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Abstract: The paper deals with the stabilisation and trajectory tracking
control of an autonomous quadrotor helicopter system in the presence of
wind disturbances. The proposed adaptive tracking controller uses radial basis
function neural networks (RBF NNs) to approximate unknown nonlinear
functions in the system. Two controllers are proposed in this paper to
handle the modelling errors and external disturbances: H∞ adaptive neural
controller H∞-ANC and H∞-based adaptive neural sliding mode controller
H∞-ANSMC. The design approach combines the robustness of sliding mode
control (SMC) with the ability of H∞ to deal with parameter uncertainties
and bounded disturbances. Furthermore, the RBF models are derived using
Lyapunov stability analysis. The simulation results show that H∞-ANSMC is
able to eliminate the chattering phenomenon, reject perturbation mismatch and
leads to a better performance than H∞-ANC. A comparative simulation study
between the proposed controllers is presented and the results are discussed.
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1 Introduction

Unmanned aerial vehicles (UAVs) are receiving considerable attention these recent
years and their design and control are still an active area of research. The quadrotor
continues to be the most widely used UAV in both defense and civilian applications.
Compared with traditional helicopters (Maiti et al., 2018), quadrotors have several
advantages such as low cost and can be easily controlled by varying the speed of the
rotors. Many approaches have been proposed to control the quadrotor helicopter and
some strategies have been developed to solve path-following problems. Initially, the
quadrotor has been controlled using a three degrees of freedom (DOF) model structure

temp
Highlight

temp
Highlight
Author: If a previous version of your paper has originally been presented at a conference please complete the statement to this effect or delete if not applicable.



Adaptive neural network-based robust H∞ tracking control 3

by referring to Tayebi and McGilvray (2006). Because of the inherent nonlinearity in
the system, feedback linearisation approach is adopted by Lanzon et al. (2014) to design
the controller. In the last few years, adaptive tracking control of nonlinear systems
has received much attention and a significant progress has been made (Mohammadi
and Shahri, 2013). However, precise models of quadrotors are difficult to obtain. One
potential way to address this problem is to use computational intelligence-based control
methods such as neural networks control used by Wang et al. (2012) and Chen et al.
(2015). Basri et al. (2015) proposed an intelligent back-stepping (BS) controller based
on the radial basis function neural network (RBF NNs) as perturbation approximators.
The BS controller parameters are optimised based on the particle swarm optimisation
algorithm. Other control approaches can be found in the literature, such as fuzzy logic
control (Talha et al., 2018) and learning-based control (Zhang et al., 2015). Sliding
mode and high-order sliding mode-based observers have also been used by Besnard
et al. (2012) and Shakev et al. (2015) to estimate unmeasured states and the effects
of external disturbances such as wind and noise. Some results addressing the stability
and performance analysis of quadrotors are discussed by Ozbek et al. (2015). The
paper presents a comprehensive performance evaluation of several controllers including
proportional-integral-derivative control, sliding mode control (SMC), backstepping
control, feedback linearisation-based control and fuzzy control. Most of the robust
controllers proposed for UAV control are based on H∞ control because its effective
design methodology which offers robustness and ease of implementation. Mokhtari
et al. (2005) presented mixed robust feedback linearisation with GH∞ controller. Amin
and Aijun (2017) proposed a mixed sensitivity H∞ controller for attitude control of a
four-rotor hover vehicle. The mixed sensitivity approach allows shaping the sensitivity
(S) and complementary sensitivity functions (T) of the closed-loop system.

Artificial neural networks (ANN) have been extensively used as nonlinear function
approximators in control design of uncertain nonlinear systems due to their universal
approximation capabilities (Chung and Scarselli, 1998; Boufadene et al., 2018). Thus, an
ANN can be readily used to model the uncertainties in the quadrotor system dynamics.
The basic concept of this scheme is that an ANN approximates the unknown dynamics
so that the tracking performance of the system can be improved. As suggested by
Yacef et al. (2012), quadrotor dynamics are represented in state-space form which is
more convenient to implement the proposed approach.The dynamics of the quadrotor
helicopter with parameter variations and external disturbances can be treated as an
uncertain nonlinear system. So far, to the best of our knowledge, only a small number
of studies have employed neural networks for quadrotor helicopter control design.

In this paper, the H∞ tracking control design method is combined with adaptive
neural SMC H∞-ANSMC. RBF ANNs are used to approximate the unknown nonlinear
functions of the nominal model of the quadrotor. Due to the existence of approximation
errors of neural networks and external disturbance, H∞ and sliding mode method
as the robust controller to enhance system robustness and maintain boundedness are
utilised. The adaptive law used to adjust the weights of the neural network model
is derived from a suitable Lyapunov equation. This Lyapunov stability condition was
then transformed into a linear matrix inequality (LMI) form and the H∞-ANSMC
design problem was solved subject to this LMI. The closed-loop system stability can be
established based on Lyapunov stability criterion. The major contributions of the current
study can be summarised as follows: neural networks are proposed to approximate the
unknown nonlinear functions f0i (X) and g0i (X) which overcomes the need for an
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accurate mathematical model of the system. Two robust adaptive neural networks-based
sliding mode and H∞ control strategies are proposed for quadrotor trajectory tracking
with robustness against uncertainties and attenuation of wind gust disturbances. The
undesirable effects of the chattering phenomena that usually occur in SMC have been
reduced by using H∞-ANSMC. The width of the chattering band has been significantly
reduced in this method.

Using Lyapunov theory, it can be proved that the resulting closed-loop system is
robustly stable and uniformly ultimately bounded (UUB) and the actual system output
follows closely the desired output. The rest of the paper is organised as follows. In
Section 2, the UAV dynamic model is presented in state-space form. In Section 3, the
tracking control problem for aerial quadrotor system under uncertainties is introduced,
and some preliminary results are presented. In Sections 4 and 5, the robust adaptive
neural tracking control schemes based on H∞ and H∞-ANSMC methods are presented.
Simulation results to illustrate the effectiveness of the proposed control schemes are
presented in Section 6. Finally, some conclusions are drawn in Section 7.

2 Dynamic model of the quadrotor UAV

The quadrotor consists of four propellers in cross configuration where the pairs of
rotors (1, 3) and (2, 4), turn in opposite directions to prevent the device from turning
around itself Figure 1. Forward motion is achieved by increasing the speed of the rear
rotor while simultaneously reducing the forward rotor by the same amount. Left and
right motions work in the same way. Yaw command is performed by accelerating the
two clockwise turning rotors while decelerating the counter-clockwise turning rotors.
The equations describing the altitude and the attitude motions of a quadrotor UAV are
basically those of a rotating rigid body with six DOF. Consider the two main reference
frames, the earth fixed inertial reference frame Eb

(
ob, eb1, e

b
2, e

b
3

)
and the body fixed

reference frame Em
(
om, em1 , e

m
2 , e

m
3

)
shown in Figure 1. The absolute position of the

quadrotor is described by obom = ξ = [x, y, z]
T and its attitude by the three Euler’s

angles α = [ϕ, θ, ψ].

Assumption 1: The yaw, pitch and roll angles are restricted to −π < ψ < π, −π/2 ≤
θ ≤ π/2 and −π/2 ≤ ϕ ≤ π/2.

Figure 1 Structure of the quadrotor UAV
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By using the formalism of Newton-Euler (position and orientation dynamic), a good
controller should be able to reach a desired position and a desired yaw angle while
guaranteeing stability of the pitch and roll angles. Many works on quadrotors modelling
have been reported in the literature. In this paper, the quadrotor state space model
described in Yacef et al. (2012) is used for the design of the controller. The dynamic
model of a quadrotor is written state-space as

ẋ = f(X,u) (1)

with the following state vector X and input vector u

X = [x11, x12, ..., x61, x62]
T ∈ ℜ12

x11 = ϕ, x12 = ϕ̇, x21 = θ, x22 = θ̇

x31 = ψ, x32 = ψ̇, x41 = z, x42 = ż
x51 = x, x52 = ẋ, x61 = y, x62 = ẏ

(2)

where u = [u1, u2, u3, u4]
T are the control inputs of the system which are written in

terms of the angular velocities of the four rotors as follows
u1
u2
u3
u4

 =


0 −lb 0 lb

−lb 0 lb l0
d −d d −d
b b b b



ω2
1

ω2
2

ω2
3

ω2
4

 (3)

where b and d denote respectively the thrust and drag coefficients, l is the arm length
of the quadrotor. With Ωr = ω1 − ω2 + ω3 − ω4. Equation (3) can be written in the
following form

u = ΘF (4)

The forces are calculated from the following equation

F =


F1

F2

F3

F4

 =


0 −l 0 l
−l 0 l 0
d/b−d/b d/b−d/b
1 1 1 1


−1

u1
u2
u3
u4

 = Θ−1u (5)

where Fj = bω2
j , j = (1, ..., 4) is the force generated by the jth rotor. The nonlinear

function can be expressed in state-space form as

f(X,u) =



x12
a0x22x32 + a1Ωrx22 + a2x

2
12 + b0u1 + d1

x22
a3x12x32 + a4Ωrx12 + a5x

2
22 + b1u2 + d2

x32
a6x12x22 + a7x

2
32 + b2u3 + d3

x42
a10x42 − g + b3 cosx11 cosx21u4 + d4
x52
a8x52 + b3u4u5 + d5
x62
a9x62 + b3u4u6 + d6



(6)
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a0 =

(Iy−Iz)
Ix

, a1 = −Jr
Ix
, a2 = −Kfax

Ix

a3 = (Iz−Ix)
Iy

, a4 = +Jr
Iy
, a5 = −Kfay

Iy

a6 =
(Ix−Iy)

Iz
, a7 = −Kfaz

Iz
, a8 = −Kftx

m

a9 = −Kfty

m , a10 = −Kftz

m , b0 = 1
Ix
, b1 = 1

Iy
, b2 = 1

Iz
, b3 = 1

m

(Kfax,Kfay,Kfaz) represent the aerodynamic friction coefficients and (Kftx, Kfty ,
Kftz) are the translation drag coefficients, Jr denotes the rotor inertia, m and
(Ix, Iy, Iz) are respectively the mass and the total inertia matrix of the quadrotor,
finally u5 and u6 are two virtual inputs. The dynamic model of the quadrotor given
in equation (6) has six outputs (x, y, z, ϕ, θ, ψ) and only four independent inputs
(u1, u2, u3, u4). Therefore, the quadrotor is an under-actuated system and hence it is
not possible to control all the states simultaneously (Madani and Benallegue, 2007).
A possible combination of controlled outputs can be (x, y, z, ψ) in order to track the
desired positions and stabilise the roll and pitch angles (ϕ, θ) which introduce stable
zero dynamics into the system. To deal with this problem, two virtual control inputs
(u5, u6) are introduced in addition to the four control inputs of the quadrotor so that
each output of the system will be controlled independently. The two virtual inputs are
defined as

u5 = (cosx11 cosx31 sinx21 + sinx11 sinx31)
u6 = (cosx11 sinx21 sinx31 − sinx11 cosx31)

(7)

Several techniques which consider unmodelled dynamics and aerodynamic interaction
have been employed in various trajectories tracking controller designs for the quadrotor.
Several recent papers related to UAV dealt with adaptive control-based onneural
networks (NNs). In Emran and Najjaran (2017) an adaptive NN control of the quadrotor
system with actuator constraints, however the authors did not consider the nonlinear
function gi to be fully known. RBF NNs have only one single hidden layer which can
be easily tuned. This makes them more attractive than MLPNNs by referring to Haykin
(2009) and Behera et al. (2010). A variety of NN adaptive control methods are proposed
in the literature. However, in all these works, disturbances and parameter variations are
not taken into consideration.

3 Proposed tracking control strategies for the quadrotor UAV

Two control methods are proposed in this work: an adaptive neural network-based H∞
tracking control and an adaptive neural network-based H∞ tracking controller with
sliding mode to enhance system robustness and maintain boundedness. In addition,
admissible laws are derived and the weights of RBF NNs are updated based on a
Lyapunov function. It can be proven, for the two proposed methods, that the resulting
closed-loop system is robustly stable and UUB. The adopted control strategy is based
on two controllers one for the position andone for the attitude. The reference ofthe
pitch and roll angles (ϕd, θd) are generated through the two virtual inputs u5 and u6,
computed to follow the desired (x, y) movement, which are given by{

ϕd = arcsin (u5 sin (ψd)− u6 cos (ψd))
θd = arcsin ((u5 cos (ψd) + u6 sin (ψd))/cos (ϕd))

(8)
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The main objective is to design a controller for the miniature quadrotor UAV
Figure 2 which exhibits robustness properties against unmodeled dynamics and
parameter uncertainties, while ensuring that the position x (t) , y (t) , z (t) , ψ (t) tracks
asymptotically the desired trajectory xd (t) , yd (t) , zd (t) , ψd (t).

Figure 2 Scheme of the quadrotor (see online version for colours)

The state-space model of equation (1) can be rearranged as follow

∑
i

 ẋi1 = xi2
ẋi2 = fi (X) + gi (X)ui + di
yi = xi1

/i = (1, ..., 6) (9)

where fi (X) and gi (X) are nonlinear smooth functions and ui = [u1,...,u6]
T ∈ ℜ6 is

the control input vector, yi = [y1,...,y6]
T ∈ ℜ6 is the output vector. di is an external

bounded disturbance such that |di| ≤ ∆d. Each of the two functions fi (X) and gi (X)
can be written as the sum of two elements: Its nominal forms and an unknown bounded
uncertainty.{

fi (X) = f0i (X) + ∆fi (X) ; |∆fi (X)| ≤ ∆f

gi (X) = g0i (X) + ∆gi (X) ; |∆gi (X)| ≤ ∆g
/i = (1, ..., 6) (10)

where ∆f ,∆g are positive constants, ∆fi (X), ∆gi (X) denote the uncertain terms and
fi (X),gi (X) represent the nominal values. Substituting equation (10) into equation (9),
yields

∑
i

 ẋi1 = xi2
ẋi2 = f0i (X) + g0i (X)ui +Di

yi = xi1

(11)

where Di is the sum of the external perturbation and the model uncertainty.{
Di = ∆fi (X) + ∆gi (X)ui + di
DM = ∆f +∆guM +∆d; |u| ≤ uM

(12)
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First express the parametric variations of the model coefficients

a0 = a00 +∆a0; a5 = a05 +∆a5; a10 = a010 +∆a10
a1 = a01 +∆a1; a6 = a06 +∆a6; b0 = b00 +∆b0
a2 = a02 +∆a2; a7 = a07 +∆a7; b1 = b01 +∆b1
a3 = a03 +∆a3; a8 = a08 +∆a8; b2 = b02 +∆b2
a4 = a04 +∆a4; a9 = a09 +∆a9; b3 = b03 +∆b3
g = g0 +∆g

(13)

The nominal model of the system is obtained as follows

f01 (X) = a00x22x32 + a01Ωrx22 + a02x12
2; g01 (X) = b00

f02 (X) = a03x12x32 + a04Ωrx12 + a05x22
2; g02 (X) = b01

f03 (X) = a06x12x22 + a07x32
2; g03 (X) = b02

f04 (X) = a010x42 − g0; g04 (X) = b03 cosx11 cosx21
f05 (X) = a08x52; g05 (X) = b03u4
f06 (X) = a09x62; g06 (X) = b03u4

(14)

with

y
(2)
i =


y
(2)
1
...

y
(2)
6

 , f0i (X) =

 f01 (X)
...

f06 (X)



g0i (X) =


g01 (X) 0 · · · 0

0 g02 (X) 0
...

... 0
. . . 0

0 · · · 0 g06 (X)


Let us define D1...D6 as follows

D1=∆a0x22x32 +∆a1Ωrx22 +∆a2x
2
12︸ ︷︷ ︸

∆f1(X)

+ ∆b0︸︷︷︸
∆g1(X)

u1 + d1

D2=∆a3x12x32 +∆a4Ωrx12 +∆a5x
2
22︸ ︷︷ ︸

∆f2(X)

+ ∆b1︸︷︷︸
∆g2(X)

u2 + d2

D3=∆a6x12x22 +∆a7x
2
32︸ ︷︷ ︸

∆f3(X)

+ ∆b2︸︷︷︸
∆g3(X)

u3 + d3

D4=∆a10x42 −∆g︸ ︷︷ ︸
∆f4(X)

+∆b3 cosx11 cosx21︸ ︷︷ ︸
∆g4(X)

u4 + d4

D5=∆a8x52︸ ︷︷ ︸
∆f5(X)

+∆b3u4︸ ︷︷ ︸
∆g5(X)

u5 + d5

D6=∆a9x62︸ ︷︷ ︸
∆f6(X)

+∆b3u4︸ ︷︷ ︸
∆g6(X)

u6 + d6

(15)

Assumption 2

1 The nonlinear system of equation (9) has a relative degree of n.
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2 The control ui appears linearly with respect to y(n), that is

y
(n)
i = f0i (X) + g0i (X)ui +Di/i = (1, ..., 6) , n = 2 (16)

However, in our case, these nonlinear functions are not known exactly. Therefore, the
authors propose to use an adaptive neural model to approximate the nonlinear functions
f0i (X) and g0i (X).

Assumption 3: The desired trajectory and its time derivatives are smooth and bounded.

Assumption 4: The sign of the nonlinear function g0i (X) is known and without loss
of generality, the function is assumed to be positive definite and bounded |g0i (X)| ≥
g
0i
> 0 , where g

0i
is a positive constant.

Let us define the tracking error as

ei = ydi − xi1, ėi = ẏdi − xi2 (17)

If the functions both f0i (X) and g0i (X) are assumed known and the disturbance vector
then according to the feedback linearisable techniques (Isidori, 1989), the control law
can be written as

ui = (g0i (X))
−1

(vi − f0i (X)) /i = (1, ..., 6) , n = 2 (18)

Hence, vi(t) = y
(n)
di (t) + ki,n−1e

(n−1)
i (t) + · · ·+ ki,0ei(t), Ei =

[
ei, ėi, ..., e

(n−1)
i

]T
and Ki = [ki,0, ...., ki,n−1] is the Hurwitz vector. Substituting equation (18) into
equation (16) gives

y
(n)
i = y

(n)
di +KiEi ⇒ e

(n)
i +KiEi = 0/i = (1, ..., 6) , n = 2 (19)

The aim of our study is to ensure output tracking of the desired trajectory, where
lim
t→∞

Ei(t) = 0.
Since f0i (X) and g0i (X) are both unknown continuous functions, and the

disturbance vector Di ̸= 0, so RBF NNs can be used to approximate these nonlinear
functions (Long and Fei, 2008), Let’s define{

f0i (X) =WT
f0i
hf0i(X) + ζf0i (X)

g0i (X) =WT
g0ihg0i(X) + ζg0i (X)

(20)

where i = (1, 2, ..., 6), X ∈ ℜ12, Wf0i
and Wg0i are vectors of adjustable weights and

ζf0i , ζg0i are approximation errors.

Assumption 5: The approximation errors ζf0i , ζg0i are assumed to be bounded |ζf0i | ≤
ζ̄f0i , |ζg0i | ≤ ζ̄g0i where and are known positive constants.
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The Gaussian-type function can be expressed as

hf0ij(X) = exp
[
−(X − ηf0ij)

T
(X − ηf0ij)

/(
2σ2

f0ij

)]
hg0ij(X) = exp

[
−(X − ηg0ij)

T
(X − ηg0ij)

/(
2σ2

g0ij

)] (21)

(ηf0ij , σf0ij) and (ηg0ij , σg0ij) are the center and variance of the basis function
respectively. The estimates of the unknown nonlinear RBF NNs functions f0i (X) and
g0i (X) are given by{

f̂0i (X) = ŴT
ff0i

hf0i (X)

ĝ0i (X) = ŴT
g0ihg0i (X)

(22)

Denoting the vectors of Gaussian basis function as

hf0i(X) = [hf0i1(X), hf0i2(X), . . . , hf0iN (X)]
hg0i(X) = [hg0i1(X), hg0i2(X), . . . , hg0iq(X)]

(23)

where hf0i(X) : X → ℜN , hg0i(X) : X → ℜq , Ŵf0i
and Ŵg0i are the estimate value

of weights vector. Let us define the weights vector errors of RBF NNs as (Mellouli
et al., 2018){

W̃f0i = Ŵf0i
−W ∗

f0i

W̃g0i = Ŵg0i −W ∗
g0i

(24)

where the optimal weights are given by
W ∗

f0i
= argmin

Ŵfoi
∈Sf

[
sup

X∈ℜn

∣∣∣f̂0i (X)− f0i (X)
∣∣∣]

W ∗
g0i = argmin

Ŵg0i
∈Sg

[
sup

X∈ℜn
|ĝ0i (X)− g0i (X)|

] (25)

Sf and Sg are known compact subsets.

Sf =
{
Ŵf0i

:
∥∥∥Ŵf0i

∥∥∥ ≤Mf0i

}
Sg =

{
Ŵg0i :

∥∥∥Ŵg0i

∥∥∥ ≤Mg0i

} (26)

Mf0i , Mg0i are positive constants. The compound disturbance of system (11) is defined
as (Yu et al., 2010)

ωi(X) = ζi(X)−Di (27)

where ωi ∈ L2 [0, tf ], ∀tf ∈ [0,∞) and ωi is bounded, i.e.,|ωi| ≤ ω̄i.
The approximate errors are described by

ζi =
(
f̂0i

(
X,W ∗

f0i

)
− f0i (X)

)
+
(
ĝ0i
(
X,W ∗

g0i

)
− g0i (X)

)
ui

=
(
W̃T

f0i
hf0i (X)− ζf0i (X)

)
+
(
W̃T

g0ihg0i (X)− ζg0i (X)
)
ui

(28)
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4 Design of the robust adaptive neural H∞ tracking control (H∞-ANC)

In this section, H∞ is introduced to enhance the robustness of the control system and
compensate the effects of the approximation errors ζi of RBF NNs and disturbances Di.
In the case where, ωi ̸= 0 the following H∞ tracking performance is required (Liu,
2008; Chen et al., 1997)∫ tf

0
ET

i QiEidt ≤ ET
i (0)PiEi(0) + γ−1

f0i
W̃T

f0i
(0)W̃f0i

(0)

+γ−1
g0iW̃

T
g0i(0)W̃g0i(0) + ρ2i

∫ tf
0
ωT
i ωidt

∀tf ∈ [0,∞) , ωi ∈ L2 [0, tf ]

(29)

where Qi are symmetrical positive semi-definite matrices, γg0i > 0 and γf0i > 0 are
adaptive gains. ∥Ei∥2Qi =

∫ tf
0
ET

i QiEidt, ∥ωi∥2 =
∫ tf
0
ωT
i ωidt and ρi is a prescribed

attenuation level.

Figure 3 Structure of H∞-ANC control scheme (see online version for colours)

If Ei(0) = 0, W̃f0i(0) = 0, W̃g0i(0) = 0, the H∞ performance can be rewritten as

sup
ωi∈L2[0,tf ]

∥Ei∥Qi
∥ωi∥

≤ ρi/i = 1, ..., 6 (30)

The control law that ensures closed-loop system stability is obtained as

ui = (ĝ0i (X))
−1
(
y
(n)
di +KiEi − f̂0i (X)− uai

)
/i = 1, 2, ..., 6, n = 2 (31)

uai is the control law associated with H∞ robust control employed to compensate the
neural network approximation error and the external disturbances.

Substituting equation (31) into equation (11), gives

e
(n)
i = −KiEi +

(
f̂0i (X)− f0i (X)

)
+ (ĝ0i (X)− g0i (X))ui + uai −Di (32)

From (32), (28) and (27) the output tracking error dynamic equation is obtained as

Ėi = AiEi + bi
[(
f̂0i (X)− f̂0i

(
X,W ∗

f0i

))
+
(
ĝ0i (X)− ĝ0i

(
X,W ∗

g0i

))
ui + ωi + uai

]
(33)
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with

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . .

...
−ki,0 −ki,1 −ki,2 · · · −ki,n−1

 ∈ ℜ(n−1)×(n−1), bi =


0
0
...
1

 ∈ ℜ(n−1)

The parameters ki,0, ...., ki,n−1 are chosen such that the Ai matrix is stable. Substituting
equations (22) and (24) into equation (33) leads to

Ėi = AiEi + bi

[((
Ŵf0i

−W ∗
f0i

)T
hf0i (X)

)
+

((
Ŵg0i −W ∗

g0i

)T
hg0i (X)

)
ui + ωi + uai

]
= AiEi + bi

[(
W̃T

f0i
hf0i (X)

)
+
(
W̃T

g0ihg0i (X)
)
ui + ωi + uai

]
= AiEi + χi + biωi

(34)

where χi = bi

[(
W̃T

f0i
hf0i (X)

)
+
(
W̃T

g0ihg0i (X)
)
ui + uai

]
.

Consider the following Lyapunov function

Vi =
1

2
ET

i PiEi +
1

2γf0i
W̃T

f0iW̃f0i +
1

2γg0i
W̃T

g0iW̃g0i (35)

The time derivative of Vi is

V̇i =
1

2
ĖT

i PiEi +
1

2
ET

i PiĖi +
1

γf0i
W̃T

f0i
˙̃Wf0i +

1

γg0i
W̃T

g0i
˙̃Wg0i (36)

By using the fact that ˙̃Wf0i =
˙̂
Wf0i

and ˙̃Wg0i =
˙̂
Wg0i then

V̇i =
1
2 Ė

T
i PiEi +

1
2E

T
i PiĖi +

1
γf0i

W̃T
f0i

˙̂
Wf0i

+ 1
γg0i

W̃T
g0i

˙̂
Wg0i

= 1
2

[
ET

i

(
AT

i Pi + PiAi

)
Ei

]
+ 1

2

[
ET

i Pibiωi + ωT
i b

T
i PiEi

]
+ ET

i Piχi +
1

γf0i
W̃T

f0i

˙̂
Wf0i

+ 1
γg0i

W̃T
g0i

˙̂
Wg0i

(37)

Substituting χi into equation (37) gives

V̇i =
1
2

[
ET

i

(
AT

i Pi + PiAi − 2µ−1
i Pibib

T
i P
)
Ei

]
+ 1

γf0i
W̃T

f0i

[
γf0iE

T
i Pibihf0i (X) +

˙̂
Wf0i

]
+ 1

γg0i
W̃T

g0i

[
γg0iE

T
i Pibihg0i (X)ui +

˙̂
Wg0i

]
+ 1

2

[
ET

i Pibiωi + ωT
i b

T
i PiEi

] (38)

To ensure that the control objectives are achieved, the following adaptation laws are
chosen

˙̂
Wf0i

= −γf0iE
T
i Pibihf0i (X)

˙̂
Wg0i = −γg0iE

T
i Pibihg0i (X)ui

(39)
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Moreover, choosing uai = −µ−1
i bTi PiEi, then

V̇i =
1
2

[
ET

i

(
AT

i Pi + PiAi − 2µ−1
i Pibib

T
i P
)
Ei

]
+ 1

2

[
ET

i Pibiωi + ωT
i b

T
i PiEi

] (40)

Thus, for any given matrix Qi = QT
i > 0 there exists a matrix Pi = PT

i > 0 which is a
unique solution of the following Riccati equation

AT
i Pi + PiAi − (

2

µi
− 1

ρ2i
)Pibib

T
i Pi = −Qi (41)

Remark 1: Equation (41) has a positive semi-definite and symmetric solution Pi if and
only if 2ρ2i ≥ µi (Anderson and Moore, 1993). Schur complement formula is used to
transform equation (41) into the equivalent linear matrix inequalities (LMI) which is
defined by Horn and Johnson (1985) and Long and Fei (2008). AT

i Pi + PiAi +Qi (
√
ρ−2
i − 2µ−1

i )Pibi

(
√
ρ−2
i − 2µ−1

i )bTi Pi −I

 < 0, Pi > 0 (42)

From equations (41) and (40)

V̇i = − 1
2E

T
i QiEi − 1

2ρ2
i
ET

i Pibib
T
i PiEi +

1
2

[
ET

i Pibiωi + ωT
i b

T
i PiEi

]
= −1

2E
T
i QiEi − 1

2

(
1
ρi
bTi PiEi − ρiωi

)T (
1
ρi
bTi PiEi − ρiωi

)
+ 1

2ρ
2
iω

T
i ωi ≤ − 1

2E
T
i QiEi +

1
2ρ

2
iω

T
i ωi ≤ − 1

2 ∥Ei∥2Qi +
1
2ρ

2
i ∥ωi∥2

(43)

Because Vi(0) is bounded, and Vi (tf ) ≥ 0 the following result is obtained

1
2

∫ tf
0
ET

i QiEidt ≤ Vi (0) +
1
2ρ

2
i

∫ tf
0
ωT
i ωidt

= 1
2E

T
i (0)PiEi (0) +

1
2γf0i

W̃T
f0i

(0) W̃f0i
(0)

+ 1
2γg0i

W̃T
g0i (0) W̃g0i (0) +

1
2ρ

2
i

∫ tf
0
ωT
i ωidt

(44)

If Vi(0) = 0, then equation (44) becomes

sup
ωi∈L2[0,tf ]

∥Ei∥Qi
∥ωi∥

≤ ρi

Which is equivalent to equation (29). It can be concluded that as Therefore, the tracking
errors and their derivatives converge asymptotically to zero, hence the controller is
strongly robust with respect to the compound disturbance. To ensure that the weights of
RBF NNs are bounded, from Assumption 3, the neural adaptive laws for updating the
weights in terms of the projection approach (Wang, 1989) are defined as
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˙̂
Wf0i =



−γf0iE
T
i Pibihf0i (X) if

∥∥∥Ŵf0i

∥∥∥ < Mf0i

or

(∥∥∥Ŵf0i

∥∥∥ =Mf0i and

ET
i PibiŴ

T
f0i
hf0i (X) ≥ 0

)
pf0i

[
−γf0iE

T
i Pibihf0i (X)

]
if
∥∥∥Ŵf0i

∥∥∥ =Mf0i

and
(
ET

i PibiŴ
T
f0i
hf0i (X)< 0

)
(45)

˙̂
Wg0i =



−γg0iE
T
i Pibihg0i (X)ui if

∥∥∥Ŵg0i

∥∥∥ < Mg0i

or

(∥∥∥Ŵg0i

∥∥∥ =Mg0i and

ET
i PibiŴ

T
g0ihg0i (X)ui ≥ 0

)
pg0i

[
−γg0iE

T
i Pibihg0i (X)ui

]
if
∥∥∥Ŵg0i

∥∥∥ =Mg0i

and
(
ET

i PibiŴ
T
g0ihg0i (X)ui< 0

)
(46)

where

pf0i
[
−γf0iE

T
i Pibihf0i (X)

]
= −γf0iE

T
i Pibihf0i (X)

+
γf0iE

T
i PibiŴf0i

ŴT
f0i
hf0i (X)∥∥∥Ŵf0i

∥∥∥2 (47)

pg0i
[
−γg0iE

T
i Pibihg0i (X)ui

]
= −γg0iE

T
i Pibihg0i (X)ui

+
γg0iE

T
i PibiŴg0iŴ

T
g0ihg0i (X)ui∥∥∥Ŵg0i

∥∥∥2 (48)

To eliminate the effects of uncertain dynamics and external disturbances so that the
output tracking error asymptotically converges to zero, a robust neural sliding mode
tracking control system, which comprises an adaptive RBF NNs controller is developed
in the following section.

5 Design of the robust adaptive H∞ neural SMC (H∞-ANSMC)

SMC is an effective robust control approach for a class of nonlinear systems
with uncertainties defined in compact sets (Devika and Thomas, 2018). When the
mathematical models are known, such a control is used directly to track the reference
signals (Sira-Ramı́rez, 2015; Beyhan and Ali, 2009). H∞ tracking control design
method and adaptive neural SMC technique are combined to form the H∞-ANSMC
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controller for the quadrotor UAV. The proposed method not only is robust against
approximate errors, disturbances and unmodelled dynamics, but also guarantees a
desired H∞ tracking performance for the overall system. Moreover, control chattering
inherent in conventional SMC can be significantly reduced. The proposed H∞ adaptive
neural-based sliding mode tracking controller is depicted in Figure 4.

Figure 4 H∞-ANSMC controller for ith sub-system (see online version for colours)

The H∞ tracking performance for the overall system satisfies the following relationship∫ tf
0
ET

i QiEidt ≤ S2
i (0) + ET

i (0)PiEi(0) + γ−1
f0i
W̃T

f0i
(0)W̃f0i

(0)

+γ−1
g0iW̃

T
g0i(0)W̃g0i(0) + ρ2i

∫ tf
0
ωT
i ωidt

∀tf ∈ [0,∞) , ωi ∈ L2 [0, tf ]

(49)

Consider the uncertain nonlinear systems (11), defining the sliding surface of the control
systems as

Si (Ei) = ki,0ei + ki,1ėi + ..+ ki,n−1e
(n−1)
i + e

(n−1)
i

=
n∑

j=1

ki,j−1e
(j−1)
i = KT

i Ei /i = (1, 2, ..., 6) , n = 2
(50)

where Ei =
[
ei, ėi, ..., e

(n−1)
i

]T
, Ki = [ki,0, ...., ki,n−1]

T is satisfied with the Hurwitz
stability condition.

If f0i (X) and g0i (X) are exactly known, the control objective could be achieved
by the following control law (Slotine and Li, 1991)

ui = ueqi + udi (51)

where ueqi is the equivalent control law and udi is the switching control law defined as

udi = −εisgn (Si) (52)

The term εi is a positive constant satisfying εi >
∆Di

g0i(X) . Where ∆Di denotes the bound
of Di (t), that is Di (t) ≤ ∆Di and

sgn (Si)

 1 if Si > 0
0 if Si = 0

− 1 if Si < 0
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However, if both functions f0i (X) and g0i (X) in equation (11) were unknown, then
the control law (51) would be generally inapplicable. This explains the use of neural
networks models to approximate these unknown nonlinear dynamics. On the basis of
the certainty equivalent control approach (Slotine and Li, 1991), the control law (51)
can be replaced with the following control law

ui = ûeqi + ûdi (53)

Based on the linearisation feedback technique, the equivalent control law in
equation (53) is defined as

ûeqi =

(ĝ0i (X))
−1

y(n)di +
n∑

j=1

ki,j−1e
(j−1)
i︸ ︷︷ ︸

KiEi

−f̂0i (X)

 i = (1, ..., 6) , n = 2 (54)

and

ûdi = −ε̂isgn (Si) (55)

where ε̂i, is a positive scalar. The rest of this section will focus on the design of
the control and the adaptive laws ˙̂

Wf0i
and ˙̂

Wg0i so that H∞ tracking performance
in equation (49) is achieved. Let ε̂i = (ĝ0i (X))

−1
(2/ρi) |Si|. Substituting this into

equation (55), gives

ûdi = −ε̂isgn (Si) = −(ĝ0i (X))
−1

(
2

ρi

)
Si (56)

The chattering effect of the control input is substantially reduced with this method
because the term ε̂isgn (Si) related to the control chattering is replaced by a much
smoother term (ĝ0i (X))

−1
(2/ρi)Si in the derived control law. Therefore the control

law ui given by equation (53) can be rewritten as follows

ui = (ĝ0i (X))
−1

(
y
(n)
di +KT

i Ei − f̂0i (X) +

(
2

ρi

)
Si

)
(57)

Substituting equation (53) into equation (11) and from equation (19) and after a few
transformations, the following dynamic error equation is obtained as

e
(n)
i = −KiEi +

(
f̂0i (X)− f0i (X)

)
+ (ĝ0i (X)− g0i (X))

− ε̂iĝ0i (X) sgn (Si)−Di (58)

or

Ėi = AiEi + bi

[(
f̂0i (X)− f0i (X)

)
+ (ĝ0i (X)− g0i (X))ui

]
+ bi [−ε̂iĝ0i (X) sgn (Si)−Di]

(59)



Adaptive neural network-based robust H∞ tracking control 17

Substituting equations (22) and (24) into equation (59) gives

Ėi=AiEi + bi

[(
f̂0i (X)− f0i (X) + f̂0i

(
X,W ∗

f0i

)
− f̂0i

(
X,W ∗

f0i

))
+ (ĝ0i (X)− g0i (X) +ĝ0i

(
X,W ∗

g0i

)
− ĝ0i

(
X,W ∗

g0i

))
ui]

+ bi [−ε̂iĝ0i (X) sgn (Si)−Di]

= AiEi + bi

[(
W̃T

f0i
hf0i (X)

)
+
(
W̃T

g0ihg0i (X)
)
ui + ωi −

(
2
ρi

)
Si

] (60)

By calculating the time derivative, the sliding model dynamic equation is obtained as
follows

Ṡi = KiĖi = y
(n)
di +KT

i Ei − y
(n)
i

=
(
W̃T

f0i
hf0i (X)

)
+
(
W̃T

g0ihg0i (X)
)
ui + ωi −

(
2
ρi

)
Si

(61)

Define the Lyapunov function as

Vi =
1
2S

2
i + 1

2E
T
i PiEi +

1
2γf0i

W̃T
f0i
W̃f0i

+ 1
2γg0i

W̃T
g0iW̃g0i i = (1, ..., 6) , n = 2

(62)

where γf0i> 0, γg0i > 0 denote the adaptive gains. Using equation (60), the time
derivative of Vi, is obtained as

V̇i = SiṠi +
1
2 Ė

T
i PiEi +

1
2E

T
i PiĖi +

1
γf0i

W̃T
f0i

˙̃Wf0i
+ 1

γg0i
W̃T

g0i
˙̃Wg0i

= Siωi +
(
Si + bTi PiEi

) [
W̃T

f0i
hf0i (X) + W̃T

g0ihg0i (X)ui

]
+ 1

2

[
ET

i

(
AT

i Pi + PiAi

)
Ei

]
+ 1

2

[
ET

i Pibiωi + ωT
i b

T
i PiEi

]
−
(

2
ρi

)
S2
i −

(
2
ρi

)
Sib

T
i PiEi +

1
γf0i

W̃T
f0i

˙̃Wf0i
+ 1

γg0i
W̃T

g0i
˙̃Wg0i

(63)

Again using the fact that ˙̃Wf0i =
˙̂
Wf0i

and ˙̃Wg0i =
˙̂
Wg0i equation (63) becomes

V̇i = Siωi +
(
Si + bTi PiEi

) [
W̃T

f0i
hf0i (X) + W̃T

g0ihg0i (X)ui

]
= Siωi −

(
2
ρi

)
Sib

T
i PiEi +

1
γf0i

W̃T
f0i

[
γf0i

(
Si + bTi PiEi

)
hf0i (X)

+
˙̂
Wf0i

]
+ 1

γg0i
W̃T

g0i

[
γg0i

(
Si + bTi PiEi

)
hg0i (X)ui +

˙̂
Wg0i

]
+ 1

2ωib
T
i PiEi −

(
2
ρi

)
S2
i + 1

2

[
ET

i

(
AT

i Pi + PiAi

)
Ei

]
(64)

To guarantee that the weights of RBF NNs remain bounded the following weights update
laws are used

˙̂
Wf0i

= −γf0i
(
Si + bTi PiEi

)
hf0i (X)

˙̂
Wg0i = −γg0i

(
Si + bTi PiEi

)
hg0i (X)ui

(65)

Then

V̇i ≤ Siωi −
(

2
ρi

)
Sib

T
i PiEi + ωib

T
i PiEi −

(
2
ρi

)
S2
i

+ 1
2

[
ET

i

(
AT

i Pi + PiAi

)
Ei

]
≤ 1

2

[
ET

i

(
AT

i Pi + PiAi +
4
ρi
Pibib

T
i Pi

)
Ei

]
+ 1

2ρiω
2
i

≤ − 1
2ρi
ET

i QiEi +
1
2ρiω

2
i

(66)
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Consider the nonlinear system given by equation (11) with unknown bounded smooth
functions f0i (X) and g0i (X), which are approximated by f̂0i (X) and ĝ0i (X)
respectively and suppose that, for any given ρi > 0, Qi is a given symmetric positive
definite weighting matrix.

Let Pi = PT
i be the solution of the following quadratic matrix inequality

AT
i Pi + PiAi +

4

ρi
Pibib

T
i Pi +

Qi

ρi
≤ 0 (67)

Note that the quadratic matrix inequality in equation (67) can be transformed into a
certain form of LMI by referring to Horn and Johnson (1985) and Anderson and Moore
(1993). That is, by the Schur complements, equation (67) is equivalent toAT

i Pi + PiAi +
Qi
ρi

(
2
(√
ρi
)−1
)
Pibi(

2
(√
ρi
)−1
)
bTi Pi −I

 < 0, Pi > 0 (68)

Integrating the above inequality from 0 to tf yields

tf∫
0

V̇i ≤− 1

2ρi

tf∫
0

ET
i QiEidt+

ρi
2

tf∫
0

ω2
i dt (69)

Thus

1
2

tf∫
0

ET
i QiEidt ≤ ρiVi (0)− ρiVi (tf ) +

ρ2i
2

tf∫
0

ω2
i dt (70)

As ρi > 0 and Vi ≥ 0, using equations (62) and (70) can be rewritten as

1
2

tf∫
0

ET
i QiEidt ≤ Vi (0) +

1
2ρ

2
i

tf∫
0

ω2
i dt

= 1
2S

2 (0) + 1
2E

T
i (0)PiEi (0) +

1
2γf0i

W̃T
f0i

(0) W̃f0i
(0)

+ 1
2γg0i

W̃T
g0i (0) W̃g0i (0) +

1
2ρ

2
i

∫ tf
0
ωT
i ωidt

(71)

Remark 2: If ωi is square integrable (i.e.,
∫∞
0
ω2
i = ωT

i ωidt <∞), then lim
t→∞

|Ei (t)| =
0. Hence the H∞ tracking performance in equation (49) is achieved.

By using the projection algorithm, the adaptive laws must be modified as

˙̂
Wf0i =



−γf0i
(
Si + bTi PiEi

)
hf0i (X) if

∥∥∥Ŵf0i

∥∥∥ < Mf0i

or

(∥∥∥Ŵf0i

∥∥∥ =Mf0i and

(
Si + bTi PiEi

)
hf0i (X) ≥ 0

)
pf0i

[
−γf0i

(
Si + bTi PiEi

)
hf0i (X)

]
if
∥∥∥Ŵf0i

∥∥∥ =Mf0i

and
( (
Si + bTi PiEi

)
hf0i (X)< 0

)
(72)
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˙̂
Wg0i =



−γg0i
(
Si + bTi PiEi

)
hg0i (X)ui if

∥∥∥Ŵg0i

∥∥∥ < Mg0i

or

(∥∥∥Ŵg0i

∥∥∥ =Mg0i and

(
Si + bTi PiEi

)
hg0i (X)ui ≥ 0

)
pg0i

[
−γg0i

(
Si + bTi PiEi

)
hg0i (X)ui

]
if
∥∥∥Ŵg0i

∥∥∥ =Mg0i

and

((
Si + bTi PiEi

)
hg0i (X)ui< 0

)
(73)

where

pf0i

[
−γf0i

(
Si + bTi PiEi

)
hf0i (X)

]
= −γf0i

(
Si + bTi PiEi

)
hf0i (X)

+
γf0i(Si+bTi PiEi)Ŵf0i

ŴT
f0i

hf0i(X)∥∥∥Ŵf0i

∥∥∥2

(74)

pg0i
[
−γg0i

(
Si + bTi PiEi

)
hg0i (X)ui

]
= −γg0i

(
Si + bTi PiEi

)
hg0i (X)ui

+
γg0i(Si+bTi PiEi)Ŵg0i

ŴT
g0i

hg0i(X)ui

∥Ŵg0i
∥2

(75)

From the above discussion, a design procedure for the H∞-ANSMC is performed in
the following three steps:

Step 1 Construct the RBF NNs models to estimate the unknown nonlinear functions
f0i (X) and g0i (X) in equation (22), and specify a suitable sliding surface
Si (Ei) = KT

i Ei = 0 as given in equation (50).

Step 2 Specify Qi and a prescribed attenuation level ρi. Then, solve the quadratic
matrix inequality given by equation (67) to obtain Pi.

Step 3 Obtain the control law (57) for the nonlinear system given by equation (11)
and adjust Ŵf0i

and Ŵg0i using the adaptive laws given by equations (72)
and (73).

6 Simulation results and discussion

In order to validate and test the performance of the designed H∞-ANSMC control
strategy, a series of simulations are presented. Furthermore, the proposed controller is
compared with the adaptive neural networks-based H∞ tracking control approach taking
into account wind disturbance and parameter uncertainties. The wind is represented as
the extra acceleration and affects all x, y and z axis, which is depicted in Figure 5. The
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wind disturbance has a maximum acceleration of about 1.8 m/s2. The total simulation
time is 140 s. With di(t) = d̄i(t) +N , N : Gaussian white noise 24 dB

d̄i(t) =



0 if 0 ≤ t ≤ t1

0.8 sin
(

π(t−t1)
31

)
+ 0.4 sin

(
π(t−t1)

7

)
+0.08 sin

(
π(t−t1)

2

)
+ 0.056 sin

(
24π(t−t1)

11

)
if t1 < t ≤ t2

0 if t2 < t ≤ t3

1.37 sin
(

π(t−t3)
55

)
+ 0.15 sin

(
π(t−t3)

2

)
+0.225 sin

(
π(t−t3)

5

)
+ 0.105 sin

(
24π(t−t3)

11

)
if t3 < t ≤ t4

0 if t4 ≤ t ≤ t5

t1 = 30 s, t2 = 57 s, t3 = 70 s, t4 = 124 s, t5 = 140 s.

Figure 5 Wind disturbance profile

The uncertainty in the model parameters has been increased by 50% for (∆a0...∆a10)
and 40% for (∆b0...∆b3), the gravity was varied by 10%. The parameters values of
the quadrotor model used in the simulation are based on the real platform described in
Bouadi et al. (2007). The control objective is that the actual output yi = xi1 follows the
desired trajectories

xd (t) =



0 if 0 ≤ t ≤ t1

−2 cos
(

(π/2)(t−t1)
5

(t−t1)
5+(t2−t)5

)
+ 2 if t1 ≤ t < t2

10(t−t2)
5

((t−t2)
5+(t3−t)5)+2

if t2 ≤ t < t3

2 sin
(

(π/2)(t−t3)
5

(t−t3)
5+((3t5/5)−t)5

)
+ 12 if t3 ≤ t ≤ t5

yd (t) =


0 if 0 ≤ t ≤ t3

−2 cos
(

(π/2)(t−t3)
5

(t−t3)
5+(t4−t)5

)
+ 2 if t3 ≤ t < t4

10(t−t4)
5

((t−t4)
5+(t5−t)5)+2

if t4 ≤ t ≤ t5
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zd (t) =


10t5

(t5+(t1−t)5)
if 0 ≤ t ≤ t1

2 sin
(

(π/2)(t−t1)
5

(t−t1)
5+(t2−t)5

)
+ 10 if t1 < t ≤ t2

12 if t2 < t ≤ t5

ψd(t) =

{
ψd(0) +

D
ψ

2π

[
2π t

t5
− sin

(
2π t

t5

)]
if 0 ≤ t ≤ t5

ψd(t5) if t > t5

with D
ψ
= ψd(t5)− ψd(0) and t1 = 16 s, t2 = 26 s, t3 = 45 s, t4 = 55 s, t5 = 140 s.

In the simulation, the H∞-ANC controller parameters are chosen as follows:
γf01 = γg01 = γf02 = γg02 = 16, γf03 = γg03 = 10, γf04 = γg04 = 15, γf05 = γg05
= 30, γf06 = γg06 = 34, µi = 1. The attenuation level is set to: ρi = 0.695,
i = (1, 2, ..., 6). The gains are chosen as Ki = (10, 10), i = (1, 2, 3),

K4 = (4.5, 4.5), K5 = (1.75, 1.5), K6 = (1.85, 1.5), Ai =

(
0 1

−10−10

)
, i = (1,

2, 3), A4 =

(
0 1

−4.5−4.5

)
, A5 =

(
0 1

−1.75−1.5

)
, A6 =

(
0 1

−1.85−1.5

)
, bi =

(
0
1

)
,

i = (1, 2, ..., 6) and the initial value of the state vector is X = [0, 0, 0, 0, 0,

0]T . The matrices Qi are chosen as diagonal matrices: Q1 = Q2 =

(
660 0
0 660

)
, Q3 =(

600 0
0 600

)
, Q4 =

(
580 0
0 580

)
, Q5 =

(
45 0
0 45

)
, Q6 =

(
53 0
0 53

)
. The linear matrix

inequalities (42) give P1 = P2 =

(
996.859 50.122
50.122 60.416

)
, P3 =

(
902.157 51.314
51.314 67.590

)
, P4 =(

791.385 105.505
105.505 176.919

)
, P5 =

(
93.007 18.436
18.436 49.118

)
, P6 =

(
108.697 19.899
19.899 54.835

)
.

The controller parameters of H∞-ANSMC are chosen as: The attenuation level is
ρi = 0.1, i = (1, 2, ..., 6) and the sliding surfaces are chosen as follows:
S1 = 10e1 + 10ė1, S2 = 10e2 + 10ė2, S3 = 10e3 + 10ė3, S4 = 15e4 + 5ė4, S5 =
8e5 + 8ė5, S6 = 8e6 + 7ė6, γf01 = γg01 = 13, γf02 = 10, γg02 = 0.05, γf03 = γg03 = 10,
γf04 = 3, γg04 = 0.001, γf05 = 5,γg05 = 2, γf06 = γg06 = 4. The parameter matrices Qi

are taken as diagonal matrices: Q1 =

(
75 0
0 70

)
, Q2 =

(
75 0
0 75

)
, Q3 = Q5 =

(
65 0
0 65

)
,

Q4 =

(
1 0
0 1

)
, Q6 =

(
30 0
0 30

)
, from equation (68), we have: P1 =

(
556.138 51.689
51.689 59.347

)
,

P2 =

(
585.905 52.525
52.525 62.462

)
, P3 =

(
507.408 45.500
45.500 54.103

)
, P4 =

(
10.833 0.338
0.3386 0.7214

)
, P5 =(

448.097 45.583
45.583 57.877

)
, P6 =

(
245.834 20.142
20.142 26.610

)
.

The initial values of the RBF weights have been set to 0.10. The number of hidden
units for the RBF NNs is taken as 10. The structure of RBF is chosen for each subsystem
as two input-ten hidden-one output. The centers ηf0ij = ηg0ij = 5 are evenly distributed
in the [1, –1] region and the variance is set as 15.

Figure 6 and 8 show the tracking of the desired trajectory and the stabilisation and
motion of the quadrotor in 3D space. It can be seen that the translation motion of
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the quadrotor achieved the desired trajectory. These simulation results demonstrate the
effectiveness and tracking capability of the proposed robust controller for the quadrotor
UAV. The propellers speeds are stabilised at 365 rad/s in a very short time as shown in
Figure 7. The roll and pitch angles wave forms are shown in Figure 9. It can be observed
that H∞-ANSMC provides a more stable attitude variation. These results demonstrate
that the proposed controller with H∞-ANSMC leads to a better transient performance
than the H∞-ANC and the response is much smoother.

Figure 6 Global trajectory 1 of the quadrotor in (x, y, z) (see online version for colours)

Figure 7 Angular velocities of the four rotors with H∞-ANSMC under external disturbances
and parameter uncertainties (see online version for colours)
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Figure 8 Outputs responses of the quadrotor (see online version for colours)

Figure 9 Roll (ϕ) and the pitch (θ) angles (see online version for colours)

Figure 10 Forces control inputs (see online version for colours)
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Figure 11 Quadrotor outputs errors (see online version for colours)

Figure 12 Trajectory of the sliding function of (x, y, z, ψ)

As shown in Figure 10, H∞ based on adaptive neural SMC strategy generates a
smooth input control signal as compared to others controllers and the required control
forces under H∞-ANSMC are smaller. The resulting tracking errors are shown in
Figure 11. The proposed H∞-ANSMC strategy provide a better tracking of the desired
trajectory despite the presence of external disturbances (wind gust effect) and parametric
uncertainties. The proposed H∞-ANSMC proved to have a better tracking performance
than H∞-ANC.

The trajectory of the sliding function s(t) is depicted in Figure 12 which clearly
shows a reduction in the oscillations around the sliding surface. From the comparative
results, it can be inferred that the H∞-ANSMC reduces the chattering without
compromising the transient characteristics.
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Figure 13 Flight trajectory 2, (a) in three dimensions (b) x− y plane (see online version
for colours)

Figure 14 Outputs responses of the quadrotor (see online version for colours)

Figure 15 Roll (ϕ) and the pitch (θ) angles (see online version for colours)

Another simulation result of the quadrotor trajectory in 3D space is presented in
Figure 13. This result shows good trajectory tracking with both control strategies when
the quadrotor is subjected to external disturbances and parameters uncertainties. As
shown in Figure 17 the oscillations around the sliding surface much less than those
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with SMC. Therefore, the simulation results demonstrate that H∞-ANSMC trajectory
tracking control scheme has better dynamic performance and stronger robustness against
external disturbances and modelling errors as compared to the two control strategies.

Figure 16 Quadrotor outputs errors (see online version for colours)

Figure 17 Trajectory of the sliding function of (x, y, z, ψ) (see online version for colours)

To quantify more explicitly the differences between these control methods, the following
two criteria are used

1 The sums of the variances of the tracking errors (EV) in the (x, y, z, ψ) axis
under external disturbances and parametric uncertainties.

2 The energy consumption (ECM) is the energy spent on motion control. This
energy can be calculated from the sum of the motors squared angular speeds.
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A comparison of three control methods with wind distrubance and parameter
uncertainties is shown in Table 1. The proposed H∞-ANSMC shows it advantage
during wind distrubance and parameter uncertainties. The sum of the variance of the
tracking errors of H∞-ANSMC has the smallest error variance, while the other two
controls, especially SMC, have larger tracking errors. The flight duration time depends
on two factors: the capacity of the onboard battery and the energy consumption. Energy
consumptions are not changed too much in H∞-ANSMC and H∞-ANC but for the case
of SMC it is quite high. This is due to the switching feature of the SMC.

Table 1 Comparison of the proposed control methods

H∞-ANSMC H∞-ANC SMC

Trajectory 1 EV 0.0945 0.8015 7.264
ECM 7.286 × 107 7.288 × 107 7.295 × 107

Trajectory 2 EV 0.1349 0.856 7.956
ECM 7.286 × 107 7.287 × 107 7.296 × 107

Remark 3: The neural approximation is only guaranteed within a compact set, there
exists an adaptive controller with neural approximation such that all the closed-loop
signals are bounded when the initial states are within this compact set. In practical
control systems, the number of nodes usually cannot be chosen too large due to the
possible computation problem. This implies that the RBF NNs approximation capability
is limited. Namely, the larger the number of the nodes is, the more complexities the
controller will contain. Therefore, the selection of the optimal number of hidden units
still remains an open research problem.

7 Conclusions

In this paper two robust control strategy are proposed to solve the path tracking problem
of a quadrotor helicopter taking into account wind disturbance and parameter variations
which may influence the evolution of the system in space. The first controller combines
H∞ control strategy with an adaptive neural SMC algorithm. The advantage of this
approach is that the dynamic model of the quadrotor is not required in the design of
the controller. RBF NNs are used to approximate unknown functions to overcome the
limitations of feedback linearisable techniques which need exact models. The RBF NNs
weights adaptation laws have been derived to make the closed-loop system stable in the
sense of Lyapunov under which the global stability of the proposed quadrotor adaptive
flight control system is guaranteed. The simulation results show a good performance of
the proposed control approach and good robustness with regard to parameter variations
and external load disturbance. Future works will focus on improving our approach by
introducing a state observer to provide an estimate of the state vector and association
of an optimal trajectories generation algorithm with a flight control strategy.
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Appendix

Table 2 The quadrotor model parameters

Symbol Definition Value

M Mass 0.486 kg
Ix Inertia on x axis 7.656 × 10–3 kg m2

Iy Inertia on y axis 3.826 × 10–3 kg m2

Iz Inertia on z axis 3.826 × 10–3 kg m2

b Thrust coefficient 2.9842 × 10–5 N/rad/s
d Drag coefficient 3,232 × 10–5 N/rad/s
Jr Rotor inertia 2.8385 × 10–5 kg m2

Kfax,Kfay Friction coefficients 5.567 × 10–4 N/rad/s
Kfaz Friction coefficient 6.354 × 10–4 N/rad/s
Kftx,Kfty Drag coefficients 5,567 × 10–4 N/m/s
Kftz Drag coefficient 6.354 × 10–4 N/m/s
l Arm length 0.25 m


