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Abstract: In order to enrich the dynamic behaviors of discrete neuron models and more effectively
mimic biological neural networks, this paper proposes a bistable locally active discrete memristor
(LADM) model to mimic synapses. We explored the dynamic behaviors of neural networks by
introducing the LADM into two identical Rulkov neurons. Based on numerical simulation, the neural
network manifested multistability and new firing behaviors under different system parameters and
initial values. In addition, the phase synchronization between the neurons was explored. Additionally,
it is worth mentioning that the Rulkov neurons showed synchronization transition behavior; that is,
anti-phase synchronization changed to in-phase synchronization with the change in the coupling
strength. In particular, the anti-phase synchronization of different firing patterns in the neural network
was investigated. This can characterize the different firing behaviors of coupled homogeneous
neurons in the different functional areas of the brain, which is helpful to understand the formation
of functional areas. This paper has a potential research value and lays the foundation for biological
neuron experiments and neuron-based engineering applications.

Keywords: locally active discrete memristor; multistability; synchronization transition

1. Introduction

The brain is regarded as a complex neural network composed of many neurons. Infor-
mation transmission [1–3] and conscious perception [4] are closely related to the dynamical
behaviors of biological neural networks. At the same time, synchronization plays a role in
some pathologies in neuroscience, such as epilepsy. Experiments [5,6] showed that the ner-
vous system exhibited high synchronization during seizures. In order to better understand
the structure of the brain, researchers have studied a large number of dynamic characteris-
tics of neural networks [7–12]. However, continuous neuron models have the characteristics
of high dimension and multiscale, which are not conducive to the study of complex and
large-scale neural networks. In recent years, discrete neuron models have drawn more
attention due to their simple form and flexible calculation. Extensive studies [13–18] proved
that discrete neuron models, especially the Rulkov neuron, could more effectively mimic
the real behaviors of biological neurons. On this foundation, Cao et al. [19–23] disclosed two
identical Rulkov neurons coupled with chemical and electrical synapses, respectively, and
reported the influence of the coupling strength on synchronization in detail. By construct-
ing a small-world network made up of Rulkov neurons, Ferrari et al. [24] proposed the
idea of using delayed feedback to suppress synchronization. Rakshit S et al. [25] revealed
several types of firing patterns and synchronous behavior of Rulkov neurons under the
joint effect of internal connections and a chemical synapse.

In 1971, Chua first put forward the concept of a memristor as a device to describe
the relationship between the charge and the flux [26]. Since HP Laboratory developed
the entity of memristor in 2008 [27], continuous memristors have been widely used in
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neural networks [28–34] and neural morphological circuits [35–39]. Ding et al. [40] studied
the hidden coexisting firing patterns of two heterogeneous fractional-order HR neurons
coupled with a memristor and applied them to image encryption. However, the synchro-
nization between the neurons was not analyzed. Because of the properties of memorability,
nonvolatility, nanoscale, and local activity, memristors are regarded as the best choice to
mimic synapses, which have been proved in continuous neuron models. Additionally,
phenomena such as coexisting firing patterns [41–44] and synchronization [45–47] have
been found. It was found in [48] that anti-phase synchronization helps to distinguish the
different functional areas of the brain. However, the anti-phase synchronization of different
firing patterns was not found. Recently, researchers have shifted their focus to discrete
memristors. Introducing discrete memristors to different maps, it was found that discrete
memristive chaotic systems have the advantages of high complexity [49–51], coexisting
attractors [52–54], and offset boosting [55]. Furthermore, Peng et al. [56] also studied
parameter identification for discrete memristive chaotic maps. In addition, it was found
in [57] that the integer-order discrete memristor has an ideal memory effect, whereas the
fractional-order discrete memristor does not.

As far as we know, there is very little discussion about discrete memristors in the
field of neural networks, and currently, it basically stays at the single-neuron coupling
stage. For example, it was revealed in [58–60] that the introduction of discrete memristors
could enrich the firing patterns of neurons, and phenomena such as hyperchaotic firing
and regime transition were surveyed. Lu et al. [61] studied the dynamic characteristics of
Rulkov neurons under electromagnetic induction by introducing a discrete memristor and
found that the dynamic behaviors of fractional-order systems are more complex than that of
integer-order systems. However, compared with integer-order systems, the calculation cost
of fractional-order systems is higher. Xu et al. [62] discovered coexisting firing behaviors by
introducing a memristor to a single continuous nonautonomous Rulkov neuron. However,
the firing pattern of this system was of a relatively single type. Li et al. [63] reported hidden
attractors and coexisting firing patterns in a discrete memristive synapse-coupled single
HR neuron model. It can be seen that it is very meaningful to introduce discrete memristors
into discrete neuron models.

Inspired by the above literature, we investigate the firing behaviors and phase syn-
chronization of two Rulkov neurons coupled with the LADM in this paper. The main
contributions are summarized as follows:

(1) Compared with the original neurons, the Rulkov neurons coupled with the LADM
produce many novel firing patterns. Meanwhile, we show the coexisting firing
behaviors of the neural network;

(2) The synchronization transition behavior is explored;
(3) The neural network exhibits the anti-phase synchronization of different firing patterns

of homogeneous neurons, which has not been found in the previous literature.

The remaining structure of this paper is as follows: Section 2 shows the new bistable
LADM model, and its characteristics of nonvolatility, bistability, and local activity are
verified through numerical simulation. In Section 3, the Rulkov neuron model coupled
with LADM is established. Then, we discuss the influence of the LADM on the firing
behavior of discrete neurons in Section 4. The synchronization behaviors between the
neurons are reported in Section 5, and finally, the conclusions are given in Section 6.

2. Bistable LADM Model
2.1. Pinched Hysteresis Loops and Bistability

In this paper, we propose a new LADM, specifically described as
i(n) = W(φ(n))v(n) = tanh(φ(n))v(n)
φ(n + 1) = β f (φ(n)) + γv(n)
f (φ(n)) = −φ(n)3 + δφ(n)

(1)
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In Equation (1), i(n) and v(n) represent the output current and input voltage of the
LADM, W(φ) is the memductance, and β, γ, δ are memristive parameters. In this paper, we
let β = 0.1, γ = −0.1, and δ = 11.

A sinusoidal voltage signal v(n) = Asin(wT(n)) is added, and the volt-ampere char-
acteristic curves of the LADM are shown in Figure 1. Changing the amplitude, it can
be seen from Figure 1a that the pinched hysteresis loops through the origin present an
oblique “8” shape, and the area of the loops gradually becomes larger as the amplitude
increases. The corresponding pinched hysteresis loops can be observed in Figure 1b as the
frequency varies from 0 to 1. When the frequency is small, the pinched hysteresis loop
is located in all quadrants. When the frequency increases, the pinched hysteresis loop
area decreases and is gradually limited to the second and fourth quadrants. Finally, it is a
negative single-valued function, namely a negative resistance. Thus, the LADM meets the
definition of a memristor [64].
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Figure 1. Pinched hysteresis loops of the LADM model with φ(0) = 0: (a) ω = 0.1 Hz; (b) A = 1.5 V.

A multistable memristor refers to a memristor with multiple coexisting stable pinched
hysteresis loops under different initial values [65]. As shown in Figure 2, with frequency
w = 0.2 Hz and amplitude A = 1 V, when the two internal initial states are set as φ(0) = 0
and φ(0) = 2, respectively, there are two different pinched hysteresis loops on the V–I phase
plane, which means that the LADM is bistable.
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2.2. Nonvolatility and Local Activity

The nonvolatile property of the memristor allows the memristor to remain up-to-
date when the power is off, which can be characterized by the power-off plot (POP) [66],
i.e., the existence of two or more negative slopes intersecting the φ-axis. Letting v(n) = 0,
the equilibrium equation can be obtained as follows:

φ(n + 1)− φ(n) = β(−φ(n)3 + φ(n)). (2)

The dynamic curve of Equation (2) is drawn in Figure 3. According to the direction
of the arrows shown in Figure 3, we can judge what state the internal state variable will
eventually stabilize in different situations. It shows that the intersection points of the curve
and φ-axis are Q1 (−1, 0), Q2 (0, 0), and Q3 (1, 0), respectively. Q1 and Q3 are the two
intersection points with negative slopes. Therefore, the nonvolatile memristor has two
stable states under different initial states, that is to say,{

Φ = φ(Q1) = −1, φ(0) < 0
Φ = φ(Q3) = 1, φ(0) > 0

. (3)
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According to the above analysis, it can be concluded that the memristor is nonvolatile.
Local activity is the root of complexity [67]. The locally active nature of the memristor

can be judged by the DC V–I diagram, i.e., the existence of at least one negative slope
curve of the diagram [64]. For a better illustration, let φ(n + 1) − φ(n) = 0, which gives the
equilibrium equation {

V = −Φ3 + Φ
I = tanh(Φ)V = tanh(Φ)(−Φ3 + Φ)

. (4)

In Equation (4), V is the DC voltage, I is the DC current, and Φ implies a variable
equilibrium state of the equation and satisfies φ(n + 1) − φ(n) = 0, φ(n) = Φ. Taking the
range of Φ as [−2, 2], the curve of the V–I plane is drawn in Figure 4, and it is clear that
the memristor has two locally active regions. Then, the LADM has the characteristic of
local activity.
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3. The Neural Network Model and Equilibrium Point Analysis

The Rulkov neuron has the following main firing patterns: period-1 bursting firing,
triangular bursting firing, square-wave bursting firing, etc. By coupling two Rulkov
neurons with the proposed LADM, we can obtain a new LADM-based integer-order
Rulkov neural network (IORNN) model as

x1(n + 1) = α1
1+x1(n)

2 + y1(n)− k(x1(n)− x2(n))tanh(φ(n))

y1(n + 1) = y1(n)− µ(x1(n)− σ)

x2(n + 1) = α2
1+x2(n)

2 + y2(n) + k(x1(n)− x2(n))tanh(φ(n))

y2(n + 1) = y2(n)− µ(x2(n)− σ)

φ(n + 1) = φ(n) + β(−φ(n)3 + φ(n)) + γ(x1(n)− x2(n))

, (5)

where x1 and x2 denote the membrane potentials of neurons; y1 and y2 are the neuronal
recovery variables; (x1(n) − x2(n)) means the membrane potential difference between two
Rulkov neurons; αi (i = 1, 2), αi, and σ are parameters controlling the firing patterns of
neurons, 0 < µ� 1; and k represents the coupling strength. What needs to be noted is that
the control parameters of the new neural network are fixed with µ = 0.001 and σ = −1 in
this paper [68].

It is known that the equilibrium points for calculating Equation (5) are E1 (σ, σ − α1/
(1 + σ2), σ, α2/(1 + σ2), 1), E2 (σ, σ − α1/(1 + σ2), σ, α2/(1 + σ2), −1), and E3 (σ, σ − α1/
(1 + σ2), σ, α2/(1 + σ2), 0). For E3, the Jacobi matrix is calculated as

J =



−2α1σ

(1+σ2)
2 1 0 0 0

−µ 1 0 0 0
0 0 −2α2σ

(1+σ2)
2 1 0

0 0 −µ 1 0
−0.1 0 0.1 0 1.1

. (6)

The eigenvalues can be obtained from P(λ) = λI − J, where I is an identity matrix.
For the convenience of calculation, we assume that α1 = α2.

P(λ) = (λ− 1.1)[2µ(λ− 1)(λ +
−2ασ

(1 + σ2)2 ) + µ2 + (λ− 1)2(λ +
−2ασ

(1 + σ2)2 )
2
]. (7)
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It is obvious that there is a constant λ = 1.1 > 1, so E3 is always unstable. In the
following numerical simulation, it can be inferred that unstable points will lead to chaos.
Similarly, for E1 and E2, it can be calculated that the eigenvalues are the same, both of
which are (0.8, 1, −0.5α, 1, −0.5α). Additionally, it is valid when the control parameter α is
positive for the neural network. Therefore, the equilibrium points E1 and E2 are stable.

Discrete fractional calculus is suggested to describe neural networks with memory
effects [69,70]. In order to present the fractional-order model, some definitions and lemmas
are given below.

Definition 1. Following [61], for a given fractional-order q > 0, q /∈ N, when x(t) is defined in Nt0 ,
its Caputo difference is defined by

C∆q
t0

x(t) =
1

Γ(m− q)

t−(m−q)

∑
s=t0

(t− ρ(s))(m−q−1)∆m
s x(s). (8)

where Γ(·) is the gamma function, t ∈ Nt0+m−q, Nt0 = {t0, t0 + 1, t0 + 2, · · ·}, m = [q], and
ρ(s) denotes the next point in the time scale after s, namely ρ(s) = s + 1 for s ∈ Nt0 . Obviously,
when q = 1, the fractional difference becomes ∆x(tn) = x(tn+1)− x(tn).

Theorem 1. Following [61], for the Caputo-like fractional-order system,

c∆q
t0

x(t) = g(t + q− 1, x(t + q− 1)),

∆l x(t0) = cl , l = 0, 1, . . . . . . , m− 1.
(9)

The definition can continue to be equivalent to the equation

x(t) = x(t0) +
1

Γ(q)

t−q

∑
s=t0+m−q

(t− ρ(s))(q−1)g(s + q− 1, x(s + q− 1)). (10)

Furthermore, let s + q = j; then, the equation can be changed to

x(t) = x(t0) +
1

Γ(q)

t

∑
j=1

Γ(t− j + q)
Γ(t− j + 1)

g(j− 1, x(j− 1)). (11)

where x(t) is the system variable, and g(·) is the system equation.

Based on the Caputo fractional-order difference operator and Equation (5), we can
obtain a new LADM-based fractional-order Rulkov neural network (FORNN) model as

x1(n) = x1(0) + 1
Γ(q)

n
∑

j=1

Γ(n−j+q)
Γ(n−j+1)

[
α1

1+x1(j−1)2 + y1(j− 1)

− k(x1(j− 1)− x2(j− 1))tanh(φ(j− 1))− x1(j− 1)
]

y1(n) = y1(0) + 1
Γ(q)

n
∑

j=1

Γ(n−j+q)
Γ(n−j+1) [−µ(x1(j− 1)− σ)]

x2(n) = x2(0) + 1
Γ(q)

n
∑

j=1

Γ(n−j+q)
Γ(n−j+1)

[
α2

1+x2(j−1)2 + y2(j− 1)

+ k(x1(j− 1)− x2(j− 1))tanh(φ(j− 1))− x2(j− 1)
]

y2(n) = y2(0) + 1
Γ(q)

n
∑

j=1

Γ(n−j+q)
Γ(n−j+1) [−µ(x2(j− 1)− σ)]

φ(n) = φ(0) + 1
Γ(q)

n
∑

j=1

Γ(n−j+q)
Γ(n−j+1)

[
β(−φ(j− 1)3

+ φ(j− 1)) + γ(x1(j− 1)− x2(j− 1))
]

. (12)
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where x1(0) and x2(0) denote the initial membrane potentials of neurons, y1(0) and y2(0) are
the initial neuronal recovery variables, and q is the fractional order. Other parameters are
the same as those in Equation (5).

4. Multistability and Novel Firing Patterns

Some simulation results are presented in this section. These results indicate that the
introduction of the LADM improves the complexity of neurons, and the firing states of the
neural network can be selected by adjusting the initial values or the coupling strength k,
which has a potential application value in engineering applications.

4.1. Transition of Firing Patterns

According to [25], it is assumed that the two neurons have the same firing patterns
before coupling, which means α = α1 = α2. As the control variable α of a neuron is set in
the range of [2, 5], and the coupling strength k is varied from 0 to 1, the spectral entropy
complexity [71] of the IORNN and FORNN are shown in Figure 5. Different colors represent
different degrees of complexity, and the darker the color, the more complex it will be. Brown
and black imply chaotic or hyperchaotic firing patterns, and yellow indicates periodic firing
behaviors. The diversity of colors indicates that neurons have rich firing behaviors, and the
transition of firing patterns can be expressed by the variation in the colors with the change
in the coupling strength. It is obvious that the types of firing patterns of the FORNN at
q = 0.6 are less than those of the IORNN. Here, a few examples are presented to illustrate
this point.
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Figure 5. SE complexity with variable paraments α and k: (a) IORNN; (b) FORNN with q = 0.6.

For α = α1 = α2 = 3, the time sequences of the membrane potential x1 under different
coupling strengths are depicted in Figures 6–8. The firing patterns of the FORNN are
shown in Figures 6 and 7, while the firing patterns of the IORNN are presented in Figure 8.
When the fractional order q = 0.6, and the coupling strength k varies from 0 to 1, a transition
occurs from a silent state to silent firing and periodic spike firing. When the fractional
order is 0.95, it can be seen that the firing patterns of the FORNN are basically the same as
that of the IORNN. The periodic triangular bursting firing pattern is drawn in Figure 8a.
However, in Figure 8b, the neurons exhibit a mixed firing pattern with chaotic triangular
bursting firing and square-wave bursting firing. When k = 0.8, the neurons exhibit chaotic
square-wave bursting firing, as presented in Figure 8c. In addition, the transition process
corresponds to the SE complexity in Figure 5.
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In Figures 9–11, the blue dots and lines indicate the membrane potential x1, while
the magenta dots and lines indicate the membrane potential x2. Figures 9 and 10 show
the transition process of the firing patterns of the FORNN with α1 = 3 and α2 = 4. With
q = 0.6, k = 0, and k = 0.01, as plotted in Figure 9a,b, the membrane potentials x1 and x2
are in a silent state. When k = 0.8, the firing patterns of the neurons are periodic firing,
as presented in Figure 9c. Similarly, when q = 0.95, the firing patterns of the FORNN are
basically the same as that of the IORNN shown in Figures 10 and 11. Figure 11 shows the
transition process of the firing patterns of the IORNN with α1 = 3 and α2 = 4. As shown in
Figure 11a, the membrane potential x2 is in a silent state, while the membrane potential x1
is in a triangular bursting firing state at k = 0. With a slight increase in the coupling strength,
the membrane potential x2 shown in Figure 11b starts to excite as a mixed firing pattern,
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which indicates that a synapse acts as an intermediary to successfully transmit information
between neurons. In Figure 11c, the two Rulkov neurons reach synchronization at k = 0.8.
It is clear that the coupling strength plays a decisive role in regulating the firing states
of neurons, which also indicates that synaptic modulation plays an important role in the
synchronization process.
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It is found that the firing patterns of the LADM-based FORNN are more complex
than that of the LADM-based IORNN, but the dynamic behaviors of the IORNN are more
convenient to characterize the information transmission process between biological neurons
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with lower computation costs. Therefore, we will specify the dynamics of the IORNN
model in the next section.

4.2. Novel Firing Patterns

Due to the nonvolatile and bistable advantages of the proposed LADM, the bidirec-
tional memristive synapse-coupled neural network leads to novel firing patterns as well as
mixed firing patterns, enriching the dynamical behaviors of neurons.

Figure 12 depicts the time sequences of the two membrane potentials x1 and x2 with
different coupling strengths, respectively, and blue represents the membrane potential x1,
while magenta represents the membrane potential x2. When α1 = 2.5, α2 = 2, and k = 0.1, a
new periodic bursting firing pattern appears in Figure 12a, and its topological structure is
different from the original Rulkov neuron. With the increase in the coupling strength to 0.2,
a crossed firing pattern with different topologies of the bursting firing behavior is shown in
Figure 12c. In Figure 12b,d, the membrane potential x2 shows a mixed firing behavior of
spike firing and bursting firing. With the increase in the coupling strength, the frequency of
the spike firing pattern decreases. It is obvious that the introduction of the LADM enriches
the firing patterns of neurons.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 19 
 

 

   
(a) (b) (c) 

Figure 11. Transition of firing patterns of the IORNN with α1 = 3, α2 = 4 (a) k = 0; (b) k = 0.01; (c) k = 

0.8. 

It is found that the firing patterns of the LADM-based FORNN are more complex 

than that of the LADM-based IORNN, but the dynamic behaviors of the IORNN are more 

convenient to characterize the information transmission process between biological neu-

rons with lower computation costs. Therefore, we will specify the dynamics of the IORNN 

model in the next section. 

4.2. Novel Firing Patterns 

Due to the nonvolatile and bistable advantages of the proposed LADM, the bidirec-

tional memristive synapse-coupled neural network leads to novel firing patterns as well 

as mixed firing patterns, enriching the dynamical behaviors of neurons. 

Figure 12 depicts the time sequences of the two membrane potentials x1 and x2 with 

different coupling strengths, respectively, and blue represents the membrane potential x1, 

while magenta represents the membrane potential x2. When α1 = 2.5, α2 = 2, and k = 0.1, a 

new periodic bursting firing pattern appears in Figure 12a, and its topological structure is 

different from the original Rulkov neuron. With the increase in the coupling strength to 

0.2, a crossed firing pattern with different topologies of the bursting firing behavior is 

shown in Figure 12c. In Figure 12b,d, the membrane potential x2 shows a mixed firing 

behavior of spike firing and bursting firing. With the increase in the coupling strength, 

the frequency of the spike firing pattern decreases. It is obvious that the introduction of 

the LADM enriches the firing patterns of neurons. 

  
(a) (b) 

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 19 
 

 

  
(c) (d) 

Figure 12. Firing patterns with α1 = 2.5 and α2 = 2: (a,c) the time sequences of x1 with k = 0.1 and 0.2, 

respectively; (b,d) the time sequences of x2 with k = 0.1 and 0.2, respectively. 

With different control variables, the time series of the neuronal membrane potentials 

x1 and x2 are depicted in Figure 13. Along with the change in the coupling strength, the 

membrane potential x1 not only produces novel triangular firing behavior but also gener-

ates a mixed firing behavior of triangular bursting firing with different topologies, as 

shown in Figure 13a–c. More interestingly, Figure 13d–f indicate that the membrane po-

tential x2 has a mixed firing pattern with spike firing, period-1 bursting firing, and trian-

gular bursting firing. The frequency of the triangular bursting firing increases with the 

increase in the coupling strength. These results lead to a similar conclusion that the intro-

duction of the LADM makes the firing behaviors of Rulkov neurons more complicated. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 13. Firing patterns with α1 = 3 and α2 = 2: (a–c) the time sequences of x1 with k = 0.2, 0.3, and 

0.4; (d–f) the time sequences of x2 with k = 0.2, 0.3, and 0.4. 

4.3. Transient Chaotic Firing Behavior 

The phase diagrams and time sequences are shown in Figure 14. When α1 = α2 = 2.2, 

k = 0.5, and the initial values are (−1, 0.5, −1, 0, 0), the membrane potential x1 presents a 

Figure 12. Firing patterns with α1 = 2.5 and α2 = 2: (a,c) the time sequences of x1 with k = 0.1 and 0.2,
respectively; (b,d) the time sequences of x2 with k = 0.1 and 0.2, respectively.



Fractal Fract. 2023, 7, 82 11 of 18

With different control variables, the time series of the neuronal membrane potentials
x1 and x2 are depicted in Figure 13. Along with the change in the coupling strength,
the membrane potential x1 not only produces novel triangular firing behavior but also
generates a mixed firing behavior of triangular bursting firing with different topologies,
as shown in Figure 13a–c. More interestingly, Figure 13d–f indicate that the membrane
potential x2 has a mixed firing pattern with spike firing, period-1 bursting firing, and
triangular bursting firing. The frequency of the triangular bursting firing increases with
the increase in the coupling strength. These results lead to a similar conclusion that the
introduction of the LADM makes the firing behaviors of Rulkov neurons more complicated.
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Figure 13. Firing patterns with α1 = 3 and α2 = 2: (a–c) the time sequences of x1 with k = 0.2, 0.3,
and 0.4; (d–f) the time sequences of x2 with k = 0.2, 0.3, and 0.4.

4.3. Transient Chaotic Firing Behavior

The phase diagrams and time sequences are shown in Figure 14. When α1 = α2 = 2.2,
k = 0.5, and the initial values are (−1, 0.5,−1, 0, 0), the membrane potential x1 presents a tran-
sient chaotic firing pattern in the time interval n = [3000, 18,000]. The membrane potential
x1 shows a chaotic triangular bursting firing pattern in the time interval n = [3000, 10,000].
It is worth noting that the neuron stabilizes into a period-1 bursting firing behavior at
n = [10,000, 18,000]. Of course, the iteration times of chaos are different under different
initial values.

4.4. Coexisting Firing Patterns

Coexisting behavior is a hot topic in the field of neural networks. The parameters of
the neural network are relatively fixed, and the coexisting firing pattern can be obtained
only by changing the initial values. The corresponding parameters are assigned as follows:
β = 0.1, γ = −0.1, δ = 11, µ = 0.001, σ = −1. Take α1 = α2 = α = 2.2 and α1 = α2 = α= 2.5 as
examples, respectively, to reveal two different coexisting firing patterns.
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When α = 2.2, and the coupling strength k is set to 0.5, the neuron exhibits the coexisting
pattern of periodic and transient chaotic firing. The phase diagrams of the membrane
potential x1 under two sets of initial values (x1(0), y1(0), x2(0), y2(0), φ(0)) = (−1.1, −3,
−1, −3, 0.8) and (−1, 0.5, −1, 0, 0) are drawn in Figure 15. The membrane potential x1,
presenting a periodic firing pattern, is shown in Figure 15a. In Figure 15b, the membrane
potential x1 presents a transient chaotic firing pattern, and the blue track represents periodic
firing, while the green track represents chaotic firing. When α = 2.5, and the coupling
strength k is set to 0.1, there is the coexisting behavior of period-1 bursting firing and
triangular bursting firing in Rulkov neurons. Figure 16 shows the time series and phase
diagrams with different initial values, in which red and blue correspond to the initial values
of (1, 0.5, 1, 0.51, 0.3) and (1, 0.5, 1, 0, 1), respectively. It can be seen that when the initial
values are chosen as (1, 0.5, 1, 0, 1), the neuron exhibits period-1 bursting firing. When the
initial values are changed to (1, 0.5, 1, 0.51, 0.3), the firing pattern switches to triangular
bursting firing. It is clear that the multiple firing behaviors of the neural network are very
sensitive to the initial values.
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Figure 16. Coexisting firing pattern with α = 2.5: (a) time series with two different initial values of
(1, 0.5, 1, 0.51, 0.3) and (1, 0.5, 1, 0, 1); (b) coexisting attractors with two different initial values of
(1, 0.5, 1, 0.51, 0.3) and (1, 0.5, 1, 0, 1).

5. Phase Synchronization and Synchronization Transition

Each time the neuron begins to burst, the neuronal recovery variable y reaches its
maximum value. For a better analysis of phase synchronization, the phase of the recovery
variable y is discussed here, giving the definition of phase θ [24]

θ(n) = 2πk + 2π
n− nk

nk+1 − nk
, (nk < n < nk+1) (13)

where nk is the time of the appearance of the kth bursting.
The phase difference can be expressed as

|∆θ(n)| = |θ1(n)− θ2(n)| (14)

When α1 = 2 and α2 = 3, with the coupling strength k increasing from 0.1 to 0.5, the
phenomenon of synchronization transition occurs, which is different from all the previous
synchronization transitions. Figure 17a,c,e,g show firing patterns of two neurons and
Figure 17b,d,f,h present phase difference between two neurons at k = 0.1, 0.25, 0.3, and
0.5 respectively. According to the time sequences shown in Figure 17a, it can be realized
that the two neurons exhibit anti-phase synchronization at k = 0.1, and the firing patterns
of the two Rulkov neurons are period-1 bursting firing and triangular bursting firing,
respectively. The phase difference is maintained at a constant value in Figure 17b, which
reflects the anti-phase synchronization behavior. When the coupling strength increases to
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0.25, the firing patterns of the Rulkov neurons are mixed firing patterns, as presented in
Figure 17c. As shown in Figure 17d, the phase difference is similar to a period function and
fluctuates within the interval of [0, 3], which indicates that the Rulkov neurons are partially
synchronized. Comparing Figure 17f with Figure 17d, it is obvious that the overall trend of
the phase difference is similar, but it has a short stay at [4800, 5600]. When k = 0.5, the firing
patterns of the two Rulkov neurons are triangular bursting firing, as presented in Figure 17g.
Furthermore, it can be observed from Figure 17h that the phase difference between the two
neurons remains constant, demonstrating the phenomenon of synchronization. Through
the whole process, it is found that the firing patterns of the two Rulkov neurons change.
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In addition, with α1 = 3 and α2 = 3.5, the synchronization transition behavior is de-
picted in Figure 18. When k increases from 0.1 to 0.15, the transition from anti-phase
synchronization to in-phase synchronization takes place. Figure 18a,c,e show firing pat-
terns of two neurons and Figure 18b,d,f present phase difference between two neurons with
k = 0.1, 0.108, and 0.15 respectively. When the coupled strength k = 0.1, the two Rulkov
neurons exhibit anti-phase synchronization with different triangular bursting firing pat-
terns, as presented in Figure 18a,b. Figure 18c presents the intermediate transition process.
Under different iteration times, the neurons present different synchronization behaviors. It
can also be characterized by the phase difference shown in Figure 18d. When the coupled
strength k = 0.15, the two neurons are exactly synchronized, as shown in Figure 18e,f. In the
whole process, it is clear that the two Rulkov neurons do not produce new firing patterns
as the coupling strength increases.
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6. Conclusions

In this paper, a simple neural network was proposed, in which an LADM was used
to mimic the synapse connecting two Rulkov neurons. Because of its bistable, nonlinear,
and biomimetic characteristics, the LADM enriched the dynamic behaviors of the neural
network. Through the numerical simulation of the IORNN and FORNN models, the
transition of different firing patterns was explored. Furthermore, in the IORNN model,
several novel firing patterns, including a bursting firing pattern with new topologies as
well as mixed firing behaviors, were discovered. The firing behaviors of the neural network
had high sensitivity to initial values, resulting in the coexisting behaviors of periodic
and transient chaotic firing patterns, as well as period-1 bursting firing and triangular
bursting firing patterns. In addition, the phase synchronization and synchronization
transition were discussed in detail. When the neurons were weakly coupled, they were
anti-phase synchronized. However, they were in-phase synchronized as the coupling
strength increased. It is worth noting that we observed the anti-phase synchronization
of coupled homogeneous neurons with different firing patterns, which is instructive for
the analysis and understanding of neuronal activity in the different functional areas of the
brain and the pathological research of some mental diseases. Our next work should be to
analyze the mechanism of the dynamic behavior shown in this paper and to conduct more
research on fractional-order neural network models.
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