuzzy logic does not necessitate any a priori data
of the parameters of the WT system. This technique brings numerous advantages and
gives a fascinating performance for MPPT, especially with fluctuated wind speeds [23–26].
However, this technique exhibits poor performance under variable load conditions, which
must be taken into consideration. Numerous MPPT techniques have been implemented
and investigated in the literature survey with and without knowledge of the characteristics
of the WT. However, most of these works do not address the impact of electrical load
variations and WT inertia.

This study proposes a novel MPPT technique based on synergetic control, which
presents the solution for understanding the symmetry inherent in the non-linear properties
of wind turbines (WTs); therefore, they achieve excellent performance and enhance the
operation of the WT. A MPPT technique based on the SCT is applied to force the WT to
operate at the MPP even under variable wind speed and load conditions. The proposed
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MPPT is simple, easy to implement, and does not necessitate data on the WT’s PC charac-
teristics and machine parameters. Therefore, an anemometer is not required, and complex
power electronics are not needed; as a result, the cost is decreased, and the reliability of the
system is enhanced.

The remainder of the article is structured as follows: Section 2 offers a general descrip-
tion of the studied small WT system. Section 3 presents the suggested MPPT technique.
The simulation and experimental results are analyzed and investigated in Sections 4 and 5,
respectively. Section 6 presents the conclusions and perspectives of the proposed study.

2. Description and Modeling of the Investigated Wind System

The configuration of the low-power, variable-speed WT system used in this work is
depicted in Figure 1 [27]. It is made up of a permanent magnet synchronous generator
(PMSG) driven by a Darrieus-type VAWT and connected to an electrical load via two
converters: an uncontrolled rectifier and a controlled boost chopper. The efficiency and
feasibility of this wind energy conversion system have been used in several research works
and are commonly used in hybrid renewable energy systems [6,14,17,28].
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WTs alter the kinetic energy (KE) of wind into mechanical power/energy (ME). How-
ever, during this conversion process, the WT can take only a portion of the wind power.
Therefore, the aerodynamic power accessible on the slow shaft of the WT is written by:

Pt =
1
2

ρSV3
wCp(λ) (1)

where Vw denotes the wind speed (m/s), S is the surface area by the blades of the WT
(
m2),

λ represents the relative speed or speed ratio (rad/s), ρ is the air density
(

kg/m3), and Cp
is the power coefficient that is specific to each WT and defines the capacity of the WT to
alter the KE of the wind into ME. This coefficient is limited to a maximal value of 0.593 that
is called the Betz limit, which should not be exceeded. The WT considered in this work is
characterized by the next power coefficient [6].

Cp(λ) = 0.00054λ4 − 0.01098λ3 + 0.057456λ2 − 0.02493λ+ 0.110898 (2)
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with:
λ =

RΩt

Vw
(3)

where R represents the WT’s radius (m), and Ωt is the WT’s rotational speed (rad/s).
In addition, the power extracted by the WT is transmitted to the generator by

a mechanical shaft, which is represented by the next differential equation:

J
dΩm

dt
= Tt − Te − f Ωm (4)

where f and J are the total coefficient of friction and total inertia of the WT-generator
system, respectively. Tt denotes the torque supplied by the WT to the PMSG (N·m), Te is
the electromagnetic torque of the PMSG (N·m), and Ωm represents the rotation speed of
the shaft coupling the WT and the PMSG (rad/s). In our case, Ωm = Ωt since there is no
gearbox. Furthermore, the WT’s model and the mechanical shaft are depicted in Figure 2.
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PMSGs are currently among the most widely used electrical machines in the design of
wind systems due to their high efficiency and the absence of an excitation system [29–31].
These machines have many poles and, therefore, can be directly connected to the WT
without the need for a gearbox, which then reduces the cost and mechanical losses in the
wind chain [32,33].

The model of the PMSG can be simplified by assuming that the self-resistances and
inductances are constant and by neglecting the effects of saturation in the magnetic circuit,
the skin effect, Foucault currents, and the hysteresis phenomena. Furthermore, since the
neutral in the machine is not included, the homopolar component will be zero. Based
on these assumptions, the PMSG with a permanent magnet in the reference (dq) can be
described with the next equations:{

vd = −Rsid − Ld
did
dt + ΩmLqiq

vq = −Rsiq − Lq
diq
dt −Ωm(Ldid − ϕ f )

(5)

The PMSG mechanical equation is expressed with the next equation:

Jm
dΩm

dt
= Tt − Te − fmΩm (6)

The parameters Te and the output power of the PMSG are given by:

Te =
3
2

Np
[(

Ld − Lq
)
idiq + iq ϕ f

]
(7)

Pg = vdid + vqiq (8)
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where Jm is the PMSG’s inertia
(
kg·m2); fm is the coefficient of friction of the generator

(N·m·s/rad); vd and vq denote the stator voltages in the reference (dq); id and iq represent
the stator currents in the reference (dq); Rs denotes the resistance of the windings; Ld and
Lq are, respectively, the self-inductances of the axes d and q; ϕ f is the permanent magnets’
flux (Wb); Np is the pole pairs’ number; and Pg is the electrical power delivered by the
machine in the reference (dq).

The rectifier’s output voltage is defined as:

Vin =
3
√

6
π

VPMSG (9)

with:
VPMSG =

√
(keΩm)

2 − (IsLsΩm)
2 (10)

where VPMSG is the phase voltage of the generator, ke is the voltage constant of the generator
and keΩm denotes the induced voltage, Is is the stator current, and Ls denotes the self-
inductance of the stator winding.

From Equations (9) and (10):

Vin =
3
√

6
π

Ωm

√
ke

2 − (IsLs)
2 (11)

From Equation (11), it can be observed that the output voltage of the rectifier is directly
proportional to the Ωm. Consequently, the voltage can be used to adjust the Ωm of the
PMSG and hence the power transported by the WT. The MPPT technique proposed in
Section 3 uses this principle to force the WT to harvest the maximal power.

In the design of the variable speed wind system, power converters play a very signifi-
cant role in the control of the energy transfer between the generator and the load. In this
paper, a boost power converter is utilized to regulate and control the energy transfer, which
simplifies the control law considerably. This converter can be modeled with the following
state space equations: { .

x1 = Iin
C1
− x2

C1.
x2 = x1

L − (1− D)Vout
L

(12)

where x =
[
x1 x2

]T
=
[
vin iL

]T represents the state vector, and D ranges are (0 < d < 1).

3. MPPT Technique Based on Synergetic Control

The WT’s power characteristics studied are depicted in Figure 3a. These char-
acteristics show that the mechanical power obtained by the WT is maximum only at
Cp_max = 0.388, λopt = 4.94 (see Figure 3b). Thus, to run the WT at this point, regardless
of the operating conditions, this work proposes a novel MPPT technique based on the
synergetic control (SC) theory. The key point of our approach is that the control law is
simple, does not need information on the real WT characteristics or the PMSG parameters,
and does not need an anemometer.

SC is a powerful control technique for nonlinear systems for its ability to take into
account the system’s nonlinearities in the control design. The SC theory has been success-
fully applied in several control areas [34–37]. The SC concept is similar to the sliding mode
control, where the system under study is forced to evolve along a trajectory predetermined
by the user (sliding surface is replaced by the macro-variable). The used algorithm is
presented as follows.
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Recall that a nonlinear dynamic system of order n is represented by the next
differential equation:

dx(t)
dt

= f (x, u, t) (13)

where x is the vector of system state variables, and u represents the command signal.
The first and most important step in the design of the SC is the choice of the macro-

variable, which is given by:
Ψ = h(x, t) (14)

The macro-variable is defined as a simple linear combination of state variables. Its
main characteristics are chosen by the user according to the control objectives.

After the selection of the macro-variable, the objective of the SC is to force the states
of the system to operate on the domain previously chosen by the user (Ψ = 0) using the
following law of convergence:

T
.

Ψ + Ψ = 0 (15)

where
.

Ψ =
dΨ
dt

=
dΨ
dx

dx
dt

=
dΨ
dx

.
x (16)

where T is a positive constant that indicates the speed of convergence to the macro-variable.
The time-derivative of the macro-variable is given by:

dΨ(x, t)
dt

=
dΨ(x, t)

dx
dx
dt

(17)

Substituting (13) and (17) in (15) gives:

T
dΨ(x, t)

dx
f (x, u, t) + Ψ = 0 (18)

Solving this equation gives the control law u which is expressed as:

u = g(x, t, Ψ, T) (19)

The stability of the synthesized control law is ensured by using the Lyapunov theory
(LT). Consider the following LT:

V =
1
2

Ψ2 (20)
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Taking the time-derivative of V gives:

dV
dt

= Ψ
.

Ψ = − 1
T

Ψ2 (21)

which is always negative, and hence, the system is asymptotically stable in the sense of LT.
As discussed in the previous section, the variation in the voltage vin at the input of

the boost-converter can change the speed of rotation, consequently changing the power
delivered by the WT. The evolution of this head voltage can be inferred from the progression
of the WT power Pt and the Ωt, as illustrated in Figure 4. For example, in the first case, it is
clearly noticed that the Ωt and the power generated by the WT both increase; this means
that the WT power approaches its maximum from the left side. To continue in the same
direction, both the rotational speed and the voltage must be increased. The same principle
applies to the other three cases.
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Based on the results shown in Figure 4, it can be deduced that the derivative of the
voltage dvin

dt can be chosen proportional to dPt
dΩt

.

dvin
dt

= k
dPt

dΩt
(22)

where vin is the input voltage of the boost converter, and k is a large positive constant.
The main steps for designing the new MPPT based on the SC are described below.
First, a macro-variable is defined so as to keep the WT operation in the MPP. Using

Equation (22), the selected macro-variable is defined as follows:

Ψ =
dvin
dt
− k

dPt

dΩt
(23)

The next step is to specify the control law of the converter, which guarantees the
maximal power efficiency of the WT.

Substituting the first equation of system (12) in (23) gives:

Ψ =
Iin
C1
− x2

C1
− k

dPt

dΩt
(24)

Since the two states x1 and x2 of the converter correspond to the vin and the current iL
of the inductance, then:

.
ψ =

dΨ
dx1

.
x1 +

dΨ
dx2

.
x2 (25)
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and since Ψ is a function of x2 only, Equation (25) becomes:

.
ψ =

dΨ
dx2

.
x2 = − 1

C1

(
x1

L
− (1− d)

Vout

L

)
(26)

Substituting
.
ψ from (26) in the law of synergetic convergence described in (13–21),

we obtain:
− vin

LC1
+ (1− d)

Vout

LC1
= −Ψ

T
(27)

After simplifying Equation (27), the synergetic control law that represents the core of
our MPPT technique is defined as follows:

d = 1− 1
Vout

(
vin −

ΨLC1

T

)
(28)

Finally, it can be seen that the SC law remains simple, reliable, and easy to design
and implement in practice. The constants T and k need to be defined for the design of the
suggested MPPT technique in addition to the boost converter parameters L and C1. The
schematic diagram of the control law obtained from the SC is depicted in Figure 5.
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4. Discussion of Simulated Results

The overall model of the WT system and MPPT control scheme was developed in
MATLAB/Simulink as seen in Figure 6. To assess the performance and robustness of the
suggested MPPT technique, the following tests were carried out: (i) taking into considera-
tion or not the WT’s inertia impact, (ii) applying a wind profile with four sudden jumps
(Figure 7a), and (iii) variation of the load at t = 150 s. The obtained simulated results are
shown in Figures 7 and 8. The results obtained in this study are also compared with other
researchers [6], who have used the same WT model but with other MPPT techniques.

It is realized from Figure 7 that, with the wind profile applied to the investigated
WT (Figure 7a), all the responses of the power coefficient, relative speed, rotational speed,
and power of the WT are fast and follow their optimal references accurately. Furthermore,
all the optimal points mentioned in Figure 3 are successfully reached with the proposed
MPPT technique. From Figure 7, it is observed that the suggested MPPT is very effective
even under varying electrical load conditions. All the responses of the investigated system
are maintained within their optimal values, except for the boost converter’s current and
voltage, which are varied to maintain maximum power (Figure 7g,h).
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Furthermore, the key objective of the test in which we do not take into account the
inertia of the WT is only to show the rapidity of the proposed MPPT technique at following
the point of maximum power. On the other hand, in the opposite case (see the results
of Figure 8), the large impact of the WT inertia can be clearly observed causing a long
response time of approximately 20 s for each variation of the wind speed (This was also
observed in the results of reference [6]). This demonstrates the ability of the proposed
MPPT technique to work perfectly well in the case of large WT inertia with a lower response
time of approximately 8 s for each jump in the wind speed.

The results obtained in Figures 7 and 8 demonstrate a higher performance of the
investigated MPPT as compared with the reference [3] where the authors used the same
WT characteristic. The suggested MPPT technique is faster and more effective than the
MPPT technique based on the search for the extremum described in the article [6].

5. Discussion of Experimental Results

To assess the performance of the suggested MPPT technique under real-time condi-
tions, an experimental setup was designed as seen in Figure 9. The system parameters
are listed in Table 1 [38]. The setup consisted of a WT emulator, which can accurately
reproduce the mechanical behavior of a real WT. A detailed description of this emulator is
found in [38,39]. The controls and the MPPT were instigated on a dSPACE 1104 card and
programmed using MATLAB/Simulink, as depicted in Figure 10, to validate the proposed
control strategy. A low-pass filter with a cut-off frequency (ωc = 100 rad/s) was used to
smooth the measured signals from the current sensors to be used in the MPPT. Several
tests with variable wind and variable electrical load were carried out during this study.
The effect of the WT’s inertia was considered. The series of conducted scenarios and their
results are summarized below:
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Table 1. Parameters used in the experimental validation [38].

Parameters Value Unit

WT Nominal power 1.5 kW
Air density 1.2 kg/m3

Blade radius 1 m
Height 2 m

Moment of inertia 5 kg·m2

Coefficient of friction 0.00908 N·m·s/rad
Maximum power coefficient

Maximum relative speed
0.388
4.94

—
rad

MPPT Constant k
Constant T

900
0.0038

—
—

Boost Converter

Input capacitor
Output capacitor

Inductance
Switching frequency

10
1100

50
1

mF
µF

mH
kHz
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5.1. Consecutive Changes in Wind Speed with a Constant Electrical Load

This scenario was aimed to assess the robustness and response time of the proposed
MPPT technique to find all the optimal points mentioned in Figure 3. For this purpose,
a variable wind speed profile included three-step changes in the range between 6 m/s and
10 m/s, as depicted in Figure 11a. The electrical power produced was transmitted to a fixed
electrical load of 75 W. The main results obtained are shown in Figure 11.
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Figure 11. Experimental results in the case of consecutive wind speed change with constant electrical
load: (a) wind profile applied to the WT, (b) rotational speed, (c) power coefficient, (d) relative speed,
(e) power of the WT, (f) power at the terminals of the electrical load.

5.2. Constant Wind Speed with Variable Electrical Load

The purpose of this scenario was to test the robustness of the suggested MPPT tech-
nique under variable electrical load while the passing wind speed is kept at 8 m/s. At time
60 s, a load of 40 W was added in parallel with a 75 W load. The main results obtained are
illustrated in Figure 12.
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Figure 12. Experimental results in the case of constant wind speed with variable electrical load:
(a) wind profile applied to the WT, (b) rotational speed, (c) power coefficient, (d) relative speed,
(e) power of the WT, (f) power at the terminals of the electrical load.

5.3. Stochastic Change in Wind Speed with Constant Electrical Load

The wind is intermittent in nature, and wind speed exhibits significant fluctuations
and changes in directions throughout the day depending on the climatic conditions and
geographical location. Therefore, this scenario assessed the capability of the suggested
MPPT technique to maintain the stability of the system during a stochastic fluctuation of
the wind speed (see Figure 13a). The same load was used as in the first scenario. The main
results obtained are shown in Figure 13.
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Figures 11 and 12 clearly show that the experimental results are similar to those with
the simulation; they demonstrate the effectiveness of the designed experimental platform
and, especially, the ability of the WT emulator to reproduce the same mechanical behavior
as the real WT studied. The control law based on the SC successfully forced the WT to
run at the MPP under various conditions while maintaining the robustness of the system
in contrast to the turbulences and parameter changes. For example, for a wind speed of
6 m/s, the WT’s maximal power is 10 W (see Figure 11e). If a power adaptation ratio of
1/10 is applied, it is pragmatic that the WT’s maximum power is approximately 100 W for
a rotational speed of 30 rad/s (see Figure 11b). In the same figure, we can also observe the
considerable influence of the WT’s large inertia, which generates with each variation of the
speed of the wind a slightly larger response time of approximately 20 s.

Furthermore, the efficiency and robustness of the investigated MPPT technique are
noticed not only during a variable wind but also in the case of a variable electrical load,
as shown in Figure 12, from which it can be clearly noticed that during the variation of
the load over time 60 s, the power produced is maintained around their optimum value.
Despite the impact of the inertia of the WT, the MPPT is able to effectively reject the effect
of load variation for an acceptable lap of time of approximately 20 s. Following that, we
can notice better stability in the electrical power produced.

Thus, from the responses of the electrical power, it is observed that, for each wind
speed, better stability is maintained with less oscillation and less noise in the produced
electrical power at the output of the boost converter. Thus, this power is very close to
the ME produced by the WT with the presence of some losses from the test bench. For
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example, for a wind speed of 8 m/s, we managed to recover an electrical power of 22.33 W,
which is similar to the power of 23.8 W generated by the WT due to the losses in the power
electronics and the collective losses in the machines of the test bench that are not taken into
consideration during the tests.

On the other hand, the tests carried out with a stochastic wind profile clearly show the
ability of our MPPT technique to ensure the stability of the power coefficient around the
optimal value of 0.388, and subsequently, the ME produced by the WT follows perfectly
the maximum power reference with the presence of some losses for certain wind speed
fluctuations but not very significant. Finally, these experimental results demonstrate that
the investigated MPPT technique is very robust and responds very well to any variations
in the wind speed or the electrical load; hence, it can be considered a very effective solution
for the optimization of energy production without the information of the WT characteristics
nor the parameters of the PMSG and can be applied to all types of WTs.

6. Conclusions

In this work, a very effective MPPT technique based on the SC theory was developed
with the aim to overcome the many drawbacks of conventional MPPT techniques proposed
for small-scale WTs, such as poor convergence, oscillation around the maximum power even
for stable wind speeds, complexity, and implementation difficulty in real-time. Furthermore,
the proposed technique enhances the system’s operating performance by attaining rapid
speed followed with fewer oscillations. It uninterruptedly observes the operating rotor
speed and tracks the MPP. For turbulent wind conditions, the method used to calculate
the slope of the ME of the WT is a function of the rotation speed. The simulated and
experimental outcomes clearly prove the efficiency and feasibility of the suggested MPPT
technique to obtain the maximum power compared to other recently published strategies.
In addition, this technique remains simple, robust, and easy to adjust even in the case of
a WT’s large inertia. This will contribute to the large-scale integration of WTs into modern
electrical networks. The investigated MPPT strategy improves the wind system efficiency
and speedily tracks the MPP with a lower settling time of 0.09 s without inertia; however,
when inertia is considered, it was approximately 7.89 s. Finally, it can be concluded that the
studied MPPT strategy effectively enhances the system’s dynamic performance under the
high variability of wind speed and changeable loads.

Future research can be directed as follows:

1. Application of the proposed strategy on large-scale WTs and photovoltaic (PV) systems.
2. Add the monitoring part (Diagnosis) to make the fault tolerant control, which remains

an effective solution to reduce the repair costs of a WT.
3. Integration of the developed wind system in microgrids.
4. Compare the PV and WT operated with the SC theory to show the best option.
5. Studying this control impact on power quality and frequency stability of

renewable systems.
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