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Abstract

In this paper, we focus on synchronization issue of coupled multistable memris-

tive neural networks (CMMNNs) with time delay under multiple stable equilib-

rium states. First, we build delayed CMMNNs consisting of one master subnet-

work without controller and N − 1 identical slave subnetworks with controllers,

and every subnetwork has n nodes. Moreover, this paper investigates multi-

stability of delayed CMMNNs with continuous nonmonotonic piecewise linear

activation function (PLAF) owning 2r+2 corner points. By using the theorems

of differential inclusion and fixed point, sufficient conditions are derived such

that master subnetwork of CMMNNs can acquire (r + 2)n exponentially stable

equilibrium points, stable periodic orbits or hybrid stable equilibrium states.

Then, this paper proposes hybrid multisynchronization of delayed CMMNNs

related with various external inputs under multiple stable equilibrium states

for the first time. There exist (r + 2)n hybrid multisynchronization manifolds

in CMMNNs with different initial conditions and external inputs. Finally, two

numerical simulations are given to illustrate the effectiveness of the obtained

results.
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1. Introduction

Memristor was first speculated by Chua in [1], and it was identified as the

fourth basic circuit element. After memristor prototype was realized by HP Lab

[2], memristor-based circuits and applications [3, 4, 5, 6, 7, 8] have attracted in-

creasing attention. Using the nonvolatility of memristor [7, 8], conventional neu-5

ral network (NN) system can be changed into memristive neural network (MNN)

system by replacing resistor with memristor to emulate synapse. Because of the

capability of memristor in storing and accessing data [7, 8] and the potential

applications of MNN systems in many areas [9, 10, 11] such as associative mem-

ory and static image processing, the dynamic characteristics of isolated MNN10

system have been widely studied, see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Compared with an isolated system, coupled systems have wider applications in

many fields [23, 24, 25], such as robots, dynamic image processing, associative

memory of video. Therefore, some dynamic characteristics of coupled systems

were investigated in recent years [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. For15

example, synchronization of coupled NN systems was researched in [30, 31] and

[35]. Papers [26, 27, 28, 29] studied synchronization of coupled MNN systems.

In [32, 33, 34], multistability and multisynchronization of coupled multistable

NN systems were investigated. However, there is no relevant work on studying

dynamic characteristics of coupled multistable MNN (CMMNN) systems.20

As one of the most important dynamic characteristics, multistability of

complex dynamical systems has been extensively investigated in recent years

[12, 13, 14], [37, 38, 39, 40, 41]. For example, papers [37, 38, 39, 40, 41] re-

searched multistability of NNs. Wu and Zhang analyzed multistability of de-

layed MNNs with PLAF having 2 corner points in [13]. In [14], Nie et al. re-25

searched multistability of delayed MNNs with PLAF having 4 corner points. In

the above researches [13, 14], MNNs can only obtain a small quantity of stable e-
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quilibrium states with a few corner points. Actually, as many stable equilibrium

states as possible are very necessary for coupled systems including CMMNNs in

some applications [12, 13, 14], [23, 24], [32, 33, 34], [36, 37, 38, 39, 40, 41, 42],30

such as associative memory storage, image processing.

Synchronization is a common phenomenon in nature [43], such as migratory

birds, fireflies in the forest. And synchronization has broad potential applica-

tions in many areas [25], [44], such as secure communication, biological systems

and so on. Over the years, there are many researches on studying synchroniza-35

tion problems [15, 16, 17, 18, 19, 20], [26, 27, 28, 29, 30, 31, 32, 33, 34, 35],

[45, 46]. For example, exponential synchronization of inertial BAM NNs [45],

MNNs [15] and coupled MNNs [26] was researched. Asymptotical synchro-

nization of MNNs [16] and coupled MNNs [27], anti-synchronization of MNNs

[17] were investigated. Zheng et al. studied finite-time projective synchro-40

nization of delayed fractional-order MNNs in [18]. Adaptive synchronization

of MNNs in [19] and [20], lag synchronization of NNs [46] and coupled MNNs

[28] were discussed. Li and Cao studied cluster synchronization of coupled s-

tochastic NNs with time delay in [31]. In literatures [15, 16, 17, 18, 19, 20],

[26, 27, 28, 29, 30, 31], [45, 46], synchronization was addressed under a stable e-45

quilibrium state. As discussed previously, multiple stable equilibrium states are

very necessary for coupled systems including CMMNNs in some applications

[12, 13, 14], [23, 24], [32, 33, 34], [36, 37, 38, 39, 40, 41, 42]. Therefore, when

coupled systems have multiple stable equilibrium states, how to achieve synchro-

nization of coupled systems (called multisynchronization in this case) becomes50

more challenging and meaningful. During the last three years, multisynchro-

nization of coupled multistable NN systems under multiple stable equilibrium

states had aroused the interest of researchers. For instance, Wang et al. s-

tudied impulsive dynamical and static multisynchronization of delayed coupled

multistable NNs in [32]. On the basis of [32], Zhang studied static multisyn-55

chronization of coupled multistable fractional-order NNs in [33] and Lv et al.

investigated dynamical and static multisynchronization of coupled multistable

NNs with parametric uncertainties in [34]. Literatures [32, 33, 34] achieved dy-
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namical (or static) multisynchronization by setting external inputs of all nodes

as periodic (or constant) signals. However, these researches [32, 33, 34] neglect60

that external inputs of each node may be various in reality. Therefore, dynam-

ical multisynchronization and static multisynchronization are not suitable for

use in CMMNN systems when multiple stable equilibrium states exist in the

systems and external inputs of each node are various.

Inspired by the aforementioned discussions, this paper focuses on synchro-65

nization issue of CMMNN systems. According to the literatures [32, 33, 34],

it is necessary to ensure multistability in order to achieve synchronization of

coupled multistable systems. Therefore, this paper studies multistability issue

of CMMNN systems before achieving synchronization. To get a mass of sta-

ble equilibrium states, we extend the number of corner points of nonmonotonic70

PLAF to 2r + 2 in this paper. In this case, the number of stable equilibrium

states (stable equilibrium points, stable periodic orbits or hybrid stable equilib-

rium states) for the master subnetwork of CMMNNs is increased to (r+2)n. To

solve the above-mentioned problem which dynamical multisynchronization and

static multisynchronization cannot solve, this paper proposes hybrid multisyn-75

chronization of CMMNNs related with various external inputs under multiple

stable equilibrium states for the first time. Hybrid multisynchronization is a

new type of synchronization phenomenon and has two features: owning multiple

synchronization manifolds and considering various external inputs. It should be

noted that dynamical and static multisynchronization introduced in [32, 33, 34]80

can be seen as two special cases of hybrid multisynchronization. Combining var-

ious external inputs with the above-mentioned wide applications of memristor,

coupled systems, multiple stable equilibrium states and synchronization, we can

boldly speculate that hybrid multisynchronization of CMMNNs will have broad

potential applications in some complex areas such as secure communication in85

multiple networks, obstacle avoidance for robots, formation flying of unmanned

air vehicles and so on. Hence, the proposed results are general and meaningful,

and improve the existing results.

The main contributions can be summarized as follows.
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1) This paper builds CMMNN systems which consist of one master sub-90

network without controller and N − 1 identical slave subnetworks with con-

trollers, and every subnetwork has n nodes. The special structure of CMMNNs

makes it differ from drive-response (master-slave) system [15], [17], [19], cou-

pled NNs [30, 31], [35], coupled MNNs [26, 27, 28], and coupled multistable

NNs [32, 33, 34]. The advantages of this structure are that all slave subnet-95

works can synchronize the master subnetwork by controllers and multistability

of the master subnetwork without controller can be addressed expediently.

2) The multistability of delayed CMMNNs is studied with continuous non-

monotonic PLAF owning 2r+2 corner points. By using theorems of differential

inclusion and fixed point, sufficient conditions are derived such that the master100

subnetwork of CMMNNs has (r + 2)n exponentially stable equilibrium points.

Then on this basis, we study stable periodic orbits and hybrid stable equilibrium

states (the hybrid of exponentially stable equilibrium points and stable periodic

orbits), and obtain (r + 2)n stable periodic orbits and (r + 2)n hybrid stable

equilibrium states. Compared with the existing researches [13, 14], this paper105

can obtain more stable equilibrium states.

3) Hybrid multisynchronization of delayed CMMNNs related with various

external inputs under multiple stable equilibrium states is proposed for the first

time. Hybrid multisynchronization can solve the problem that dynamical and

static multisynchronization [32, 33, 34] cannot take into consideration various110

external inputs. When some sufficient conditions are given, the CMMNNs with

time delays can achieve hybrid multisynchronization and obtain (r+2)n hybrid

multisynchronization manifolds. Both dynamical and static multisynchroniza-

tion of delayed CMMNNs can also be achieved. It should be noted that dynam-

ical and static multisynchronization introduced in [32, 33, 34] can be seen as115

two special cases of hybrid multisynchronization.

The rest of the paper is organized as follows. Some preliminaries are pre-

sented in Section 2. In Section 3, we build delayed CMMNNs with (r + 2)n

stable equilibrium states, and propose hybrid multisynchronization of delayed

CMMNNs. Two numerical examples and a conclusion are shown in Sections 4120
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and 5, respectively.

2. Preliminaries

First, we give some notations which will be used later.

Notations: Z ≤ 0 represents that real matrix Z is negative semidefinite, Z ≥

0 represents that real matrix Z is positive semidefinite. C ([−τ̃ , 0] ,ℜn) denotes125

the space of continuous functions mapping [−τ̃ , 0] into ℜn. P ⊗Q is Kronecker

product of matrices P and Q. Em is m ×m unit matrix, [. , .] represents the

interval. We define ∥π∥ =

(
n∑

i=1

π2
i

) 1
2

for vector π = (π1, π2, . . . , πn)
T ∈ ℜn. ∅

is empty set.

From [15],[17],[19], an isolated MNN with time delay can be considered as:

ẋ(t) = −Dx(t) + Γ(x(t))f(x(t)) + H(x(t− τ))f(x(t− τ)) + I(t) (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T represents state vector; D = diag{d1, d2,130

. . . , dn} is self-feedback vector for the corresponding nerve cells, di > 0,i =

1, 2, . . . , n; Γ(x(t)) = [κij(xj(t))]n×n and H(x(t − τ)) = [ωij(xj(t− τij))]n×n s-

tand for memristive weight matrices; f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . ,fn(xn(t)))
T

denotes activation function; τij > 0 is time delay; I(t) = (I1(t), I2(t), . . . , In(t))
T

represents external input vector.135

This paper considers two types of simple memristor models.

Memristor model (A) [19]:

κij(xj(t)) =

 κ⃗ij , |xj(t)| ≤ ξj ,

←
κij , |xj(t)| > ξj ,

and

ωij(xj(t− τij)) =

 ω⃗ij , |xj(t− τij)| ≤ ξj ,

←
ωij , |xj(t− τij)| > ξj ,

where κ⃗ij ,
←
κij , ω⃗ij and

←
ωij represent constants, ξj > 0 is switching threshold.

Memristor model (B) [13]:

κij(xj(t)) =

 κ⃗ij , xj(t) ≤ 0,

←
κij , xj(t) > 0,
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Figure 1: The schematic diagram of hybrid multisynchronization of CMMNNs.

and

ωij(xj(t− τij)) =

 ω⃗ij , xj(t− τij) ≤ 0,

←
ωij , xj(t− τij) > 0.

Define a set of positive integers Z = {1, 2, . . . , n}, let U and V as two

subsets of Z, and satisfy the following relationship: U ∩ V = ∅ and U ∪

V = Z. Define three sets of external inputs ϑ = {Ii(t), for all i ∈ Z}, Ω =140

{Iu(t), for all u ∈ U}, Λ = {Iv(t), for all v ∈ V }, then we can get Ω ∩ Λ = ∅

and Ω ∪ Λ = ϑ. Iu(t) is periodical input, that is, Iu(t + Tu) = Iu(t), for all

u ∈ U ; Iv(t) is constant, i.e., Iv(t) = Iv, for all v ∈ V .

3. Main Results

This paper presents the schematic diagram of hybrid multisynchronization145

of CMMNNs, as shown in Fig. 1. First of all, we need to ensure that the master

subnetwork of CMMNNs can obtain (r + 2)n hybrid stable equilibrium states

with various external inputs. It means that there are (r+ 2)n hybrid multisyn-

chronization manifolds. Then multiple trajectories of every slave subnetwork

can achieve synchronization with hybrid multisynchronization manifolds of the150

master subnetwork via feedback controllers and various external inputs. There-

fore, every slave subnetwork can also obtain (r + 2)n hybrid stable equilibrium

states.
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3.1. CMMNNs

We build delayed CMMNNs which consist of one master subnetwork without155

controller and N − 1 identical slave subnetworks with controllers, and every

subnetwork has n nodes. As far as we know, the structures of all subnetworks

of coupled NNs ([30, 31, 32], [34, 35]) and coupled MNNs ([26, 27, 28]) are same,

i.e. all subnetworks contain controllers. Obviously, the structure of CMMNNs

is different from these coupled NNs and coupled MNNs, because the master160

subnetwork in this paper does not have controller. In addition, compared with

drive-response or master-slave NNs introduced in [15], [17] and [19], delayed

CMMNNs own more subnetworks and more complex dynamic behaviors.

We consider delayed CMMNNs with mathematical formula as follows:

ẋi(t) = −Dxi(t) + Γ(xi(t))f(xi(t)) + H(xi(t− τ))

×f(xi(t− τ)) + Ii(t) +♢i(t), i = 1, 2, . . . , N − 1;

ẋN (t) = −DxN (t) + Γ(xN (t))f(xN (t)) + H(xN (t− τ))

×f(xN (t− τ)) + IN (t)

(2)

where the variables and parameters are the same as those given by (1); ♢i(t) =

(♢i1(t),♢i2(t), . . . ,♢in(t))
T
, i = 1, 2, . . . , N − 1, represent controllers; Ii(t)165

= (Ii1(t), Ii2(t), . . . , Iin(t))
T
; Iik(t) = Ijk(t) for i, j = 1, 2, . . . , N and k =

1, 2, . . . , n. xi(t), i = 1, . . . , N − 1, are N − 1 identical slave subnetworks; xN (t)

= (xN1(t), xN2(t), . . . , xNn(t))
T
represents the master subnetwork. It is obvious

that the structure of master subnetwork is the same as the isolated MNN with

time delay (1).170

Remark 1 : Due to the simple structure of master subnetwork, it is easy to

research and analyse dynamic behaviors of CMMNNs through master subnet-

work, such as multistability. So, it can reduce operation time and cost.

3.2. Multistability of delayed CMMNNs

To increase the number of stable equilibrium states (equilibrium points or

periodic orbits) of CMMNNs, this paper considers a class of continuous non-

8



monotonic PLAF as

fi(s) =



ui, s ∈ (−∞, p0i ]

k0i s+m0
i , s ∈ (p0i , q

0
i )

l0i s+ n0
i , s ∈ [q0i , p

1
i ]

...
...

kri s+mr
i , s ∈ (pri , q

r
i )

vi, s ∈ [qri ,+∞)

, (3)

where ui , vi , k
j
i , m

j
i , p

j
i , q

j
i for j = 0, 1, . . . , r, lji , n

j
i for j = 0, 1, . . . , r− 1, are175

constants and ui < vi; k
j
i ≥ 0; lji ≤ 0; p0i < q0i < p1i < . . . < qri ; min {fi(s)} = ui

and max {fi(s)} = vi.

Remark 2 : Obviously, continuous nonmonotonic PLAF (3): fi(s), i =

1, 2, . . . , n satisfy Lipschitz condition: |fi(∧)− fi(∨)| ≤ li |∧ − ∨| for any ∧,

∨ ∈ ℜ , where li = max
{
k0i , k

1
i , . . . , k

r
i ,
∣∣l0i ∣∣ , ∣∣l1i ∣∣ , . . . , ∣∣lr−1

i

∣∣}. Meanwhile, PLAF180

(3) is bounded, i.e. there exist constant µi = max {|ui| , |vi|}, so that |fi(a)| ≤ µi

for any a ∈ ℜ.

We denote

(−∞, p0i ] = (−∞, p0i ]
1 × (p0i , q

0
i )

0 × · · · × [qri ,+∞)
0
,

(p0i , q
0
i ) = (−∞, p0i ]

0 × (p0i , q
0
i )

1 × · · · × [qri ,+∞)
0
,

. . .

[qri ,+∞) = (−∞, p0i ]
0 × (p0i , q

0
i )

0 × · · · × [qri ,+∞)
1
.

Then ℜn is divided into (2r + 3)n parts, that is

Ψ =

{
n∏

i=1

(−∞, p0i ]
λ1
i × (p0i , q

0
i )

λ2
i × · · · × [qri ,+∞)

λ2r+3
i ,(

λ1
i , λ

2
i , · · · , λ

2r+3
i

)
= (1, 0, · · · , 0) or (0, 1, · · · , 0) or

· · · or (0, 0, · · · , 1)} .

Let κ̃ij = max
{
|κ⃗ij | ,

∣∣∣←κij

∣∣∣}, ω̃ij = max
{
|ω⃗ij | ,

∣∣∣←ωij

∣∣∣}, κ̄ij = max
{
κ⃗ij ,

←
κij

}
,

⌣
κij = min

{
κ⃗ij ,

←
κij

}
, ω̄ij = max

{
ω⃗ij ,

←
ωij

}
,

⌣
ωij = min

{
ω⃗ij ,

←
ωij

}
. Set Li =

max
{
0,
∣∣l0i ∣∣ , ∣∣l1i ∣∣ , . . . , ∣∣lr−1

i

∣∣} for i = 1, 2, . . . , n.185
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For a given set X ⊂ ℜ, co[X] indicates the closure of the convex hull for X.

Therefore, by memristor model (A), we can get

co [κij(xj(t))] =


κ⃗ij , |xj(t)| < ξj ,[

⌣
κij , κ̄ij

]
, |xj(t)| = ξj ,

←
κij , |xj(t)| > ξj .

co [ωij(xj(t− τij))] =


ω⃗ij , |xj(t− τij)| < ξj ,[

⌣
ωij , ω̄ij

]
, |xj(t− τij)| = ξj ,

←
ωij , |xj(t− τij)| > ξj .

According to the theory of differential inclusions, we can rewrite the master

subnetwork of CMMNNs (2) as

ẋ(t) ∈ −Dx(t) + co [Γ(x(t))] f(x(t)) + co [H(x(t− τ))] f(x(t− τ)) + I(t),

where co [Γ (x(t))] = [co [κij (xj(t))]]n×n, co [H (x(t− τ))] = [co [ωij (xj(t− τij))]]n×n,

x(t) = xN (t) = (xN1(t), xN2(t), . . . , xNn(t))
T .

So, there exist κ̂ij(xj(t)) ∈ co [κij (xj(t))], ω̂ij(xj(t−τij)) ∈ co [ωij (xj(t− τij))],

such that

ẋ(t) = −Dx(t) + Γ̂(x(t))f(x(t)) + Ĥ(x(t− τ))f(x(t− τ)) + I(t) (4)

where Γ̂(x(t)) = [κ̂ij(xj(t))]n×n and Ĥ(x(t− τ)) = [ω̂ij(xj(t− τij))]n×n.

Lemma 1 [19]: For PLAF (3) and memristor model (A), if fj(±ξj) = 0,

j = 1, 2, . . . , n, we have

|co[κij(xj(t))]fj(xj(t))− co[κij(yj(t))]fj(yj(t))|

≤ κ̃ij lj |xj(t)− yj(t)| , i, j = 1, 2, . . . , n.

Theorem 1 : The master subnetwork of CMMNNs (2) can have (r + 2)n

exponentially stable equilibrium points in ℜn with PLAF (3) and memristor

model (A), if Ω = ∅, Λ = ϑ, fi(±ξi) = 0 and

−dip
c
i +Υi1 +Υi2 +Υi3 + Ii < 0,

−diq
c
i +Υi4 +Υi5 +Υi6 + Ii > 0,

(5)
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hold for i = 1, 2, . . . , n and c = 1, 2, . . . , r, where

Υi1 = max
{

⌣
κiifi(p

c
i ), κ̄iifi(p

c
i )
}
,

Υi2 =
n∑

j=1,j ̸=i

max
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
,

Υi3 =
n∑

j=1

max
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
,

Υi4 = min
{

⌣
κiifi(q

c
i ), κ̄iifi(q

c
i )
}
,

Υi5 =
n∑

j=1,j ̸=i

min
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
,

Υi6 =

n∑
j=1

min
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
,

meanwhile, the following inequation:

di −
n∑

j=1

κ̃ijLj −
n∑

j=1

ω̃ijLj > 0, i = 1, 2, . . . , n, (6)

holds.

Proof : See Appendix A.190

Remark 3 : Paper [39] researched multistability of delayed NNs with PLAF.

(2k)n exponentially stable equilibrium points can be obtained by sufficient con-

dition. However, each corner point of PLAF is fixed, which can be set free

in later researches. Compared with conventional NNs used in [39], MNNs are

practical and have complex dynamic behaviors.195

Remark 4 : It is shown from [13] that delayed MNNs with n nodes and PLAF

owning 2 corner points can get 2n exponentially stable equilibrium points. In

[14], Nie et al. researched that nonmonotonic PLAF with four corner points

can obtain 3n locally stable equilibria for delayed MNNs. In this paper, corner

points of PLAF are extended from 2 and 4 to 2r + 2. In the meanwhile, the200

number of exponentially stable equilibrium points is increased to (r + 2)n. For

all we know, there is little work on multistability of delayed CMMNNs with

continuous nonmonotonic PLAF owning 2r + 2 corner points.
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When Ω and Λ satisfy different conditions, this paper can get corollaries 1

and 2.205

Corollary 1 : The master subnetwork of CMMNNs (2) can obtain (r + 2)n

stable periodic orbits in ℜn with PLAF (3) and memristor model (A), if Ω = ϑ,

Λ = ∅, fi(±ξi) = 0 and

−dip
c
i +Υi1 +Υi2 +Υi3 + Ii(t) < 0,

−diq
c
i +Υi4 +Υi5 +Υi6 + Ii(t) > 0,

(7)

di −
n∑

j=1

κ̃ijLj −
n∑

j=1

ω̃ijLj > 0, (8)

hold for c = 0, 1, . . . , r and i = 1, . . . , n.

Proof : According to lemma 1 in [32], the master subnetwork of CMMNNs

(2) can have (r + 2)n stable periodic orbits.

Corollary 2 : The master subnetwork of CMMNNs (2) can obtain (r + 2)n

hybrid stable equilibrium states in ℜn with PLAF (3) and memristor model

(A), if Ω ̸= ∅, Λ ̸= ∅, fi(±ξi) = 0 and the following conditions:

−dup
c
u +Υu1 +Υu2 +Υu3 + Iu(t) < 0,

−duq
c
u +Υu4 +Υu5 +Υu6 + Iu(t) > 0,

(9)

−dvp
c
v +Υv1 +Υv2 +Υv3 + Iv < 0,

−dvq
c
v +Υv4 +Υv5 +Υv6 + Iv > 0,

(10)

di −
n∑

j=1

κ̃ijLj −
n∑

j=1

ω̃ijLj > 0, (11)

hold for all u ∈ U , all v ∈ V , c = 0, 1, . . . , r and i = 1, . . . , n.

Proof : Ω = {Iu(t), for all u ∈ U} is nonempty set, it means that xNu(t)210

for all u ∈ U will appear stable periodic orbit as time t → ∞ according to the

lemma 1 in [32]. Similarly, Λ = {Iv, for all v ∈ V } is nonempty set, it means

that xNv(t) for all v ∈ V will appear exponentially stable equilibrium point as

time t → ∞ according to the theorem 1. Therefore, the master subnetwork of

CMMNNs (2) can have (r + 2)n hybrid stable equilibrium states.215
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By set-valued maps and memristor model (B), we can get

co [κij(xj(t))] =


κ⃗ij , xj(t) < 0,[

⌣
κij , κ̄ij

]
, xj(t) = 0,

←
κij , xj(t) > 0.

co [ωij(xj(t− τij))] =


ω⃗ij xj(t− τij) < 0,[

⌣
ωij , ω̄ij

]
, xj(t− τij) = 0,

←
ωij xj(t− τij) > 0.

Now, PLAF (3) is simplified to the following form

fi(s) =


ui, s ∈ (−∞, p0i ]

β0
i s, s ∈ (p0i , q

0
i )

vi, s ∈ [q0i ,+∞)

, (12)

Obviously, fi(0) = 0, Li = 0, i = 1, . . . , n, (6) holds. From PLAF (12) and

memristor model (B), we can have

|co [κij(xj(t))] fj(xj(t))− co [κij(yj(t))] fj(yj(t))|

≤ κ̃ijβ
0
j |xj(t)− yj(t)| = κ̃ij lj |xj(t)− yj(t)| .

where i and j = 1, . . . , n.

Then, this paper can get the following three corollaries.

Corollary 3 : The master subnetwork of CMMNNs (2) can get 2n exponen-

tially stable equilibrium points in ℜn with PLAF (12) and memristor model

(B), if Ω = ∅, Λ = ϑ, and

−dip
0
i +Υ∗

i1 +Υi2 +Υi3 + Ii < 0,

−diq
0
i +Υ∗

i4 +Υi5 +Υi6 + Ii > 0,
(13)

hold for i = 1, . . . , n, where

Υ∗
i1 = max

{
⌣
κiifi(p

0
i ), κ̄iifi(p

0
i )
}
,

Υ∗
i4 = min

{
⌣
κiifi(q

0
i ), κ̄iifi(q

0
i )
}
.

13



Corollary 4 : The master subnetwork of CMMNNs (2) can get 2n stable

periodic orbits in ℜn with PLAF (12) and memristor model (B), if Ω = ϑ,

Λ = ∅, and
−dip

0
i +Υ∗

i1 +Υi2 +Υi3 + Ii(t) < 0,

−diq
0
i +Υ∗

i4 +Υi5 +Υi6 + Ii(t) > 0,

hold for i = 1, . . . , n.

Corollary 5 : The master subnetwork of CMMNNs (2) can get 2n hybrid

stable equilibrium states in ℜn with PLAF (12) and memristor model (B), if

Ω ̸= ∅, Λ ̸= ∅, and

−dup
0
u +Υ∗

u1 +Υu2 +Υu3 + Iu(t) < 0,

−duq
0
u +Υ∗

u4 +Υu5 +Υu6 + Iu(t) > 0,

−dvp
0
v +Υ∗

v1 +Υv2 +Υv3 + Iv < 0,

−dvq
0
v +Υ∗

v4 +Υv5 +Υv6 + Iv > 0,

hold for all u ∈ U , all v ∈ V .

3.3. Hybrid Multisynchronization220

First, we present two necessary definitions.

Definition 1 : HMSM(t) is called hybrid multisynchronization manifold of

CMMNNs with time delays (2), if HMSM(t) = xN (t) = (xN1(t), xN2(t), . . . ,

xNn(t))
T ∈ ℜn and the following conditions hold.

1) xij(t) → xNj(t) as t → ∞ for any i = 1, . . . , N − 1, j = 1, . . . , n.225

2) For xNk(t), k = 1, . . . , n, it is either stable periodic orbit or stable equi-

librium point as t → ∞.

3) Stable periodic orbit and stable equilibrium point coexist in xN (t) simul-

taneously.

Definition 2 : The delayed CMMNNs (2) can be said to achieve hybrid mul-230

tisynchronization when the following conditions hold.

1) Sets Ω ̸= ∅, Λ ̸= ∅.

2) Given arbitrary initial values x(t0) = (x1(t0)
T , x2(t0)

T , . . . , xN (t0)
T )T ,

where xi(t0) ∈ C([−τ̃ , 0],ℜn) for i = 1, . . . , N , and τ̃ = max
1≤i≤n,1≤j≤n

τij , then

14



there exist hybrid multisynchronization manifoldHMSMw(t) = xN (t) = (xN1(t),

xN2(t), . . . , xNn(t))
T ∈ ℜn, γ > 0, and Y > 0, such that

∥xi(t)−HMSMw(t)∥= ∥xi(t)− xN (t)∥ ≤ Y e−γt

for any t ≥ 0, i = 1, . . . , N − 1, subscript w is certain positive integer.

3) There exist at least two different hybrid multisynchronization manifolds

HMSMw(t) and HMSMy(t) with the corresponding different initial values235

x(t0) and x′(t0).

Remark 5 : For xNk(t), it is either stable periodic orbit or stable equilibrium

point related with corresponding external input INk(t), k = 1, 2, . . . , n, as time

t → ∞, that is, if INk(t) ∈ Ω, xNk(t) is stable periodic orbit, else INk(t) ∈ Λ,

xNk(t) will be stable equilibrium point. It should be emphasized, xN (t) =240

(xN1(t), xN2(t), . . . , xNn(t))
T are hybrid stable equilibrium states. Therefore,

hybrid multisynchronization manifolds HMSMw(t) and HMSMy(t) are also

hybrid stable equilibrium states. According to corollary 2, the master subnet-

work of CMMNNs (2) can have (r + 2)n hybrid stable equilibrium states in

ℜn. It means that there are (r + 2)n hybrid multisynchronization manifolds in245

CMMNNs (2).

When coupled systems have multiple stable equilibrium states, we call the

synchronization of coupled systems as multisynchronization. In other word,

there exist multiple trajectories for every subnetwork of coupled systems. When

there exist only multiple stable equilibrium points (or stable periodic orbits), the250

multisynchronization of coupled systems is static (or dynamical). During the

last three years, dynamical and static multisynchronization were addressed in

[32, 33, 34]. When all stable equilibrium states are hybrid (namely, the hybrid of

stable equilibrium points and stable periodic orbits), the multisynchronization

of coupled systems is called hybrid multisynchronization.255

To achieve hybrid multisynchronization of delayed CMMNNs, we design con-
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trollers of slave subnetworks as follows:

♢i(t) =
N∑
j=1

ηijΞxj(t) +
N∑
j=1

σijΞφ(xj(t)− xi(t)),

i = 1, 2, . . . , N − 1,

where coupling matrix Ξ = diag {Ξ1,Ξ2, . . . ,Ξn} ≥ 0; ηij and σij represent

coupling strength. We define that σij ≥ 0 for i ̸= j and σij = 0 for i = j.

φ(xj(t)−xi(t)) = (φ(xj1(t)−xi1(t)), φ(xj2(t)−xi2(t)), . . . , φ(xjn(t)−xin(t)))
T

denotes nonlinear coupling function, and we set

φ(xj(t)− xi(t)) = sgn(xj(t)− xi(t))

where sgn represents sign function.

Therefore, delayed CMMNNs (2) can be written as:

ẋ(t) = − (EN ⊗D)x(t) + (EN ⊗ Γ(x(t))) f(x(t))

+ (EN ⊗H(x(t− τ))) f(x(t− τ)) + Ī(t) + (Σ⊗ Ξ)x(t) + Θ,
(14)

where x(t) = (x1(t)
T , x2(t)

T , . . . , xN (t)T )T , xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T

for i = 1, . . . , N . f(x(t)) = (f(x1(t))
T , f(x2(t))

T , . . . , f(xN (t))T )T , f(xi(t)) =

(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))
T , i = 1, . . . , N . Ī(t) = (I1(t)

T , I2(t)
T , . . . ,

IN (t)T )T , Σ = [ηij ]N×N , ηNj = 0 for j = 1, . . . , N .

Θ =



N∑
j=1

σ1jΞsgn(xj(t)− x1(t))

...
N∑
j=1

σ(N−1)jΞsgn(xj(t)− xN−1(t))

0


.

We define synchronization error as ei(t) = xi(t) − xN (t), i = 1, . . . , N − 1.

Therefore, we get

ėi(t) = −Dei(t) + Γ(xi(t))f(xi(t))− Γ(xN (t))f(xN (t))

+H(xi(t− τ))f(xi(t− τ))−H(xN (t− τ))f(xN (t− τ))

+(Σi ⊗ Ξ)x(t) + Θi, i = 1, 2, . . . , N − 1,

where Σi = (ηi1, ηi2, . . . , ηiN ), Θi =
N∑
j=1

σijΞsgn(xj(t)− xi(t)).
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We define a matrix W = (wij)(N−1)×N , and

wij =


1, i = j

−1, j = N

0, others

.

Set W̃ = W ⊗ En, then e(t) = W̃x(t), where e(t) = (e1(t)
T , e2(t)

T , . . . ,

eN−1(t)
T )T . Let P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n}, and de-

note P̃ = EN−1 ⊗ P̂ , εi = σiN −
N−1∑
j=1

σij , i = 1, . . . , N − 1, Q̃ = EN−1 ⊗ Q̂.260

Now, we present main results on hybrid multisynchronization of delayed

CMMNNs as follows.

Theorem 2 : The delayed CMMNNs (2) can achieve hybrid multisynchroniza-

tion and there are (r+2)n hybrid multisynchronization manifolds, if the condi-

tions of corollary 2 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n}, two

positive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n}

and a positive constant δ, such that

n∑
j=1

2 (κ̃kj + ω̃kj)µj − Ξkεi ≤ 0, k = 1, . . . n, i = 1, . . . , N − 1, (15)

p̂k (δ − dk − ρ̂k) +
1
2e

2δτ q̂k(lk)
2 ≤ 0, k = 1, 2, . . . , n, (16)

and

WTW (ΞjΣ+ ρ̂jEN ) ≤ 0, j = 1, 2, . . . , n. (17)

Proof : See Appendix B.

When Ω and Λ satisfy different conditions, we can get different stable equi-

librium states for the master subnetwork of CMMNNs (2). Therefore, we can265

get corollaries 6 and 7.

Corollary 6 : The delayed CMMNNs (2) can achieve dynamical multisyn-

chronization and there are (r+2)n dynamical multisynchronization manifolds, if

the conditions of corollary 1 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n},

two positive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n}270

and a positive constant δ, such that inequalities (15)-(17) hold.
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Corollary 7 : The delayed CMMNNs (2) can achieve static multisynchroniza-

tion and there are (r + 2)n static multisynchronization manifolds, if the condi-

tions of theorem 1 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n}, two

positive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n}275

and a positive constant δ, such that inequalities (15)-(17) hold.

Remark 6 : When the master subnetwork of CMMNNs (2) adds controller,

and external inputs of all nodes are set as periodic (or constant) signals, the

resulting hybrid multisynchronization will become the dynamical (or static)

multisynchronization introduced in [32, 33, 34].280

Remark 7 : In references [15, 16, 17, 18, 19, 20, 21, 22], [26, 27, 28, 29, 30, 31],

[45, 46], synchronization of conventional NNs and MNNs under a stable equilib-

rium state was researched. As discussed previously, multiple stable equilibrium

states are very necessary for coupled systems including CMMNNs in some ap-

plications [12, 13, 14], [23, 24], [37, 38, 39, 40, 41]. Compared with the above285

researches [15, 16, 17, 18, 19, 20, 21, 22], [26, 27, 28, 29, 30, 31], [45, 46], the

highlight of [32, 33, 34] is that dynamical multisynchronization and static mul-

tisynchronization of coupled multistable NNs were addressed under multiple

stable equilibrium states. However, these researches [32, 33, 34] neglect that

external inputs of each node may be various in reality. The advantages of this290

paper are that hybrid multisynchronization of CMMNNs is proposed under mul-

tiple stable equilibrium states and the problem mentioned above can be solved

by hybrid multisynchronization via considering various external inputs. It is

worth emphasizing that dynamical and static multisynchronization can be seen

as two particular cases of hybrid multisynchronization. Therefore, the results295

of this paper are general and meaningful, and extend the existing results.

When PLAF (3) is changed to (12) and memristor model (B) is chosen, we

can get the theorem 3.

Theorem 3 : The delayed CMMNNs (2) can achieve hybrid multisynchroniza-

tion and there are 2n hybrid multisynchronization manifolds, if the conditions

of corollary 5 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n}, two posi-

tive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n} and a
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positive constant δ, such that (15), (17) and

p̂k (δ − dk − ρ̂k) +
1
2e

2δτ q̂k
(
β0
k

)2 ≤ 0, k = 1, 2, . . . , n, (18)

hold.

Proof : From PLAF (12), we have li = β0
i , the rest of proof is same as300

theorem 2. So, the detailed proof is omitted here.

When Ω and Λ satisfy different conditions, we can get corollaries 8 and 9.

Corollary 8 : The delayed CMMNNs (2) can achieve dynamical multisyn-

chronization and there are 2n dynamical multisynchronization manifolds, if the

conditions of corollary 4 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n},305

two positive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n}

and a positive constant δ, such that inequalities (15), (17) and (18) hold.

Corollary 9 : The delayed CMMNNs (2) can achieve static multisynchroniza-

tion and there are 2n static multisynchronization manifolds, if the conditions

of corollary 3 hold and there exist a matrix ρ̂ = diag {ρ̂1, ρ̂2, . . . , ρ̂n}, two posi-310

tive definite matrices P̂ = diag {p̂1, p̂2, . . . , p̂n}, Q̂ = diag {q̂1, q̂2, . . . , q̂n} and a

positive constant δ, such that inequalities (15), (17) and (18) hold.

Remark 8 : In this paper, hybrid, dynamical and static multisynchronization

of CMMNNs are addressed with two classes of PLAF and two types of simple

memristor models. In practical communication networks, the external inputs315

of each node may be various. Therefore, compared with dynamical and stat-

ic multisynchronization, the hybrid multisynchronization is more flexible and

practical.
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4. Simulation

Example 1. We consider delayed CMMNN which consist of 3 subnetworks

as follows.

ẋ1(t) = −Dx1(t) + Γ(x1(t))f(x1(t)) + H(x1(t− τ))

×f(x1(t− τ)) + I1(t) +
3∑

j=1

η1jΞxj(t)

+
3∑

j=1

σ1jΞφ(xj(t)− x1(t)),

ẋ2(t) = −Dx2(t) + Γ(x2(t))f(x2(t)) + H(x2(t− τ))

×f(x2(t− τ)) + I2(t) +
3∑

j=1

η2jΞxj(t)

+
3∑

j=1

σ2jΞφ(xj(t)− x2(t)),

ẋ3(t) = −Dx3(t) + Γ(x3(t))f(x3(t)) + H(x3(t− τ))

×f(x3(t− τ)) + I3(t),

(19)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T for i = 1, 2, 3.320

Set fj(w) =
|w+1|−|w−1|

2 , then µj = 1, β0
j = 1, Lj = 0, j = 1, 2, 3.

The other parameters are set as: τij = 0.1, i = 1, 2, 3, j = 1, 2, 3.

Γ(xi(t)) =


κ11(xi1(t)) 0 0

0 κ22(xi2(t)) 0

0 0 κ33(xi3(t))

 ,

κ11(xi1(t)) =

 4.4, xi1(t) ≤ 0,

4.6, xi1(t) > 0,

κ22(xi2(t)) =

 4.8, xi2(t) ≤ 0,

3.5, xi2(t) > 0,

κ33(xi3(t)) =

 4.0, xi3(t) ≤ 0,

4.5, xi3(t) > 0,

H(xi(t− τ)) =


ω11(xi1(t− τ11)) 0 0

0 ω22(xi2(t− τ22)) 0

0 0 ω33(xi3(t− τ33))


20
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Figure 2: The trajectories of x31, x32 and x33 with external input vector I3(t) =

(3.2sin(t), 2.4, 2.8cos(t))T and 18 random initial values in the interval [-20, 20]. Obvious-

ly, there exist 8 hybrid stable equilibrium states for the 3rd subnetwork in ℜ3

ω11(xi1(t− τ11)) =

 0.1, xi1(t− τ11) ≤ 0,

0.05, xi1(t− τ11) > 0,

ω22(xi2(t− τ22)) =

 0.02, xi2(t− τ22) ≤ 0,

0.05, xi2(t− τ22) > 0,

ω33(xi3(t− τ33)) =

 0.08, xi3(t− τ33) ≤ 0,

0.04, xi3(t− τ33) > 0,

for i = 1, 2, 3, δ = 0.1, D = diag{1, 1, 1}. External input vector Ii(t) =

(3.2sin(t), 2.4, 2.8cos(t))T , i = 1, 2, 3, that is, Ω ̸= ∅, Λ ̸= ∅. For the 3rd

subnetwork (master subnetwork), we can get that conditions of corollary 5 are325

satisfied. Therefore, the 3rd subnetwork has 8 hybrid stable equilibrium states

in ℜ3, as shown in Fig. 2.

Let Q̂ = diag{0.01, 0.01, 0.01}, Ξ = diag{10, 10, 10}, ρ̂ = diag{1, 1, 1}, P̂ =

diag{1, 1, 1}. σ13 = σ23 = 1 and σij = 0 for i, j = 1, 2, then εi = σi3 −
2∑

j=1

σij =

1,i = 1, 2. We can get that the conditions (15) and (18) are satisfied.330
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Set

Σ = [ηij ]3×3 =


−2 0 2

0 −2 2

0 0 0

 ,

then

WTW (ΞjΣ+ ρ̂jE3) =


−19 0 19

0 −19 19

19 19 −38

 ,

j = 1, 2, 3.

The eigenvalues of WTW (ΞjΣ+ ρ̂jE3) are nonpositive:-57, -19, 0. The

condition (17) holds. Thus, CMMNN (19) can achieve hybrid multisynchro-

nization according to the theorem 3. As shown in Fig. 3, there are 18 random

initial values for every nerve cell to be tracked. For every nerve cell of the335

3rd subnetwork, i.e. x3j , j = 1, 2, 3, there exist 2 trajectories because of 2

corner points of the PLAF. Therefore, there exist 8 hybrid multisynchroniza-

tion manifolds for the 3rd subnetwork. The hybrid multisynchronization mani-

folds are HMSMw(t)|w=1,2,...,8 = ((1#, 3#, 5#)T , (1#, 3#, 6#)T , (1#, 4#, 5#)T ,

(1#, 4#, 6#)T , (2#, 3#, 5#)T , (2#, 3#, 6#)T , (2#, 4#, 5#)T , (2#, 4#, 6#)T ).340

According to the result of Fig. 3, hybrid multisynchronization of CMMNNs

may be applied in some complex areas such as secure communication in multi-

ple networks, obstacle avoidance for robots, formation flying of unmanned air

vehicles and so on. For instance, hybrid multisynchronization of CMMNNs is

applied in formation flying of unmanned air vehicles. The leaders and the fol-345

lowers of unmanned air vehicles can be simulated by the master subnetwork

and the N − 1 slave subnetworks, respectively. The leaders can be tracked and

synchronized by the followers via feedback controllers. For security reason, the

leaders usually need to generate multiple flight trajectories according to different

initial states (such as fuel loads and device performances) and different external350

inputs (such as meteorological conditions, human factors). When unmanned air

vehicles simulated by CMMNN (19), multiple flight trajectories generated by

the leaders can be (1#, 3#, 5#)T , (1#, 3#, 6#)T , (1#, 4#, 5#)T , (1#, 4#, 6#)T ,
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Figure 3: Hybrid multisynchronization of delayed CMMNN (19) with external input vector

Ii(t) = (3.2sin(t), 2.4, 2.8cos(t))T and 18 random initial values in the interval [-20, 20].

(2#, 3#, 5#)T , (2#, 3#, 6#)T , (2#, 4#, 5#)T , (2#, 4#, 6#)T , as shown in Fig. 3.

In this case, we call the synchronization between the leaders and the followers355

as hybrid multisynchronization of CMMNNs.
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When single initial value is given, delayed CMMNN (19) can achieve expo-

nential synchronization under a stable equilibrium state, as shown in Fig. 4.

The hybrid synchronization manifold is (1#, 4#, 5#)T .

Example 2. We consider another delayed CMMNN which consist of 3 sub-

networks as follows.

ẋ1(t) = −Dx1(t) + Γ(x1(t))f(x1(t)) + H(x1(t− τ))f(x1(t− τ))

+I1(t) +
3∑

j=1

η1jΞxj(t) +
3∑

j=1

σ1jΞφ(xj(t)− x1(t)),

ẋ2(t) = −Dx2(t) + Γ(x2(t))f(x2(t)) + H(x2(t− τ))f(x2(t− τ))

+I2(t) +
3∑

j=1

η2jΞxj(t) +
3∑

j=1

σ2jΞφ(xj(t)− x2(t)),

ẋ3(t) = −Dx3(t) + Γ(x3(t))f(x3(t)) + H(x3(t− τ))f(x3(t− τ))

+I3(t),

(20)

where xi(t) = (xi1(t), xi2(t))
T for i = 1, 2, 3.360

Set PLAF as

fj(w) =



−4, (−∞,−4]

10w + 36, (−4,−3.6)

−2
7w − 36

35 , [−3.6, 3.4]

10w − 36, (3.4, 4)

4, [4,+∞)

,

then µj = 4, lj = 10, Lj = 2/7, and fj(±3.6) = 0, j = 1, 2.

The parameters are set as: τij = 0.1, i = 1, 2, 3, j = 1, 2.

Γ(xi(t)) =

 κ11(xi1(t)) 0

0 κ22(xi2(t))

 ,

κ11(xi1(t)) =

 4.4, |xi1(t)| ≤ 3.6,

4.6, |xi1(t)| > 3.6,

κ22(xi2(t)) =

 4.8, |xi2(t)| ≤ 3.6,

4.0, |xi2(t)| > 3.6,

H(xi(t− τ)) =

 ω11(xi1(t− τ11)) 0

0 ω22(xi2(t− τ22))

 ,
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Figure 4: Exponential synchronization of delayed CMMNN (19) under a stable equilibrium

state with external input vector Ii(t) = (3.2sin(t), 2.4, 2.8cos(t))T and single initial value in

the interval [-10, 15].

ω11(xi1(t− τ11)) =

 0.1, |xi1(t− τ11)| ≤ 3.6,

0.05, |xi1(t− τ11)| > 3.6,
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Figure 5: The trajectories of x31 and x32 with external input vector I3(t) = (2sin(t), 2)T

and 30 random initial values in the interval [-20, 20]. There exist 9 hybrid stable equilibrium

states for the 3rd subnetwork in ℜ2

ω22(xi2(t− τ22)) =

 0.02, |xi2(t− τ22)| ≤ 3.6,

0.05, |xi2(t− τ22)| > 3.6,

i = 1, 2, 3, δ = 0.1, D = diag{1, 1}.

External input vector Ii(t) = (2sin(t), 2)T , i = 1, 2, 3, that is, Ω ̸= ∅, Λ ̸= ∅.

For the 3rd subnetwork , we can get that conditions of corollary 2 are satisfied.

Therefore, the 3rd subnetwork has 9 hybrid stable equilibrium states in ℜ2, as365

shown in Fig 5.

Let Q̂ = diag{0.1, 0.1}, Ξ = diag{10, 10}, ρ̂ = diag{0.1, 0.1}, P̂ = diag{15, 15}.

σi3 = 4 and σij = 0 for i, j = 1, 2, then εi = σi3−
2∑

j=1

σij = 4,i = 1, 2. Therefore,

we can get that inequalities (15) and (16) hold.

Set

Σ = [ηij ]3×3 =


−1 0 1

0 −1 1

0 0 0

 ,
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then

WTW (ΞjΣ+ ρ̂jE3) =


−9.9 0 9.9

0 −9.9 9.9

9.9 9.9 −19.8

 ,

j = 1, 2.370

The eigenvalues of WTW (ΞjΣ+ ρ̂jE3) are nonpositive:-29.7, -9.9, 0. The

condition (17) holds. Thus, delayed CMMNN (20) can achieve hybrid multisyn-

chronization according to the theorem 2.

As shown in Fig. 6, CMMNN (20) can achieve hybrid multisynchronization

with 30 random initial conditions in the interval [-20, 20]. Fig. 7 shows the375

local magnification in the interval [0, 0.1] and [0, 0.25] with 27 random initial

conditions. Red, blue and black lines represent x1j , x2j , x3j , j = 1, 2, respec-

tively. For every nerve cell of the 3rd subnetwork, i.e. x3j , j = 1, 2, there exist

3 trajectories because of 4 corner points of the PLAF. Therefore, there exist 9

hybrid multisynchronization manifolds for the 3rd subnetwork. The hybrid mul-380

tisynchronization manifolds are HMSMw(t)|w=1,2,...,9 = ((1#, 4#)T , (1#, 5#)T ,

(1#, 6#)T , (2#, 4#)T , (2#, 5#)T , (2#, 6#)T , (3#, 4#)T , (3#, 5#)T , (3#, 6#)T ).

When single initial value is given, delayed CMMNN (20) can achieve expo-

nential synchronization under a stable equilibrium state, as shown in Fig. 8.

The hybrid synchronization manifold is (3#, 6#)T .385

5. Conclusion

This paper builds delayed CMMNNs and investigates multistability of de-

layed CMMNNs with continuous PLAF owning 2r+ 2 corner points. Sufficien-

t conditions certify that there exist (r + 2)n exponentially stable equilibrium

points, stable periodic orbits or hybrid stable equilibrium states. Then, we pro-390

pose hybrid multisynchronization based on the structure of delayed CMMNNs

for the first time and can obtain (r + 2)n hybrid multisynchronization mani-

folds. Hybrid multisynchronization can solve the problem that dynamical and

static multisynchronization [32, 33, 34] cannot take into consideration various
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Figure 6: Hybrid multisynchronization of delayed CMMNN (20) with external input vector

Ii(t) = (2sin(t), 2)T and 30 random initial values in the interval [-20, 20].

external inputs. Moreover, hybrid, dynamical and static multisynchronization395

of CMMNNs are addressed with two classes of PLAF and two types of simple

memristor models. Compared with dynamical and static multisynchronization,

the hybrid multisynchronization is more flexible and practical. Therefore, the

results of this paper are general and meaningful, and extend the existing results.

In the future research, hybrid multisynchronization of CMMNNs can be400

achieved via different feedback control schemes, such as pinning control, adap-

tive control and so on. Moreover, further investigation can focus on the robust

hybrid multisynchronization of CMMNNs with parameter perturbations.
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Figure 7: The local magnification in the interval [0, 0.1] and [0, 0.25] with 27 random initial

conditions.

A. Proof of Theorem 1

First, denote

Φ =

{
n∏

i=1

(−∞, p0i ]
λ1
i × (p0i , q

0
i )

0 × [q0i , p
1
i ]

λ2
i

× · · · × (pri , q
r
i )

0 × [qri ,+∞)λ
r+2
i ,(

λ1
i , λ

2
i , · · · , λ

r+2
i

)
= (1, 0, · · · , 0) or (0, 1, · · · , 0)

or · · · or (0, 0, · · · , 1)} .

We will prove that (r+2)n exponentially stable equilibrium points locate in405

Φ in three steps.

Step 1: We will prove that there exist (r+2)n equilibrium points located in

Φ.
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Figure 8: Exponential synchronization of delayed CMMNN (20) under a stable equilibrium

state with external input vector Ii(t) = (2sin(t), 2)T and single initial value in the interval

[-25, 20].

From Λ = ϑ, we can get that every element in set ϑ is constant. So, by

isolated MNN (1), the master subnetwork of CMMNNs (2) can be rewritten as:

ẋ(t) = −Dx(t) + Γ̂(x(t))f(x(t)) + Ĥ(x(t− τ))f(x(t− τ)) + I,

where I = (I1, I2, . . . , In)
T .

Take an arbitrary region Φ̃ from set Φ, for arbitrary (x1, x2, . . . , xn)
T ∈ Φ̃,

fix x1, . . . , xi−1, xi+1, . . . , xn except xi(t), and define

Gi(xi(t)) = −dixi(t) + κ̂ii(xi(t))fi(xi(t)) +
n∑

j=1,j ̸=i

κ̂ij(xj(t))fj(xj(t))

+
n∑

j=1

ω̂ij(xj(t− τij))fj(xj(t− τij)) + Ii.
(21)
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Then, there exist three cases that will be discussed.410

Case 1. When xi(t) ∈ (−∞, p0i ], we can have

Gi(p
0
i ) = −dip

0
i + κ̂ii(p

0
i )fi(p

0
i ) +

n∑
j=1,j ̸=i

κ̂ij(xj(t))

×fj(xj(t)) +
n∑

j=1

ω̂ij(xj(t− τij))fj(xj(t− τij)) + Ii

≤ −dip
0
i +max

{
⌣
κiifi(p

0
i ), κ̄iifi(p

0
i )
}

+
n∑

j=1,j ̸=i

max
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

max
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii < 0.

Noticing the continuity of function Gi(x) and limx→−∞Gi(x) = +∞, so

there exists a point x̄i ∈ (−∞, p0i ] such that Gi(x̄i) = 0.

Case 2. When xi(t) ∈ (qci , p
c+1
i ], c = 0, 1, . . . , r − 1, we can have

Gi(q
c
i ) ≥ −diq

c
i +min

{
⌣
κiifi(q

c
i ), κ̄iifi(q

c
i )
}

+
n∑

j=1,j ̸=i

min
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

min
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii > 0.

and

Gi(p
c+1
i ) ≤ −dip

c+1
i +max

{
⌣
κiifi(p

c+1
i ), κ̄iifi(p

c+1
i )

}
+

n∑
j=1,j ̸=i

max
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

max
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii < 0.

Therefore, there exists a point x̄i ∈ (qci , p
c+1
i ] such that Gi(x̄i) = 0, c =

0, 1, . . . , r − 1.

Case 3. When xi(t) ∈ (qri ,+∞], we can have

Gi(q
r
i ) ≥ −diq

r
i +min

{
⌣
κiifi(q

r
i ), κ̄iifi(q

r
i )
}

+
n∑

j=1,j ̸=i

min
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

min
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii > 0.

Combining limx→+∞Gi(x) = −∞, we can find a point x̄i ∈ (qri ,+∞] such415

that Gi(x̄i) = 0.
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As set Φ consists of (r + 2)n parts, we can get that there exist (r + 2)n

equilibrium points for the master subnetwork of CMMNNs (2) in ℜn with PLAF

(3) and memristor model (A) by Brouwer’s fixed point theorem.

Step 2: Set xi(t) is the solution for the ith node of the master subnetwork420

of CMMNNs (2) with respect to initial condition xi(0) ∈ Φ̃. Then, for all t ≥ 0,

we assert that xi(t) will stay in Φ̃. If this is false, then there exist three cases

to be discussed.

Case 1. When xi(0) ∈ (−∞, p0i ], then there exists t(1) ≥ 0 such that

xi(t
(1)) = p0i , ẋi(t

(1)) > 0, and xi(t) ≤ p0i for 0 ≤ t ≤ t(1). Actually,

ẋi(t
(1)) = −dixi(t

(1)) + κ̂ii(xi(t
(1)))fi(xi(t

(1)))

+
n∑

j=1,j ̸=i

κ̂ij(xj(t
(1)))fj(xj(t

(1)))

+
n∑

j=1

ω̂ij(xj(t
(1) − τij))fj(xj(t

(1) − τij)) + Ii

≤ −dip
0
i +max

{
⌣
κiifi(p

0
i ), κ̄iifi(p

0
i )
}

+
n∑

j=1,j ̸=i

max
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

max
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii < 0,

so, it is contradictory.

Case 2. When xi(0) ∈ [qci , p
c+1
i ], c = 0, 1, . . . , r−1, then there exists t(2) ≥ 0425

such that

(1) xi(t
(2)) = qci , ẋi(t

(2)) < 0, xi(t) ∈ [qci , p
c+1
i ], 0 ≤ t ≤ t(2);

or (2) xi(t
(2)) = pc+1

i , ẋi(t
(2)) > 0, xi(t) ∈ [qci , p

c+1
i ], 0 ≤ t ≤ t(2).

For case (1), we have

ẋi(t
(2)) ≥ −diq

c
i +min

{
⌣
κiifi(q

c
i ), κ̄iifi(q

c
i )
}

+
n∑

j=1,j ̸=i

min
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

min
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii > 0,

this is contradictory. Similarly, the case (2) can be overturned.

Case 3. When xi(0) ∈ [qri ,+∞), then there exist t(3) ≥ 0 such that xi(t
(3)) =
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qri , ẋi(t
(3)) < 0, and xi(t) ≥ qri , 0 ≤ t ≤ t(3). But,

ẋ(t(3)) ≥ −diq
r
i +min

{
⌣
κiifi(q

r
i ), κ̄iifi(q

r
i )
}

+
n∑

j=1,j ̸=i

min
{

⌣
κijuj , κ̄ijuj ,

⌣
κijvj , κ̄ijvj

}
+

n∑
j=1

min
{

⌣
ωijuj , ω̄ijuj ,

⌣
ωijvj , ω̄ijvj

}
+ Ii > 0,

which is a contradiction.430

Through the above analysis, we can get that for all t ≥ 0, xi(t) will stay in

Φ̃.

Step 3: we will prove that the (r+ 2)n equilibrium points are exponentially

stable.

Denote a function Ui(ζ) = di−ζ−
n∑

j=1

κ̃ijLj−
n∑

j=1

eζτij ω̃ijLj , then Ui(0) > 0,

and there exists a sufficiently small positive constant θ, such that Ui(θ) > 0 for

any i(i = 1, 2, . . . , n). Taking an arbitrary region Φ̃ from the set Φ, we can find

an equilibrium point x̄i in region Φ̃. Set yi(t) = xi(t) − x̄i, i = 1, . . . , n. In

terms of theory of differential inclusion, we can get

ẏi(t) ∈ −diyi(t) +
n∑

j=1

{co [κij(xj(t))] fj(xj(t))

−co [κij(x̄j)] fj(x̄j)}+
n∑

j=1

{co [ωij(xj(t− τij))]

×fj(xj(t− τij))− co [ωij(x̄j)] fj(x̄j)} .

xi(t), i = 1, 2, . . . , n stay in Φ̃, which means that Lipschitz condition for

fi(s) in remark 2 can be rewritten as

|fi(∧)− fi(∨)| ≤ Li |∧ − ∨| , i = 1, 2, . . . , n,

for any ∧, ∨ ∈ ℜ.435

Therefore, from lemma 1, we can get

|co [κij(xj(t))] fj(xj(t))− co [κij(x̄j)] fj(x̄j)| ≤ κ̃ijLj |yj(t)| ,

and

|co [ωij(xj(t− τij))] fj(xj(t− τij))− co [ωij(x̄j)] fj(x̄j)| ≤ ω̃ijLj |yj(t− τij)| .
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Hence,

d
dt |yi(t)| ≤ −di |yi(t)|+

n∑
j=1

κ̃ijLj |yj(t)|+
n∑

j=1

ω̃ijLj |yj(t− τij)|.

Set zℓ(t) = eθt |yℓ(t)| , ℓ = 1, 2, . . . , n and max
1≤i≤n

{|xi(0)− x̄i|} > 0. We can

get zℓ(0) ≤ max
1≤i≤n

{|xi(0)− x̄i|} , ℓ = 1, 2, . . . , n

Then, we will prove the following inequality by contradiction:

zℓ(t) ≤ max
1≤i≤n

{|xi(0)− x̄i|} , t > 0, ℓ = 1, 2, . . . , n (22)

Let Ô = max
1≤i≤n

{|xi(0)− x̄i|}. Suppose (22) is invalid, then we can find a

k ∈ {1, . . . , n} and t1 for the first time zk(t1) = Ô, żk(t1) > 0, zk(t) ≤ Ô,

t ∈ [0, t1); zi(t) ≤ Ô, t ∈ [0, t1], i = 1, 2, . . . , n, i ̸= k. Actually,

żk(t1) = θeθt1 |yk(t1)|+ eθt1 d
dt |yk(t1)|

≤ θzk(t1)− dkzk(t1) +
n∑

j=1

κ̃kjLjzj(t1)

+
n∑

j=1

eθτkj ω̃kjLjzj(t1 − τkj)

≤

{
θ − dk +

n∑
j=1

κ̃kjLj +
n∑

j=1

eθτkj ω̃kjLj

}
×max1≤i≤n {|xi(0)− x̄i|}

= −Uk(θ)max1≤i≤n {|xi(0)− x̄i|} < 0

Thus, this is contradictory, namely, (22) holds. Therefore, we can have that

|xℓ(t)− x̄ℓ| ≤ e−θt max
1≤i≤n

{|xi(0)− x̄i|} , ℓ = 1, 2, . . . , n. In other words, equilib-

rium point x̄i in Φ̃ is exponentially stable. Further, the master subnetwork of440

CMMNNs (2) can find (r + 2)n exponentially stable equilibrium points in ℜn

with PLAF (3) and memristor model (A). The proof is finished.

B. Proof of Theorem 2

We consider a Lyapunov functional as

V (t) = e(t)T P̃ e(t)e2δt +
∫ t

t−τ
f(x(s))

T
W̃T Q̃W̃ f(x(s))e2δ(s+τ)ds
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Calculating the derivative of V (t), we get

D+V (t) = 2δe2δte(t)T P̃ e(t) + 2e2δte(t)T P̃ ė(t)

+e2δ(t+τ)f(x(t))T W̃T Q̃W̃f(x(t))

−e2δtf(x(t− τ))T W̃T Q̃W̃ f(x(t− τ))

= 2δe2δtx(t)T W̃T P̃ W̃x(t)

+2e2δtx(t)T W̃T P̃ W̃ {− (EN ⊗D)x(t)

+ (EN ⊗ Γ(x(t))) f(x(t))

+ (EN ⊗H(x(t− τ))) f(x(t− τ)) + Ī(t)

+ (Σ⊗ Ξ)x(t) + Θ + (EN ⊗ ρ̂)x(t)− (EN ⊗ ρ̂)x(t)}

+ e2δ(t+τ)f(x(t))T W̃T Q̃W̃ f(x(t))

−e2δtf(x(t− τ))T W̃T Q̃W̃ f(x(t− τ))

Now, we analyze each item of D+V (t).

2e2δtx(t)T W̃T P̃ W̃Θ=2e2δt
N−1∑
i=1

n∑
k=1

p̂kΞk(xik(t)

−xNk(t))×
N∑
j=1

σijsgn(xjk − xik)

=2e2δt
N−1∑
i=1

n∑
k=1

p̂kΞk {|xik(t)− xNk(t)| (−σiN )

+ (xik(t)− xNk(t))
N−1∑
j=1

σijsgn(xjk − xik)

}

≤ 2e2δt
N−1∑
i=1

n∑
k=1

p̂kΞk |xik(t)− xNk(t)|

{
−σiN +

N−1∑
j=1

σij

}
= −2e2δt

N−1∑
i=1

n∑
k=1

p̂kΞkεi |eik(t)|.
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and

2δe2δtx(t)T W̃T P̃ W̃x(t) + 2e2δtx(t)T W̃T P̃ W̃

×{− (EN ⊗D)x(t) + (EN ⊗ Γ(x(t))) f(x(t))

+ (EN ⊗H(x(t− τ))) f(x(t− τ))− (EN ⊗ ρ̂)x(t)}

=2δe2δtx(t)T W̃T P̃ W̃x(t)− 2e2δtx(t)T W̃T P̃ (EN−1 ⊗D) W̃x(t)

−2e2δtx(t)T W̃T P̃ (EN−1 ⊗ ρ̂) W̃x(t)

+2e2δtx(t)T W̃T P̃ (EN−1 ⊗ Γ(x(t))) W̃f(x(t))

+2e2δtx(t)T W̃T P̃ (EN−1 ⊗H(x(t− τ))) W̃f(x(t− τ))

= 2e2δtx(t)T W̃T P̃ [(δEN−1 ⊗ En)− (EN−1 ⊗D)− (EN−1 ⊗ ρ̂)]

×W̃x(t) + 2e2δtx(t)T W̃T P̃ (EN−1 ⊗ Γ(x(t))) W̃f(x(t))

+2e2δtx(t)T W̃T P̃ (EN−1 ⊗H(x(t− τ))) W̃f(x(t− τ))

Combining remark 2, we can get

2δe2δtx(t)T W̃T P̃ W̃x(t) + 2e2δtx(t)T W̃T P̃ W̃

×{− (EN ⊗D)x(t) + (EN ⊗ Γ(x(t))) f(x(t))

+ (EN ⊗H(x(t− τ))) f(x(t− τ))− (EN ⊗ ρ̂)x(t)}

= 2e2δt
N−1∑
i=1

n∑
k=1

p̂k(xik(t)− xNk(t))
2
(δ − dk − ρ̂k)

+2e2δt
N−1∑
i=1

n∑
k=1

p̂k (xik(t)− xNk(t))
n∑

j=1

[κkj(xj(t))

× (fj(xij(t))− fj(xNj(t)))

+ωkj(xj(t− τkj)) (fj(xij(t− τij))− fj(xNj(t− τNj)))]

≤ 2e2δt
N−1∑
i=1

n∑
k=1

p̂k(eik(t))
2
(δ − dk − ρ̂k)

+2e2δt
N−1∑
i=1

n∑
k=1

p̂k |eik(t)|
n∑

j=1

2 (κ̃kj + ω̃kj)µj .

Obviously, W̃ Ī(t) = 0, and

−e2δtf(x(t− τ))T W̃T Q̃W̃f(x(t− τ))

= −e2δt
N−1∑
i=1

n∑
k=1

(fk(xik(t− τik))

−fk(xNk(t− τNk)))
2
q̂k ≤ 0.
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Therefore,

e2δ(t+τ)f(x(t))T W̃T Q̃W̃ f(x(t))− e2δtf(x(t− τ))T W̃T Q̃W̃ f(x(t− τ))

≤ e2δ(t+τ)
N−1∑
i=1

n∑
k=1

(fk(xik(t))− fk(xNk(t))) q̂k (fk(xik(t))− fk(xNk(t)))

≤ e2δ(t+τ)
N−1∑
i=1

n∑
k=1

q̂k(lk)
2
(xik(t)− xNk(t))

2

= e2δ(t+τ)
N−1∑
i=1

n∑
k=1

q̂k(lk)
2
(eik(t))

2

Moreover,

2e2δtx(t)T W̃T P̃ W̃ {(Σ⊗ Ξ)x(t) + (EN ⊗ ρ̂)x(t)}

= 2e2δt
n∑

j=1

p̂j x̃j(t)
T
WTW (ΞjΣ+ ρ̂jEN ) x̃j(t) ≤ 0

where x̃j(t)=(x1j(t), x2j(t), . . . , xNj(t))
T
.

Therefore,

D+V (t) = 2e2δt
N−1∑
i=1

n∑
k=1

p̂k(eik(t))
2
(δ − dk − ρ̂k)

+2e2δt
N−1∑
i=1

n∑
k=1

p̂k |eik(t)|
n∑

j=1

2 (κ̃kj + ω̃kj)µj

−2e2δt
N−1∑
i=1

n∑
k=1

p̂kΞkεi |eik(t)|+ e2δ(t+τ)
N−1∑
i=1

n∑
k=1

q̂k

×(lk)
2
(eik(t))

2
+ 2e2δt

n∑
j=1

p̂j x̃j(t)
T
WTW

× (ΞjΣ+ ρ̂jEN ) x̃j(t)

= 2e2δt
N−1∑
i=1

n∑
k=1

(eik(t))
2
[p̂k (δ − dk − ρ̂k)

+ 1
2e

2δτ q̂k(lk)
2
]
+ 2e2δt

N−1∑
i=1

n∑
k=1

p̂k |eik(t)|

×

[
n∑

j=1

2 (κ̃kj + ω̃kj)µj − Ξkεi

]
+2e2δt

n∑
j=1

p̂j x̃j(t)
T
WTW (ΞjΣ+ ρ̂jEN ) x̃j(t) ≤ 0

From Lyapunov functional, we can get

V (t) ≥ p̂mine
2δt

N−1∑
i=1

n∑
j=1

(eij(t))
2
,

where p̂min = min
1≤i≤n

{p̂i}.445
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Then,

∥xi(t)− xN (t)∥ = ∥ei(t)∥

≤
√
p̂−1
mine

−2δtV (t) ≤ p̂−0.5
min

√
V (0)e−δt,

for i = 1, . . . , N − 1, j = 1, . . . , n.

Therefore, as time t → +∞, xij(t) → xNj(t) for any given initial values,

where i = 1, . . . , N − 1, j = 1, . . . , n.

For the master subnetwork of CMMNNs (2), the conditions of corollary 2

hold, that means master subnetwork of CMMNNs (2) can own (r + 2)n hy-450

brid stable equilibrium states in ℜn with PLAF (3) and memristor model (A).

Therefore, there are (r+2)n hybrid multisynchronization manifolds. The proof

is completed.
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